JP2013000784A - Submerge arc welding method of low alloy steel - Google Patents

Submerge arc welding method of low alloy steel Download PDF

Info

Publication number
JP2013000784A
JP2013000784A JP2011136731A JP2011136731A JP2013000784A JP 2013000784 A JP2013000784 A JP 2013000784A JP 2011136731 A JP2011136731 A JP 2011136731A JP 2011136731 A JP2011136731 A JP 2011136731A JP 2013000784 A JP2013000784 A JP 2013000784A
Authority
JP
Japan
Prior art keywords
flux
weld metal
welding
particle size
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011136731A
Other languages
Japanese (ja)
Other versions
JP5830278B2 (en
Inventor
Hiroshi Nakazawa
博志 中澤
Tomomi Yokoo
友美 横尾
Yoichiro Suzuki
陽一郎 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Welding and Engineering Co Ltd
Original Assignee
Nippon Steel and Sumikin Welding Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel and Sumikin Welding Co Ltd filed Critical Nippon Steel and Sumikin Welding Co Ltd
Priority to JP2011136731A priority Critical patent/JP5830278B2/en
Publication of JP2013000784A publication Critical patent/JP2013000784A/en
Application granted granted Critical
Publication of JP5830278B2 publication Critical patent/JP5830278B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Arc Welding In General (AREA)
  • Nonmetallic Welding Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a submerge arc welding method for obtaining a weld metal exhibiting excellent corrosion resistance etc. under the environment of concentrated sulfuric acid and concentrated hydrochloric acid and having no welding defect.SOLUTION: Welding is performed by using the combination of a bond flux and a solid wire. The bond flux contains, by mass%, 5 to 21% of SiO, 15 to 44% of AlO, 7 to 32% of MgO, 0.5 to 10% of CaO, 5 to 35% of CaF, 5 to 33% of TiO, 0.2 to 5.0% of Si, 0.1 to 5.0% of Mn, and 0.5 to 9.0% of COin terms of metal carbonate. In bond flux, particles having a particle diameter exceeding 850 μm account for 20 to 55%, particles between 150 and 850 μm for 40 to 75%, and particles less than 150 μm for 6% or less, and the apparent density is 0.70 to 1.30 g/cm. The solid wire contains 0.005 to 0.2% of C, 0.01 to 1.5% of Si, 0.4 to 2.5% of Mn, 0.03 to 1.0% of Cu, 0.05 to 1.0% of Ni, 0.01 to 1.0% of Mo, and 0.01 to 0.25% of Sb.

Description

本発明は、濃厚硫酸及び濃厚塩酸環境下で優れた耐食性が得られる低合金鋼のサブマージアーク溶接方法に関し、特に厳しい環境下で適用される耐硫酸露点腐食低合金鋼のサブマージアーク溶接において優れた耐食性及び良好な溶接金属機械性能が得られ、さらに溶接欠陥の無い健全な溶接金属を形成させ、溶接作業性が良好な耐硫酸性及び耐塩酸性に優れた低合金鋼のサブマージアーク溶接方法に関するものである。   The present invention relates to a submerged arc welding method for low alloy steel that provides excellent corrosion resistance in concentrated sulfuric acid and concentrated hydrochloric acid environments, and is particularly excellent in submerged arc welding of sulfuric acid dew point corrosion resistant low alloy steel applied in severe environments. The present invention relates to a submerged arc welding method for low alloy steel, which provides corrosion resistance and good weld metal mechanical performance, and forms a sound weld metal with no welding defects, and has good welding workability and excellent sulfuric acid resistance and hydrochloric acid resistance. It is.

近年、産業の発展に伴い鋼材の高靭性化及び安全性・経済性の観点から耐食性向上の検討が行われており、その中でも耐食性に優れた鋼材の適用比率が年々増加している。   In recent years, with the development of industry, studies have been made on improving corrosion resistance from the viewpoint of increasing the toughness of steel materials and safety and economy, and among them, the application ratio of steel materials having excellent corrosion resistance is increasing year by year.

例えば重油、石油などの化石燃料、液化天然ガスなどのガス燃料、都市ゴミなどの一般廃棄物、繊維屑、木工屑、プラスチック、廃油、廃タイヤ、医療廃棄物などの産業廃棄物及び下水汚泥などを燃焼させるボイラー等の排煙設備、さらに塩酸、硫酸などの単独または混合の酸洗液を収める鋼製めっき酸洗槽などに耐硫酸露点腐食低合金鋼が使用されている。特に石炭焚き火力やゴミ焼却施設などの煙道、煙突等の排煙設備では排ガス中の三酸化硫黄及び塩化水素に起因して硫酸露点腐食、塩酸露点腐食が生じるため、かかる耐硫酸露点腐食鋼に対するニーズが高まっている。   For example, fossil fuels such as heavy oil and petroleum, gas fuels such as liquefied natural gas, general waste such as municipal waste, textile waste, woodworking waste, plastic, waste oil, waste tires, industrial waste such as medical waste, and sewage sludge Sulfur-resistant dew-point corrosion low alloy steel is used in smoke exhausting equipment such as boilers, and steel plating pickling tanks containing single or mixed pickling solutions such as hydrochloric acid and sulfuric acid. In particular, in the flue and chimney flue facilities such as coal-fired thermal power plants and garbage incineration facilities, sulfuric acid dew point corrosion and hydrochloric acid dew point corrosion occur due to sulfur trioxide and hydrogen chloride in the exhaust gas. The need for is growing.

一般に、この耐硫酸露点腐食鋼を始めとした母材同士を溶接により溶着することにより施工される溶接構造物が腐食環境下で使用される場合、溶接金属は母材と同等以上の耐食性が必要とされる。これは溶接部と母材の間で耐食性に差異があると、耐食性の劣る方が選択的に腐食され、構造物の寿命が著しく短くなる。また、溶接部が選択的に腐食した場合、腐食孔に応力が集中し、構造物の破壊を招く恐れもあるため、溶接構造物が腐食環境下で使用される場合は、母材を耐硫酸露点腐食鋼で構成するだけでなくその溶接部を構成する溶接材料の耐食性も十分に考慮する必要がある。   Generally, when welded structures constructed by welding base materials such as sulfuric acid dew-point corrosion steel together by welding are used in a corrosive environment, the weld metal must have corrosion resistance equivalent to or higher than that of the base material. It is said. If there is a difference in corrosion resistance between the welded part and the base metal, the inferior corrosion resistance is selectively corroded, and the life of the structure is remarkably shortened. In addition, if the welded part is selectively corroded, stress may concentrate on the corroded holes and the structure may be destroyed. If the welded structure is used in a corrosive environment, the base material should be It is necessary to consider not only the dew point corrosion steel but also the corrosion resistance of the welding material constituting the welded portion.

従来、耐硫酸露点腐食鋼用の溶接材料は、耐食元素としてCuやCu−Cr系の原料を含む材料が適用されている。しかし、これらの既存溶接材料を使用した場合、重油燃焼ボイラーのプラント排煙装置で生じる硫酸露点腐食環境下では十分に優れた耐食性を示すが、石炭焚きボイラーやゴミ焼却またはゴミのガス化溶融施設などでは、硫酸露点腐食と塩酸露点腐食が同時に生じるため、溶接部の耐食性が十分確保できないという問題点があった。   Conventionally, as a welding material for sulfuric acid dew-point corrosion steel, a material containing Cu or a Cu—Cr-based material as a corrosion-resistant element is applied. However, when these existing welding materials are used, they exhibit sufficiently excellent corrosion resistance under the sulfuric acid dew point corrosion environment generated by heavy oil fired boiler plant flue gas generators, but coal-fired boilers, garbage incineration or garbage gasification and melting facilities However, since sulfuric acid dew point corrosion and hydrochloric acid dew point corrosion occur simultaneously, there was a problem that sufficient corrosion resistance of the welded portion could not be ensured.

これらの点を考慮し、硫酸露点腐食と塩酸露点腐食が同時に生じる環境下においても十分な耐食性が確保できる溶接材料の開発が試みられている。   Considering these points, an attempt has been made to develop a welding material that can ensure sufficient corrosion resistance even in an environment in which sulfuric acid dew point corrosion and hydrochloric acid dew point corrosion occur simultaneously.

例えば、特開2004−90044号公報(特許文献1)、特開2004−90045号公報(特許文献2)、特開2004−90042号公報(特許文献3)には、それぞれ溶接方法に応じて被覆アーク溶接棒、ガスシールドアーク溶接用ソリッドワイヤ、ガスシールドアーク溶接用フラックス入りワイヤに耐硫酸露点腐食と耐塩酸露点腐食が共に優れた溶接金属を得るため、Cu、Sb及びNiを複合添加した技術の開示がある。特許文献1〜3は、耐硫酸及び耐塩酸性を向上させるために有効なCu及びSbを添加したものであるが、被覆アーク溶接棒やガスシールドアーク溶接用フラックス入りワイヤの場合、ワイヤ中のCu及びSbの一部が溶接金属中に移行する際、フラックスの溶融により生成したスラグと共に溶接金属及び溶接熱影響部の表面に残留することが確認された。そして、Cu及びSbはスラグ成分よりも融点が低いので、スラグが凝固した後もスラグ中に溶融状態のまま残留し、Cu及びSbの溶融金属が溶接金属及び溶接熱影響部、特に溶融線近傍の粗大化したオーステナイト粒界に浸入し、粒界脆化割れが生じる場合があった。この粒界脆化割れが発生すると、溶接部の靭性及び疲労強度等の機械的特性を低下させると共に、割れ発生部位が腐食の起点となるため、溶接継手に要求される母材と同等以上の耐食性及び機械的特性を得ることが困難となる。   For example, Japanese Patent Application Laid-Open No. 2004-90044 (Patent Document 1), Japanese Patent Application Laid-Open No. 2004-90045 (Patent Document 2), and Japanese Patent Application Laid-Open No. 2004-90042 (Patent Document 3) are respectively coated according to the welding method. Technology to add Cu, Sb and Ni to arc welding rods, solid wire for gas shielded arc welding, and flux-cored wire for gas shielded arc welding in order to obtain a weld metal with excellent resistance to sulfuric acid dew point corrosion and hydrochloric acid dew point corrosion. There is a disclosure. In Patent Documents 1 to 3, Cu and Sb effective for improving sulfuric acid resistance and hydrochloric acid resistance are added. In the case of a coated arc welding rod or a flux-cored wire for gas shielded arc welding, Cu in the wire is used. And when a part of Sb moved into the weld metal, it was confirmed that it remained on the surface of the weld metal and the weld heat affected zone together with the slag generated by melting the flux. And since Cu and Sb have a melting point lower than that of the slag component, they remain in the molten state in the slag even after the slag solidifies, and the molten metals of Cu and Sb are weld metal and weld heat affected zone, particularly near the melting line. In some cases, the grains enter the coarsened austenite grain boundaries to cause grain boundary embrittlement cracks. When this grain boundary embrittlement crack occurs, the mechanical properties such as the toughness and fatigue strength of the welded portion are reduced, and the crack occurrence site becomes the starting point of corrosion. It becomes difficult to obtain corrosion resistance and mechanical properties.

また、上述した各種アーク溶接に加えて、サブマージアーク溶接方法においても同様に耐食性、即ち耐硫酸性及び耐塩酸性を向上させるための各種技術が提案されている。サブマージアーク溶接方法は、予め粒状のフラックスを溶接線に沿って散布しておき、その中に電極ワイヤを連続的に供給し、この電極ワイヤの先端と母材との間でアークを発生させて溶接を連続的に行う方法である。サブマージアーク溶接は、高能率で安定した溶接作業性及び機械性能が優れた溶接金属が得られることから、鉄骨、造管、橋梁、造船、車両など幅広い分野で適用されていることから、溶接施工における生産性の向上や耐食性の確保のため、更なる品質向上が求められている。   In addition to the various arc welding described above, various techniques for improving the corrosion resistance, that is, the sulfuric acid resistance and the hydrochloric acid resistance have also been proposed in the submerged arc welding method. In the submerged arc welding method, a granular flux is dispersed in advance along a welding line, an electrode wire is continuously supplied therein, and an arc is generated between the tip of the electrode wire and the base material. This is a method of performing welding continuously. Submerged arc welding is used in a wide range of fields such as steel frames, pipes, bridges, shipbuilding, and vehicles because it provides highly efficient and stable weld metal with excellent workability and mechanical performance. In order to improve productivity and ensure corrosion resistance, further quality improvement is required.

特開2008−126279号公報(特許文献4)には、耐硫酸露点腐食と耐塩酸露点腐食の優れた溶接金属が得られるフラックス入りワイヤをサブマージアーク溶接用フラックスと組合せた技術の開示がある。当該開示技術において、フラックス入りワイヤの充填フラックス中に添加するCuは、Fe−Cu合金またはFe−Cu−Si合金の形態とし、SbはFe−Sb合金の形態として含有し、粒界脆化割れの発生を低減しているが、その開示されているフラックス化学組成では、脱酸剤及びガス発生剤が添加されていないので、ピットやブローホール等の溶接欠陥を発生させ健全な溶接金属を得ることができない。   Japanese Patent Application Laid-Open No. 2008-126279 (Patent Document 4) discloses a technique in which a flux-cored wire from which a weld metal excellent in sulfuric acid dew point corrosion resistance and hydrochloric acid dew point corrosion resistance is obtained is combined with a flux for submerged arc welding. In the disclosed technology, Cu to be added to the filled flux of the flux-cored wire is in the form of Fe-Cu alloy or Fe-Cu-Si alloy, Sb is contained in the form of Fe-Sb alloy, and grain boundary embrittlement cracking occurs. However, in the disclosed flux chemical composition, since a deoxidizer and a gas generator are not added, weld defects such as pits and blowholes are generated to obtain a sound weld metal. I can't.

また、特開2004−90051号公報(特許文献5)には、耐硫酸性及び耐塩酸性に優れた低合金鋼のサブマージアーク溶接用ボンドフラックス及び溶接方法に関する技術の開示がある。これは耐硫酸性及び耐塩酸性に優れた溶接金属を得るために、フラックスにSbを添加したものであるが、フラックスに添加するSbの添加量が少ないので偏析しやすく、また粒径の細かいSb及びSb化合物の原料を使用しているため、造粒後のフラックス粒子から剥がれやすく、また粉化しやすくなり、溶接金属にSbが偏析して粒界脆化割れが発生しやすいという問題があった。   Japanese Unexamined Patent Application Publication No. 2004-90051 (Patent Document 5) discloses a technique related to a bond flux and a welding method for submerged arc welding of low alloy steel excellent in sulfuric acid resistance and hydrochloric acid resistance. This is obtained by adding Sb to the flux in order to obtain a weld metal excellent in sulfuric acid resistance and hydrochloric acid resistance. However, since the amount of Sb added to the flux is small, it is easy to segregate and has a small particle size. In addition, since the raw material of the Sb compound is used, it is easy to peel off from the flux particles after granulation and to be pulverized, and there is a problem that Sb segregates in the weld metal and easily causes intergranular embrittlement cracking. .

特開2004−90044号公報JP 2004-90044 A 特開2004−90045号公報JP 2004-90045 A 特開2004−90042号公報JP 2004-90042 A 特開2008−126279号公報JP 2008-126279 A 特開2004−90051号公報JP 2004-90051 A

そこで本発明は、上述した問題点に鑑みて案出されたものであり、濃厚硫酸及び濃厚塩酸環境下で優れた耐食性が得られる低合金鋼のサブマージアーク溶接方法において、優れた耐食性及び良好な溶接金属機械性能が得られ、さらに溶接欠陥の無い健全な溶接金属を形成させ、溶接作業性が良好な耐硫酸性及び耐塩酸性に優れた低合金鋼のサブマージアーク溶接方法を提供することを目的とする。   Therefore, the present invention has been devised in view of the above-described problems, and in a submerged arc welding method of low alloy steel that provides excellent corrosion resistance in concentrated sulfuric acid and concentrated hydrochloric acid environments, excellent corrosion resistance and good An object of the present invention is to provide a submerged arc welding method for low-alloy steel with excellent weldability and sulfuric acid resistance and hydrochloric acid resistance, which can achieve weld metal mechanical performance and form a sound weld metal with no weld defects. And

本発明者らは、前記課題を解決するために、フラックスの化学組成、粒度構成、見掛密度及び組合せるソリッドワイヤの化学成分などについて詳細に検討を行った。その結果、フラックスの化学組成、粒度構成、見掛密度を限定し、さらに組合せるソリッドワイヤの化学成分を限定することにより、濃厚硫酸及び濃厚塩酸環境下で優れた耐食性及び良好な溶接金属機械性能が得られ、さらに溶接欠陥の無い健全な溶接金属を形成させ、溶接作業性が良好なサブマージアーク溶接方法を可能とすることを見出した。   In order to solve the above problems, the present inventors have studied in detail the chemical composition of the flux, the particle size configuration, the apparent density, the chemical composition of the solid wire to be combined, and the like. As a result, by limiting the chemical composition, particle size composition and apparent density of the flux, and also by limiting the chemical composition of the solid wire to be combined, excellent corrosion resistance and good weld metal machine performance in concentrated sulfuric acid and concentrated hydrochloric acid environments It was also found that a submerged arc welding method with good welding workability can be achieved by forming a healthy weld metal free of welding defects.

すなわち、本発明の要旨は、質量%で、SiO2:5〜21%、Al23:15〜44%、MgO:7〜32%、CaO:0.5〜10%、CaF2:5〜35%、TiO2:5〜33%、Si:0.2〜5.0%、Mn:0.1〜5.0%、金属炭酸塩のCO2分:0.5〜9.0%を含有し、残部がFeO、アルカリ金属酸化物及び不可避不純物からなり、フラックスの粒度構成が質量%で、粒径850μm超の粒子が20〜55%、粒径150〜850μmの粒子が40〜75%、粒径150μm未満の粒子が6%以下で、見掛密度が0.70〜1.30g/cm3であるボンドフラックスと、質量%で、C:0.005〜0.2%、Si:0.01〜1.5%、Mn:0.4〜2.5%、Cu:0.03〜1.0%、Ni:0.05〜1.0%、Mo:0.01〜1.0%、Sb:0.01〜0.25%を含有し、P:0.03%以下、S:0.03%以下で、残部がFe及び不可避不純物からなるソリッドワイヤとを組合せて溶接することを特徴とする。 That is, the gist of the present invention is mass%, SiO 2 : 5 to 21%, Al 2 O 3 : 15 to 44%, MgO: 7 to 32%, CaO: 0.5 to 10%, CaF 2 : 5 ~35%, TiO 2: 5~33% , Si: 0.2~5.0%, Mn: 0.1~5.0%, CO 2 minutes of metal carbonate: 0.5 to 9.0% The balance consists of FeO, alkali metal oxides and inevitable impurities, the particle size composition of the flux is 20% by mass, particles with a particle size of more than 850 μm are 20 to 55%, and particles with a particle size of 150 to 850 μm are 40 to 75. %, Particles having a particle diameter of less than 150 μm are 6% or less, and an apparent density is 0.70 to 1.30 g / cm 3 , and mass%, C: 0.005 to 0.2%, Si : 0.01-1.5%, Mn: 0.4-2.5%, Cu: 0.03-1.0%, Ni: 0.05- 1.0%, Mo: 0.01 to 1.0%, Sb: 0.01 to 0.25%, P: 0.03% or less, S: 0.03% or less, the balance being Fe And welding in combination with a solid wire made of inevitable impurities.

また、ボンドフラックスにB23:0.05〜3.0%含有することも特徴とする耐硫酸性及び耐塩酸性に優れた低合金鋼のサブマージアーク溶接方法にある。 Further, B 2 O 3 in the bonded flux: it is in the submerged arc welding method of low alloy steel with excellent resistance to sulfuric acid and hydrochloric acid, characterized containing 0.05 to 3.0%.

本発明を適用した低合金鋼のサブマージアーク溶接方法によれば、濃厚硫酸及び濃厚塩酸環境下で優れた耐食性及び良好な溶接金属機械性能が得られ、さらに溶接欠陥の無い健全な溶接金属を形成し、溶接作業性が良好な耐硫酸性及び耐塩酸性に優れた低合金鋼のサブマージアーク溶接方法を提供することができる。   According to the submerged arc welding method of the low alloy steel to which the present invention is applied, excellent corrosion resistance and good weld metal mechanical performance can be obtained in a concentrated sulfuric acid and concentrated hydrochloric acid environment, and a sound weld metal free from welding defects can be formed. In addition, it is possible to provide a submerged arc welding method for low alloy steel having excellent welding workability and excellent sulfuric acid resistance and hydrochloric acid resistance.

本発明の実施例で用いた多層盛溶接試験板の開先形状を示す図である。It is a figure which shows the groove shape of the multilayer pile-welding test board used in the Example of this invention.

本発明者らは、溶接金属の耐硫酸性及び耐塩酸性向上に有効なCu及びSbなどを含有する溶接材料を用いて溶接した場合に発生しやすい粒界脆化割れを防止し、かつ濃厚硫酸及び濃厚塩酸環境下で優れた耐食性が得られ、さらに良好な溶接金属機械性能、溶接欠陥の無い健全な溶接金属が得られ、溶接作業性が良好なサブマージアーク溶接を可能とするために、最適なフラックスの化学組成、粒度構成、見掛密度及び組合せるソリッドワイヤの化学成分などについて種々検討を行った。   The present inventors prevent intergranular embrittlement cracking that is likely to occur when welding is performed using a welding material containing Cu and Sb, which is effective in improving the sulfuric acid resistance and hydrochloric acid resistance of the weld metal, and concentrated sulfuric acid. Excellent corrosion resistance in a concentrated hydrochloric acid environment, good weld metal mechanical performance, sound weld metal free of weld defects, and submerged arc welding with good welding workability Various studies were made on the chemical composition, particle size composition, apparent density, and chemical composition of the solid wire to be combined.

耐硫酸露点腐食と耐塩酸露点腐食が共に優れた溶接金属を得るためには、Cu及びSbの添加が必須であり、フラックスまたは組合せるソリッドワイヤのいずれかに添加する必要がある。そこでまず、フラックスへの添加を検討した。フラックスは溶融フラックスとボンドフラックスの2種類で検討した。その結果、溶融フラックスへ添加した場合、フラックス中のCu化合物及びSb化合物の偏析は無く、耐硫酸露点腐食と耐塩酸露点腐食が共に優れた溶接金属を得ることができた。しかし、当該元素を溶融フラックスに添加した場合、合金剤及び金属炭酸塩を添加することができないため、溶接時の脱酸不足及びシールドガス不足により、ピット及びブローホールの溶接欠陥が多発した。一方、ボンドフラックスへCu及びSbを添加した場合、Cu及びSbはフラックスへ微量添加であるので偏析しやすく、また造粒後のフラックス粒子から剥がれやすく粉化しやすいので、溶接金属にCu及びSbが偏析して粒界脆化割れが生じた。   In order to obtain a weld metal excellent in both sulfuric acid dew point corrosion resistance and hydrochloric acid dew point corrosion resistance, addition of Cu and Sb is indispensable, and it is necessary to add to either the flux or the solid wire to be combined. Therefore, first, addition to the flux was examined. Two types of fluxes were studied: melt flux and bond flux. As a result, when added to the molten flux, there was no segregation of the Cu compound and Sb compound in the flux, and a weld metal excellent in both sulfuric acid dew point corrosion resistance and hydrochloric acid dew point corrosion resistance could be obtained. However, when the element is added to the molten flux, the alloying agent and the metal carbonate cannot be added, so that welding defects of pits and blowholes frequently occur due to insufficient deoxidation and shielding gas during welding. On the other hand, when Cu and Sb are added to the bond flux, Cu and Sb are easily added to the flux because they are added in a small amount, and are easily peeled off from the granulated flux particles and easily pulverized. Segregation occurred and grain boundary embrittlement cracking occurred.

以上の結果から、フラックスへのCu及びSbの添加は困難であるので、ソリッドワイヤへの添加を検討した。従来、Cu及びSbが添加されたガスシールドアーク溶接用ソリッドワイヤは、サブマージアーク溶接に適用した場合、大電流で溶接されるので、ワイヤに添加されたSbがアーク熱によって沸騰、ガス化しやすく、サブマージアーク溶接にSbが添加されたソリッドワイヤの適用は困難と考えられていた。   From the above results, addition of Cu and Sb to the flux is difficult, so addition to a solid wire was examined. Conventionally, a solid wire for gas shielded arc welding to which Cu and Sb are added is welded with a large current when applied to submerged arc welding, so that Sb added to the wire is easily boiled and gasified by arc heat, It was considered difficult to apply a solid wire with Sb added to submerged arc welding.

そこで、ソリッドワイヤに適正量のSbを添加し、フラックスの化学組成、粒度構成、見掛密度を適正化することで、安定してSbを溶接金属中に含有させることができるかを検討した。   Therefore, it was examined whether or not Sb can be stably contained in the weld metal by adding an appropriate amount of Sb to the solid wire and optimizing the chemical composition, particle size configuration, and apparent density of the flux.

まず、高電流による大入熱溶接に対応したボンドフラックスを適用することとし、フラックスの軟化溶融点及び溶融スラグの粘性、流動性、凝固速度等を調整するため、SiO2、Al23、MgO、CaO、CaF2及びTiO2のスラグ組成を最適化した。安定してSbを溶接金属中に含有させるためには、Sbがアーク熱によって沸騰してガス化しないようにすることが重要であり、フラックスの軟化溶融点を高くし、溶融スラグの凝固速度を速くすることによって、Sbが安定して溶接金属中に含有する傾向が認められた。 First, bond flux corresponding to high heat input welding with high current is applied, and in order to adjust the softening melting point of the flux and the viscosity, fluidity, solidification rate of the molten slag, SiO 2 , Al 2 O 3 , The slag composition of MgO, CaO, CaF 2 and TiO 2 was optimized. In order to stably contain Sb in the weld metal, it is important to prevent Sb from boiling and being gasified by arc heat, increasing the softening and melting point of the flux and increasing the solidification rate of the molten slag. By increasing the speed, there was a tendency that Sb was stably contained in the weld metal.

しかし、ボンドフラックスのスラグ組成を最適化するだけでは、Sbを完全に安定して溶接金属中に含有することができなかった。そこで完全に安定してSbを溶接金属中に含有させるために新たに見出したのが、フラックスの粒度構成と見掛密度の最適化である。これは粒径の大きめのフラックス粒子の分率を増量し、見掛密度を限定することで改善することができた。溶接時のアーク熱によってフラックスは溶融するが、粒径の大きめのフラックス粒子を増量してフラックスの溶融速度を遅くし、フラックスの溶融に熱量を集中させることによってアーク雰囲気中の熱量を低下させることが可能となり、安定してSbを溶接金属中に含有することができた。   However, only by optimizing the slag composition of the bond flux, Sb could not be contained in the weld metal completely stably. Therefore, what has been newly found in order to completely and stably contain Sb in the weld metal is optimization of the particle size configuration and apparent density of the flux. This could be improved by increasing the fraction of the larger flux particles and limiting the apparent density. The flux is melted by the arc heat during welding, but the flux in the arc atmosphere is reduced by increasing the amount of flux particles with a larger particle size to slow the flux melting rate and concentrating the amount of heat on the flux melting. Thus, Sb could be stably contained in the weld metal.

以上のことから、ボンドフラックスの化学組成、粒度構成、見掛密度及び組合せるソリッドワイヤの化学成分を最適化することで、耐硫酸露点腐食と耐塩酸露点腐食が共に優れた溶接金属を得ることが可能となり、さらに溶接作業性を考慮したフラックスの化学組成、粒度構成、見掛密度としているため、良好な溶接作業性及びビード形状を得ることができ、さらにSi及びMn等の合金剤を添加することで良好な溶接金属機械性能を得ることができることを見出した。   From the above, by optimizing the chemical composition, particle size composition, apparent density of the bond flux, and the chemical composition of the solid wire to be combined, it is possible to obtain a weld metal that is superior in both sulfuric acid dew point corrosion resistance and hydrochloric acid dew point corrosion resistance. In addition, the flux chemical composition, particle size composition, and apparent density are taken into account in consideration of welding workability, so that good welding workability and bead shape can be obtained, and alloying agents such as Si and Mn are added. It has been found that good weld metal mechanical performance can be obtained.

本発明を適用した耐硫酸性及び耐塩酸性に優れた低合金鋼のサブマージアーク溶接方法では、ボンドフラックスと、ソリッドワイヤとを組合せて溶接する。   In the submerged arc welding method of low alloy steel excellent in sulfuric acid resistance and hydrochloric acid resistance to which the present invention is applied, the bond flux and the solid wire are welded in combination.

このボンドフラックスは、質量%で、SiO2:5〜21%、Al23:15〜44%、MgO:7〜32%、CaO:0.5〜10%、CaF2:5〜35%、TiO2:5〜33%、Si:0.2〜5.0%、Mn:0.1〜5.0%、金属炭酸塩のCO2分:0.5〜9.0%を含有し、残部がFeO、アルカリ金属酸化物及び不可避不純物からなり、フラックスの粒度構成が質量%で、粒径850μm超の粒子が20〜55%、粒径150〜850μmの粒子が40〜75%、粒径150μm未満の粒子が6%以下で、見掛密度が0.70〜1.30g/cm3である。係るボンドフラックスについて、成分組成、粒度構成、見掛密度の限定理由について説明する。なお、以下の%は、質量%を示す。 The bonded flux is the mass%, SiO 2: 5~21%, Al 2 O 3: 15~44%, MgO: 7~32%, CaO: 0.5~10%, CaF 2: 5~35% , TiO 2: 5~33%, Si : 0.2~5.0%, Mn: 0.1~5.0%, CO 2 minutes of metal carbonate: contain 0.5 to 9.0% The balance consists of FeO, alkali metal oxides and inevitable impurities, the particle size composition of the flux is 20% by mass, particles with a particle size of more than 850 μm are 20-55%, particles with a particle size of 150-850 μm are 40-75%, The particles having a diameter of less than 150 μm are 6% or less, and the apparent density is 0.70 to 1.30 g / cm 3 . About the bond flux which concerns, a component composition, a particle size structure, and the reason for limitation of an apparent density are demonstrated. In addition, the following% shows the mass%.

SiO 2 :5〜21%
SiO2は、良好な溶接ビードを形成するための重要な成分であるが、過多になると溶接金属中の酸素量が増加して靭性が劣化する。SiO2が5%未満では、ビード趾端部のなじみが悪くなりビード形状が不良となってスラグ剥離性を悪くする。一方、21%を超えると、溶接金属の酸素量が増加して靭性が低下する。したがって、SiO2は5〜21%とする。
SiO 2 : 5 to 21%
SiO 2 is an important component for forming a good weld bead, but if it is excessive, the amount of oxygen in the weld metal increases and the toughness deteriorates. If the SiO 2 content is less than 5%, the conformity of the end portion of the bead heel becomes poor and the bead shape becomes poor, resulting in poor slag removability. On the other hand, if it exceeds 21%, the oxygen content of the weld metal increases and the toughness decreases. Thus, SiO 2 is set to 5-21%.

Al 2 3 :15〜44%
Al23は、良好なスラグ剥離性及びビード外観を得るための重要な成分である。また、Sbを安定して溶接金属中に含有させる効果もある。Al23が15%未満では、その効果が得られない。一方、44%を超えると、凸ビードとなりビードを平坦化させることができず、またスラグ剥離性も不良になる。したがって、Al23は15〜44%とする。
Al 2 O 3 : 15 to 44%
Al 2 O 3 is an important component for obtaining good slag peelability and bead appearance. In addition, there is an effect that Sb is stably contained in the weld metal. If Al 2 O 3 is less than 15%, the effect cannot be obtained. On the other hand, if it exceeds 44%, it becomes a convex bead and the bead cannot be flattened, and the slag removability becomes poor. Accordingly, Al 2 O 3 is set to 15 to 44%.

MgO:7〜32%
MgOは、スラグの耐火性及び塩基度を向上させる効果がある。また、Sbを安定して溶接金属中に含有させる最も重要な成分でもある。MgOが7%未満では、フラックスの塩基度が低くなり溶接金属中の酸素量が増加して靭性が低下し、さらにSbが安定して溶接金属中に含有されない。一方、32%を超えると、フラックスの軟化溶融点が高くなりビード表面の波目が粗く、スラグ剥離性及びビード外観が不良となる。したがって、MgOは7〜32%とする。なお、MgOにはMgCO3のMgO分を含む。
MgO: 7 to 32%
MgO has the effect of improving the fire resistance and basicity of the slag. It is also the most important component for stably containing Sb in the weld metal. If MgO is less than 7%, the basicity of the flux decreases, the amount of oxygen in the weld metal increases, the toughness decreases, and Sb is not stably contained in the weld metal. On the other hand, if it exceeds 32%, the softening and melting point of the flux becomes high, the wave surface of the bead surface becomes rough, and the slag peelability and the bead appearance become poor. Therefore, MgO is 7 to 32%. In addition, MgO contains the MgO content of MgCO 3 .

CaO:0.5〜10%
CaOは、スラグの融点及び流動性を調整するために重要な成分である。CaOが0.5%未満では、ビード趾端部のなじみが悪くビード外観が不良となる。一方、10%を超えると、スラグ流動性が不良となり、ビード高さが不均一でスラグ剥離性も不良になる。したがって、CaOは0.5〜10%とする。なお、CaOにはCaCO3のCaO分を含む。
CaO: 0.5 to 10%
CaO is an important component for adjusting the melting point and fluidity of the slag. If CaO is less than 0.5%, the bead collar is not well adapted and the bead appearance is poor. On the other hand, if it exceeds 10%, the slag fluidity will be poor, the bead height will be uneven and the slag peelability will be poor. Therefore, CaO is 0.5 to 10%. Note that CaO includes the CaO content of CaCO 3 .

CaF 2 :5〜35%
CaF2は、靭性改善に効果があるが、融点が低くなるので過多になるとビードの平滑性が損なわれる。CaF2が5%未満では、靭性改善の効果がなく、35%を超えると、ビード外観が不良となる。したがって、CaF2は5〜35%とする。
CaF 2 : 5 to 35%
CaF 2 is effective in improving toughness, but since the melting point is low, if it is excessive, the smoothness of the bead is impaired. When CaF 2 is less than 5%, there is no effect of improving toughness, and when it exceeds 35%, the bead appearance is poor. Therefore, CaF 2 is 5 to 35%.

TiO 2 :5〜33%
TiO2は、ビード表面の平滑性を得るのに効果があり、かつ、靭性向上にも有効である。TiO2が5%未満では、ビード表面の平滑性及び靭性の向上の効果がなく、33%を超えると、ビード趾端部の立ち上がり角度が大きくなりビード形状及びスラグ剥離性が不良になる。したがって、TiO2は5〜33%とする。
TiO 2: 5~33%
TiO 2 is effective in obtaining the smoothness of the bead surface and is also effective in improving toughness. If TiO 2 is less than 5%, there is no effect of improving the smoothness and toughness of the bead surface. If it exceeds 33%, the rising angle of the bead heel end portion becomes large and the bead shape and slag peelability become poor. Therefore, TiO 2 is set to 5-33%.

Si:0.2〜5.0%
Siは、脱酸元素であり、溶接金属の酸素量を低減する。Siが0.2%未満では、脱酸効果が得られず靭性が低下する。一方、5.0%を超えると、溶接金属の硬さが過剰となって靭性が低下する。したがって、Siは0.2〜5.0%とする。
Si: 0.2-5.0%
Si is a deoxidizing element and reduces the oxygen content of the weld metal. If Si is less than 0.2%, the deoxidizing effect cannot be obtained and the toughness is lowered. On the other hand, if it exceeds 5.0%, the hardness of the weld metal becomes excessive and the toughness decreases. Therefore, Si is 0.2 to 5.0%.

Mn:0.1〜5.0%
Mnは、Siと同様に脱酸元素であり、溶接金属の酸素量を低減する。Mnが0.1%未満では、脱酸効果が得られず靭性が低下する。一方、5.0%を超えると、溶接金属の硬さが過剰となって靭性が低下する。したがって、Mnは0.1〜5.0%とする。
Mn: 0.1 to 5.0%
Mn is a deoxidizing element like Si, and reduces the oxygen content of the weld metal. If Mn is less than 0.1%, the deoxidizing effect cannot be obtained and the toughness is lowered. On the other hand, if it exceeds 5.0%, the hardness of the weld metal becomes excessive and the toughness decreases. Therefore, Mn is set to 0.1 to 5.0%.

金属炭酸塩のCO 2
金属炭酸塩のCO2分は、溶接金属の靭性向上に重要な元素であり、溶接中に金属炭酸塩が分解してCOまたCO2ガスがアーク雰囲気中の窒素分圧を下げ、溶接金属の窒素量を低減する効果がある。CO2分が0.5%未満では、溶接金属中の窒素量が高くなり靭性が低下する。一方、9.0%を超えると、溶接ビード表面にポックマークやピット、アンダーカット等の溶接欠陥が発生する。したがって、金属炭酸塩のCO2分は0.5〜9.0%とする。なお、金属炭酸塩はCaCO3、BaCO3、MgCO3、MnCO3を用いることができる。
CO 2 minutes of CO 2 partial metal carbonates metal carbonate is an important element in improving toughness of the weld metal, the nitrogen content of the metal carbonate is decomposed CO The CO 2 gas arc atmosphere during the welding It has the effect of reducing the pressure and reducing the nitrogen content of the weld metal. If the CO 2 content is less than 0.5%, the amount of nitrogen in the weld metal increases and the toughness decreases. On the other hand, if it exceeds 9.0%, welding defects such as pock marks, pits, and undercuts occur on the surface of the weld bead. Therefore, the CO 2 content of the metal carbonate is 0.5 to 9.0%. The metal carbonate may be used CaCO 3, BaCO 3, MgCO 3 , MnCO 3.

2 3 :0.05〜3.0%
23は、靭性向上に効果がある。しかし、B23が添加されていなくても、Si及びMnの添加や組合せるソリッドワイヤに含有される脱酸元素及び焼入れ性向上元素により良好な溶接金属靭性は得られるが、サブマージアーク溶接のように入熱の高い溶接を行う場合、冷却速度の低下により結晶粒組織が粗大化する傾向にあるため、結晶粒組織の粗大化防止の観点から、B23の含有量を0.05%以上添加することが望ましい。一方、3.0%を超えると、焼入れ性が過多となり、溶接金属の強度が高くなり靭性が低下する。したがって、B23は0.05〜3.0%とする。
B 2 O 3 : 0.05 to 3.0%
B 2 O 3 is effective in improving toughness. However, even if B 2 O 3 is not added, good weld metal toughness can be obtained by the addition of Si and Mn and the deoxidizing element and the hardenability improving element contained in the combined solid wire. When welding with a high heat input is performed as described above, the grain structure tends to be coarsened due to a decrease in the cooling rate. Therefore, from the viewpoint of preventing the coarsening of the grain structure, the content of B 2 O 3 is set to 0. It is desirable to add 05% or more. On the other hand, if it exceeds 3.0%, the hardenability becomes excessive, the strength of the weld metal increases, and the toughness decreases. Therefore, B 2 O 3 is made 0.05 to 3.0%.

次にフラックスの粒度構成について説明をする。このフラックスの粒度構成も、%は、質量%を意味するものである。   Next, the particle size configuration of the flux will be described. In the particle size constitution of this flux,% means mass%.

粒径850μm超の粒子:20〜55%
フラックス粒度構成の粒径850μm超の粒子は、安定してSbを溶接金属中に含有させる極めて重要な粒子である。粒径850μm超の粒子が20%未満では、Sbが安定して溶接金属中に含有されず、またビード形状が凸状でガス抜けが悪くなりピット及びポックマークなどの溶接欠陥も発生する。一方、粒径850μm超の粒子が55%を超えると、ビードの幅が広がりすぎて溶込みが浅くなりスラグ巻き込み欠陥や突合せ溶接の場合は溶込み不良及び融合不良が発生する。したがって、粒径850μm超は20〜55%とする。
Particles with a particle size greater than 850 μm: 20-55%
Particles having a particle size of more than 850 μm in the particle size configuration are extremely important particles that stably contain Sb in the weld metal. If the particle size is more than 850 μm and less than 20%, Sb is not stably contained in the weld metal, the bead shape is convex, the gas escape is poor, and welding defects such as pits and pock marks also occur. On the other hand, if the particle size exceeds 850 μm, the bead width becomes too wide and the penetration becomes shallow, resulting in poor penetration and poor fusion in the case of slag entrainment defects and butt welding. Accordingly, the particle size exceeding 850 μm is set to 20 to 55%.

粒径150〜850μmの粒子:40〜75%
フラックス粒度構成の粒径150〜850μmの粒子も安定してSbを溶接金属中に含有させる極めて重要な粒子である。粒径150〜850μmの粒子が40%未満では、Sbが安定して溶接金属中に含有されず、またビード形状が凸状でガス抜けが悪くなりピット及びポックマークなどの溶接欠陥も発生する。一方、粒径150〜850μmの粒子が75%を超えると、ビードの幅が広がりすぎて溶込みが浅くなりスラグ巻き込み欠陥や突合せ溶接の場合は溶込み不良及び融合不良が発生する。したがって、粒径850μm以上の粒子は40〜75%とする。
Particles having a particle size of 150 to 850 μm: 40 to 75%
Particles having a particle size of 150 to 850 μm with a flux particle size composition are also extremely important particles that stably contain Sb in the weld metal. When the particle size is less than 40%, the Sb is not stably contained in the weld metal, the bead shape is convex, the gas escape is poor, and welding defects such as pits and pock marks are generated. On the other hand, when the particle size of 150 to 850 μm exceeds 75%, the width of the bead is excessively widened and the penetration becomes shallow, and in the case of slag entrainment defects or butt welding, poor penetration and poor fusion occur. Therefore, the particle size of 850 μm or more is 40 to 75%.

粒径150μm未満の粒子:6%以下
フラックス粒度構成の粒径150μm未満の粒子は、ビード形状及びスラグ剥離性を不良にする粒子である。粒径150μm未満の粒子が6%を超えると、スラグがこびり付き易くスラグ剥離性が不良で、ビード幅が狭くなって形状が不良になり、さらにガス抜けも不良でピット及びポックマークなどの溶接欠陥を発生する。したがって、粒径150μm未満の粒子は6%以下とする。
Particles with a particle size of less than 150 μm: 6% or less Particles with a particle size of less than 150 μm with a flux particle size composition are particles that make the bead shape and slag peelability poor. If the particle size is less than 150 μm, the slag tends to stick and the slag peelability is poor, the bead width is narrowed and the shape is poor, and the gas is poor and welding defects such as pits and pock marks. Is generated. Therefore, the particle size of less than 150 μm is 6% or less.

見掛密度:0.70〜1.30g/cm 3
フラックスの見掛密度は、安定したビードを形成するための重要な因子であり、また安定してSbを溶接金属中に含有させる上でも重要なものである。フラックスの見掛密度が0.70g/cm3未満では、溶接時のアーク吹上げが激しくアークが不安定となりビード形状が不良で、アーク吹上げによってSbが沸騰、ガス化してSbが安定して溶接金属中に含有されない。さらにビードの幅が広がりすぎて溶込みが浅くなりスラグ巻き込み欠陥や突合せ溶接の場合は溶込み不良及び融合不良も発生する。一方、フラックスの見掛密度が1.30g/cm3を超えると、フラックスの自重が重くなるためアーク雰囲気が押し潰され、ビード幅が狭く凸形状となりアンダーカットも生じる。したがって、フラックスの見掛密度は0.70〜1.30g/cm3とする。
Apparent density: 0.70 to 1.30 g / cm 3
The apparent density of the flux is an important factor for forming a stable bead, and is also important for stably incorporating Sb into the weld metal. When the apparent density of the flux is less than 0.70 g / cm 3 , the arc blowing during welding is intense and the arc becomes unstable and the bead shape is poor. Sb is boiled and gasified by arc blowing, and Sb is stabilized. Not contained in weld metal. Further, the bead width becomes too wide and the penetration becomes shallow, and in the case of slag entrainment defects or butt welding, poor penetration and poor fusion also occur. On the other hand, when the apparent density of the flux exceeds 1.30 g / cm 3 , the flux becomes heavy and the arc atmosphere is crushed, the bead width becomes narrow and convex, resulting in undercut. Therefore, the apparent density of the flux is 0.70 to 1.30 g / cm 3 .

その他は、Na2O、K2O及びLi2Oなどのアルカリ金属酸化物及び酸化鉄(FeO等)、P、S等の不可避不純物であり、P及びSは共に低融点の化合物を生成して靭性を低下させるので、できるだけ低いことが好ましい。 Others are alkali metal oxides such as Na 2 O, K 2 O and Li 2 O, and inevitable impurities such as iron oxide (FeO, etc.), P, S, etc. Both P and S produce low melting point compounds. Lowering the toughness is preferable.

上述の如き成分からなるボンドフラックスと組合せて溶接するソリッドワイヤは、質量%で、C:0.005〜0.2%、Si:0.01〜1.5%、Mn:0.4〜2.5%、Cu:0.03〜1.0%、Ni:0.05〜1.0%、Mo:0.01〜1.0%、Sb:0.01〜0.25%を含有し、P:0.03%以下、S:0.03%以下で、残部がFe及び不可避不純物からなる。以下、このソリッドワイヤの成分組成について詳細に説明をする。   The solid wire to be welded in combination with the bond flux composed of the components as described above is C: 0.005-0.2%, Si: 0.01-1.5%, Mn: 0.4-2. 0.5%, Cu: 0.03-1.0%, Ni: 0.05-1.0%, Mo: 0.01-1.0%, Sb: 0.01-0.25% , P: 0.03% or less, S: 0.03% or less, with the balance being Fe and inevitable impurities. Hereinafter, the component composition of the solid wire will be described in detail.

C:0.005〜0.2%
Cは、固溶強化により溶接金属の強度を確保する重要な元素であると共に、アーク中の酸素と反応しアーク雰囲気及び溶接金属の酸素量を低減する効果がある。Cが0.005%未満では、溶接金属の脱酸及び強度確保の効果が不十分であり、靭性も低下する。一方、0.2%を超えると、溶接金属のCが高くなるためマルテンサイト主体の組織となり、強度が高く靭性が低下する。したがって、Cは0.005〜0.2%とする。
C: 0.005-0.2%
C is an important element that ensures the strength of the weld metal by solid solution strengthening, and has an effect of reacting with oxygen in the arc to reduce the arc atmosphere and the amount of oxygen in the weld metal. If C is less than 0.005%, the effect of deoxidizing the weld metal and securing the strength is insufficient, and the toughness is also lowered. On the other hand, if it exceeds 0.2%, C of the weld metal becomes high, so that it becomes a structure mainly composed of martensite, and the strength is high and the toughness is lowered. Therefore, C is 0.005 to 0.2%.

Si:0.01〜1.5%
Siは、脱酸元素であり溶接金属の酸素量を低減する。Siが0.01%未満では、脱酸効果が得られず靭性が低下する。一方、1.5%を超えると、溶接金属の硬さが過剰となって靭性が低下する。したがって、Siは0.01〜1.5%とする。
Si: 0.01 to 1.5%
Si is a deoxidizing element and reduces the oxygen content of the weld metal. If Si is less than 0.01%, the deoxidizing effect cannot be obtained and the toughness is lowered. On the other hand, if it exceeds 1.5%, the hardness of the weld metal becomes excessive and the toughness decreases. Therefore, Si is set to 0.01 to 1.5%.

Mn:0.4〜2.5%
Mnは、焼入れ性を向上させて強度を高めるのに有効な成分である。Mnが0.4%未満では、焼入れ性が不足して強度が低くなり靭性が低下する。一方、2.5%を超えると、焼入れ性が過多となり、溶接金属の強度が高くなり靭性が低下する。したがって、Mnは0.4〜2.5%とする。
Mn: 0.4 to 2.5%
Mn is an effective component for improving the hardenability and increasing the strength. If Mn is less than 0.4%, the hardenability is insufficient, the strength is lowered, and the toughness is lowered. On the other hand, if it exceeds 2.5%, the hardenability becomes excessive, the strength of the weld metal increases, and the toughness decreases. Therefore, Mn is set to 0.4 to 2.5%.

Cu:0.03〜1.0%
Cuは、耐硫酸露点腐食性及び耐塩酸露点腐食性を向上する重要な成分である。Cuが0.03%未満では、耐食性向上効果が十分得られない。一方、1.0%を超えて添加しても耐食性はほぼ飽和すると共に、溶接金属の過剰な強度上昇を招き、靭性低下や粒界脆化割れを発生させる。したがって、Cuは0.03〜1.0%とする。
Cu: 0.03-1.0%
Cu is an important component that improves sulfuric acid dew point corrosion resistance and hydrochloric acid dew point corrosion resistance. If Cu is less than 0.03%, the effect of improving corrosion resistance cannot be obtained sufficiently. On the other hand, even if added over 1.0%, the corrosion resistance is almost saturated, and an excessive increase in strength of the weld metal is caused to cause toughness reduction and grain boundary embrittlement cracking. Therefore, Cu is 0.03 to 1.0%.

Ni:0.05〜1.0%
Niは、溶接金属の靭性を向上する。Niが0.05%未満では、その効果が得られず靭性が低下する。一方、1.0%を超えると、Niはオーステナイト安定化元素であるので、オーステナイト粒径を粗大化させて溶接金属の靭性を低下させる。したがって、Niは0.05〜1.0%とする。
Ni: 0.05-1.0%
Ni improves the toughness of the weld metal. If Ni is less than 0.05%, the effect cannot be obtained and the toughness decreases. On the other hand, if it exceeds 1.0%, since Ni is an austenite stabilizing element, the austenite grain size is coarsened and the toughness of the weld metal is lowered. Therefore, Ni is set to 0.05 to 1.0%.

Mo:0.01〜1.0%
Moは、溶接金属の焼入れ性増大元素として重要な成分である。Moが0.01%未満では、溶接金属の強度が低くなり靭性向上にも効果がなく、1.0%を超えると、溶接金属の焼入れ性が過大となり、硬さが過剰となって靭性が低下する。したがって、Moは0.01〜1.0%とする。
Mo: 0.01 to 1.0%
Mo is an important component as an element for increasing the hardenability of the weld metal. If Mo is less than 0.01%, the strength of the weld metal is lowered and there is no effect in improving toughness. If it exceeds 1.0%, the hardenability of the weld metal becomes excessive, the hardness becomes excessive, and the toughness is increased. descend. Therefore, Mo is set to 0.01 to 1.0%.

Sb:0.01〜0.25%
Sbは、Cuと共存して耐硫酸露点腐食性及び耐塩酸露点腐食性を向上する最も重要な成分である。Sbが0.01%未満では、十分な効果が得られない。一方、0.25%を超えると、粒界脆化割れを発生させる。したがって、Sbは0.01〜0.25%とする。
Sb: 0.01 to 0.25%
Sb is the most important component for improving sulfuric acid dew point corrosion resistance and hydrochloric acid dew point corrosion resistance in combination with Cu. If Sb is less than 0.01%, a sufficient effect cannot be obtained. On the other hand, if it exceeds 0.25%, grain boundary embrittlement cracking occurs. Therefore, Sb is set to 0.01 to 0.25%.

P:0.03%以下、S:0.03%以下
P及びSは共に低融点の化合物を生成して靭性を低下させるため、できるだけ低いことが好ましい。したがって、P及びSは共に0.03%以下とする。
P: 0.03% or less, S: 0.03% or less Both P and S are preferably as low as possible because they both generate a low melting point compound and reduce toughness. Therefore, both P and S are made 0.03% or less.

また、本発明の耐硫酸性及び耐塩酸性に優れた低合金鋼のサブマージアーク溶接方法は、安定したアーク、ワイヤ送給性、溶着効率向上を可能とした溶接をするために、組合せるソリッドワイヤのワイヤ径は2.0〜4.8mmとし、1電極または2電極以上の多電極サブマージアーク溶接に適用する。   In addition, the submerged arc welding method of the low alloy steel excellent in sulfuric acid resistance and hydrochloric acid resistance according to the present invention is a solid wire to be combined in order to perform welding that enables stable arc, wire feedability, and improved welding efficiency. The wire diameter is 2.0 to 4.8 mm and is applied to multi-electrode submerged arc welding of one electrode or two or more electrodes.

以下、実施例により本発明の効果をさらに詳細に説明する。   Hereinafter, the effect of the present invention will be described in more detail with reference to examples.

表1に示す各種フラックス成分及び粒度、見掛密度に調整したボンドフラックスと表2に示す化学組成のソリッドワイヤを用いて、多層盛溶接の溶接金属機械性能評価及び溶接作業性評価として、表3に示す化学成分からなる、板厚25mmの耐硫酸露点腐食低合金鋼板を、図1に示すように、開先角度を30°、ルート間隔を13mmの開先形状に耐硫酸露点腐食低合金鋼板10を加工し、裏当金15を当てて表4に示す溶接条件で多層盛溶接試験を実施した。   Table 3 shows the weld metal mechanical performance evaluation and weld workability evaluation of multi-layer welding, using various flux components and particle sizes, bond fluxes adjusted to the apparent density shown in Table 1, and solid wires of chemical composition shown in Table 2. As shown in FIG. 1, a sulfuric acid dew point corrosion-resistant low alloy steel sheet having a thickness of 25 mm and a groove angle of 30 ° and a root interval of 13 mm as shown in FIG. No. 10 was processed, and a multi-layer welding test was carried out under the welding conditions shown in Table 4 with the backing metal 15 applied.

なお、表1に示すボンドフラックスは水ガラスを固着材として造粒した後、400〜550℃で2時間焼成し、各種粒度構成及び見掛密度に整粒した。   The bond flux shown in Table 1 was granulated with water glass as a fixing material, and then calcined at 400 to 550 ° C. for 2 hours, and sized to various particle size configurations and apparent densities.

また、表2に示すソリッドワイヤは原線を縮径、焼鈍、酸洗、めっきして素線とし、それらの素線を4.0mm径まで伸線して用いた。   In addition, the solid wires shown in Table 2 were used by reducing the diameter of the original wires, annealing, pickling, and plating to make the wires, and drawing those wires to a diameter of 4.0 mm.

Figure 2013000784
Figure 2013000784

Figure 2013000784
Figure 2013000784

Figure 2013000784
Figure 2013000784

Figure 2013000784
Figure 2013000784

表5に各種試作ボンドフラックスと各種試作ソリッドワイヤの組合せを示す。各試験の評価は、多層盛溶接後のビード外観、ビード形状、スラグ剥離性及びX線透過試験による溶接欠陥の有無を調査し、さらに溶接金属の引張強度、靭性、耐硫酸腐食性及び耐塩酸腐食性を調査した。   Table 5 shows combinations of various prototype bond fluxes and various prototype solid wires. The evaluation of each test is to investigate the appearance of the bead after multi-layer welding, bead shape, slag peelability and the presence or absence of welding defects by X-ray transmission test, and further, the tensile strength, toughness, sulfuric acid corrosion resistance and hydrochloric acid resistance of the weld metal Corrosion was investigated.

Figure 2013000784
Figure 2013000784

溶接金属の機械性能評価は、多層盛溶接試験体の鋼板板厚中央を中心にシャルピー衝撃試験片(JIS Z2242 Vノッチ試験片)、引張試験片(JIS Z 2241 10号)を採取して機械試験を実施し、さらに同位置から厚さ4mm、縦20mm、横20mmの腐食試験片を採取して、温度70℃、濃度50容量%の硫酸溶液中で24時間及び温度80℃、濃度10容量%の塩酸溶液中で24時間浸漬腐食試験を行い、腐食減量を測定した。   The mechanical performance of weld metal is evaluated by collecting Charpy impact test pieces (JIS Z2242 V-notch test pieces) and tensile test pieces (JIS Z2241 No. 10) around the center of the steel plate thickness of the multi-layer welded specimen. Further, a corrosion test piece having a thickness of 4 mm, a length of 20 mm, and a width of 20 mm was taken from the same position, and in a sulfuric acid solution having a temperature of 70 ° C. and a concentration of 50% by volume for 24 hours, a temperature of 80 ° C. and a concentration of 10% by volume. Was subjected to a 24 hour immersion corrosion test in a hydrochloric acid solution to measure the weight loss.

靭性の評価は、−20℃におけるシャルピー衝撃試験により行い、各々繰返し数3本の平均により評価した。なお、シャルピー衝撃試験の吸収エネルギーは50J以上を良好とした。引張強度の評価は400MPa以上を良好とした。また耐硫酸腐食性及び耐塩酸腐食性の評価は、母材の耐硫酸露点腐食低合金鋼板の腐食板厚減少量が0.20〜0.25mmであることから、溶接金属腐食試験片の腐食板厚減少量が0.25mm以下のものを良好とした。これらの調査結果を表5にまとめて示す。   The toughness was evaluated by a Charpy impact test at −20 ° C., and evaluated by the average of 3 repetitions. The absorbed energy in the Charpy impact test was 50 J or more. The tensile strength was evaluated as good as 400 MPa or more. In addition, the evaluation of sulfuric acid corrosion resistance and hydrochloric acid corrosion resistance is based on the fact that the corrosion plate thickness reduction amount of the base material of sulfuric acid dew point corrosion low alloy steel plate is 0.20 to 0.25 mm. A plate thickness reduction amount of 0.25 mm or less was considered good. These survey results are summarized in Table 5.

表5中試験記号T1〜T10が本発明例、試験記号T11〜T31は比較例である。   In Table 5, test symbols T1 to T10 are examples of the present invention, and test symbols T11 to T31 are comparative examples.

本発明例である試験記号T1〜T10は、フラックス記号BF1〜BF10及び組合せたワイヤ記号W1〜W5が本発明の構成要件を満足しているので、溶接金属の耐硫酸性及び耐塩酸性が良好であり、また溶接作業性が良好で溶接部に欠陥が無く、溶接金属の機械性能も優れており、極めて満足な結果であった。なお、試験記号T5は、フラックス記号BF8のB23が少ないので、溶接金属の吸収エネルギーがやや低値であった。 The test symbols T1 to T10, which are examples of the present invention, have good resistance to sulfuric acid and hydrochloric acid of the weld metal because the flux symbols BF1 to BF10 and the combined wire symbols W1 to W5 satisfy the constituent requirements of the present invention. In addition, the welding workability was good, there was no defect in the welded part, and the mechanical performance of the weld metal was excellent, which was a very satisfactory result. In addition, since the test symbol T5 has a small amount of B 2 O 3 of the flux symbol BF8, the absorbed energy of the weld metal was slightly low.

比較例中試験記号T11は、フラックス記号BF22のフラックス粒径150μm以下の粒子が多いので、スラグ剥離性及びビード形状が不良で、ピットが発生した。また、組合せたワイヤ記号W9のCが多いので、溶接金属の引張強度が高く吸収エネルギーが低値であった。   Since the test symbol T11 in the comparative example has many particles having a flux particle size of 150 μm or less of the flux symbol BF22, the slag peelability and the bead shape were poor and pits were generated. Moreover, since there are many Cs of the combined wire symbol W9, the tensile strength of the weld metal was high and the absorbed energy was low.

試験記号T12は、フラックス記号BF11のSiO2が少ないので、ビード形状及びスラグ剥離性が不良であった。また、Mnが多いので、溶接金属の引張強度が高く吸収エネルギーが低値であった。さらに、フラックス粒径850μm以上の粒子が多いので、ビードの幅が広がりすぎて溶込みが浅くなりスラグ巻き込みが発生した。 Test symbol T12 had poor bead shape and slag removability because of the small amount of SiO 2 in flux symbol BF11. Moreover, since Mn is large, the tensile strength of the weld metal was high and the absorbed energy was low. Further, since there are many particles having a flux particle size of 850 μm or more, the width of the bead is excessively widened, so that the penetration becomes shallow and slag entrainment occurs.

試験記号T13は、フラックス記号BF12のAl23が少ないので、スラグ剥離性及びビード外観が不良で、腐食板厚減量が多かった。また、Siが多いので、溶接金属の引張強度が高く吸収エネルギーが低値であった。 In test symbol T13, the amount of Al 2 O 3 in flux symbol BF12 was small, so the slag peelability and bead appearance were poor, and the corrosion plate thickness was reduced. Moreover, since there is much Si, the tensile strength of the weld metal was high and the absorbed energy was low.

試験記号T14は、フラックス記号BF21のフラックス見掛密度が小さいので、溶接時のアーク吹上げが激しくアークが不安定となりビード形状が不良で、アーク吹上げによりSbが沸騰、ガス化してSbが安定して溶接金属中に含有されなかったので腐食板厚減量が多かった。また、ビードの幅が広がりすぎて溶込みが浅くなりスラグ巻き込みも発生した。さらに、組合せたワイヤ記号W8のCが少ないので、溶接金属の引張強度が低く吸収エネルギーも低値であった。   In test symbol T14, the flux apparent density of flux symbol BF21 is small, so that the arc blowing during welding is severe and the arc becomes unstable and the bead shape is poor. Sb is boiled and gasified by arc blowing, and Sb is stable. As a result, it was not contained in the weld metal, so that the corrosion plate thickness was reduced. Further, the width of the bead was excessively widened, so that the penetration became shallow and slag entrainment occurred. Furthermore, since the C of the combined wire symbol W8 is small, the tensile strength of the weld metal is low and the absorbed energy is also low.

試験記号T15は、フラックス記号BF13のSiO2が多いので、溶接金属の吸収エネルギーが低値であった。また、CaF2が多いので、ビード外観が不良であった。さらに、フラックス粒径150〜850μmの粒子が多いので、ビードの幅が広がりすぎて溶込みが浅くなりスラグ巻き込みが発生した。 In test symbol T15, the amount of SiO 2 of flux symbol BF13 is large, and thus the absorbed energy of the weld metal was low. In addition, since the CaF 2 is large, the bead appearance was poor. Furthermore, since there are many particles with a flux particle size of 150 to 850 μm, the width of the bead is excessively widened, so that the penetration becomes shallow and slag entrainment occurs.

試験記号T16は、フラックス記号BF14のAl23が多いので、ビード形状及びスラグ剥離性が不良であった。また、CaOが少ないので、ビード趾端部のなじみが悪く外観が不良であった。さらに、Siが少ないので、溶接金属の吸収エネルギーが低値であった。 Test symbol T16 had a poor bead shape and slag peelability because of the large amount of Al 2 O 3 of flux symbol BF14. Moreover, since there was little CaO, the conformity of the bead collar part was bad and the external appearance was bad. Furthermore, since there is little Si, the absorbed energy of the weld metal was low.

試験記号T17は、フラックス記号BF15のMgOが少ないので、溶接金属の吸収エネルギーが低値で、腐食板厚減量が多かった。また、TiO2が多いので、ビード形状及びスラグ剥離性が不良であった。さらに、CO2が多いので、溶接ビード表面にポックマークが生じビード外観が不良で、ピットも発生した。 In test symbol T17, the amount of MgO in flux symbol BF15 was small, so the absorbed energy of the weld metal was low, and the corrosion plate thickness loss was large. Further, since TiO 2 is large, the bead shape and the slag removability was poor. Further, since CO 2 is large, a pock mark is formed on the surface of the weld bead, the bead appearance is poor, and pits are also generated.

試験記号T18は、フラックス記号BF16のMgOが多いので、ビード表面の波目が粗くなりスラグ剥離性及びビード外観が不良であった。また、Mnが少ないので、溶接金属吸収エネルギーが低値であった。さらに、フラックス粒径850μm以上の粒子が少ないので、Sbが安定して溶接金属中に含有されず、腐食板厚減量が多く、ビードが凸状となりビード形状が不良で、ピットも発生した。   In test symbol T18, since there was much MgO of flux symbol BF16, the wavy surface of the bead surface became rough, and the slag peelability and bead appearance were poor. Moreover, since Mn is small, the weld metal absorption energy was low. Further, since there are few particles having a flux particle size of 850 μm or more, Sb is not stably contained in the weld metal, the corrosion plate thickness is reduced, the bead becomes convex, the bead shape is poor, and pits are generated.

試験記号T19は、組合せたワイヤ記号W6のMnが多いので、溶接金属の引張強度が高く吸収エネルギーが低値であった。また、Cuが少ないので、腐食板厚減量が多かった。   In test symbol T19, since the Mn of the combined wire symbol W6 was large, the tensile strength of the weld metal was high and the absorbed energy was low. Moreover, since there was little Cu, the corrosion board thickness reduction amount was many.

試験記号T20は、フラックス記号BF17のCaOが多いので、ビード高さが不均一でビード外観及びスラグ剥離性が不良であった。また、CaF2が少ないので、溶接金属の吸収エネルギーが低値であった。さらに、フラックス粒径150〜850μmの粒子が少ないので、Sbが安定して溶接金属中に含有されず腐食板厚減量が多く、ビードが凸状となりビード形状が不良で、ピットも発生した。 Since the test symbol T20 contained a large amount of CaO of the flux symbol BF17, the bead height was uneven and the bead appearance and slag peelability were poor. Further, since CaF 2 is small, the absorbed energy of the weld metal was low. Furthermore, since there are few particles with a flux particle size of 150 to 850 μm, Sb is not stably contained in the weld metal, the corrosion plate thickness is reduced, the bead becomes convex, the bead shape is poor, and pits are generated.

試験記号T21は、フラックス記号BF18のB23が多いので、溶接金属の引張強度が高く吸収エネルギーが低値であった。また、フラックス見掛密度が大きいので、ビード幅が狭く凸形状となり、アンダーカットも生じた。さらに、組合せたワイヤ記号W7にSbが添加されていないので、腐食板厚減量が多かった。 Since the test symbol T21 has a large amount of B 2 O 3 of the flux symbol BF18, the tensile strength of the weld metal was high and the absorbed energy was low. Moreover, since the apparent density of the flux was large, the bead width was narrow and became a convex shape, resulting in undercutting. Furthermore, since Sb was not added to the combined wire symbol W7, the corrosion plate thickness was greatly reduced.

試験記号T22は、フラックス記号BF19のCO2が少ないので、溶接金属の吸収エネルギーが低値であった。また、組合せたワイヤ記号W18のSbが多いので、割れが生じた。 The test symbol T22 had a low value of absorbed energy of the weld metal because the CO 2 of the flux symbol BF19 was small. Moreover, since there was much Sb of the wire symbol W18 combined, the crack arose.

試験記号T23は、組合せたワイヤ記号W10のMnが少ないので、溶接金属の引張強度が低く吸収エネルギーも低値であった。   In test symbol T23, since the Mn of the combined wire symbol W10 was small, the tensile strength of the weld metal was low and the absorbed energy was also low.

試験記号T24は、組合せたワイヤ記号W11のSiが多いので、溶接金属の引張強度が高く吸収エネルギーが低値であった。   In test symbol T24, the amount of Si in the combined wire symbol W11 was large, so the tensile strength of the weld metal was high and the absorbed energy was low.

試験記号T25は、組合せたワイヤ記号W12がSiを含有していないので、溶接金属の吸収エネルギーが低値であった。   In the test symbol T25, since the combined wire symbol W12 does not contain Si, the absorbed energy of the weld metal was low.

試験記号T26は、フラックス記号BF20のTiO2が少ないので、ビード形状が不良で、溶接金属の吸収エネルギーが低値であった。 Test symbol T26 had a small bead shape and a low absorbed energy of the weld metal because TiO 2 of flux symbol BF20 was small.

試験記号T27は、組合せたワイヤ記号W13のCuが多いので、割れが生じた。また、溶接金属の引張強度が高く吸収エネルギーが低値であった。   The test symbol T27 was cracked because of the large amount of Cu in the combined wire symbol W13. Moreover, the tensile strength of the weld metal was high and the absorbed energy was low.

試験記号T28は、組合せたワイヤ記号W14のNiが少ないので、溶接金属の吸収エネルギーが低値であった。   In test symbol T28, the amount of Ni in the combined wire symbol W14 was small, so the absorbed energy of the weld metal was low.

試験記号T29は、組合せたワイヤ記号W15のNiが多いので、溶接金属の吸収エネルギーが低値であった。   Since the test symbol T29 has a large amount of Ni in the combined wire symbol W15, the absorbed energy of the weld metal was low.

試験記号T30は、組合せたワイヤ記号W16のMoが多いので、溶接金属の引張強度が高く吸収エネルギーが低値であった。   In test symbol T30, since there was much Mo of the wire symbol W16 combined, the tensile strength of the weld metal was high and the absorbed energy was low.

試験記号T31は、組合せたワイヤ記号W17のMoが少ないので、溶接金属の引張強度が低く吸収エネルギーも低値であった。   In the test symbol T31, since the Mo of the combined wire symbol W17 is small, the tensile strength of the weld metal is low and the absorbed energy is also low.

Claims (2)

質量%で、
SiO2:5〜21%、
Al23:15〜44%、
MgO:7〜32%、
CaO:0.5〜10%、
CaF2:5〜35%、
TiO2:5〜33%、
Si:0.2〜5.0%、
Mn:0.1〜5.0%、
金属炭酸塩のCO2分:0.5〜9.0%
を含有し、残部がFeO、アルカリ金属酸化物及び不可避不純物からなり、
フラックスの粒度構成が質量%で、
粒径850μm超の粒子が20〜55%、
粒径150〜850μmの粒子が40〜75%、
粒径150μm未満の粒子が6%以下で、
見掛密度が0.70〜1.30g/cm3であるボンドフラックスと、
質量%で、
C:0.005〜0.2%、
Si:0.01〜1.5%、
Mn:0.4〜2.5%、
Cu:0.03〜1.0%、
Ni:0.05〜1.0%、
Mo:0.01〜1.0%、
Sb:0.01〜0.25%
を含有し、P:0.03%以下、S:0.03%以下で、残部がFe及び不可避不純物からなるソリッドワイヤとを組合せて溶接することを特徴とする低合金鋼のサブマージアーク溶接方法。
% By mass
SiO 2: 5~21%,
Al 2 O 3 : 15 to 44%,
MgO: 7 to 32%,
CaO: 0.5 to 10%,
CaF 2 : 5 to 35%,
TiO 2: 5~33%,
Si: 0.2 to 5.0%,
Mn: 0.1 to 5.0%,
Metal carbonate CO 2 min: 0.5-9.0%
The balance consists of FeO, alkali metal oxides and inevitable impurities,
The particle size composition of the flux is mass%,
20% to 55% of particles having a particle size of more than 850 μm,
40-75% of particles with a particle size of 150-850 μm,
6% or less of particles with a particle size of less than 150 μm
A bond flux having an apparent density of 0.70 to 1.30 g / cm 3 ;
% By mass
C: 0.005-0.2%,
Si: 0.01 to 1.5%,
Mn: 0.4 to 2.5%
Cu: 0.03-1.0%,
Ni: 0.05 to 1.0%,
Mo: 0.01 to 1.0%,
Sb: 0.01 to 0.25%
And P: 0.03% or less, S: 0.03% or less, and a combination of a solid wire consisting of Fe and inevitable impurities in the balance, and welding with a low alloy steel, a submerged arc welding method .
さらに、ボンドフラックスは、B23:0.05〜3.0%含有することを特徴とする請求項1に記載の低合金鋼のサブマージアーク溶接方法。 Furthermore, the bond flux, B 2 O 3: 0.05~3.0% submerged arc welding method of low alloy steel according to claim 1, characterized in that it contains.
JP2011136731A 2011-06-20 2011-06-20 Submerged arc welding method for low alloy steel with excellent sulfuric acid resistance and hydrochloric acid resistance Active JP5830278B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011136731A JP5830278B2 (en) 2011-06-20 2011-06-20 Submerged arc welding method for low alloy steel with excellent sulfuric acid resistance and hydrochloric acid resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011136731A JP5830278B2 (en) 2011-06-20 2011-06-20 Submerged arc welding method for low alloy steel with excellent sulfuric acid resistance and hydrochloric acid resistance

Publications (2)

Publication Number Publication Date
JP2013000784A true JP2013000784A (en) 2013-01-07
JP5830278B2 JP5830278B2 (en) 2015-12-09

Family

ID=47669913

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011136731A Active JP5830278B2 (en) 2011-06-20 2011-06-20 Submerged arc welding method for low alloy steel with excellent sulfuric acid resistance and hydrochloric acid resistance

Country Status (1)

Country Link
JP (1) JP5830278B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103537823A (en) * 2013-11-11 2014-01-29 武汉大学 Self-propagating aluminum solder and welding rod
JP2017094359A (en) * 2015-11-25 2017-06-01 日鐵住金溶接工業株式会社 Fired flux for submerged arc welding of high tensile steel
CN106825993A (en) * 2017-03-03 2017-06-13 四川大西洋焊接材料股份有限公司 For tensile strength 900 ~ 1000MPa high-strength steel submerged arc fluxes and preparation method thereof
CN108145343A (en) * 2016-12-05 2018-06-12 株式会社神户制钢所 Solder flux used for submerged arc welding
CN109877487A (en) * 2019-03-19 2019-06-14 首钢集团有限公司 A kind of high impact toughness solid welding wire and preparation method thereof with resistance to acid liquid corrosion

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6123597A (en) * 1984-07-13 1986-02-01 Nippon Steel Corp Bonded flux for submerged arc welding
JPH11347788A (en) * 1998-06-11 1999-12-21 Kobe Steel Ltd Bond flux for submerged arc welding
JP2004090051A (en) * 2002-08-30 2004-03-25 Nippon Steel Corp Flux for submerged arc welding of low alloy steel excellent in resistance to sulfuric acid and hydrochloric acid, and submerged arc welding process
JP2004090045A (en) * 2002-08-30 2004-03-25 Nippon Steel Corp Gas shielded arc welding wire for low alloy steel excellent in hydrochloric acid resistance and sulfuric acid resistance, and gas shielded arc welding method using same
JP2007160314A (en) * 2005-12-09 2007-06-28 Nippon Steel & Sumikin Welding Co Ltd Flux cored wire for welding high-strength stainless steel
JP2010125508A (en) * 2008-11-28 2010-06-10 Nippon Steel & Sumikin Welding Co Ltd Bond flux for downward fillet submerged arc welding
JP2012218053A (en) * 2011-04-12 2012-11-12 Nippon Steel & Sumikin Welding Co Ltd Bond flux for multielectrode one-side submerged arc welding

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6123597A (en) * 1984-07-13 1986-02-01 Nippon Steel Corp Bonded flux for submerged arc welding
JPH11347788A (en) * 1998-06-11 1999-12-21 Kobe Steel Ltd Bond flux for submerged arc welding
JP2004090051A (en) * 2002-08-30 2004-03-25 Nippon Steel Corp Flux for submerged arc welding of low alloy steel excellent in resistance to sulfuric acid and hydrochloric acid, and submerged arc welding process
JP2004090045A (en) * 2002-08-30 2004-03-25 Nippon Steel Corp Gas shielded arc welding wire for low alloy steel excellent in hydrochloric acid resistance and sulfuric acid resistance, and gas shielded arc welding method using same
JP2007160314A (en) * 2005-12-09 2007-06-28 Nippon Steel & Sumikin Welding Co Ltd Flux cored wire for welding high-strength stainless steel
JP2010125508A (en) * 2008-11-28 2010-06-10 Nippon Steel & Sumikin Welding Co Ltd Bond flux for downward fillet submerged arc welding
JP2012218053A (en) * 2011-04-12 2012-11-12 Nippon Steel & Sumikin Welding Co Ltd Bond flux for multielectrode one-side submerged arc welding

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103537823A (en) * 2013-11-11 2014-01-29 武汉大学 Self-propagating aluminum solder and welding rod
JP2017094359A (en) * 2015-11-25 2017-06-01 日鐵住金溶接工業株式会社 Fired flux for submerged arc welding of high tensile steel
CN108145343A (en) * 2016-12-05 2018-06-12 株式会社神户制钢所 Solder flux used for submerged arc welding
JP2018089698A (en) * 2016-12-05 2018-06-14 株式会社神戸製鋼所 Flux for submerged arc welding
CN108145343B (en) * 2016-12-05 2020-08-25 株式会社神户制钢所 Flux for submerged arc welding
CN106825993A (en) * 2017-03-03 2017-06-13 四川大西洋焊接材料股份有限公司 For tensile strength 900 ~ 1000MPa high-strength steel submerged arc fluxes and preparation method thereof
CN109877487A (en) * 2019-03-19 2019-06-14 首钢集团有限公司 A kind of high impact toughness solid welding wire and preparation method thereof with resistance to acid liquid corrosion

Also Published As

Publication number Publication date
JP5830278B2 (en) 2015-12-09

Similar Documents

Publication Publication Date Title
JP5339871B2 (en) Flux-cored wire for submerged arc welding of low temperature steel and welding method.
JP4558780B2 (en) Flux-cored wire for submerged arc welding of low-temperature steel
JP6399983B2 (en) Flux-cored wire for gas shielded arc welding
JP2010110817A (en) Low-hydrogen coated electrode
JP5830278B2 (en) Submerged arc welding method for low alloy steel with excellent sulfuric acid resistance and hydrochloric acid resistance
KR101583197B1 (en) Bonded flux for submerged arc welding
JP6437471B2 (en) Low hydrogen coated arc welding rod
JP6953869B2 (en) Flux-cored wire for gas shielded arc welding and welding joint manufacturing method
JP2007160314A (en) Flux cored wire for welding high-strength stainless steel
JP5410039B2 (en) Stainless steel flux cored wire for electrogas arc welding
JP2009248137A (en) Flux cored wire for gas-shielded arc welding
JP2019048324A (en) Flux-cored wire for gas shield arc-welding, and method of manufacturing weld joint
KR101464853B1 (en) Bond flux, wire, welding metal and welding method for submerged arc welding
JP2008126279A (en) Flux-cored wire for gas shielded arc welding
JP2007260696A (en) Submerged arc weld metal of high tensile strength steel
JP2014198344A (en) Submerged arc welding method for high strength steel
JP2019048323A (en) Flux-cored wire for gas shield arc-welding, and method of manufacturing weld joint
JP5902970B2 (en) Solid wire for gas shielded arc welding of high strength steel
JP5340014B2 (en) Submerged arc welding method for low temperature steel
JP2010064087A (en) Flux cored wire for gas-shielded arc welding
JP2009034724A (en) Flux-cored wire for submerged arc welding for high-strength steel
JP6185871B2 (en) Solid wire for submerged arc welding
JP6037781B2 (en) Bond flux for multi-electrode single-sided submerged arc welding
JP4896483B2 (en) Austenitic stainless steel-coated arc welding rod with excellent resistance to Cu embrittlement cracking
JP2015182094A (en) Gas shielded arc welding method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131220

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141209

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150721

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150915

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151020

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151026

R150 Certificate of patent or registration of utility model

Ref document number: 5830278

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250