JP2008126279A - Flux-cored wire for gas shielded arc welding - Google Patents

Flux-cored wire for gas shielded arc welding Download PDF

Info

Publication number
JP2008126279A
JP2008126279A JP2006314752A JP2006314752A JP2008126279A JP 2008126279 A JP2008126279 A JP 2008126279A JP 2006314752 A JP2006314752 A JP 2006314752A JP 2006314752 A JP2006314752 A JP 2006314752A JP 2008126279 A JP2008126279 A JP 2008126279A
Authority
JP
Japan
Prior art keywords
flux
alloy
content
wire
corrosion resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006314752A
Other languages
Japanese (ja)
Inventor
Hiroshige Inoue
裕滋 井上
Shigeru Okita
茂 大北
Akira Usami
明 宇佐見
Shigeo Oyama
繁男 大山
Masaya Saito
雅哉 齋藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2006314752A priority Critical patent/JP2008126279A/en
Publication of JP2008126279A publication Critical patent/JP2008126279A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a flux-cored wire for gas shielded arc welding, when a hydrochloric acid and sulfuric acid dewpoint corrosion resistant steel is subjected to gas shielded arc welding, capable of obtaining a weld metal having excellent sulfuric acid corrosion resistance and hydrochloric acid corrosion resistance and also having excellent strength and impact toughness while suppressing occurrence in the liquid metal embrittlement cracks of the weld metal caused by Cu and Sb as low melting point components. <P>SOLUTION: The flux-cored wire has a composition, in the whole steel wire, as metal or alloy, comprising, by mass, 0.01 to 0.2% C, 0.1 to 2.0% Si, 0.2 to 3.0% Mn and 0.05 to 1.0% Ni, and in which the content of P is limited to ≤0.03% and the content of S is limited to ≤0.03%, and, further comprising, in packed flux, an Fe-Cu alloy or an Fe-Cu-Si alloy having a Cu content of 10 to 30 mass% in such a manner that the Cu content is controlled to 0.1 to 1.0% per whole wire mass, and an Fe-Sb alloy having an Sb content of 40 to 60% in such a manner that the Sb content is controlled to 0.01 to 0.5% per whole wire mass, and the balance Fe with inevitable impurities. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、石炭焚きボイラー及びごみ焼却施設の煙道・煙突等のように硫酸及び塩酸による低温腐食を生じるような雰囲気、即ち、濃厚硫酸及び濃厚塩酸環境下で優れた耐食性を示す耐塩酸及び耐硫酸露点腐食鋼を溶接する際に使用されるガスシールドアーク溶接用フラックス入りワイヤに関する。   The present invention relates to an atmosphere in which low temperature corrosion is caused by sulfuric acid and hydrochloric acid, such as a flue and a chimney of a coal fired boiler and a garbage incineration facility, that is, hydrochloric acid resistant and excellent corrosion resistance in concentrated sulfuric acid and concentrated hydrochloric acid environments. The present invention relates to a flux-cored wire for gas shielded arc welding used when welding sulfuric acid dew-point corrosion steel.

一般に、溶接構造物が腐食環境で使用される場合、溶接部と母材との間で耐食性に差異があると、耐食性の劣る方が選択的に腐食され、構造物の寿命が著しく短くなる。また、溶接部が選択的に腐食すると、腐食孔に応力集中が生じ、極端な場合は構造物の破壊を招く虞もある。このように、溶接構造物の利用において、腐食劣化が無視できない用途の場合には、母材だけでなく溶接部の耐食性も十分に確保する必要がある。   In general, when a welded structure is used in a corrosive environment, if there is a difference in corrosion resistance between the welded part and the base material, the one with lower corrosion resistance is selectively corroded, and the life of the structure is remarkably shortened. Further, when the welded portion is selectively corroded, stress concentration occurs in the corrosion hole, and in an extreme case, the structure may be destroyed. As described above, in the use of the welded structure, in the case where the corrosion deterioration cannot be ignored, it is necessary to sufficiently ensure not only the base material but also the corrosion resistance of the welded portion.

また、石炭焚き火力ボイラーやごみ焼却施設等における煙道・煙突等の排煙設備では、排ガス中の三酸化硫黄及び塩化水素に起因して、硫酸露点腐食及び/又は塩酸露点腐食が生じる。このため、このような環境下においては、一般に、耐硫酸露点腐食鋼(例えば、非特許文献1参照。)が使用されている。この耐硫酸露点腐食鋼用の溶接材料としては、耐食元素としてCuを単独で含有するものやCu−Crを含有するもの等がある。しかしながら、これらの既存溶接材料を使用して溶接した場合、重油専焼ボイラーのプラント排煙装置で生じる硫酸露点腐食環境においては十分に優れた耐食性を示すが、石炭焚きボイラーやごみ焼却設備等では、硫酸露点腐食と塩酸露点腐食とが同時に生じるため、溶接部の耐食性が十分でないという問題がある。   Further, in flue gas facilities such as flues and chimneys in coal-fired thermal boilers and garbage incineration facilities, sulfuric acid dew point corrosion and / or hydrochloric acid dew point corrosion occur due to sulfur trioxide and hydrogen chloride in the exhaust gas. For this reason, in such an environment, generally, sulfuric acid dew point corrosion steel (see, for example, Non-Patent Document 1) is used. As the welding material for the sulfuric acid dew point corrosion steel, there are a material containing Cu alone as a corrosion resistant element and a material containing Cu-Cr. However, when welding using these existing welding materials, it shows sufficiently excellent corrosion resistance in the sulfuric acid dew point corrosion environment generated in the plant smoke exhaust system of heavy oil fired boilers, but in coal-fired boilers and waste incineration facilities, Since sulfuric acid dew point corrosion and hydrochloric acid dew point corrosion occur simultaneously, there is a problem that the corrosion resistance of the welded portion is not sufficient.

そこで、従来、耐硫酸腐食性と耐塩酸腐食性とが共に優れた溶接金属を得るための溶接材料が提案されている。その中でも、特に、C、Si及びMnを含有し、P及びSの含有量を制限した鋼製材料中に、更に溶接金属の耐硫酸腐食性と耐塩酸腐食性の両方を向上するためにCu、Sb及びNiを複合添加した溶接材料が有効である。このような成分系の溶接材料としては、夫々用途に応じて、被覆アーク溶接棒(例えば、特許文献1参照。)、ガスシールドアーク溶接用ソリッドワイヤ(例えば、特許文献2参照。)、ガスシールドアーク溶接用フラックス入りワイヤ(例えば。特許文献3参照。)及びサブマージアーク溶接用フラックス(例えば、特許文献4参照。)が提案されている。   Therefore, conventionally, a welding material for obtaining a weld metal excellent in both sulfuric acid corrosion resistance and hydrochloric acid corrosion resistance has been proposed. Among them, in particular, in steel materials containing C, Si and Mn and restricting the contents of P and S, Cu is further added to improve both sulfuric acid corrosion resistance and hydrochloric acid corrosion resistance of the weld metal. A welding material in which Sb and Ni are added in combination is effective. As such a component-based welding material, a coated arc welding rod (see, for example, Patent Document 1), a solid wire for gas shielded arc welding (see, for example, Patent Document 2), and a gas shield, depending on the application. A flux-cored wire for arc welding (for example, see Patent Document 3) and a flux for submerged arc welding (for example, see Patent Document 4) have been proposed.

特開2004−90044号公報JP 2004-90044 A 特開2004−90045号公報JP 2004-90045 A 特開2004−90042号公報JP 2004-90042 A 特開2004−90051号公報JP 2004-90051 A 新日本製鐵株式会社、耐硫酸腐食鋼「S−TEN」技術資料、第7版、Cat.No.Ac.107、2005年Nippon Steel Corporation, sulfuric acid corrosion resistant steel “S-TEN” technical data, 7th edition, Cat. No. Ac. 107, 2005

しかしながら、前述した従来の技術には、以下に示す問題点がある。本願発明者が行った確認試験等の検討結果により、特許文献1〜4に記載されているような溶接金属の耐塩酸性及び耐硫酸性を向上させるために有効なCu及びSbを含有したフラックス入りワイヤを用いて溶接した場合、ワイヤ中のCu及びSbの一部が溶接金属中に移行する際に、主としてフラックスの溶融により生成したスラグと共に溶接金属及び溶接熱影響部の表面に残留することが確認された。そして、Cu及びSbはスラグ成分よりも融点が低いため、スラグが凝固した後もスラグ中に溶融状態のまま残留し、これらCu及びSbの溶融金属が溶接金属及び溶接熱影響部、特に溶融線近傍の粗大化したオーステナイト粒界に浸入し、これが原因となり、粒界脆化割れ(以下、これを液体金属脆化割れという)を発生させることがわかった。この液体金属脆化割れが発生すると、溶接部の靱性及び疲労強度等の機械的特性を低下させると共に、割れ発生部位が腐食の起点となるため、溶接継手に要求される母材と同等以上の機械的特性及び耐食性を確保することが困難となる。   However, the conventional techniques described above have the following problems. Based on the results of examinations such as confirmation tests conducted by the inventors of the present application, flux containing Cu and Sb effective for improving the hydrochloric acid resistance and sulfuric acid resistance of the weld metal as described in Patent Documents 1 to 4 When welding using a wire, when a part of Cu and Sb in the wire moves into the weld metal, it may remain on the surface of the weld metal and the weld heat affected zone together with the slag generated mainly by melting the flux. confirmed. Since Cu and Sb have a melting point lower than that of the slag component, the molten metal of Cu and Sb remains in the molten state even after the slag solidifies. It has been found that it penetrates into the coarsened austenite grain boundary in the vicinity and causes this to cause grain boundary embrittlement cracking (hereinafter referred to as liquid metal embrittlement cracking). When this liquid metal embrittlement crack occurs, the mechanical properties such as toughness and fatigue strength of the welded portion decrease, and the crack occurrence site becomes the starting point of corrosion. It becomes difficult to ensure mechanical properties and corrosion resistance.

以上の理由から、溶接金属の耐塩酸性及び耐硫酸性を向上させるために有効なCu及びSbといった低融点成分を含有するフラックス入りワイヤを用いて、耐塩酸及び耐硫酸露点腐食鋼をガスシールドアーク溶接した場合に、これらの低融点成分に起因する溶接部の液体金属脆化割れ性を抑制しつつ、溶接金属の耐硫酸腐食性及び耐塩酸腐食性の両方を向上させることができるガスシールドアーク溶接用フラックス入りワイヤの開発が望まれている。   For the reasons described above, gas-shielded arc is resistant to hydrochloric acid and sulfuric acid dew-point corrosion steel using flux-cored wires containing low melting point components such as Cu and Sb, which are effective for improving the hydrochloric acid resistance and sulfuric acid resistance of weld metals. Gas shielded arc that can improve both sulfuric acid corrosion resistance and hydrochloric acid corrosion resistance of weld metal while suppressing liquid metal embrittlement cracking of welds due to these low melting point components when welded Development of a flux-cored wire for welding is desired.

本発明は、上述した従来技術の問題点を鑑みてなさなれたものであって、耐塩酸及び耐硫酸露点腐食鋼をガスシールドアーク溶接した際に、低融点成分であるCu及びSbに起因する溶接金属の液体金属脆化割れ発生を抑制しつつ、耐硫酸腐食性と耐塩酸腐食性とが共に優れ、かつ強度及び衝撃靱性に優れた溶接金属が得られるガスシールドアーク溶接用フラックス入りワイヤを提供することを目的とする。   The present invention has been made in view of the above-mentioned problems of the prior art, and is caused by Cu and Sb, which are low melting point components, when hydrochloric acid resistant and sulfuric acid dew point corrosion steel is gas shielded arc welded. A flux-cored wire for gas shielded arc welding that provides weld metal with excellent sulfuric acid corrosion resistance and hydrochloric acid corrosion resistance, as well as excellent strength and impact toughness, while suppressing the occurrence of liquid metal embrittlement cracks in weld metal. The purpose is to provide.

本発明に係るガスシールドアーク溶接用フラックス入りワイヤは、鋼製外皮内に充填フラックスが充填されたフラックス入りワイヤにおいて、ワイヤ全体で、金属又は合金として、質量%で、C:0.01〜0.2%、Si:0.1〜2.0%、Mn:0.2〜3.0%、Ni:0.05〜1.0%を含有すると共に、P:0.03%以下、S:0.03%以下に制限し、更に、前記充填フラックスにのみ、Fe−Cu合金又はFe−Cu−Si合金として、ワイヤ全質量に対する質量%で、Cu:0.1〜1.0%を含有すると共に、Fe−Sb合金として、ワイヤ全質量に対する質量%で、Sb:0.01〜0.25%を含有し、かつ前記充填フラックス中に含まれるFe−Cu合金又はFe−Cu−Si合金中のCu含有量は10〜30質量%、Fe−Sb合金中のSb含有量は40〜60質量%であり、耐塩酸性と耐硫酸性に優れた鋼を溶接する際に使用されることを特徴とする。   The flux-cored wire for gas shielded arc welding according to the present invention is a flux-cored wire in which a filling flux is filled in a steel sheath. The entire wire, as a metal or an alloy, in mass%, C: 0.01 to 0 0.2%, Si: 0.1-2.0%, Mn: 0.2-3.0%, Ni: 0.05-1.0%, P: 0.03% or less, S Is limited to 0.03% or less, and only in the filling flux, as Fe-Cu alloy or Fe-Cu-Si alloy, Cu: 0.1 to 1.0% in terms of mass% with respect to the total mass of the wire. As a Fe-Sb alloy, the Fe-Cu alloy or Fe-Cu-Si containing Sb: 0.01 to 0.25% in mass% with respect to the total mass of the wire and contained in the filled flux Cu content in the alloy is 10-3 Wt%, Sb content in the Fe-Sb alloy is 40 to 60 wt%, characterized in that it is used in welding the steel excellent in hydrochloric acid and sulfuric acid.

このガスシールドアーク溶接用フラックス入りワイヤは、ワイヤ全質量に対する質量%で、S:0.005〜0.03質量%であることが好ましい。   The flux-cored wire for gas shielded arc welding is preferably S: 0.005 to 0.03% by mass relative to the total mass of the wire.

また、ワイヤ全体で、金属又は合金として、質量%で、Mo:0.01〜0.5%を含有することもできる。   Moreover, Mo: 0.01-0.5% can also be contained in the mass as a metal or an alloy in the whole wire.

更に、ワイヤ全体で、金属又は合金として、質量%で、Cr:0.05〜1.5%を含有していてもよい。   Furthermore, the whole wire may contain Cr: 0.05 to 1.5% in mass% as a metal or alloy.

更にまた、ワイヤ全体で、金属又は合金として、質量%で、Al:0.005〜0.2%、Ti:0.005〜0.2%及びZr:0.005〜0.2%からなる群から選択された1種又は2種以上の元素を含有することもできる。   Furthermore, the entire wire is composed of Al: 0.005 to 0.2%, Ti: 0.005 to 0.2%, and Zr: 0.005 to 0.2% in mass% as a metal or alloy. One or more elements selected from the group can also be contained.

本発明によれば、鋼製外皮内の充填フラックス中に、Cuは、Fe−Cu合金又はFe−Cu−Si合金の形態で、Sbは、Fe−Sb合金の形態で、夫々金属粉として含有させ、更に、充填フラックスに含まれるFe−Cu合金又はFe−Cu−Si合金におけるCu含有量、及びFe−Sb合金におけるSb含有量を適正範囲としているため、濃厚硫酸及び濃厚塩酸環境下で使用される耐塩酸及び耐硫酸露点腐食鋼をガスシールドアーク溶接する際に、低融点成分に起因する溶接金属の液体金属脆化割れ発生を抑制し、良好な溶接性を維持しつつ、耐硫酸腐食性と耐塩酸腐食性とに優れ、かつ強度及び衝撃靱性に優れた溶接金属が得られる。   According to the present invention, in the filling flux in the steel outer shell, Cu is in the form of Fe-Cu alloy or Fe-Cu-Si alloy, and Sb is in the form of Fe-Sb alloy, each contained as metal powder. Furthermore, since the Cu content in the Fe-Cu alloy or Fe-Cu-Si alloy contained in the filling flux and the Sb content in the Fe-Sb alloy are within the appropriate ranges, it is used in concentrated sulfuric acid and concentrated hydrochloric acid environments. When gas-shielded arc welding is performed on hydrochloric acid and sulfuric acid dew-point corrosion steel, the occurrence of liquid metal embrittlement cracking of weld metal due to low melting point components is suppressed, and while maintaining good weldability, sulfuric acid corrosion resistance Weld metal with excellent strength and hydrochloric acid corrosion resistance, and excellent strength and impact toughness.

以下、本発明を実施するための最良の形態について説明する。なお、以下の説明においては、組成における質量%は単に%と記載する。   Hereinafter, the best mode for carrying out the present invention will be described. In the following description, mass% in the composition is simply expressed as%.

本願発明者は、溶接金属の耐塩酸性及び耐硫酸性向上に有効なCu及びSbといった低融点成分を含有するフラックス入りワイヤを用いて溶接した場合に発生しやすい、これら低融点成分に起因する溶接部の液体金属脆化割れ発生を防止し、溶接部の液体金属脆化割れ発生を抑制しつつ、耐硫酸耐食性及び耐塩酸耐食性の両方に優れ、靭性等の機械的特性が良好な溶接金属が得られるフラックス入りワイヤの成分組成について鋭意実験検討を行った。   The inventor of the present application is likely to occur when welding using a flux-cored wire containing low melting point components such as Cu and Sb effective in improving the hydrochloric acid resistance and sulfuric acid resistance of the weld metal. A weld metal with excellent mechanical properties such as toughness, excellent in both sulfuric acid resistance and hydrochloric acid corrosion resistance, while preventing the occurrence of liquid metal embrittlement cracks in the welds and suppressing the occurrence of liquid metal embrittlement cracks in the welds. The earnest experiment was examined about the component composition of the obtained flux cored wire.

その結果、フラックス入りワイヤにおいて、(1)鋼製外皮内の充填フラックス中に、Cuは、Fe−Cu合金又はFe−Cu−Si合金の形態で、Sbは、Fe−Sb合金の形態で、夫々金属粉として含有させ、かつ(2)充填フラックスに含まれるFe−Cu合金又はFe−Cu−Si合金におけるCu含有量、及びFe−Sb合金におけるSb含有量を適正範囲とすることで、Cu及びSbをより高融点の合金として安定化させ、溶融状態のCu及びSbに起因する溶接金属の液体金属脆化割れを抑制しつつ、耐硫酸腐食性及び耐塩酸腐食性を向上することができることを知見し、本発明に至った。   As a result, in the flux-cored wire, (1) in the filled flux in the steel outer shell, Cu is in the form of Fe-Cu alloy or Fe-Cu-Si alloy, Sb is in the form of Fe-Sb alloy, Each is contained as a metal powder, and (2) Cu content in the Fe-Cu alloy or Fe-Cu-Si alloy contained in the filling flux, and Sb content in the Fe-Sb alloy within an appropriate range, Cu And Sb can be stabilized as an alloy having a higher melting point, and the resistance to sulfuric acid corrosion and hydrochloric acid corrosion can be improved while suppressing liquid metal embrittlement cracking of weld metal caused by molten Cu and Sb. As a result, the present invention has been achieved.

即ち、本発明のガスシールドアーク溶接用フラックス入りワイヤ(以下、単にフラックス入りワイヤともいう)は、鋼製外皮内に充填フラックスが充填されたものであり、ワイヤ全体で、C:0.01〜0.2%、Si:0.1〜2.0%、Mn:0.2〜3.0%及びNi:0.05〜1.0%を含有すると共に、P:0.03%以下及びS:0.03%以下に制限している。また、充填フラックス中には、Fe−Cu合金又はFe−Cu−Si合金として、ワイヤ全質量あたり、Cu:0.1〜1.0%を添加すると共に、Fe−Sb合金として、ワイヤ全質量あたり、Sb:0.01〜0.25%を添加している。更に、この充填フラックスに含まれるFe−Cu合金又はFe−Cu−Si合金のCu含有量を10〜30質量%とすると共に、Fe−Sb合金のSb含有量を40〜60質量%としている。なお、本発明のフラックス入りワイヤの鋼製外皮における残部、及び充填フラックス中に含まれる金属又は合金成分における残部は、Fe及び不可避的不純物である。また、充填フラックス中には、上述した金属又は合金成分以外に、例えば、酸化物、フッ化物及び炭酸塩等のスラグ形成剤又はアーク安定剤が含まれていてもよい。   That is, the flux-cored wire for gas shielded arc welding according to the present invention (hereinafter also simply referred to as a flux-cored wire) is one in which a filling flux is filled in a steel outer sheath, and C: 0.01 to 0.2%, Si: 0.1-2.0%, Mn: 0.2-3.0% and Ni: 0.05-1.0%, P: 0.03% or less and S: It is limited to 0.03% or less. Further, in the filled flux, as Fe—Cu alloy or Fe—Cu—Si alloy, Cu: 0.1 to 1.0% is added per total mass of the wire, and as the Fe—Sb alloy, the total mass of the wire is added. Sb: 0.01 to 0.25% is added. Furthermore, the Cu content of the Fe—Cu alloy or the Fe—Cu—Si alloy contained in the filled flux is 10 to 30% by mass, and the Sb content of the Fe—Sb alloy is 40 to 60% by mass. In addition, the remainder in the steel outer sheath of the flux-cored wire of the present invention and the remainder in the metal or alloy component contained in the filled flux are Fe and inevitable impurities. Moreover, in addition to the metal or alloy component described above, for example, a slag forming agent such as an oxide, a fluoride and a carbonate or an arc stabilizer may be contained in the filled flux.

このように、本発明のフラックス入りワイヤは、鋼製外皮に充填フラックスを充填してなるものであるが、所要の特性を有する溶接金属を得るための基本成分であるC、Si、Mn、Ni、P及びS、並びに選択成分であるMo、Cr、Al、Ti、及びZrは、鋼製外皮及び充填フラックスのいずれか一方に含有していても、又は両方に含有していてもよい。一方、Cu及びSbは、後述するようにFe合金の金属粉として、充填フラックスに含有する。   As described above, the flux-cored wire of the present invention is formed by filling a steel outer shell with a filling flux, and is a basic component for obtaining a weld metal having required characteristics. C, Si, Mn, Ni , P and S, and optional components Mo, Cr, Al, Ti, and Zr may be contained in one or both of the steel outer shell and the filling flux. On the other hand, Cu and Sb are contained in the filling flux as metal powder of Fe alloy as will be described later.

また、本発明において規定しているワイヤ全質量に対する各成分の含有量Mwは、下記数式(1)により求められる。なお、下記数式(1)におけるMcは鋼製外皮中の含有量(質量%)、Mfは充填フラックス中の含有量(質量%)、Rはワイヤ全質量に対する充填フラックス全質量の割合(質量%)を夫々示す。   Further, the content Mw of each component with respect to the total mass of the wire defined in the present invention is obtained by the following mathematical formula (1). In the following mathematical formula (1), Mc is the content (mass%) in the steel outer sheath, Mf is the content (mass%) in the filling flux, and R is the ratio (mass%) of the total mass of the filling flux to the total mass of the wire. ) Respectively.

Figure 2008126279
Figure 2008126279

以下、本発明のフラックス入りワイヤにおける成分組成の限定理由について説明する。   Hereinafter, the reasons for limiting the component composition in the flux-cored wire of the present invention will be described.

C:0.01〜0.2%
Cは、溶接構造用鋼の溶接継手としての強度を確保するために必要な元素である。しかしながら、その含有量が0.01%未満であると十分な継手強度が得られない。一方、C含有量が0.2%を超えると耐硫酸腐食性が低下すると共に、溶接金属の伸び及び衝撃靱性が低下し、更には耐割れ性も劣化する。よって、C含有量は0.01〜0.2%に限定する。なお、耐硫酸腐食性及び耐塩酸腐食性の観点からは、C含有量は少ないほど好ましく、0.1%以下とすることがより好ましい。
C: 0.01 to 0.2%
C is an element necessary for ensuring the strength of the welded structural steel as a welded joint. However, if the content is less than 0.01%, sufficient joint strength cannot be obtained. On the other hand, when the C content exceeds 0.2%, the sulfuric acid corrosion resistance decreases, the elongation and impact toughness of the weld metal decrease, and the crack resistance also deteriorates. Therefore, the C content is limited to 0.01 to 0.2%. In addition, from the viewpoint of sulfuric acid corrosion resistance and hydrochloric acid corrosion resistance, the smaller the C content, the more preferable, and 0.1% or less is more preferable.

Si:0.1〜2.0%
Siは、脱酸元素及び溶滴の表面張力を抑える元素として添加される。しかしながら、その含有量が0.1%未満場合、添加効果が十分に得られないため、Siは0.1%以上添加する必要がある。これにより、Cuと共存し、特に40%程度の硫酸濃度域での耐食性を向上させることができる。一方、Si含有量が2.0%を超えると、耐食性の向上が飽和すると共に、延性低下に伴って靱性が大きく低下する。従って、Si含有量は0.1〜2.0%に限定する。
Si: 0.1 to 2.0%
Si is added as a deoxidizing element and an element that suppresses the surface tension of the droplet. However, when the content is less than 0.1%, the effect of addition cannot be sufficiently obtained, so Si needs to be added by 0.1% or more. Thereby, it can coexist with Cu and can improve the corrosion resistance especially in a sulfuric acid concentration range of about 40%. On the other hand, if the Si content exceeds 2.0%, the improvement in corrosion resistance is saturated, and the toughness is greatly reduced as the ductility is lowered. Therefore, the Si content is limited to 0.1 to 2.0%.

Mn:0.2〜3.0%
Mnは、脱酸元素として作用する以外に、溶接金属の強度・衝撃靱性の向上に有効な元素である。しかしながら、その含有量が0.2%未満の場合、十分な効果が得られず、また、3.0%を超えてMnを添加すると、焼き入れ性が高まり、溶接金属の硬さが増加し、耐割れ性が劣化する。よって、Mn含有量は0.2〜3.0%に限定する。
Mn: 0.2 to 3.0%
In addition to acting as a deoxidizing element, Mn is an element effective for improving the strength and impact toughness of the weld metal. However, when the content is less than 0.2%, a sufficient effect cannot be obtained, and when Mn is added over 3.0%, the hardenability is increased and the hardness of the weld metal is increased. , Crack resistance deteriorates. Therefore, the Mn content is limited to 0.2 to 3.0%.

Ni:0.05〜1.0%
Niは、耐塩酸腐食性を向上させる元素として添加するが、その含有量が0.05%未満の場合、十分な効果が得られない。一方、Niは、1.0%を超えて添加しても、耐食性はほぼ飽和すると共に、過度の強度上昇を招き、溶接割れ感受性が高まる。よって、Ni含有量は0.05〜1.0%に限定する。
Ni: 0.05-1.0%
Ni is added as an element that improves hydrochloric acid corrosion resistance. However, if its content is less than 0.05%, sufficient effects cannot be obtained. On the other hand, even if Ni is added in an amount exceeding 1.0%, the corrosion resistance is almost saturated and an excessive increase in strength is caused to increase the weld crack sensitivity. Therefore, the Ni content is limited to 0.05 to 1.0%.

P:0.03%以下
Pは、不純物元素であり、耐硫酸腐食性及び耐塩酸腐食性を著しく阻害するため、少ないほど望ましい。具体的には、P含有量が0.03%を超えると、耐硫酸腐食性及び耐塩酸腐食性が低下する。よって、P含有量は0.03%以下とする。
P: 0.03% or less P is an impurity element, and since it significantly inhibits sulfuric acid corrosion resistance and hydrochloric acid corrosion resistance, the smaller the amount, the better. Specifically, when the P content exceeds 0.03%, the sulfuric acid corrosion resistance and hydrochloric acid corrosion resistance deteriorate. Therefore, the P content is 0.03% or less.

S:0.03%以下
Sは、不純物元素であり、0.03%を超える過度の含有は耐食性を低下させると共に溶接高温割れを助長するため、耐食性及び割れ性を確保する上で限定する必要がある。従って、S含有量は0.03%以下とする。なお、Sは、Cu、Sb及びMoと共存することで耐硫酸腐食性及び耐塩酸腐食性を向上させる効果があり、その効果は0.005%以上で顕著となる。このように、耐食性の観点からは、少量の含有は有効であるため、Sの含有量はS:0.005〜0.03%とすることが好ましい。
S: 0.03% or less S is an impurity element, and excessive content exceeding 0.03% lowers the corrosion resistance and promotes hot welding cracking. Therefore, it is necessary to limit the corrosion resistance and cracking resistance. There is. Therefore, the S content is 0.03% or less. S has the effect of improving sulfuric acid corrosion resistance and hydrochloric acid corrosion resistance by coexisting with Cu, Sb, and Mo, and the effect becomes remarkable at 0.005% or more. Thus, from the viewpoint of corrosion resistance, since a small amount is effective, the S content is preferably S: 0.005 to 0.03%.

Cu:0.1〜1.0%
Cuは、耐硫酸腐食性及び耐塩酸腐食性の向上のために添加する。しかしながら、その含有量が0.1%未満の場合、十分な効果が得られない。一方、1.0%を超えてCuを添加しても、耐食性はほぼ飽和すると共に、過度の強度上昇を招き、溶接割れ感受性が上昇する。よって、Cu含有量は0.1〜1.0%に限定する。
Cu: 0.1 to 1.0%
Cu is added to improve sulfuric acid corrosion resistance and hydrochloric acid corrosion resistance. However, when the content is less than 0.1%, a sufficient effect cannot be obtained. On the other hand, even if Cu is added in excess of 1.0%, the corrosion resistance is almost saturated and an excessive increase in strength is caused, resulting in an increase in weld crack sensitivity. Therefore, the Cu content is limited to 0.1 to 1.0%.

ただし、Cuは低融点成分のため、純金属としてワイヤ中に含有させると、溶接時に生成するスラグが凝固した後も、スラグ中に溶融状態のまま残留し、溶融状態のCuが溶接金属及び溶接熱影響部、特に溶融線近傍の粗大化したオーステナイト粒界に浸入し、液体金属脆化割れを発生させる原因となるため好ましくない。そこで、本発明のフラックス入りワイヤにおいては、溶接の際に溶接金属及び溶接熱影響部におけるCuを、より高融点の合金として安定化させ、溶融状態のCuに起因する溶接金属の液体金属脆化割れを抑制しつつ、耐硫酸腐食性及び耐塩酸腐食性を向上するため、Cuは純金属よりも融点が高いFe−Cu合金又はFe−Cu−Si合金の形態で、金属粉として充填フラックス中に添加する。その際、Fe−Cu合金及びFe−Cu−Si合金におけるCu含有量が10質量%未満の場合、Cuによる耐硫酸腐食性及び耐塩酸腐食性の向上効果が安定して得られない。一方、Fe−Cu合金及びFe−Cu−Si合金におけるCu含有量が30質量%を超えると、溶接の際に、溶融状態のCuに起因する溶接金属の液体金属脆化割れを抑制することができなくなる。よって、フラックスに含有させるFe−Cu合金及びFe−Cu−Si合金のCu含有量は、10〜30質量%とする。   However, since Cu is a low melting point component, if it is contained in the wire as a pure metal, even after the slag generated during welding solidifies, it remains in the molten state in the slag, and the molten Cu remains in the weld metal and weld. This is not preferable because it enters the heat-affected zone, particularly the coarsened austenite grain boundary in the vicinity of the melting line and causes liquid metal embrittlement cracking. Therefore, in the flux-cored wire of the present invention, during welding, Cu in the weld metal and the weld heat affected zone is stabilized as a higher melting point alloy, and the liquid metal embrittlement of the weld metal due to the molten Cu. In order to improve sulfuric acid corrosion resistance and hydrochloric acid corrosion resistance while suppressing cracking, Cu is in the form of an Fe-Cu alloy or Fe-Cu-Si alloy having a melting point higher than that of pure metal, and in the filling flux as metal powder. Add to. At that time, when the Cu content in the Fe—Cu alloy and the Fe—Cu—Si alloy is less than 10 mass%, the effect of improving the sulfuric acid corrosion resistance and hydrochloric acid corrosion resistance by Cu cannot be stably obtained. On the other hand, when the Cu content in the Fe—Cu alloy and the Fe—Cu—Si alloy exceeds 30% by mass, the liquid metal embrittlement cracking of the weld metal caused by the molten Cu can be suppressed during welding. become unable. Therefore, the Cu content of the Fe—Cu alloy and the Fe—Cu—Si alloy contained in the flux is 10 to 30% by mass.

Sb:0.01〜0.25%
Sbは、Cuと共存して耐硫酸腐食性及び耐塩酸腐食性をさらに向上させる元素である。しかしながら、Sb含有量が0.01%未満の場合、その効果が得られない。一方、Sb含有量が0.25%を超えると、アークが不安定となり、溶接作業性が劣化すると共に、溶接割れ感受性が上昇する。よって、Sb含有量は0.01〜0.25%に限定する。
Sb: 0.01 to 0.25%
Sb is an element that coexists with Cu and further improves sulfuric acid corrosion resistance and hydrochloric acid corrosion resistance. However, when the Sb content is less than 0.01%, the effect cannot be obtained. On the other hand, when the Sb content exceeds 0.25%, the arc becomes unstable, the welding workability is deteriorated, and the weld crack sensitivity is increased. Therefore, the Sb content is limited to 0.01 to 0.25%.

また、前述したCuと同様にSbも低融点成分のため、Sbを純金属としてワイヤ中に添加すると、溶接時に生成するスラグが凝固した後も、スラグ中に溶融状態のまま残留し、溶融状態のSbが溶接金属及び溶接熱影響部、特に溶融線近傍の粗大化したオーステナイト粒界に浸入し、液体金属脆化割れを発生させる原因となるため好ましくない。そこで、本発明のフラックス入りワイヤにおいては、溶接の際に溶接金属及び溶接熱影響部におけるSbを、より高融点の合金として安定化させ、溶融状態のSbに起因する溶接金属の液体金属脆化割れを抑制しつつ、耐硫酸腐食性及び耐塩酸腐食性を向上するため、Sbは、純金属よりも融点が高いFe−Sb合金の形態で、金属粉として充填フラックス中に添加する。このように、Sbを融点が高くなるFe−Sb合金の形態で充填フラックス中に含有することにより、特に入熱量が高いサブマージアーク溶接における溶接ワイヤとして使用した場合に、ビード成形性の劣化及びSbの散逸による溶接金属中のSb歩留まり低下の問題等も改善することができる。   In addition, since Sb is a low melting point component as in the case of Cu described above, when Sb is added to the wire as a pure metal, even after the slag produced during welding solidifies, it remains in the molten state in the slag and is in a molten state. This is not preferable because the Sb intrudes into the weld metal and the weld heat affected zone, particularly the coarsened austenite grain boundary near the melting line, and causes liquid metal embrittlement cracks. Therefore, in the flux-cored wire of the present invention, during welding, Sb in the weld metal and the weld heat-affected zone is stabilized as a higher melting point alloy, and the liquid metal embrittlement of the weld metal due to molten Sb. In order to improve sulfuric acid corrosion resistance and hydrochloric acid corrosion resistance while suppressing cracking, Sb is added to the filling flux as metal powder in the form of an Fe—Sb alloy having a melting point higher than that of pure metal. Thus, when Sb is contained in the filled flux in the form of an Fe—Sb alloy having a high melting point, the bead formability is deteriorated and the Sb is deteriorated particularly when used as a welding wire in submerged arc welding having a high heat input. The problem of the decrease in the yield of Sb in the weld metal due to the dissipation of can also be improved.

ただし、このFe−Sb合金におけるSb含有量が40質量%未満の場合、Sbによる耐硫酸腐食性及び耐塩酸腐食性の向上効果が安定して得られない。一方、Fe−Sb合金におけるSb含有量が60質量%を超えると、溶接の際に、溶融状態のSbに起因する溶接金属の液体金属脆化割れを抑制することができなくなる。よって、フラックスに含有させるFe−Sb合金のSb含有量は、40〜60%とする。なお、このFe−Sb合金の融点は、1000℃以上とすることがより好ましい。   However, when the Sb content in the Fe—Sb alloy is less than 40% by mass, the effect of improving the sulfuric acid corrosion resistance and hydrochloric acid corrosion resistance by Sb cannot be stably obtained. On the other hand, when the Sb content in the Fe—Sb alloy exceeds 60% by mass, liquid metal embrittlement cracking of the weld metal due to Sb in the molten state cannot be suppressed during welding. Therefore, the Sb content of the Fe—Sb alloy contained in the flux is 40 to 60%. The melting point of this Fe—Sb alloy is more preferably 1000 ° C. or higher.

また、本発明のフラックス入りワイヤは、上記各成分に加えて、鋼製外皮及び/又は充填フラックスに、Moを含有していてもよい。   In addition to the above components, the flux-cored wire of the present invention may contain Mo in the steel outer sheath and / or the filling flux.

Mo:0.01〜0.5%
Moは、Cuとの共存下で耐塩酸腐食性を著しく向上させる元素であり、必要に応じて添加する。その効果はCu及びSbの複合効果でさらに増大する。しかしながら、Mo含有量が0.01%未満の場合、添加効果が得られない。一方、0.5%を超えてMoを添加すると、耐塩酸腐食性のみならず耐硫酸腐食性も低下する。よって、Moを添加する場合は、その含有量を0.01〜0.5%とする。
Mo: 0.01 to 0.5%
Mo is an element that significantly improves hydrochloric acid corrosion resistance in the presence of Cu, and is added as necessary. The effect is further increased by the combined effect of Cu and Sb. However, when the Mo content is less than 0.01%, the effect of addition cannot be obtained. On the other hand, when Mo is added exceeding 0.5%, not only hydrochloric acid corrosion resistance but also sulfuric acid corrosion resistance is lowered. Therefore, when adding Mo, the content is made 0.01 to 0.5%.

更に、本発明のフラックス入りワイヤは、上記各成分に加えて、鋼製外皮及び/又は充填フラックスに、Crが添加されていてもよい。   Furthermore, in the flux-cored wire of the present invention, Cr may be added to the steel outer sheath and / or the filled flux in addition to the above components.

Cr:0.05〜1.5%
Crは、一般に耐塩酸腐食性を低下させる元素であるが、逆に、耐硫酸腐食性を向上させる元素でもある。そこで、本発明のフラックス入りワイヤでは、特に排ガス中の硫黄酸化物量が多いプラントで生じる硫酸露点腐食環境での耐食性を確保する場合等に、必要に応じて添加する。しかしながら、Cr含有量が0.05%未満の場合、耐硫酸腐食性向上効果が得られない。一方、1.5%を超えてCrを添加すると、却って耐硫酸腐食性を阻害する。よって、Crを添加する場合は、その含有量を0.05〜1.5%とする。
Cr: 0.05 to 1.5%
Cr is an element that generally reduces hydrochloric acid corrosion resistance, but conversely is an element that improves sulfuric acid corrosion resistance. Therefore, the flux-cored wire of the present invention is added as necessary, for example, when ensuring corrosion resistance in a sulfuric acid dew point corrosion environment generated in a plant having a large amount of sulfur oxide in exhaust gas. However, when the Cr content is less than 0.05%, the sulfuric acid corrosion resistance improving effect cannot be obtained. On the other hand, when Cr is added exceeding 1.5%, the sulfuric acid corrosion resistance is inhibited. Therefore, when adding Cr, the content is made 0.05 to 1.5%.

更にまた、本発明のフラックス入りワイヤにおいては、鋼製外皮及び/又は充填フラックスに、Al、Ti及びZrからなる群から選択された1種又は2種以上の元素を添加することもできる。   Furthermore, in the flux-cored wire of the present invention, one or more elements selected from the group consisting of Al, Ti and Zr can be added to the steel outer sheath and / or the filled flux.

Al:0.005〜0.2%、Ti:0.005〜0.2%及びZr:0.005〜0.2%
Alは、脱酸元素として添加されると共に、衝撃靱性の改善に有効な元素として、必要に応じて添加される。しかしながら、Al含有量が0.005%未満ではその効果が十分でなく、一方、Al含有量が0.2%を超えると溶接作業性を阻害する。よって、Alを添加する場合は、その含有量を0.005〜0.2%とする。また、Tiは、Alと同様に脱酸元素であると共に、Ti酸化物を形成し、溶接金属のミクロ組織を微細化し、靱性の改善に有効な元素でもあり、必要に応じて添加される。しかしながら、Ti含有量が0.005%未満ではその効果が十分でなく、一方、Ti含有量が0.2%を超えるとスラグの焼き付きが増加すると共に、衝撃靱性を低下させる。よって、Tiを添加する場合は、その含有量を0.005〜0.2%とする。更に、Zrは、Al及びTiと同様に脱酸元素であり、これらの元素と複合添加することにより、靱性の改善に有効な元素であるため、必要に応じて添加される。しかしながら、Zr含有量が0.005%未満ではその効果が十分でなく、一方、Zr含有量が0.2%を超えると、Al及びTiと同様にスラグの焼き付きが増加すると共に、衝撃靱性を低下させる。よって、Zrを添加する場合は、その含有量を0.005〜0.2%とする。
Al: 0.005-0.2%, Ti: 0.005-0.2% and Zr: 0.005-0.2%
Al is added as a deoxidizing element and, if necessary, as an element effective for improving impact toughness. However, if the Al content is less than 0.005%, the effect is not sufficient. On the other hand, if the Al content exceeds 0.2%, welding workability is hindered. Therefore, when adding Al, the content is made 0.005 to 0.2%. Ti is a deoxidizing element like Al, and also forms an Ti oxide, refines the microstructure of the weld metal, and is an element effective in improving toughness, and is added as necessary. However, when the Ti content is less than 0.005%, the effect is not sufficient. On the other hand, when the Ti content exceeds 0.2%, seizure of slag increases and impact toughness decreases. Therefore, when adding Ti, the content is made 0.005 to 0.2%. Furthermore, Zr is a deoxidizing element like Al and Ti, and is an element effective for improving toughness by being added in combination with these elements, so is added as necessary. However, if the Zr content is less than 0.005%, the effect is not sufficient. On the other hand, if the Zr content exceeds 0.2%, the seizure of slag increases as in the case of Al and Ti, and the impact toughness is reduced. Reduce. Therefore, when adding Zr, the content is made 0.005 to 0.2%.

なお、本発明のフラックス入りワイヤでは、充填フラックスの充填率は特に限定されない。また、ワイヤの断面形状は、C断面及び重ね断面等のように合わせ目があるもの、又は、合わせ目のないシームレスタイプでもよい。更に、鋼製外皮の厚さ及びワイヤ径も特に限定されるものではなく、適宜選択することができる。更にまた、本発明のフラックス入りワイヤは、MIG及びMAG等のガスシールドアーク溶接、又はサブマージアーク溶接に適用することができる。   In the flux-cored wire of the present invention, the filling rate of the filling flux is not particularly limited. Further, the cross-sectional shape of the wire may be a joint type such as a C cross-section and an overlapping cross-section, or a seamless type without a seam. Further, the thickness of the steel outer sheath and the wire diameter are not particularly limited, and can be appropriately selected. Furthermore, the flux-cored wire of the present invention can be applied to gas shielded arc welding such as MIG and MAG, or submerged arc welding.

上述の如く、本発明のフラックス入りワイヤにおいては、Cu及びSbをより高融点の合金として安定化させることにより、溶融状態のCu及びSbに起因する溶接金属の液体金属脆化割れを抑制しつつ、耐硫酸腐食性及び耐塩酸腐食性を向上することができる。特に、入熱量が高く、溶接ワイヤと共に開先内に充填するフラックを使用するサブマージアーク溶接における溶接金属の液体金属脆化割れの抑制、並びに耐硫酸腐食性及び耐塩酸腐食性の向上に有効である。従って、火力ボイラー及びごみ焼却装置の排煙設備等に使用される耐塩酸及び耐硫酸露点腐食鋼製構造体の信頼性を長期にわたって確保でき、かつ溶接部のメンテナンス性改善による経済性効果を向上させることができる等、本発明により産業の発展に貢献するところは極めて大きい。   As described above, in the flux-cored wire of the present invention, Cu and Sb are stabilized as an alloy having a higher melting point, thereby suppressing liquid metal embrittlement cracking of weld metal caused by molten Cu and Sb. The sulfuric acid corrosion resistance and hydrochloric acid corrosion resistance can be improved. In particular, it has a high heat input and is effective in suppressing liquid metal embrittlement cracking in weld metal and in improving sulfuric acid corrosion resistance and hydrochloric acid corrosion resistance in submerged arc welding using a flux filled in the groove together with the welding wire. is there. Therefore, it is possible to ensure the long-term reliability of hydrochloric acid and sulfuric acid dew-point corrosion steel structures used in thermal power boilers and smoke incinerators, and to improve the economic effect by improving the maintainability of welds. The present invention contributes greatly to the development of the industry.

ただし、サブマージアーク溶接において、本発明のフラックス入りワイヤによる上述した体金属脆化割れの抑制効果をより安定して発揮させるためには、被溶接材料の開先内に充填するフラックス中に純金属として含有するCu及びSbの含有量を夫々0.005%以下に制限することが望ましい。その際、被溶接材料開先内に充填するフラックスは、溶融型フラックス又はボンド型フラックスのいずれのタイプでもよい。   However, in submerged arc welding, in order to more stably exert the above-mentioned effect of suppressing the above-mentioned body metal embrittlement cracking by the flux-cored wire of the present invention, pure metal is contained in the flux filled in the groove of the material to be welded. It is desirable to limit the contents of Cu and Sb contained as 0.005% or less. At that time, the flux filled in the groove to be welded may be either a melt-type flux or a bond-type flux.

本発明のフラックス入りワイヤは、耐塩酸性と耐硫酸性に優れた鋼を溶接する際に使用されるものであり、溶接構造物の製作に適用すると共に、それら構造物の補修溶接又は肉盛りなどにも適用できる。具体的には、石炭焚きボイラー及びごみ焼却施設の煙道・煙突のように硫酸及び塩酸による低温腐食を生じるような雰囲気、即ち、濃厚硫酸及び濃厚塩酸環境下で優れた耐食性を示す耐塩酸及び耐硫酸露点腐食低合金鋼の溶接施工に使用される。より詳しくは、例えば、重油及び石炭等の化石燃料、液化天然ガス等のガス燃料、都市ごみ等の一般廃棄物、木工屑、繊維屑、廃油、プラスチック、廃タイヤ、医療廃棄物等の産業廃棄物及び下水汚泥等を燃焼させるボイラー等の排煙設備等、又は、塩酸及び硫酸等の単独若しくは混合の酸洗液を収める鋼製酸洗槽等の用途に適用される耐塩酸及び耐硫酸露点腐食鋼のガスシールドアーク溶接に使用することができる。   The flux-cored wire of the present invention is used when welding steel having excellent hydrochloric acid resistance and sulfuric acid resistance, and is applied to manufacture of welded structures, and repair welding or overlaying of the structures. It can also be applied to. Specifically, hydrochloric acid that exhibits excellent corrosion resistance in an environment that causes low-temperature corrosion by sulfuric acid and hydrochloric acid, such as flues and chimneys of coal-fired boilers and waste incineration facilities, that is, concentrated sulfuric acid and concentrated hydrochloric acid environment Used in welding construction of sulfuric acid dew point corrosion low alloy steel. More specifically, for example, fossil fuels such as heavy oil and coal, gas fuels such as liquefied natural gas, general waste such as municipal waste, woodworking waste, textile waste, waste oil, plastic, waste tires, medical waste, and other industrial waste Hydrochloric acid and sulfuric acid dew points that are applied to smoke exhaust facilities such as boilers that burn waste and sewage sludge, etc., or steel pickling tanks that contain single or mixed pickling solutions such as hydrochloric acid and sulfuric acid Can be used for gas shielded arc welding of corroded steel.

以下、本発明の実施例を挙げて、本発明の作用及び効果について更に詳細に説明する。本実施例においては、下記表1に示す組成で、板厚が160mmの耐塩酸及び耐硫酸露点腐食鋼を母材とし、これに開先角度が50゜のV開先を作製した。また、下記表2に示す組成の鋼製外皮と、下記表3に示す組成の充填フラックスとを組み合わせて、ワイヤの直径が4.0mm又は1.2mmである実施例及び比較例のフラックス入りワイヤを作製した。各フラックス入りワイヤの詳細を下記表4に示す。なお、下記表4に示すフラックス入りワイヤ全体の化学組成における残部は、Fe及び不可避的不純物である。また、下記表3及び表4における下線は、本発明の範囲外であることを示す。   Hereinafter, the operation and effect of the present invention will be described in more detail with reference to examples of the present invention. In this example, a V groove with a groove angle of 50 ° was prepared on a base material of hydrochloric acid and sulfuric acid dew point corrosion steel having a thickness of 160 mm and a composition shown in Table 1 below. Also, a flux-cored wire of an example and a comparative example in which the diameter of the wire is 4.0 mm or 1.2 mm by combining a steel outer sheath having the composition shown in Table 2 below and a filling flux having the composition shown in Table 3 below. Was made. The details of each flux cored wire are shown in Table 4 below. In addition, the remainder in the chemical composition of the whole flux cored wire shown in Table 4 below is Fe and inevitable impurities. Moreover, the underline in the following Table 3 and Table 4 shows that it is outside the scope of the present invention.

Figure 2008126279
Figure 2008126279

Figure 2008126279
Figure 2008126279

Figure 2008126279
Figure 2008126279

Figure 2008126279
Figure 2008126279

次に、上記表4に示す実施例及び比較例の各フラックス入りワイヤを使用し、上記表1に示す組成の耐塩酸及び耐硫酸露点腐食鋼を、下記表5に示す溶接条件で、MAG溶接又はサブマージアーク溶接(SAW)を行った。その際、サブマージアーク溶接の場合は、下記表6に示すサブマージアーク溶接用フラックスを併用して溶接した。   Next, using each of the flux-cored wires of Examples and Comparative Examples shown in Table 4 above, MAG welding of hydrochloric acid and sulfuric acid dew-point corrosion resistant steel having the composition shown in Table 1 was performed under the welding conditions shown in Table 5 below. Alternatively, submerged arc welding (SAW) was performed. At that time, in the case of submerged arc welding, welding was performed using a flux for submerged arc welding shown in Table 6 below.

Figure 2008126279
Figure 2008126279

Figure 2008126279
Figure 2008126279

そして、上述した方法で溶接した各溶接継手から、以下に示す方法で、腐食試験片、引張試験片、衝撃試験片及び表曲げ試験片を採取し、試験及び評価を行った。腐食試験は、各継手の溶接金属部から縦25mm、横25mm、厚さ4mmの試験片を採取し、全表面を400番エメリー紙で湿式研磨した後、70℃の50%硫酸に24時間浸漬するか、又は80℃の10.5%塩酸に24時間浸漬し、片面あたりの腐食板厚減少量を測定した。引張試験は、JIS Z 3121の溶接継手引張試験方法に準拠し、1A号試験片で評価した。衝撃試験は、JIS Z 3128に準拠し、溶接金属に切欠が位置するように、JIS Z 2202に規定のフルサイズVノッチ試験片を採取し、試験温度0℃でシャルピー衝撃試験を実施した。表曲げ試験は、JIS Z 3122に準拠し、R=2t(32mm)として実施した。   And from each welded joint welded by the method mentioned above, the corrosion test piece, the tensile test piece, the impact test piece, and the surface bending test piece were sampled by the method shown below, and tested and evaluated. In the corrosion test, test pieces having a length of 25 mm, a width of 25 mm, and a thickness of 4 mm were taken from the weld metal part of each joint, and the entire surface was wet-polished with No. 400 emery paper and then immersed in 50% sulfuric acid at 70 ° C. for 24 hours. Or immersed in 10.5% hydrochloric acid at 80 ° C. for 24 hours, and the amount of decrease in the corrosion plate thickness per side was measured. The tensile test was evaluated with a No. 1A test piece in accordance with the weld joint tensile test method of JIS Z 3121. The impact test was based on JIS Z 3128, and a full-size V-notch test piece defined in JIS Z 2202 was sampled so that a notch was located in the weld metal, and a Charpy impact test was performed at a test temperature of 0 ° C. The surface bending test was performed according to JIS Z 3122 and R = 2t (32 mm).

また、併せて、溶接後のビード外観及びアンダーカットの有無を調査し、溶接作業性についても評価を行った。以上の結果を下記表7にまとめて示す。なお、下記表7に示す継手引張試験結果は、母材で破断したものを○、それ以外の部分で破断したものを×とした。また、腐食試験結果は、母材の腐食板厚減少量が0.12〜0.15mmであることから、試験片(溶接金属)の腐食板厚減少量が0.15mm未満のものを合格とした。更に、衝撃試験結果は、シャルピー吸収エネルギーが50J以上のものを合格とした。そして、これらの試験に表曲げ試験結果及び溶接作業性評価結果を含めて総合評価を行った。   In addition, the appearance of the bead after welding and the presence or absence of undercut were investigated, and the welding workability was also evaluated. The above results are summarized in Table 7 below. In the joint tensile test results shown in Table 7 below, the fractures with the base metal were evaluated as ◯, and the fractures at other parts were evaluated as x. In addition, the corrosion test result shows that the corrosion plate thickness reduction amount of the base material is 0.12 to 0.15 mm, so that the test piece (welded metal) corrosion plate thickness reduction amount is less than 0.15 mm did. Furthermore, the impact test result was acceptable when the Charpy absorbed energy was 50 J or more. These tests were comprehensively evaluated including the results of surface bending tests and welding workability evaluation results.

Figure 2008126279
Figure 2008126279

上記表7に示すように、No.1〜9の継手は、本発明の範囲内で作製したフラックス入りワイヤ(No.A〜No.I)を使用した実施例であり、No.2、No.5、No.8及びNo.9の継手はMAG溶接を実施したもの、No.1、No.3、No.4、No.6及びNo.7の継手は、更に、上記表6に示すサブマージアーク溶接用フラックスを使用してサブマージアーク溶接したものである。これらの実施例の継手はいずれも、液体金属脆化割れは発生せず、良好な溶接作業性を有し、耐硫酸腐食性及び耐塩酸腐食性に優れ、かつ、強度、衝撃靱性及び曲げ特性の良好な溶接金属部が得られた。   As shown in Table 7 above, no. The joints 1 to 9 are examples using flux-cored wires (No. A to No. I) produced within the scope of the present invention. 2, No. 5, no. 8 and no. The joint of No. 9 was subjected to MAG welding, No. 9 1, no. 3, no. 4, no. 6 and no. Further, the joint of No. 7 is obtained by submerged arc welding using the flux for submerged arc welding shown in Table 6 above. All of the joints of these examples have no liquid metal embrittlement cracking, good welding workability, excellent sulfuric acid corrosion resistance and hydrochloric acid corrosion resistance, and strength, impact toughness and bending characteristics. A good weld metal part was obtained.

一方、本発明の範囲から外れるフラックス入りワイヤ(No.J〜No.X)を使用し、MAG溶接又は上記表6に示す溶接用フラックスを併用してサブマージアーク溶接した比較例No.10〜24の継手は、耐食性、衝撃靱性、割れ性及び溶接作業性のいずれか1つ以上に不適があり、総合評価として不合格となった。具体的には、比較例No.10の継手(ワイヤNo.J)は、Si含有量が本発明の成分範囲未満であるため、耐硫酸腐食性が劣り、かつフラックス中のSb源に純Sbを使用しているため、液体金属脆化割れが発生した。比較例No.11の継手(ワイヤNo.K)は、Cu含有量が本発明の成分範囲未満であるため、耐硫酸腐食性及び耐塩酸腐食性がともに劣っていた。比較例No.12の継手(ワイヤNo.L)は、Cu含有量が本発明範囲より多いため、過度の硬さ上昇を招き、靱性が劣化すると共に溶接割れが発生した。比較例No.13の継手(ワイヤNo.M)は、Sb含有量が本発明の成分範囲未満であるため、耐硫酸腐食性及び耐塩酸腐食性が共に劣っており、更に、C含有量及びAl含有量が本発明範囲より多いため、靱性及び溶接作業性が劣っていた。   On the other hand, comparative example No. which carried out submerged arc welding using the flux cored wire (No.J-No.X) which remove | deviates from the scope of the present invention, and using MAG welding or the welding flux shown in Table 6 above. The joints 10 to 24 were unsuitable for any one or more of corrosion resistance, impact toughness, crackability and welding workability, and were rejected as a comprehensive evaluation. Specifically, Comparative Example No. The joint (wire No. J) of No. 10 has a Si content less than the component range of the present invention, so is poor in sulfuric acid corrosion resistance and uses pure Sb as the Sb source in the flux. Brittle cracks occurred. Comparative Example No. The joint No. 11 (Wire No. K) had a Cu content that was less than the component range of the present invention, and therefore was poor in both sulfuric acid corrosion resistance and hydrochloric acid corrosion resistance. Comparative Example No. The joint of No. 12 (wire No. L) had a Cu content higher than the range of the present invention, and therefore caused an excessive increase in hardness, resulting in deterioration of toughness and weld cracking. Comparative Example No. The joint (wire No. M) No. 13 has an Sb content that is less than the component range of the present invention, so both the sulfuric acid corrosion resistance and hydrochloric acid corrosion resistance are inferior. Furthermore, the C content and Al content are low. Since there are more than the range of this invention, toughness and welding workability | operativity were inferior.

比較例No.14の継手(ワイヤNo.N)は、Sb含有量が本発明の成分範囲を超えているため、溶接割れが発生した。比較例No.15の継手(ワイヤNo.O)は、Ni含有量が本発明の成分範囲未満であるため、耐硫酸腐食性及び耐塩酸腐食性が劣っていた。また、フラックス中のCu源として添加されているFe−Cu−Si合金のCu含有量が、本発明の成分範囲を超えているため、融点が下がり、液体金属脆化割れを起こした。比較例No.16の継手(ワイヤNo.P)は、Ni及びTiが本発明の成分範囲を超えているため、過度の硬さ上昇を招き、靱性及び溶接作業性が劣っていた。比較例No.17の継手(ワイヤNo.Q)は、フラックス中のSb源として添加されているFe−Sb合金のSb含有量が、本発明の成分範囲未満であるため、耐硫酸腐食性及び耐塩酸腐食性が劣っていた。比較例No.18の継手(ワイヤNo.R)は、フラックス中のCu源として添加されているFe−Cu合金のCu含有量が本発明の成分範囲未満であるため、耐硫酸腐食性及び耐塩酸腐食性が劣っていた。   Comparative Example No. In the joint (wire No. N) No. 14, the Sb content exceeded the component range of the present invention, so that weld cracks occurred. Comparative Example No. Since the Ni content was less than the component range of the present invention, the joint (wire No. O) 15 was inferior in sulfuric acid corrosion resistance and hydrochloric acid corrosion resistance. Moreover, since the Cu content of the Fe—Cu—Si alloy added as a Cu source in the flux exceeds the component range of the present invention, the melting point was lowered and liquid metal embrittlement cracking occurred. Comparative Example No. Since the joint of 16 (wire No. P) had Ni and Ti exceeding the component range of the present invention, it caused an excessive increase in hardness and was inferior in toughness and welding workability. Comparative Example No. Since the Sb content of the Fe-Sb alloy added as an Sb source in the flux is less than the component range of the present invention, the joint No. 17 (wire No. Q) is resistant to sulfuric acid corrosion and hydrochloric acid. Was inferior. Comparative Example No. Since the Cu content of the Fe-Cu alloy added as a Cu source in the flux is less than the component range of the present invention, the joint No. 18 (wire No. R) has sulfuric acid corrosion resistance and hydrochloric acid corrosion resistance. It was inferior.

比較例No.19の継手(ワイヤNo.S)は、フラックス中のSb源として添加されているFe−Sb合金のSb含有量が、本発明の成分範囲を超えているため、融点が下がり、液体金属脆化割れを起こした。比較例No.20の継手(ワイヤNo.T)は、フラックス中のCu源として添加されているFe−Cu合金のCu含有量が、本発明の成分範囲を超えているため、融点が下がり、液体金属脆化割れを起こした。比較例No.21の継手(ワイヤNo.U)は、S含有量が本発明の成分範囲を超えているため、耐硫酸腐食性が劣ると共に溶接凝固割れが発生した。比較例No.22の継手(ワイヤNo.V)は、Moが本発明の成分範囲を超えているため、耐硫酸腐食性及び耐塩酸腐食性が共に劣化し、また、Mn含有量も本発明の成分範囲を超えているため、溶接金属の硬さが増加して溶接割れが発生した。比較例No.23の継手(ワイヤNo.W)は、Cr含有量が本発明の成分範囲を超えているため、耐硫酸腐食性及び耐塩酸腐食性が共に劣化し、また、フラックス中のSb源として添加されているFe−Sb合金のSb含有量が、本発明の成分範囲を超えているため、融点が下がり、液体金属脆化割れを起こした。比較例No.24の継手(ワイヤNo.X)は、フラックス中のCu源に純Cuを使用しているため、液体金属脆化割れが発生した。   Comparative Example No. In the joint No. 19 (wire No. S), since the Sb content of the Fe—Sb alloy added as the Sb source in the flux exceeds the component range of the present invention, the melting point is lowered and the liquid metal becomes brittle. Cracked. Comparative Example No. The joint (wire No. T) 20 has a lower melting point and a liquid metal embrittlement because the Cu content of the Fe-Cu alloy added as a Cu source in the flux exceeds the component range of the present invention. Cracked. Comparative Example No. Since the S content of the joint (wire No. U) 21 exceeded the component range of the present invention, the sulfuric acid corrosion resistance was inferior and weld solidification cracking occurred. Comparative Example No. In the joint No. 22 (wire No. V), since Mo exceeds the component range of the present invention, both sulfuric acid corrosion resistance and hydrochloric acid corrosion resistance deteriorate, and the Mn content also falls within the component range of the present invention. Therefore, the weld metal hardness increased and weld cracking occurred. Comparative Example No. In the joint No. 23 (wire No. W), since the Cr content exceeds the component range of the present invention, both sulfuric acid corrosion resistance and hydrochloric acid corrosion resistance are deteriorated, and added as an Sb source in the flux. Since the Sb content of the Fe—Sb alloy exceeds the component range of the present invention, the melting point was lowered and liquid metal embrittlement cracking occurred. Comparative Example No. Since the joint (wire No. X) 24 uses pure Cu as a Cu source in the flux, liquid metal embrittlement cracking occurred.

以上のように、本発明のフラックス入りワイヤを使用して溶接することにより、液体金属脆化割れの発生を抑制しつつ、硫酸環境下及び塩酸環境下での耐食性が優れ、かつ強度及び衝撃靱性に優れた溶接金属が得られ、更に、良好な溶接作業性向上に顕著な効果が得られる。   As described above, by welding using the flux-cored wire of the present invention, while suppressing the occurrence of liquid metal embrittlement cracking, it has excellent corrosion resistance in sulfuric acid environment and hydrochloric acid environment, and strength and impact toughness In addition, an excellent weld metal can be obtained, and a remarkable effect can be obtained in improving the welding workability.

Claims (5)

鋼製外皮内に充填フラックスが充填されたフラックス入りワイヤにおいて、
ワイヤ全体で、金属又は合金として、質量%で、
C:0.01〜0.2%、
Si:0.1〜2.0%、
Mn:0.2〜3.0%、
Ni:0.05〜1.0%
を含有すると共に、
P:0.03%以下、
S:0.03%以下
に制限し、
更に、前記充填フラックスにのみ、Fe−Cu合金又はFe−Cu−Si合金として、ワイヤ全質量に対する質量%で、Cu:0.1〜1.0%を含有すると共に、Fe−Sb合金として、ワイヤ全質量に対する質量%で、Sb:0.01〜0.25%を含有し、
かつ前記充填フラックス中に含まれるFe−Cu合金又はFe−Cu−Si合金中のCu含有量は10〜30質量%、Fe−Sb合金中のSb含有量は40〜60質量%であり、
耐塩酸性と耐硫酸性に優れた鋼を溶接する際に使用されることを特徴とするガスシールドアーク溶接用フラックス入りワイヤ。
In the flux-cored wire in which the filling flux is filled in the steel outer sheath,
In the whole wire, as metal or alloy, in mass%,
C: 0.01 to 0.2%
Si: 0.1 to 2.0%,
Mn: 0.2 to 3.0%
Ni: 0.05-1.0%
And containing
P: 0.03% or less,
S: limited to 0.03% or less,
Furthermore, only in the filling flux, as Fe-Cu alloy or Fe-Cu-Si alloy, in a mass% with respect to the total mass of the wire, containing Cu: 0.1 to 1.0%, and as an Fe-Sb alloy, In mass% with respect to the total mass of the wire, containing Sb: 0.01 to 0.25%,
And the Cu content in the Fe-Cu alloy or Fe-Cu-Si alloy contained in the filled flux is 10 to 30% by mass, the Sb content in the Fe-Sb alloy is 40 to 60% by mass,
A flux-cored wire for gas shielded arc welding, which is used when welding steel with excellent hydrochloric acid resistance and sulfuric acid resistance.
ワイヤ全質量に対する質量%で、S:0.005〜0.03%であることを特徴とする請求項1に記載のガスシールドアーク溶接用フラックス入りワイヤ。   2. The flux-cored wire for gas shielded arc welding according to claim 1, wherein S is 0.005 to 0.03% by mass% with respect to the total mass of the wire. 更に、ワイヤ全体で、金属又は合金として、質量%で、Mo:0.01〜0.5%を含有することを特徴とする請求項1又は2に記載のガスシールドアーク溶接用フラックス入りワイヤ。   The flux-cored wire for gas shielded arc welding according to claim 1 or 2, further comprising Mo: 0.01 to 0.5% by mass as a metal or alloy as a whole of the wire. 更に、ワイヤ全体で、金属又は合金として、質量%で、Cr:0.05〜1.5%を含有することを特徴とする請求項1乃至3のいずれか1項に記載のガスシールドアーク溶接用フラックス入りワイヤ。   The gas shielded arc welding according to any one of claims 1 to 3, further comprising Cr: 0.05 to 1.5% in mass% as a metal or alloy as a whole wire. Flux cored wire. 更に、ワイヤ全体で、金属又は合金として、質量%で、Al:0.005〜0.2%、Ti:0.005〜0.2%及びZr:0.005〜0.2%からなる群から選択された1種又は2種以上の元素を含有することを特徴とする請求項1乃至4のいずれか1項に記載のガスシールドアーク溶接用フラックス入りワイヤ。   Furthermore, the group consisting of Al: 0.005 to 0.2%, Ti: 0.005 to 0.2%, and Zr: 0.005 to 0.2% in mass% as a metal or alloy as the whole wire 5. The flux-cored wire for gas shielded arc welding according to claim 1, comprising one or more elements selected from the group consisting of:
JP2006314752A 2006-11-21 2006-11-21 Flux-cored wire for gas shielded arc welding Pending JP2008126279A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006314752A JP2008126279A (en) 2006-11-21 2006-11-21 Flux-cored wire for gas shielded arc welding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006314752A JP2008126279A (en) 2006-11-21 2006-11-21 Flux-cored wire for gas shielded arc welding

Publications (1)

Publication Number Publication Date
JP2008126279A true JP2008126279A (en) 2008-06-05

Family

ID=39552642

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006314752A Pending JP2008126279A (en) 2006-11-21 2006-11-21 Flux-cored wire for gas shielded arc welding

Country Status (1)

Country Link
JP (1) JP2008126279A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011189349A (en) * 2010-03-11 2011-09-29 Kobe Steel Ltd Flux cored wire for gas shielding arc welding
JP2011255385A (en) * 2010-06-04 2011-12-22 Nippon Steel Corp Flux-cored wire for carbon dioxide gas-shielded arc welding for high-tensile steel
CN102489895A (en) * 2011-12-09 2012-06-13 四川大西洋焊接材料股份有限公司 Gas protective flux cored wire for welding vanadium-containing heat resistant steel
CN102489901A (en) * 2011-12-09 2012-06-13 四川大西洋焊接材料股份有限公司 Gas protective welding flux cored wire for welding heat resistant steel
CN102825401A (en) * 2011-06-14 2012-12-19 鞍钢股份有限公司 Corrosion-resistant flux-cored welding wire used for gas shielded welding
JP2013226578A (en) * 2012-04-25 2013-11-07 Nippon Steel & Sumikin Welding Co Ltd Flux cored wire for horizontal fillet gas shielded arc welding of crude oil tank steel
WO2020105530A1 (en) * 2018-11-22 2020-05-28 株式会社神戸製鋼所 Flux-cored wire for gas shielded arc welding

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004090042A (en) * 2002-08-30 2004-03-25 Nippon Steel Corp Flux cored wire for gas shielded arc welding of low alloy steel excellent in resistance to hydrochloric acid and sulfuric acid
JP2004090045A (en) * 2002-08-30 2004-03-25 Nippon Steel Corp Gas shielded arc welding wire for low alloy steel excellent in hydrochloric acid resistance and sulfuric acid resistance, and gas shielded arc welding method using same
JP2004090044A (en) * 2002-08-30 2004-03-25 Nippon Steel Corp Coated electrode for low alloy steel welding having excellent resistance to sulfuric acid and hydrochloric acid
JP2006297470A (en) * 2005-04-25 2006-11-02 Nippon Steel & Sumikin Welding Co Ltd Coated electrode for arc welding

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004090042A (en) * 2002-08-30 2004-03-25 Nippon Steel Corp Flux cored wire for gas shielded arc welding of low alloy steel excellent in resistance to hydrochloric acid and sulfuric acid
JP2004090045A (en) * 2002-08-30 2004-03-25 Nippon Steel Corp Gas shielded arc welding wire for low alloy steel excellent in hydrochloric acid resistance and sulfuric acid resistance, and gas shielded arc welding method using same
JP2004090044A (en) * 2002-08-30 2004-03-25 Nippon Steel Corp Coated electrode for low alloy steel welding having excellent resistance to sulfuric acid and hydrochloric acid
JP2006297470A (en) * 2005-04-25 2006-11-02 Nippon Steel & Sumikin Welding Co Ltd Coated electrode for arc welding

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011189349A (en) * 2010-03-11 2011-09-29 Kobe Steel Ltd Flux cored wire for gas shielding arc welding
JP2011255385A (en) * 2010-06-04 2011-12-22 Nippon Steel Corp Flux-cored wire for carbon dioxide gas-shielded arc welding for high-tensile steel
CN102825401A (en) * 2011-06-14 2012-12-19 鞍钢股份有限公司 Corrosion-resistant flux-cored welding wire used for gas shielded welding
CN102489895A (en) * 2011-12-09 2012-06-13 四川大西洋焊接材料股份有限公司 Gas protective flux cored wire for welding vanadium-containing heat resistant steel
CN102489901A (en) * 2011-12-09 2012-06-13 四川大西洋焊接材料股份有限公司 Gas protective welding flux cored wire for welding heat resistant steel
JP2013226578A (en) * 2012-04-25 2013-11-07 Nippon Steel & Sumikin Welding Co Ltd Flux cored wire for horizontal fillet gas shielded arc welding of crude oil tank steel
WO2020105530A1 (en) * 2018-11-22 2020-05-28 株式会社神戸製鋼所 Flux-cored wire for gas shielded arc welding
JP7007253B2 (en) 2018-11-22 2022-02-10 株式会社神戸製鋼所 Flux-filled wire for gas shielded arc welding

Similar Documents

Publication Publication Date Title
EP2671669B1 (en) Ni-BASED HIGH-CR ALLOY WIRE FOR WELDING, ROD FOR ARC-SHIELDED WELDING, AND METAL FOR ARC-SHIELDED WELDING
JP5415998B2 (en) Flux-cored wire for gas shielded arc welding
KR102154217B1 (en) Welded structural members
JP2001107196A (en) Austenitic steel welded joint excellent in weld cracking resistance and sulfuric acid corrosion resistance and the welding material
JP6322093B2 (en) Flux-cored wire for gas shielded arc welding
JP2008126279A (en) Flux-cored wire for gas shielded arc welding
JP3892782B2 (en) Gas shielded arc welding wire for low alloy steel excellent in hydrochloric acid resistance and sulfuric acid resistance and gas shielded arc welding method using the same
JP2006289405A (en) Gas shielded arc welding wire for steel for refractory structure
JP2006263811A (en) Ferritic stainless steel filler metal rod for tig welding
JP4519520B2 (en) High Ni-base alloy welding wire
JP4874064B2 (en) Non-consumable electrode type metal cored wire for welding
JP3329261B2 (en) Welding materials and welded joints for high temperature high strength steel
JP5830278B2 (en) Submerged arc welding method for low alloy steel with excellent sulfuric acid resistance and hydrochloric acid resistance
JP3930782B2 (en) Coated arc welding rod for welding low alloy steel with excellent sulfuric acid resistance and hydrochloric acid resistance
JP3892781B2 (en) Flux-cored wire for gas shielded arc welding of low alloy steel with excellent hydrochloric acid resistance and sulfuric acid resistance
JP3382834B2 (en) Filler for Ni-base high Cr alloy
JP7007253B2 (en) Flux-filled wire for gas shielded arc welding
JP3329262B2 (en) Welding materials and welded joints with excellent resistance to reheat cracking
JP4896483B2 (en) Austenitic stainless steel-coated arc welding rod with excellent resistance to Cu embrittlement cracking
JP2000015447A (en) Welding method of martensitic stainless steel
JP3310892B2 (en) High-strength corrosion-resistant heat-resistant alloy for refuse incinerators
JP6107170B2 (en) Welding material for austenitic heat-resistant steel, weld metal and welded joint produced using the same
JP2003311473A (en) FILLER METAL FOR Ni BASED HIGH Cr ALLOY
JP3170166B2 (en) Filler for Ni-base high Cr alloy
JPH07214374A (en) High ni alloy welding wire

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20090217

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Effective date: 20101209

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20101221

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Effective date: 20110217

Free format text: JAPANESE INTERMEDIATE CODE: A523

A02 Decision of refusal

Effective date: 20111115

Free format text: JAPANESE INTERMEDIATE CODE: A02