JP2011255385A - Flux-cored wire for carbon dioxide gas-shielded arc welding for high-tensile steel - Google Patents

Flux-cored wire for carbon dioxide gas-shielded arc welding for high-tensile steel Download PDF

Info

Publication number
JP2011255385A
JP2011255385A JP2010129231A JP2010129231A JP2011255385A JP 2011255385 A JP2011255385 A JP 2011255385A JP 2010129231 A JP2010129231 A JP 2010129231A JP 2010129231 A JP2010129231 A JP 2010129231A JP 2011255385 A JP2011255385 A JP 2011255385A
Authority
JP
Japan
Prior art keywords
wire
flux
welding
carbon dioxide
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010129231A
Other languages
Japanese (ja)
Other versions
JP5459083B2 (en
Inventor
Shuichi Nakamura
修一 中村
Kazuhiro Kojima
一浩 児嶋
Yasuji Totsuka
康仁 戸塚
Ryuichi Shimura
竜一 志村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2010129231A priority Critical patent/JP5459083B2/en
Publication of JP2011255385A publication Critical patent/JP2011255385A/en
Application granted granted Critical
Publication of JP5459083B2 publication Critical patent/JP5459083B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide a flux-cored wire for carbon dioxide gas-shielded arc welding for a high-tensile steel, used for welding a high-tensile steel having ≥690 MPa of strength using 100% carbon dioxide gas as a shielding gas, obtaining superior welding workability and obtaining a weld metal having excellent mechanical capability.SOLUTION: The wire contains, by mass% to the total mass of the wire, 0.03-0.10% C, 0.1-0.4% Si, 2.0-4.0% Mn, 1.0-3.5% Ni, 0.06-1.5% Al, 0.10-1.00% Mo, contains one or more kinds of 0.1-1.0% Cr, 0.01-0.05% Nb and 0.01-0.05 V, and contains 2.5-7.5% TiO, 0.1-0.5% SiO, 0.2-0.9% ZrO, 0.1-0.4% AlOand 0.01-0.4% one or more kinds of fluorine compound in total in terms of F value. In the wire, the total hydrogen amount of the wire is ≤15 ppm by mass ratio to the entire wire.

Description

本発明は、主として耐力が690MPa以上の高張力鋼の溶接にシールドガスとして炭酸ガスを使用するガスシールドアーク溶接用フラックス入りワイヤに関し、機械的性能が優れた溶接金属を得られ、且つ全姿勢溶接での溶接作業性が良好な高張力鋼用炭酸ガスシールドアーク溶接用フラックス入りワイヤに関する。   The present invention relates to a flux-cored wire for gas shielded arc welding that uses carbon dioxide gas as a shielding gas for welding high-strength steel having a proof stress of 690 MPa or more. The present invention relates to a flux-cored wire for carbon dioxide shielded arc welding for high-strength steel with good welding workability.

建築機械や海洋構造物等で主に使用される高張力鋼の溶接は、靭性に優れた被覆アーク溶接法やサブマージアーク溶接法、ソリッドワイヤを用いたガスシールドアーク溶接法が適用されている。その中で、立向や上向、横向といった姿勢溶接が必要な部材には、被覆アーク溶接法またはソリッドワイヤを用いたガスシールドアーク溶接法を適用するのが一般的である。   For the welding of high-strength steel, which is mainly used in construction machinery and offshore structures, the coated arc welding method, the submerged arc welding method, and the gas shield arc welding method using solid wire, which are excellent in toughness, are applied. Among them, the covering arc welding method or the gas shielded arc welding method using a solid wire is generally applied to members that require posture welding such as vertical, upward, and horizontal.

しかしながら、被覆アーク溶接法は溶接能率が低い。またソリッドワイヤを用いたガスシールドアーク溶接法についても、姿勢溶接ではメタル垂れ防止のために低電流での溶接が必要となることから、同様に高能率な溶接が困難である。   However, the covering arc welding method has low welding efficiency. Also, in the gas shielded arc welding method using a solid wire, it is difficult to perform highly efficient welding because posture welding requires welding at a low current to prevent metal dripping.

一方、一般的に耐力が690MPa未満の低強度鋼の全姿勢溶接は、その大部分はフラックス入りワイヤを用いたガスシールドアーク溶接が適用される。
フラックス入りワイヤを用いたガスシールドアーク溶接は、溶接時にワイヤ中に添加した高融点のスラグ剤が溶接金属より先に凝固しこれを保持するため、立向上進溶接のような姿勢溶接でもメタル垂れが発生し難く、高電流、即ち高溶着で高能率な溶接が可能となる。
On the other hand, gas shield arc welding using a flux-cored wire is mostly applied to all-position welding of low strength steel having a yield strength of less than 690 MPa.
In gas shielded arc welding using flux-cored wire, the high melting point slag agent added to the wire at the time of welding solidifies and retains it before the weld metal. Therefore, it is possible to perform high-current welding with high current, that is, high welding.

しかし、フラックス入りワイヤを用いたガスシールドアーク溶接は、一般的に、フラックス入りワイヤ中に添加するスラグ剤が主に酸化物であるため、他の溶接法に比べ靭性が得にくく、特にシールドガスにCOガスを用いる場合はArとCO2の混合ガスよりも溶接金属の酸素量が増加するため靭性の確保がより困難である。また、フラックス原料に含有される水分やワイヤ保管時の吸湿により、拡散性水素量がソリッドワイヤに比べ高いことから、溶接金属の低温割れが懸念され、高張力鋼の溶接への適用は困難であった。さらに、従来の高強度鋼の溶接においては、溶接金属の低温割れ防止のために鋼板を100℃以上に予熱する必要があり、能率を低下させる原因となっている。 However, gas shielded arc welding using flux-cored wire is generally difficult to obtain toughness as compared with other welding methods because the slag agent added to the flux-cored wire is mainly an oxide. In the case of using CO 2 gas, it is more difficult to ensure toughness because the amount of oxygen in the weld metal increases than the mixed gas of Ar and CO 2 . In addition, due to moisture contained in the flux raw material and moisture absorption during wire storage, the amount of diffusible hydrogen is higher than that of solid wire, so there is concern about cold cracking of the weld metal, making it difficult to apply it to high-strength steel welding. there were. Furthermore, in conventional welding of high strength steel, it is necessary to preheat the steel plate to 100 ° C. or higher in order to prevent cold cracking of the weld metal, which causes a reduction in efficiency.

高張力鋼溶接用のフラックス入りワイヤについては、これまで種々の開発が進められている。例えば、特開2006−198630号公報(特許文献1)、特開2007−144516号公報(特許文献2)、特開2009−255169(特許文献3)には、スラグ剤を添加しないメタル系フラックス入りワイヤが開示されている。これらは下向溶接を主眼としており、全姿勢溶接についてはソリッドワイヤを用いたガスシールドアーク溶接法と同様にメタル垂れ防止のため低電流での溶接が必要となる。   Various developments of flux-cored wire for welding high-strength steel have been made so far. For example, Japanese Patent Application Laid-Open No. 2006-198630 (Patent Document 1), Japanese Patent Application Laid-Open No. 2007-144516 (Patent Document 2), and Japanese Patent Application Laid-Open No. 2009-255169 (Patent Document 3) include a metal-based flux containing no slag agent. A wire is disclosed. These mainly focus on downward welding, and all-position welding requires welding at a low current in order to prevent metal dripping as in the gas shielded arc welding method using solid wire.

また、特開平9−253886号公報(特許文献4)、特開平3−47695号公報(特許文献5)には、高張力鋼用の全姿勢用フラックス入りワイヤにルチールを主体としたスラグ剤に金属弗化物や塩基性酸化物を添加し、溶接金属の酸素量低減により低温靭性を改善したフラックス入りワイヤが開示されているが、これらは溶接金属の耐低温割れ性については考慮されていない。   JP-A-9-253886 (Patent Document 4) and JP-A-3-47695 (Patent Document 5) describe a slag agent mainly composed of rutile in a flux-cored wire for all postures for high-tensile steel. Although flux-cored wires are disclosed in which low-temperature toughness is improved by adding metal fluoride or basic oxide and reducing the oxygen content of the weld metal, these do not take into account the low-temperature crack resistance of the weld metal.

また、特開2006−281223号公報(特許文献6)には、旧γ粒界でのフェライトサイドプレートの発生を抑制することで、低温靭性を得ることができる溶接金属およびフラックス入りワイヤが開示されているが、溶接金属の耐低温割れ性については考慮されていない。   Japanese Patent Laying-Open No. 2006-281223 (Patent Document 6) discloses a weld metal and a flux-cored wire that can obtain low temperature toughness by suppressing the generation of ferrite side plates at the old γ grain boundaries. However, the cold cracking resistance of the weld metal is not considered.

さらに、特開2008−87043号公報(特許文献7)には、高張力鋼用の全姿勢用フラックス入りワイヤで−60℃程度での低温靭性、溶接作業性および溶接金属の耐低温割れ性を向上させるフラックス入りワイヤが開示されている。しかし、このフラックス入りワイヤに添加されるスラグ剤には、TiOまたはTiOとMgOが含まれているが、特に立向上進溶接の場合にメタルが垂れやすいという問題があった。 Furthermore, Japanese Patent Application Laid-Open No. 2008-87043 (Patent Document 7) describes low temperature toughness at about -60 ° C., welding workability and low temperature cracking resistance of weld metal with a flux cored wire for all orientations for high strength steel. An improved flux-cored wire is disclosed. However, although the slag agent added to the flux-cored wire contains TiO 2 or TiO 2 and MgO, there is a problem that the metal tends to sag particularly in the case of vertical welding.

特開2006−198630号公報JP 2006-198630 A 特開2007−144516号公報JP 2007-144516 A 特開2009−255169号公報JP 2009-255169 A 特開平9−253886号公報JP-A-9-253886 特開平3−47695号公報Japanese Patent Laid-Open No. 3-47695 特開2006−281223号公報JP 2006-281223 A 特開2008−87043号公報JP 2008-87043 A

前記特許文献1〜7に記載のフラックス入りワイヤは、シールドガスとしてAr主体のAr−COガスを用いて溶接することを前提として成分設計されている。Arガスは高価であるため、シールドガスとして100%炭酸ガスを使用することが要求されている。しかし、Arガスを用いずに、これらのフラックス入りワイヤを用いて炭酸ガスシールドアーク溶接すると、全姿勢溶接における作業性が不良になるとともに溶接金属の靭性が低下するという問題があった。 The flux-cored wires described in Patent Documents 1 to 7 are designed on the assumption that welding is performed using Ar-based Ar—CO 2 gas as a shielding gas. Since Ar gas is expensive, it is required to use 100% carbon dioxide as a shielding gas. However, if carbon dioxide shielded arc welding is performed using these flux-cored wires without using Ar gas, there is a problem that workability in all-position welding becomes poor and the toughness of the weld metal decreases.

本発明は、耐力が690MPa以上の高張力鋼の溶接に用いられ、シールドガスとして100%炭酸ガスを使用するフラックス入りワイヤにおいて、全姿勢で高能率な溶接が可能で、且つ低酸素、低水素の靭性および耐低温割れ性に優れた溶接金属が得られる高張力鋼用炭酸ガスシールドアーク溶接用フラックス入りワイヤを提供することを目的とする。   INDUSTRIAL APPLICABILITY The present invention is used for welding high-strength steel having a proof stress of 690 MPa or more. In a flux-cored wire using 100% carbon dioxide as a shielding gas, high-efficiency welding is possible in all positions, and low oxygen and low hydrogen An object of the present invention is to provide a flux-cored wire for carbon dioxide shielded arc welding for high-strength steel, from which a weld metal having excellent toughness and low-temperature cracking resistance can be obtained.

本発明者らは、シールドガスとして100%炭酸ガスを用いた全姿勢溶接用のフラックス入りワイヤにおいて、高張力鋼の溶接金属の機械的性能として690MPa以上の耐力をはじめとした引張強度、靭性、耐低温割れ性を確保でき、且つ、優れた溶接作業性が得られるワイヤ成分を得るべく、種々検討を行った。
その結果、ルチール(チタン酸化物)を主成分としたスラグ成分と最適な合金成分とを含む化学成分と、全姿勢溶接での溶接作業性に優れ、機械的性能の優れた溶接金属が得られる各成分の含有量とを見出した。さらに、ワイヤ中の全水素量をワイヤ全体の質量比で15ppm以下に低減することにより、溶接金属の耐低温割れ性を改善できることを見出した。
In the flux-cored wire for all-position welding using 100% carbon dioxide gas as the shielding gas, the present inventors have tensile strength, toughness including proof stress of 690 MPa or more as the mechanical performance of the weld metal of high-strength steel, Various studies have been conducted to obtain a wire component that can ensure low temperature cracking resistance and can provide excellent welding workability.
As a result, a chemical component including a slag component mainly composed of rutile (titanium oxide) and an optimum alloy component, and a weld metal having excellent welding workability in all-position welding and excellent mechanical performance can be obtained. The content of each component was found. Furthermore, it has been found that the cold cracking resistance of the weld metal can be improved by reducing the total hydrogen content in the wire to 15 ppm or less in terms of the mass ratio of the entire wire.

上記課題を解決するための本発明の要旨は、以下のとおりである。
(1) シールドガスとして100%炭酸ガスを使用する耐力690MPa以上の高張力鋼のシールドアーク溶接に用いられる、鋼製外皮にフラックスを充填してなる高張力鋼用フラックス入りワイヤであり、ワイヤ全質量に対する質量%で、C:0.03〜0.10%、Si:0.1〜0.4%、Mn:2.0〜4.0%、Ni:1.0〜3.5%、Al:0.06〜1.5%、Mo:0.10〜1.00%、を必須元素として含有し、Cr:0.1〜1.0%、Nb:0.01〜0.05%、V:0.01〜0.05%から選ばれる1種または2種以上を選択元素として含有し、且つ、TiO:2.5〜7.5%、SiO:0.1〜0.5%、ZrO:0.2〜0.9%、Al:0.1〜0.4%、弗素化合物の1種または2種以上のF換算値の合計:0.01〜0.4%をフラックスとして含有し、残部は、Fe、アーク安定剤および不可避不純物からなり、ワイヤの全水素量がワイヤ全体に対する質量比で15ppm以下であることを特徴とする高張力鋼用炭酸ガスシールドアーク溶接用フラックス入りワイヤ。
The gist of the present invention for solving the above problems is as follows.
(1) A flux-cored wire for high-strength steel, which is used for shield arc welding of high-strength steel with a yield strength of 690 MPa or more using 100% carbon dioxide as the shielding gas, and is formed by filling a steel outer shell with flux. In mass% with respect to mass, C: 0.03-0.10%, Si: 0.1-0.4%, Mn: 2.0-4.0%, Ni: 1.0-3.5%, Al: 0.06 to 1.5%, Mo: 0.10 to 1.00% are contained as essential elements, Cr: 0.1 to 1.0%, Nb: 0.01 to 0.05% V: 0.01 to 0.05%, or one or more elements selected from 0.01 to 0.05%, and TiO 2 : 2.5 to 7.5%, SiO 2 : 0.1 to 0. 5%, ZrO 2: 0.2~0.9% , Al 2 O 3: 0.1~0.4%, 1 kind of fluorine compound Or the total of 2 or more types of F conversion value: 0.01-0.4% is contained as a flux, the remainder consists of Fe, an arc stabilizer, and an unavoidable impurity, and the total hydrogen amount of a wire is the mass with respect to the whole wire. A flux-cored wire for carbon dioxide shielded arc welding for high-strength steel, characterized by a ratio of 15 ppm or less.

(2) ワイヤ全質量に対する質量%で、Ti:0.1〜1.0%、Mg:0.01〜0.9%、Ca:0.01〜0.5%、REM:0.01〜0.5%から選ばれる1種または2種以上を含有することを特徴とする(1)に記載の高張力鋼用炭酸ガスシールドアーク溶接用フラックス入りワイヤ。
(3) ワイヤ全質量に対する質量%で、B:0.001〜0.015%を含有することを特徴とする、上記(1)または(2)に記載の高張力鋼溶接用フラックス入りワイヤ。
(4)鋼製外皮に継ぎ目が無いことを特徴とする(1)乃至(3)のいずれかに記載の高張力鋼用炭酸ガスシールドアーク溶接用フラックス入りワイヤ。
(2) Mass% with respect to the total mass of the wire, Ti: 0.1 to 1.0%, Mg: 0.01 to 0.9%, Ca: 0.01 to 0.5%, REM: 0.01 to The flux-cored wire for high-tensile steel carbon dioxide shielded arc welding as described in (1), containing one or more selected from 0.5%.
(3) The flux-cored wire for high-tensile steel welding according to the above (1) or (2), characterized by containing B: 0.001 to 0.015% in mass% with respect to the total mass of the wire.
(4) The flux-cored wire for carbon dioxide shielded arc welding for high-strength steel according to any one of (1) to (3), wherein the steel outer skin is seamless.

本発明の高張力鋼用炭酸ガスシールドアーク溶接用フラックス入りワイヤによれば、耐力が690MPa以上の高張力鋼の溶接において、シールドガスとしてArガスを用いることなく、被覆アーク溶接法やソリッドワイヤを用いたガスシールドアーク溶接法に比べ高能率な溶接が全姿勢で可能であり、且つ機械的性能である耐低温割れ性、靭性、耐力、引張強度が良好である溶接金属が得られるため、溶接部の品質および溶接能率の向上を経済的に図ることができる。   According to the flux-cored wire for carbon dioxide shielded arc welding for high-strength steel of the present invention, in the welding of high-strength steel having a proof stress of 690 MPa or more, a coated arc welding method or a solid wire can be used without using Ar gas as a shielding gas. Compared to the gas shielded arc welding method used, high-efficiency welding is possible in all positions, and weld metal with good mechanical properties such as cold cracking resistance, toughness, proof stress, and tensile strength can be obtained. The quality of the part and the welding efficiency can be improved economically.

本発明の高張力鋼用炭酸ガスシールドアーク溶接用フラックス入りワイヤ「以下、ワイヤと略記する場合がある」は、シールドガスとして100%炭酸ガスを使用する耐力690MPa以上の高張力鋼のシールドアーク溶接に用いられるものであり、鋼製外皮にフラックスを充填してなるものである。
以下にワイヤの化学成分等限定理由を述べる。なお、以下の説明において、ワイヤの化学成分の含有量を示す「%」は、ワイヤ全質量に対する質量%である。まず、ワイヤの必須元素として含有するC、Si、Mn、Ni、Al、Moについて説明する。
The flux-cored wire for carbon dioxide shielded arc welding for high-strength steel of the present invention "hereinafter may be abbreviated as wire" refers to shielded arc welding of high-strength steel with a yield strength of 690 MPa or more using 100% carbon dioxide as the shielding gas. The steel outer shell is filled with flux.
The reasons for limiting the chemical components of the wire will be described below. In the following description, “%” indicating the content of the chemical component of the wire is mass% with respect to the total mass of the wire. First, C, Si, Mn, Ni, Al, and Mo contained as essential elements of the wire will be described.

[C:0.03〜0.10質量%]
Cは、固溶強化による溶接金属の耐力および引張強度を確保する重要な元素である。ワイヤのC含有量が0.03%未満では、溶接金属の耐力および引張強度確保の効果が得られず、0.10%を超えると過剰なCが溶接金属に歩留り、溶接金属の耐力および引張強度が過度に上昇して靭性が低下する。なお、C含有量の好ましい範囲は0.04〜0.08%である。
[C: 0.03-0.10 mass%]
C is an important element for ensuring the yield strength and tensile strength of the weld metal by solid solution strengthening. If the C content of the wire is less than 0.03%, the effect of ensuring the yield strength and tensile strength of the weld metal cannot be obtained. If it exceeds 0.10%, excess C is retained in the weld metal, and the yield strength and tensile strength of the weld metal are reduced. Strength increases excessively and toughness decreases. In addition, the preferable range of C content is 0.04 to 0.08%.

[Si:0.1〜0.4質量%]
Siは、溶接金属の靭性向上を目的として含有する元素である。ワイヤのSi含有量が0.1%未満では靭性向上の効果は得られない。一方、Si含有量が0.4%を超えるとスラグ生成量が多くなり、多層盛溶接した場合スラグ巻き込み欠陥が生じる。また、溶接金属中へのSiの歩留が過剰となり、溶接金属の引張強度が過度に上昇するため靭性が低下する。なお、Si含有量の好ましい範囲は0.2〜0.3%である。
[Si: 0.1 to 0.4% by mass]
Si is an element contained for the purpose of improving the toughness of the weld metal. If the Si content of the wire is less than 0.1%, the effect of improving toughness cannot be obtained. On the other hand, if the Si content exceeds 0.4%, the amount of slag generated increases, and slag entrainment defects occur when multilayer welding is performed. In addition, the yield of Si in the weld metal becomes excessive, and the tensile strength of the weld metal increases excessively, so that the toughness decreases. In addition, the preferable range of Si content is 0.2 to 0.3%.

[Mn:2.0〜4.0質量%]
Mnは、溶接金属の靭性の確保と引張強度および耐力の向上を目的として含有する元素である。ワイヤのMn含有量が2.0%未満ではシールドガスが炭酸ガスであるので酸化消耗によって溶接金属中の歩留が不足し、溶接金属の引張強度が低下する。一方、Mn含有量が4.0%を超えるとスラグ生成量が多くなり、多層盛溶接した場合スラグ巻き込み欠陥が生じる。また、Mn含有量が4.0%を超えると、溶接金属中へのMnの歩留が過剰となり、溶接金属の引張強度が過度に上昇するため靭性が低下する。なお、溶接金属の引張強度および耐力を安定して得るのに好ましいMn含有量の範囲は2.6〜4.0%である。
[Mn: 2.0 to 4.0% by mass]
Mn is an element contained for the purpose of ensuring the toughness of the weld metal and improving the tensile strength and proof stress. If the Mn content of the wire is less than 2.0%, the shielding gas is carbon dioxide, so that the yield in the weld metal is insufficient due to oxidation consumption, and the tensile strength of the weld metal is reduced. On the other hand, when the Mn content exceeds 4.0%, the amount of slag generated increases, and slag entrainment defects occur when multilayer welding is performed. On the other hand, if the Mn content exceeds 4.0%, the yield of Mn in the weld metal becomes excessive, and the tensile strength of the weld metal is excessively increased, so that the toughness is lowered. A preferable range of the Mn content for stably obtaining the tensile strength and proof stress of the weld metal is 2.6 to 4.0%.

[Ni:1.0〜3.5質量%]
Niは、溶接金属の引張強度および靭性の向上を目的として含有する元素である。ワイヤのNi含有量が1.0%未満ではその効果が不十分であり、3.5%を超えると溶接金属の引張強度が過度に上昇し靭性が低下する。なお、Ni含有量の好ましい範囲は1.8〜2.5%である。
[Ni: 1.0 to 3.5% by mass]
Ni is an element contained for the purpose of improving the tensile strength and toughness of the weld metal. If the Ni content of the wire is less than 1.0%, the effect is insufficient, and if it exceeds 3.5%, the tensile strength of the weld metal increases excessively and the toughness decreases. In addition, the preferable range of Ni content is 1.8 to 2.5%.

[Al:0.06〜1.5質量%]
Alは、溶融池中に溶解した酸素と結合する脱酸剤としての効果があるため、靭性を向上させる元素であるが、フラックス入りワイヤを用いた炭酸ガスシールドアーク溶接での比較的低い入熱条件の場合、形成された酸化物のスラグ浮上が不十分となり易く、溶接金属中に非金属介在物として残留し靭性低下を招く。このためAlの含有量は0.06〜1.5%とする。なお、Al含有量の好ましい範囲は0.06〜0.8%である。
[Al: 0.06 to 1.5% by mass]
Al is an element that improves toughness because it has an effect as a deoxidizer that combines with dissolved oxygen in the molten pool, but it has a relatively low heat input in carbon dioxide shielded arc welding using a flux-cored wire. In the case of the conditions, the slag floating of the formed oxide tends to be insufficient, and it remains as a nonmetallic inclusion in the weld metal, resulting in a decrease in toughness. Therefore, the Al content is 0.06 to 1.5%. In addition, the preferable range of Al content is 0.06 to 0.8%.

[Mo:0.10〜1.00質量%]
Moは、シールドガスがCOガスであっても酸化消耗せず、溶接金属に安定に歩留まり、さらにMoは析出強化元素であることから溶接金属の耐力および引張強度向上に有効である。Moの含有量が0.10%未満では溶接金属の引張強度向上効果は得られず、1.00%を超えると引張強度が過剰に上昇し靭性が低下する。なお、溶接金属の耐力および引張強度を得るのに好ましいMoの含有量の範囲は0.20超〜1.00%である。
[Mo: 0.10 to 1.00% by mass]
Mo is not oxidized and consumed even when the shielding gas is CO 2 gas, and yields stably in the weld metal. Further, since Mo is a precipitation strengthening element, it is effective in improving the yield strength and tensile strength of the weld metal. If the Mo content is less than 0.10%, the effect of improving the tensile strength of the weld metal cannot be obtained. If it exceeds 1.00%, the tensile strength increases excessively and the toughness decreases. In addition, the range of preferable Mo content for obtaining the yield strength and tensile strength of a weld metal is more than 0.20 to 1.00%.

次に、ワイヤの選択元素として含有するCr、Nb、Vについて説明する。
[Cr:0.1〜1.0質量%,Nb:0.01〜0.05質量%,V:0.01〜0.05質量%の1種または2種以上]
Cr、NbおよびVは、いずれも溶接金属の耐力および引張強度向上を目的として含有する元素である。これらは1種または2種以上を選択してワイヤ中に含有される元素であるが、規定量を超えると溶接金属の引張強度が過多となり靭性が低下する。一方、0.1%未満のCr、0.01%未満のNbおよび0.01%未満のVの1種または2種以上を含有していても、溶接金属の耐力および引張強度を向上させる効果は得られない。
Next, Cr, Nb, and V contained as wire selection elements will be described.
[Cr: 0.1 to 1.0% by mass, Nb: 0.01 to 0.05% by mass, V: 0.01 to 0.05% by mass or two or more]
Cr, Nb and V are all elements contained for the purpose of improving the yield strength and tensile strength of the weld metal. These are elements contained in the wire by selecting one or more, but if the amount exceeds the specified amount, the tensile strength of the weld metal becomes excessive and the toughness decreases. On the other hand, the effect of improving the yield strength and tensile strength of the weld metal even if it contains one or more of less than 0.1% Cr, less than 0.01% Nb, and less than 0.01% V. Cannot be obtained.

次に、ワイヤのフラックスとして含有するTiO、SiO、ZrO、Al、弗素化合物の1種または2種以上について説明する。
[TiO:2.5〜7.5質量%]
フラックスのTiOは、アーク安定剤であると共に、スラグ剤の主成分である。溶接時に溶接金属を被包して大気から遮断すると共に、適度な粘性により溶接金属のビード形状を適正に保ち、特に、立向上進溶接では他の金属成分とのバランスによりメタルの垂れ性に大きく影響する。TiOの含有量が、2.5%未満では、立向上進溶接においてメタル垂れが発生し易く、全姿勢溶接が困難である。一方、TiOの含有量7.5%を超えるとスラグ量が過剰となりスラグ巻込みが発生し、非金属介在物が増加して靭性が低下する。なお、TiO含有量の好ましい範囲は4.5〜6.5%である。
Next, one or more of TiO 2 , SiO 2 , ZrO 2 , Al 2 O 3 , and fluorine compound contained as the wire flux will be described.
[TiO 2 : 2.5 to 7.5% by mass]
The flux TiO 2 is an arc stabilizer and a main component of the slag agent. Encapsulates the weld metal during welding and shields it from the atmosphere, and keeps the bead shape of the weld metal properly due to its appropriate viscosity. Affect. If the content of TiO 2 is less than 2.5%, metal dripping is likely to occur in the vertical improvement welding and it is difficult to perform all-position welding. On the other hand, when the content of TiO 2 exceeds 7.5%, the amount of slag becomes excessive and slag entrainment occurs, non-metallic inclusions increase and toughness decreases. A preferable range of the TiO 2 content is 4.5 to 6.5%.

[SiO:0.1〜0.5質量%]
フラックスのSiOは、溶融スラグの粘性を高めスラグ被包性を向上させる。SiOの含有量が、0.1%未満では溶融スラグの粘性が不足してスラグ被包性が不十分となり立向上進溶接においてメタル垂れが発生する。一方、SiOの含有量が0.5%を超えると溶融スラグの粘性が過剰となりスラグ剥離性およびビード形状が不良となる。なお、SiO含有量の好ましい範囲は0.2〜0.4%である。
[SiO 2 : 0.1 to 0.5% by mass]
SiO 2 in the flux improves the slag encapsulating increase the viscosity of the molten slag. If the content of SiO 2 is less than 0.1%, the viscosity of the molten slag is insufficient, and the slag encapsulation is insufficient, and metal dripping occurs in the vertical improvement welding. On the other hand, when the content of SiO 2 exceeds 0.5%, the viscosity of the molten slag becomes excessive, and the slag releasability and the bead shape become poor. A preferable range of SiO 2 content is 0.2 to 0.4%.

[ZrO:0.2〜0.9質量%]
フラックスのZrOは、溶融スラグの粘性および凝固温度を調整し、スラグ被包性を高める作用を有する。ZrOの含有量が0.2%未満ではその効果が不十分で立向上進溶接においてメタル垂れが発生する。一方、ZrOの含有量が0.9%を超えるとビード形状が凸状となりスラグ巻込みや融合不良を発生し易くなる。なお、ZrO含有量の好ましい範囲は0.3〜0.6%である。
[ZrO 2 : 0.2 to 0.9% by mass]
The flux ZrO 2 has the effect of adjusting the viscosity and solidification temperature of the molten slag and enhancing the slag encapsulation. If the content of ZrO 2 is less than 0.2%, the effect is insufficient, and metal dripping occurs in vertical improvement welding. On the other hand, if the content of ZrO 2 exceeds 0.9%, the bead shape becomes convex, and slag entrainment or poor fusion tends to occur. A preferable range of the content of ZrO 2 is 0.3 to 0.6%.

[Al:0.1〜0.4質量%]
フラックスのAlは、ZrOと同様に溶融スラグの粘性および凝固温度を調整し、スラグ被包性を高める作用を有する。Alの含有量が0.1%未満ではその効果が不十分で立向上進溶接においてメタル垂れが発生する。一方、Alの含有量が0.4%を超えるとビード形状が凸状となりスラグ巻込みや融合不良を発生し易くなる。
[Al 2 O 3 : 0.1 to 0.4% by mass]
The flux Al 2 O 3 has the effect of adjusting the viscosity and solidification temperature of the molten slag and enhancing the slag encapsulation, like ZrO 2 . If the content of Al 2 O 3 is less than 0.1%, the effect is insufficient, and metal dripping occurs in vertical improvement welding. On the other hand, when the content of Al 2 O 3 exceeds 0.4%, the bead shape becomes convex, and slag entrainment or poor fusion tends to occur.

[弗素化合物の1種または2種以上のF換算値の合計:0.01〜0.4質量%]
フラックスの弗素化合物は、スラグ剤として溶接金属を被包してビード形状を良好にすると共に、溶接金属からのスラグ浮上分離を促し、溶接金属中の酸素量を低減して靭性を向上させて良好な機械的性能を得る作用を有する。弗素化合物としては金属弗化物、アルカリ金属弗化物、アルカリ土類金属弗化物を用いるが、CaF、BaF、MgF、AlF、LiF、NaF、KZrF、KSiF、NaAlF等が有効であり、アルカリ金属弗化物を使用する場合にはアークの安定性も向上する。
[Total of F-converted values of one or more fluorine compounds: 0.01 to 0.4% by mass]
Fluorine compound of flux encapsulates the weld metal as a slag agent to improve the bead shape, promotes slag floating separation from the weld metal, and improves the toughness by reducing the oxygen content in the weld metal. Has the effect of obtaining a good mechanical performance. Metal fluorides as the fluorine compound, alkali metal fluorides, but using an alkaline-earth metal fluorides, CaF 2, BaF 2, MgF 2, AlF 3, LiF, NaF, K 2 ZrF 6, K 2 SiF 6, Na 3 AlF 6 or the like is effective, and the arc stability is improved when an alkali metal fluoride is used.

フラックスの弗素化合物の1種または2種以上のF換算値の合計の含有量が0.01%未満ではその効果が不十分であり、0.4%を超えると、スラグの流動性が過剰になると共にアークが不安定となり立向上進溶接においてメタル垂れが発生する。   If the total content of one or two or more F-converted fluorine compounds in the flux is less than 0.01%, the effect is insufficient, and if it exceeds 0.4%, the slag fluidity becomes excessive. At the same time, the arc becomes unstable, and metal dripping occurs in the vertical improvement welding.

[ワイヤの全水素量:15質量ppm以下]
ワイヤ中の全水素量は、不活性ガス融解熱伝導度法などにより測定することができる。ワイヤ中の水素は、溶接金属の拡散性水素源となるため、できるだけ低減する必要がある。ワイヤ中の水素量がワイヤ全体の質量比で15ppmを超えると拡散性水素量が多くなり低温割れの感受性が高まる。
なお、ワイヤの全水素量は、水素含有量の低い充填フラックスの選定およびフラックス充填後のワイヤ素線を焼鈍することによって低減することができる。
[Total hydrogen content of wire: 15 mass ppm or less]
The total amount of hydrogen in the wire can be measured by an inert gas melting thermal conductivity method or the like. Since hydrogen in the wire serves as a diffusible hydrogen source for the weld metal, it must be reduced as much as possible. When the amount of hydrogen in the wire exceeds 15 ppm in terms of the mass ratio of the entire wire, the amount of diffusible hydrogen increases and the sensitivity to cold cracking increases.
The total amount of hydrogen in the wire can be reduced by selecting a filling flux with a low hydrogen content and annealing the wire strand after filling the flux.

また、ワイヤの選択元素として、Ti、Mg、Ca、REMから選ばれる1種または2種以上を下記に示す含有量で含有してもよい。
[Ti:0.1〜1.0質量%,Mg:0.01〜0.9質量%,Ca:0.01〜0.5質量%,REM:0.01〜0.5質量%の1種または2種以上]
ワイヤ成分のTi、Mg、CaおよびREMは、いずれも脱酸剤として溶接金属の酸素を低減し靭性の向上を目的として含有する元素である。これらは1種または2種以上を選択してワイヤ中に含有される元素であるが、規定量を超えるとアーク中で激しく酸素と反応しスパッタやヒュームの発生が増大する。
一方、0.1%未満のTi、0.01%未満のMg、0.01%未満のCaおよび0.01%未満のREMの1種または2種以上を含有していても、脱酸剤として溶接金属の酸素を低減し靭性を向上させる効果は得られない。
Moreover, you may contain 1 type, or 2 or more types chosen from Ti, Mg, Ca, and REM by the content shown below as a selection element of a wire.
[Ti: 0.1 to 1.0% by mass, Mg: 0.01 to 0.9% by mass, Ca: 0.01 to 0.5% by mass, REM: 0.01 to 0.5% by mass Species or 2 or more types]
The wire components Ti, Mg, Ca, and REM are all elements contained as deoxidizers for the purpose of reducing oxygen in the weld metal and improving toughness. These are elements contained in the wire by selecting one kind or two or more kinds. However, when the amount exceeds the specified amount, it reacts violently with oxygen in the arc and the generation of spatter and fumes increases.
On the other hand, even if it contains one or more of less than 0.1% Ti, less than 0.01% Mg, less than 0.01% Ca and less than 0.01% REM, a deoxidizer As a result, the effect of reducing the oxygen of the weld metal and improving the toughness cannot be obtained.

また、ワイヤの選択元素として、Bを下記に示す含有量で含有してもよい。
[B:0.001〜0.015質量%]
ワイヤ成分のBは、微量の添加で溶接金属の焼入れ性を高め、溶接金属の引張強度および低温靭性を向上させる元素である。Bの含有量が、0.001%未満ではその効果が不十分であり、0.015%を超えると引張強度が過大となり低温靭性が劣化する。なお、Bを含有することによる効果は、金属単体、合金または酸化物による何れでも発揮することができるため、フラックスに添加する場合の形態は自由である。
Moreover, you may contain B by the content shown below as a selection element of a wire.
[B: 0.001 to 0.015 mass%]
B of the wire component is an element that enhances the hardenability of the weld metal and improves the tensile strength and low-temperature toughness of the weld metal by adding a small amount. If the content of B is less than 0.001%, the effect is insufficient, and if it exceeds 0.015%, the tensile strength becomes excessive and the low temperature toughness deteriorates. In addition, since the effect by containing B can be exhibited by any of a metal simple substance, an alloy, or an oxide, the form when added to the flux is arbitrary.

[鋼製外皮に継ぎ目が無いこと]
フラックス入りワイヤは、鋼製外皮をパイプ状に成形し、その内部にフラックスを充填した構造で、製造の過程で成形した鋼製外皮の合わせ目を溶接してなる継ぎ目が無いワイヤと、溶接を行わず隙間を有するワイヤとに大別できる。本発明は、いずれの断面構造も採用することができるが、鋼製外皮に継ぎ目が無いワイヤは、ワイヤ中の全水素量低減を目的とした熱処理が可能であり、また製造後の吸湿がないことから、拡散性水素量を低減し耐低温割れ性を向上する目的において、より望ましい。
[Seamless steel skin]
A flux-cored wire has a structure in which a steel outer shell is formed into a pipe shape and the inside is filled with flux, and welded with a seamless wire formed by welding a seam of the steel outer shell formed during the manufacturing process. It can be broadly divided into wires having gaps. Any cross-sectional structure can be adopted in the present invention, but a wire without a steel outer shell can be heat-treated for the purpose of reducing the total amount of hydrogen in the wire, and does not absorb moisture after production. Therefore, it is more desirable for the purpose of reducing the amount of diffusible hydrogen and improving cold cracking resistance.

なお、フラックス中の合金成分は、鋼製外皮の成分とその含有量を考慮して、各限定した範囲内で配合成分を調整する。フラックス中の合金成分を調整することで、種々の高張力鋼(母材)の成分に応じたフラックス入りワイヤとすることができる。
また、ワイヤに含まれるPおよびSは、共に低融点の化合物を生成して粒界の引張強度を低下させ、溶接金属の靭性を低下させる。このため、ワイヤに含まれるPは0.0015%以下、Sは0.0010%以下とすることが好ましく、できるだけ低いことが好ましい。
さらに、鉄粉は、フラックス充填率を10〜20%に調整するために用いることができるが、酸素を持ち込むため、フラックス充填率、鉄粉添加量共に低いことが望ましい。
In addition, the alloy component in a flux adjusts a compounding component in each limited range in consideration of the component and content of a steel outer shell. By adjusting the alloy components in the flux, it is possible to obtain flux-cored wires according to the components of various high-tensile steels (base materials).
Further, P and S contained in the wire both generate a low melting point compound, lower the tensile strength of the grain boundary, and lower the toughness of the weld metal. For this reason, P contained in the wire is preferably 0.0015% or less, and S is preferably 0.0010% or less, and is preferably as low as possible.
Furthermore, the iron powder can be used to adjust the flux filling rate to 10 to 20%. However, since oxygen is introduced, it is desirable that both the flux filling rate and the iron powder addition amount are low.

また、ワイヤ中のその他の成分として、鋼製外皮のFe分、フラックス中に添加された合金成分中のFe分、アーク安定剤としてのアルカリ金属の酸化物やアルカリ土類金属の酸化物を含む。また、ワイヤ表面に、防錆や通電性、耐チップ磨耗性に有効なCuメッキ処理を施した場合は、ワイヤ中のその他の成分としてCuを含む。   In addition, as other components in the wire, the Fe content of the steel outer sheath, the Fe content in the alloy component added to the flux, the oxide of alkali metal or alkaline earth metal as an arc stabilizer is included. . Moreover, when Cu plating processing effective for rust prevention, electrical conductivity, and chip wear resistance is performed on the surface of the wire, Cu is contained as another component in the wire.

本発明のワイヤのワイヤ径は、溶接時の電流密度を高くし高溶着率が得られる直径1.0〜2.0mmとすること好ましく、より好ましい範囲は1.2〜1.6mmである。
また、溶接時のシールドガスは、スラグ剥離性およびビード形状を向上させ、且つ安価であることから100%炭酸ガスに限定する。
The wire diameter of the wire of the present invention is preferably 1.0 to 2.0 mm, and more preferably 1.2 to 1.6 mm, in which the current density during welding is increased to obtain a high welding rate.
Further, the shielding gas at the time of welding is limited to 100% carbon dioxide gas because it improves slag peelability and bead shape and is inexpensive.

以下、本発明の効果を実施例により具体的に説明する。
鋼製外皮を成形する工程でU型に成形し、鋼製外皮内に各種成分のフラックスを充填し、更に鋼製外皮をO型に成形した後、鋼製外皮の合わせ目を溶接した継ぎ目が無いワイヤと、溶接しない隙間の有るワイヤとを造管、伸線して表1〜表5に示す化学成分のワイヤ径が1.2mmのフラックス入りワイヤを試作した。
Hereinafter, the effect of the present invention will be described in detail with reference to examples.
The seam is formed into a U shape in the process of forming the steel outer shell, filled with fluxes of various components in the steel outer shell, and further formed into a O shape after the steel outer shell is formed into a seam. A wire with a gap that is not welded and a wire with a gap that is not welded were piped and drawn to produce a flux-cored wire having a chemical component wire diameter of 1.2 mm shown in Tables 1 to 5 as a prototype.

Figure 2011255385
Figure 2011255385

Figure 2011255385
Figure 2011255385

Figure 2011255385
Figure 2011255385

Figure 2011255385
Figure 2011255385

Figure 2011255385
Figure 2011255385

試作したワイヤは、株式会社堀場製作所製の水素分析装置:EMGA−621を用いて全水素量を測定した後、JIS G3128 SHY685に規定される鋼板を用いて立向上進すみ肉溶接による溶接作業性の評価と溶着(溶接)金属試験として機械特性評価を実施した。さらに、試作したワイヤを用いて溶接された鋼板に対して、溶接割れ試験を実施した。これらの溶接条件を表6にまとめて示す。   The prototype wire was measured by measuring the total amount of hydrogen using a hydrogen analyzer manufactured by HORIBA, Ltd .: EMGA-621, and then using a steel plate specified in JIS G3128 SHY685 to improve the welding workability by fillet welding. And mechanical properties were evaluated as a weld (welding) metal test. Furthermore, a weld cracking test was performed on the steel plates welded using the prototyped wires. These welding conditions are summarized in Table 6.

Figure 2011255385
Figure 2011255385

立向上進すみ肉溶接は、半自動溶接で実施し、溶接作業性の評価として、メタル垂れの有無、スパッタ発生量、スラグ剥離性およびビード形状を目視により調べた。その後、マクロ断面を5断面採取してスラグ巻き込み欠陥の有無を調べた。   Stand-up progress fillet welding was performed by semi-automatic welding, and as an evaluation of welding workability, the presence or absence of metal sag, spatter generation, slag peelability and bead shape were examined visually. Thereafter, five macro sections were sampled and examined for the presence of slag entrainment defects.

機械特性評価は、引張試験片(JIS Z3111 A1号)および衝撃試験片(JIS Z3111 4号)をそれぞれ溶接金属の板厚中央部から採取して試験に供し、0.2%耐力が690MPa以上、試験温度−40℃におけるシャルピー吸収エネルギーが47J以上を合格とした。   For mechanical property evaluation, a tensile test piece (JIS Z3111 A1) and an impact test piece (JIS Z3111 No. 4) were each collected from the center of the plate thickness of the weld metal and subjected to the test, and the 0.2% proof stress was 690 MPa or more. Charpy absorbed energy at a test temperature of −40 ° C. was 47 J or more.

溶接割れ試験は、U形溶接割れ試験方法(JIS Z3157)に準拠し、試験体の予熱温度は75℃にて実施した。溶接後48時間経過した試験体について、表面割れおよび断面割れ(5断面)の発生有無を浸透探傷試験(JIS Z2343)により調査した。
それらの結果を表7〜表11にまとめて示す。
The weld crack test was performed in accordance with the U-shaped weld crack test method (JIS Z3157), and the preheating temperature of the test specimen was 75 ° C. About the test body which passed 48 hours after welding, the presence or absence of the generation | occurrence | production of a surface crack and a cross-section crack (5 cross sections) was investigated by the penetration test (JIS Z2343).
The results are summarized in Tables 7 to 11.

Figure 2011255385
Figure 2011255385

Figure 2011255385
Figure 2011255385

Figure 2011255385
Figure 2011255385

Figure 2011255385
Figure 2011255385

Figure 2011255385
Figure 2011255385

表1〜表11のワイヤ記号A1〜A56が本発明例、ワイヤ記号B1〜B31は比較例である。   In Tables 1 to 11, wire symbols A1 to A56 are examples of the present invention, and wire symbols B1 to B31 are comparative examples.

本発明例であるワイヤ記号A1〜A56は、C、Si、Mn、Ni、Al、Moの各元素の含有量、Cr、Nb、Vから選ばれる1種または2種以上の元素の含有量、TiO、SiO、ZrO、Al、弗素化合物の1種又は2種以上のF換算値の合計量および全水素量が適量で、Ti、Mg、Ca、REMから選ばれる1種または2種以上を含有する場合の含有量、さらにBを含有する場合の含有量も適量であるので、溶接作業性が良好で溶接金属の耐力、引張強度およびシャルピー吸収エネルギーも良好な値が得られ、さらに低温割れも生じることがなく、極めて満足な結果であった。 The wire symbols A1 to A56, which are examples of the present invention, are the content of each element of C, Si, Mn, Ni, Al, Mo, the content of one or more elements selected from Cr, Nb, V, TiO 2 , SiO 2 , ZrO 2 , Al 2 O 3 , 1 type of fluorine compound or 2 or more types of F-converted values and appropriate amount of total hydrogen, 1 type selected from Ti, Mg, Ca, REM Or the content in the case of containing two or more, and the content in the case of containing B is also an appropriate amount, so that the welding workability is good and the proof stress, tensile strength and Charpy absorbed energy of the weld metal are also good. Furthermore, no cold cracking occurred and the result was very satisfactory.

これに対し、比較例であるワイヤ記号B1〜31は、ワイヤのいずれかの化学成分の含有量(ワイヤ全質量に対する質量%)が本発明範囲に比べて過剰あるいは不足しているため、機械特性または溶接作業性が劣る結果となった。   On the other hand, the wire symbols B1 to 31 as comparative examples have mechanical properties because the content of any chemical component of the wire (mass% with respect to the total mass of the wire) is excessive or insufficient compared to the scope of the present invention. Or the welding workability was inferior.

Claims (4)

シールドガスとして100%炭酸ガスを使用する耐力690MPa以上の高張力鋼のシールドアーク溶接に用いられる、鋼製外皮にフラックスを充填してなる高張力鋼用フラックス入りワイヤであり、ワイヤ全質量に対する質量%で、
C :0.03〜0.10%、
Si:0.1〜0.4%、
Mn:2.0〜4.0%、
Ni:1.0〜3.5%、
Al:0.06〜1.5%、
Mo:0.10〜1.00%
を必須元素として含有し、
Cr:0.1〜1.0%、
Nb:0.01〜0.05%、
V :0.01〜0.05%
から選ばれる1種または2種以上を選択元素として含有し、且つ、
TiO:2.5〜7.5%、
SiO:0.1〜0.5%、
ZrO:0.2〜0.9%、
Al:0.1〜0.4%、
弗素化合物の1種または2種以上のF換算値の合計:0.01〜0.4%
をフラックスとして含有し、残部は、Fe、アーク安定剤および不可避不純物からなり、ワイヤの全水素量がワイヤ全体に対する質量比で15ppm以下であることを特徴とする高張力鋼用炭酸ガスシールドアーク溶接用フラックス入りワイヤ。
This is a high-strength steel flux cored wire that is used for shield arc welding of high-strength steel with a yield strength of 690 MPa or more using 100% carbon dioxide as the shielding gas, and is made by filling the steel outer shell with flux, and the mass with respect to the total mass of the wire %so,
C: 0.03-0.10%,
Si: 0.1 to 0.4%,
Mn: 2.0 to 4.0%,
Ni: 1.0 to 3.5%
Al: 0.06 to 1.5%,
Mo: 0.10 to 1.00%
As an essential element,
Cr: 0.1 to 1.0%,
Nb: 0.01-0.05%
V: 0.01 to 0.05%
1 type or 2 types or more selected from as a selected element, and
TiO 2: 2.5~7.5%,
SiO 2 : 0.1 to 0.5%,
ZrO 2 : 0.2 to 0.9%,
Al 2 O 3 : 0.1 to 0.4%,
Total of one or more fluorine compounds in terms of F: 0.01 to 0.4%
The balance is made of Fe, an arc stabilizer, and inevitable impurities, and the total hydrogen content of the wire is 15 ppm or less by mass ratio with respect to the entire wire. Carbon dioxide shielded arc welding for high-strength steel Flux cored wire.
ワイヤ全質量に対する質量%で、
Ti:0.1〜1.0%、
Mg:0.01〜0.9%、
Ca:0.01〜0.5%、
REM:0.01〜0.5%
から選ばれる1種または2種以上を含有することを特徴とする請求項1に記載の高張力鋼用炭酸ガスシールドアーク溶接用フラックス入りワイヤ。
% By mass relative to the total mass of the wire
Ti: 0.1 to 1.0%,
Mg: 0.01 to 0.9%
Ca: 0.01 to 0.5%,
REM: 0.01 to 0.5%
The flux-cored wire for carbon dioxide shielded arc welding for high-strength steel according to claim 1, comprising one or more selected from the group consisting of:
ワイヤ全質量に対する質量%で、
B :0.001〜0.015%
を含有することを特徴とする請求項1または請求項2に記載の高張力鋼用炭酸ガスシールドアーク溶接用フラックス入りワイヤ。
% By mass relative to the total mass of the wire
B: 0.001 to 0.015%
The flux-cored wire for carbon dioxide shielded arc welding for high-strength steel according to claim 1 or 2, characterized by comprising:
鋼製外皮に継ぎ目が無いことを特徴とする請求項1乃至請求項3のいずれか一項に記載の高張力鋼用炭酸ガスシールドアーク溶接用フラックス入りワイヤ。   The flux-cored wire for carbon dioxide shielded arc welding for high-strength steel according to any one of claims 1 to 3, wherein the steel outer skin is seamless.
JP2010129231A 2010-06-04 2010-06-04 Flux-cored wire for carbon dioxide shielded arc welding for high-tensile steel Active JP5459083B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010129231A JP5459083B2 (en) 2010-06-04 2010-06-04 Flux-cored wire for carbon dioxide shielded arc welding for high-tensile steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010129231A JP5459083B2 (en) 2010-06-04 2010-06-04 Flux-cored wire for carbon dioxide shielded arc welding for high-tensile steel

Publications (2)

Publication Number Publication Date
JP2011255385A true JP2011255385A (en) 2011-12-22
JP5459083B2 JP5459083B2 (en) 2014-04-02

Family

ID=45472152

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010129231A Active JP5459083B2 (en) 2010-06-04 2010-06-04 Flux-cored wire for carbon dioxide shielded arc welding for high-tensile steel

Country Status (1)

Country Link
JP (1) JP5459083B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012121051A (en) * 2010-12-08 2012-06-28 Nippon Steel & Sumikin Welding Co Ltd Flux-cored wire for gas shielded arc welding
CN102658442A (en) * 2012-05-08 2012-09-12 上海电力修造总厂有限公司 Low-alloy steel covered arc welding electrode with Cr control capacity and FAC resisting capacity of weld metal of basic slag system
CN105408053A (en) * 2013-08-07 2016-03-16 株式会社神户制钢所 Flux-cored wire for additional welding, and welding method
KR20160050513A (en) * 2014-10-30 2016-05-11 현대종합금속 주식회사 Flux cored wire for Gas shielded arc welding
CN107322182A (en) * 2017-08-19 2017-11-07 安徽鼎恒再制造产业技术研究院有限公司 Idle pulley, which is remanufactured, uses submerged-arc welding flux cored wire
WO2018087812A1 (en) 2016-11-08 2018-05-17 新日鐵住金株式会社 Flux-cored wire, method of manufacturing welded joint, and welded joint
WO2022065648A1 (en) * 2020-09-25 2022-03-31 고려용접봉 주식회사 Flux cored wire

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003033895A (en) * 2001-05-28 2003-02-04 Kisswell:Kk Flux cored wire for gas shielded metal arc welding for high tensile steel
JP2005144539A (en) * 2003-11-19 2005-06-09 Nippon Steel Corp Flux-cored wire for gas shielded arc welding for reducing welding deformation, and method of reducing welding deformation with flux-cored wire
JP2005296999A (en) * 2004-04-12 2005-10-27 Nippon Steel & Sumikin Welding Co Ltd Flux-cored wire for electrogas arc welding
JP2008093715A (en) * 2006-10-13 2008-04-24 Nippon Steel Corp High yield strength and high toughness flux-cored wire for gas-shielded arc welding
JP2008119748A (en) * 2006-10-19 2008-05-29 Kobe Steel Ltd Flux-cored wire for gas-shielded arc welding for creep-resisting steel
JP2008126279A (en) * 2006-11-21 2008-06-05 Nippon Steel Corp Flux-cored wire for gas shielded arc welding
JP2008126262A (en) * 2006-11-20 2008-06-05 Kobe Steel Ltd Flux-cored wire for electro-gas arc welding and elecro-gas arc weld metal
JP2009082947A (en) * 2007-09-28 2009-04-23 Jfe Steel Kk Flux-cored wire for electrogas arc welding
JP2011189349A (en) * 2010-03-11 2011-09-29 Kobe Steel Ltd Flux cored wire for gas shielding arc welding

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003033895A (en) * 2001-05-28 2003-02-04 Kisswell:Kk Flux cored wire for gas shielded metal arc welding for high tensile steel
JP2005144539A (en) * 2003-11-19 2005-06-09 Nippon Steel Corp Flux-cored wire for gas shielded arc welding for reducing welding deformation, and method of reducing welding deformation with flux-cored wire
JP2005296999A (en) * 2004-04-12 2005-10-27 Nippon Steel & Sumikin Welding Co Ltd Flux-cored wire for electrogas arc welding
JP2008093715A (en) * 2006-10-13 2008-04-24 Nippon Steel Corp High yield strength and high toughness flux-cored wire for gas-shielded arc welding
JP2008119748A (en) * 2006-10-19 2008-05-29 Kobe Steel Ltd Flux-cored wire for gas-shielded arc welding for creep-resisting steel
JP2008126262A (en) * 2006-11-20 2008-06-05 Kobe Steel Ltd Flux-cored wire for electro-gas arc welding and elecro-gas arc weld metal
JP2008126279A (en) * 2006-11-21 2008-06-05 Nippon Steel Corp Flux-cored wire for gas shielded arc welding
JP2009082947A (en) * 2007-09-28 2009-04-23 Jfe Steel Kk Flux-cored wire for electrogas arc welding
JP2011189349A (en) * 2010-03-11 2011-09-29 Kobe Steel Ltd Flux cored wire for gas shielding arc welding

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012121051A (en) * 2010-12-08 2012-06-28 Nippon Steel & Sumikin Welding Co Ltd Flux-cored wire for gas shielded arc welding
CN102658442A (en) * 2012-05-08 2012-09-12 上海电力修造总厂有限公司 Low-alloy steel covered arc welding electrode with Cr control capacity and FAC resisting capacity of weld metal of basic slag system
CN105408053A (en) * 2013-08-07 2016-03-16 株式会社神户制钢所 Flux-cored wire for additional welding, and welding method
EP3031568A4 (en) * 2013-08-07 2017-01-18 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Flux-cored wire for additional welding, and welding method
KR101823798B1 (en) * 2013-08-07 2018-01-30 가부시키가이샤 고베 세이코쇼 Flux-cored wire for additional welding, and welding method
KR20160050513A (en) * 2014-10-30 2016-05-11 현대종합금속 주식회사 Flux cored wire for Gas shielded arc welding
KR101637471B1 (en) 2014-10-30 2016-07-07 현대종합금속 주식회사 Flux cored wire for Gas shielded arc welding
WO2018087812A1 (en) 2016-11-08 2018-05-17 新日鐵住金株式会社 Flux-cored wire, method of manufacturing welded joint, and welded joint
KR20190073457A (en) 2016-11-08 2019-06-26 닛폰세이테츠 가부시키가이샤 Flux cored wire, method of manufacturing weld joint, and weld joint
US11400539B2 (en) 2016-11-08 2022-08-02 Nippon Steel Corporation Flux-cored wire, manufacturing method of welded joint, and welded joint
CN107322182A (en) * 2017-08-19 2017-11-07 安徽鼎恒再制造产业技术研究院有限公司 Idle pulley, which is remanufactured, uses submerged-arc welding flux cored wire
WO2022065648A1 (en) * 2020-09-25 2022-03-31 고려용접봉 주식회사 Flux cored wire

Also Published As

Publication number Publication date
JP5459083B2 (en) 2014-04-02

Similar Documents

Publication Publication Date Title
JP5768547B2 (en) High-strength steel flux cored wire for gas shielded arc welding
JP5359561B2 (en) Flux-cored wire for high-tensile steel
JP5136466B2 (en) Flux-cored wire for welding high-strength steel and method for producing the same
EP2289661B1 (en) Flux cored wire for gas shielded arc welding of high strength steel
JP4558780B2 (en) Flux-cored wire for submerged arc welding of low-temperature steel
JP5459083B2 (en) Flux-cored wire for carbon dioxide shielded arc welding for high-tensile steel
JP2014113615A (en) Flux-cored wire for carbon dioxide gas shielded arc welding
CN107921590B (en) Flux-cored wire for gas-shielded arc welding
JP5153421B2 (en) Flux-cored wire for gas shielded arc welding
JP2015217393A (en) Flux-cored wire for carbon dioxide gas shielded arc welding
JP2013151001A (en) Flux-cored wire for gas-shielded arc welding for weather-resistant steel
JP6033755B2 (en) Flux-cored wire for Ar-CO2 mixed gas shielded arc welding
US20110073570A1 (en) Flux cored wire for gas shielded arc welding of high strength steel
JP5356142B2 (en) Gas shield arc welding method
JP2018153853A (en) Flux-cored wire for gas shield arc welding
JP6453178B2 (en) Flux-cored wire for gas shielded arc welding
JP5885618B2 (en) Stainless steel flux cored wire
JP5558406B2 (en) Flux-cored wire for carbon dioxide shielded arc welding
JP2014091135A (en) Bonded flux for submerged arc welding
JP5064928B2 (en) Flux-cored wire for submerged arc welding for high-strength steel.
JP6599807B2 (en) Flux-cored wire for carbon dioxide shielded arc welding
KR102156027B1 (en) Flux cored wire
JP6438371B2 (en) Flux-cored wire for gas shielded arc welding
JP6084948B2 (en) Flux-cored wire for gas shielded arc welding
WO2020217963A1 (en) Ni-BASED ALLOY FLUX-CORED WIRE

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120809

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130910

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131107

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131217

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131230

R151 Written notification of patent or utility model registration

Ref document number: 5459083

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350