WO2022065648A1 - Flux cored wire - Google Patents

Flux cored wire Download PDF

Info

Publication number
WO2022065648A1
WO2022065648A1 PCT/KR2021/008946 KR2021008946W WO2022065648A1 WO 2022065648 A1 WO2022065648 A1 WO 2022065648A1 KR 2021008946 W KR2021008946 W KR 2021008946W WO 2022065648 A1 WO2022065648 A1 WO 2022065648A1
Authority
WO
WIPO (PCT)
Prior art keywords
weight
flux
wire
less
content
Prior art date
Application number
PCT/KR2021/008946
Other languages
French (fr)
Korean (ko)
Inventor
장종훈
박준영
강문찬
Original Assignee
고려용접봉 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 고려용접봉 주식회사 filed Critical 고려용접봉 주식회사
Publication of WO2022065648A1 publication Critical patent/WO2022065648A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/02Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/30Selection of soldering or welding materials proper with the principal constituent melting at less than 1550 degrees C
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/36Selection of non-metallic compositions, e.g. coatings, fluxes; Selection of soldering or welding materials, conjoint with selection of non-metallic compositions, both selections being of interest
    • B23K35/362Selection of compositions of fluxes

Definitions

  • the present invention relates to a flux-cored wire, and more particularly, to a flux-cored wire that uses a steel sheath containing alloy components to prevent segregation, stabilizes low-temperature toughness, and improves quality uniformity, defect resistance and crack resistance It's about wires.
  • FCW flux-cored welding
  • a hoop having a certain thickness and width is machined to form a U-shape, and a flux of a predetermined component is injected into the center of the hoop. After injecting the flux, make the U-shaped hoop completely surround the flux to complete the primary semi-finished product.
  • the semi-finished product By making the semi-finished product have a desired diameter through a wire drawing process, the final flux-cored wire is completed, and welding is performed using this semi-finished product.
  • the conventional flux-cored wire was produced in the form of mixing and injecting a flux having about 10 to 20 kinds of particles into a hoop having almost no alloy components. That is, flux cored wire is produced by supplementing the flux into the hoop in the form of powder for the purpose of forming slag to have an electric charge or overhead function, or for generating gas or for facilitating welding workability. did
  • flux-cored wire is difficult to apply to important structures because of its large metallurgical deviation due to segregation compared to sheathed rods or SAW, which are other welding processes that use flux.
  • SAW sheathed rods
  • Patent Document 1 Korean Patent Publication No. 10-0821426 (2008.04.03)
  • the present invention is to solve the problems of the prior art described above, and an object of the present invention is to prevent segregation by using a steel shell containing an alloy component, thereby stabilizing low-temperature toughness, uniformity of quality, defect resistance and cracking resistance It is to provide this improved flux cored wire.
  • one aspect of the present invention is a flux-cored wire filled with flux inside an alloy-type steel sheath, wherein the sheath is based on the total weight of the wire, C: 0.001 to 0.06% by weight, P +S: 0.02% by weight or less (excluding 0% by weight), Si: 0.01 to 0.80% by weight, Mn: 0.01 to 3.0% by weight, Ni: 0.01 to 3.5% by weight, Cr: 0.01 to 18.0% by weight, Mo: 0.01 to 1.0% by weight, the balance contains Fe, oxides and unavoidable impurities, the flux is based on the total weight of the wire, C: 0.08% by weight or less (excluding 0% by weight), Si: 0.01 to 1.5% by weight, Mn: 0.01 -3.0 wt%, Al: 0.50 wt% or less (excluding 0 wt%), Mg: 0.1 to 1.0 wt%, Ti: 0.01 to 5.0 wt%, Zr: 0.02 to 1.0
  • it may be a flux-cored wire, characterized in that P+S ⁇ 400 ppm while satisfying S ⁇ 200 ppm, based on the total weight of the wire in order to minimize cracking in the weld zone.
  • the total moisture content of the wire is 500ppm (excluding 0% by weight) or less based on the total weight of the wire, It can be a flux-cored wire there is.
  • Figure 1 (a) is a plan view showing the conditions at the time of the crack resistance test.
  • Figure 1 (b) is a cross-sectional view of Figure 1 (a).
  • the flux-cored wire is a flux-cored wire in which a flux is filled inside an alloy-type steel sheath, wherein the sheath is based on the total weight of the wire, C: 0.001 to 0.06% by weight, P+ S: 0.02% by weight or less (excluding 0% by weight), Si: 0.01 to 0.80% by weight, Mn: 0.01 to 3.0% by weight, Ni: 0.01 to 3.5% by weight, Cr: 0.01 to 18.0% by weight, Mo: 0.01 to 1.0 % by weight, including Fe, oxides and unavoidable impurities as the balance, and the flux is based on the total weight of the wire, C: 0.08% by weight or less (excluding 0% by weight), Si: 0.01 to 1.5% by weight, Mn: 0.01 to 3.0 wt%, Al: 0.50 wt% or less (excluding 0 wt%), Mg: 0.1 to 1.0 wt%, Ti: 0.01 to 5.0 wt%, Zr
  • the alloying elements constituting the outer shell of the above-described flux-cored wire are as follows with respect to the total weight of the wire, and the content of each alloying element is expressed as a weight ratio.
  • Carbon (C) is an element that improves strength by forming carbides, and is an element added to make the weld heat-affected zone have properties similar to those of the base material. If the C content is less than 0.001 wt %, the effect may not be sufficiently obtained, and thus the proof strength of the weld metal may be reduced. On the other hand, when the C content is more than 0.06% by weight, problems such as breakage during the drawing process may occur due to high strength or work hardening. In addition, there is a disadvantage that low-temperature cracking of the weld joint occurs or the impact toughness is lowered, and a number of heat treatments must be performed due to high hardness to be able to process into a desired final product. Accordingly, the C content may be 0.001 to 0.06% by weight.
  • P+S 0.02% by weight or less (excluding 0% by weight)
  • Phosphorus (P) is an element that improves strength and hardness by causing solid solution strengthening while being present as a solid solution element in steel. If the content of P is too small, it may be difficult to maintain a certain level of rigidity. If the P content is too large, center segregation may occur during casting and ductility may be lowered, which may deteriorate wire workability. Sulfur (S) combines with manganese in steel to form non-metallic inclusions and becomes a factor of red shortness, so it is desirable to lower the content as much as possible. Therefore, therefore, the P+S content may be 0.02 wt% or less (excluding 0 wt%).
  • Si is an element that improves strength by solid solution strengthening. Such Si prevents oxidation during welding and enables solid solution strengthening to increase the strength of the material.
  • the Si content of the shell may be 0.01 to 0.80 wt%.
  • Mn manganese
  • the Mn content of the skin may be 0.01 to 3.0% by weight.
  • Nickel (Ni) is not only effective in improving ductility to improve drawing processability, but also forms a stable structure even at cryogenic temperatures and is a necessary element to improve low-temperature impact properties. If the Ni content is too small, it may be difficult to obtain such an effect, and it may be difficult to stably operate the flux composition. On the other hand, if the Ni content is excessive, the drawability may deteriorate due to an increase in strength, and surface defects may be caused. Accordingly, the Ni content may be 0.01 to 3.5 wt%.
  • Chromium (Cr) is an element beneficial to the strength of the weld joint and also serves to form a stable rust layer, thereby contributing to the improvement of corrosion resistance. If the Cr content is too small, it may be difficult to sufficiently exhibit the above-described effect. On the other hand, if the Cr content is excessive, chromium-based carbides may be formed and cause brittleness, which may cause a problem in that processing cannot be performed. Therefore, the Cr content may be 0.01 to 18.0% by weight.
  • Molybdenum (Mo) is an advantageous element in terms of securing the strength of the weld joint by increasing hardenability. If the Mo content is too small, it may be difficult to obtain such an effect. If the Mo content is excessive, the formation amount of molybdenum carbide may increase to cause brittleness, which may cause a problem in that workability is deteriorated. Accordingly, the Mo content may be 0.01 to 1.0% by weight.
  • the alloying elements constituting the flux of the above-described flux-cored wire are as follows with respect to the total weight of the wire, and the content of each alloying element is expressed by weight ratio.
  • Carbon (C) is an element that improves strength by forming carbides, and is an element added to make the weld heat-affected zone have properties similar to those of the base material.
  • C content is too small, sufficient strength cannot be secured.
  • the C content is more than 0.08 wt %, problems such as disconnection may occur during the drawing process due to high strength or work hardening. Accordingly, the C content may be 0.08% by weight or less.
  • Si is an element that improves strength by solid solution strengthening. Such Si prevents oxidation during welding and enables solid solution strengthening to increase the strength of the material.
  • the Si content of the flux may be 0.01 to 0.80 wt %.
  • Mn manganese
  • the Mn content may be 0.01 to 3.0% by weight.
  • Aluminum (Al) is an element having a deoxidizing action, and may coarsen oxides to reduce toughness. Therefore, it is preferable to limit the Al content to 0.50 wt% or less (excluding 0 wt%).
  • Magnesium (Mg) is an element having a deoxidizing action. When the Mg content is less than 0.1% by weight, toughness may be reduced, and when it is more than 1.0% by weight, the strength is excessively increased, and low-temperature cracking may occur. Accordingly, the Mg content may be 0.1 to 1.0% by weight.
  • Titanium (Ti) is an element contributing to the improvement of the toughness of the wire. If the Ti content is less than 0.01% by weight, toughness may be reduced, and if it is more than 5.0% by weight, welding defects may occur. Accordingly, the Ti content may be 0.01 to 5.0% by weight.
  • Zirconium is advantageous in terms of securing the low-temperature toughness of the weld zone through the formation of precipitates, and is an element that greatly contributes to the improvement of workability of the welding material. If Zr is less than 0.02% by weight, it may be difficult to obtain such an effect. On the other hand, when Zr exceeds 1.0% by weight, the amount of zirconium precipitates increases to deteriorate workability as well as to deteriorate operating characteristics according to an increase in working temperature. Accordingly, the Zr content may be 0.02 to 1.0% by weight.
  • Nickel (Ni) is not only effective in improving ductility to improve drawing processability, but also forms a stable structure even at cryogenic temperatures and is a necessary element to improve low-temperature impact properties. If the Ni content is too small, it may be difficult to obtain such an effect, and it may be difficult to stably operate the flux composition. On the other hand, if the Ni content is excessive, the drawability may deteriorate due to an increase in strength, and surface defects may be caused. Accordingly, the Ni content may be 0.01 to 4.0% by weight.
  • Molybdenum (Mo) is an advantageous element in terms of securing the strength of the weld joint by increasing hardenability. If the Mo content is too small, it may be difficult to obtain such an effect. If the Mo content is excessive, the formation amount of molybdenum carbide may increase to cause brittleness, which may cause a problem in that workability is deteriorated. Accordingly, the Mo content may be 0.01 to 1.0% by weight.
  • Chromium (Cr) is an element beneficial to the strength of the weld joint and also serves to form a stable rust layer, thereby contributing to the improvement of corrosion resistance. If the Cr content is too small, it may be difficult to sufficiently exhibit the above-described effect. On the other hand, if the Cr content is excessive, chromium-based carbides may be formed and cause brittleness, which may cause a problem in that processing cannot be performed. Therefore, the Cr content may be 0.01 to 18.0% by weight.
  • the flux-cored wire according to an embodiment of the present invention is characterized in that, with respect to the total weight of the wire, S ⁇ 200 ppm and P+S ⁇ 400 ppm. If the content of sulfur (S) and phosphorus (P) is too large, the solidification cracking susceptibility and stress relaxation cracking property can be significantly increased. Therefore, by minimizing the content of P and S, it is possible to minimize the low-temperature toughness and the occurrence of cracks in the weld zone.
  • the flux particle size is biased to a certain range, alloy elements are segregated in the flux Therefore, by controlling the flux particle size within the above-mentioned range to prevent segregation, welding workability can be improved.
  • the flux-cored wire according to an embodiment of the present invention is characterized in that the total moisture content of the wire is 500 ppm (excluding 0%) or less based on the total weight of the wire.
  • the total moisture content of the wire is 500 ppm (excluding 0%) or less based on the total weight of the wire.
  • the diffusible hydrogen content increases and there is a risk of low-temperature cracking. Accordingly, it is possible to control the total moisture content of the wire within the above-described range to secure the low-temperature impact toughness of the welded portion and improve the workability of the welding material.
  • Quality uniformity is measured by measuring the standard deviation of alloy components (Si, Mn, Cr, Ni, Mo) by analyzing the chemical composition of the pure deposited metal 5 times for each specimen according to the AWS welding standards, and if the value is less than 0.03 "Good”, greater than 0.03 and less than 0.1 were indicated as "normal”, and greater than 0.1 as poor.
  • Fault tolerance (b) is based on the welding conditions in Table 4, with the mechanical properties of AWS A5.20, A5.28, or A5.29, and the evaluation method (1) and the table Observe the evaluation method (2) for the presence or absence of wormholes on the surface of the weld when welding is performed under the welding conditions specified in 5. If (1) and (2) are both good, ( ⁇ ) and (2) are In (1), when 1 or 2 porosity occurs inside the weld, ( ⁇ ), and in (1) and (2), when a welding defect occurs, was evaluated as ( ⁇ ).
  • Example (6) is a heat-resistant material
  • Example (9) is for welding stainless steel thin plates for automobiles
  • Example (10) is for surface hardening growth.
  • Table 7 shows the results of measuring the mechanical properties of the welded part of Examples (1) to (10) and the quality uniformity (a), defect resistance (b), and crack resistance (c) according to Tables 4 to 6 .
  • Examples (1) to Example (10) have a yield strength (YS: Yeild Strength) of 405 MPa or more, and a tensile strength (TS: Tensile Strength) of 510 MPa or more, and elongation (EL: Elongation) is 22% or more, and it can be seen that all of them are excellent.
  • YS Yeild Strength
  • TS Tensile Strength
  • EL Elongation
  • Example (1) and (2) cracks occurred within 10% of the total length of the welding field during the non-destructive liquid penetration test, but Examples (3) to (5), and Example (7) and Example (8) showed good crack resistance because cracks did not occur over the entire length of the welding field.
  • Example (6) is a heat-resistant material
  • Example (9) is for welding stainless steel thin plates for automobiles
  • Example (10) is for surface hardening growth.
  • the flux-cored wire according to the present invention uses a steel sheath containing alloy components, and by controlling the component composition of the sheath and flux, segregation is prevented, low-temperature toughness is stabilized, quality uniformity, defect resistance and resistance to defects Crackability can be improved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Nonmetallic Welding Materials (AREA)

Abstract

An embodiment of the present invention provides a flux cored wire having a flux charged inside an alloy-type steel sheath thereof, wherein the sheath comprises, relative to the total weight of the wire, 0.001-0.06 wt% of C, 0.02 wt% or less (excluding 0 wt%) of P+S, 0.01-0.80 wt% of Si, 0.01-3.0 wt% of Mn, 0.01-3.5 wt% of Ni, 0.01-18.0 wt% of Cr, 0.01-1.0 wt% of Mo, and the balance being Fe, oxides, and inevitable impurities; and wherein the flux comprises, relative to the total weight of the wire, 0.08 wt% or less (excluding 0 wt%) of C, 0.01-1.5 wt% of Si, 0.01-3.0 wt% of Mn, 0.50 wt% or less (excluding 0 wt%) of Al, 0.1-1.0 wt% of Mg, 0.01-5.0 wt% of Ti, 0.02-1.0 wt% of Zr, 0.01-4.0 wt% of Ni, 0.01-1.0 wt% of Mo, 0.01-18 wt% of Cr, and the balance being Fe, oxides, and inevitable impurities.

Description

플럭스 코어드 와이어flux cored wire
본 발명은 플럭스 코어드 와이어에 관한 것으로, 더욱 상세하게는 합금 성분이 함유된 강제 외피를 사용하여 편석이 방지됨에 따라 저온인성이 안정화되고, 품질 균일성, 내결함성 및 내균열성이 향상된 플럭스 코어드 와이어에 관한 것이다.The present invention relates to a flux-cored wire, and more particularly, to a flux-cored wire that uses a steel sheath containing alloy components to prevent segregation, stabilizes low-temperature toughness, and improves quality uniformity, defect resistance and crack resistance It's about wires.
일반적으로 용접 생산성이 가장 높고 다양한 위치에서 용접이 용이한 용접 방법으로는 플럭스 코어드 용접(FCW, Flux Cored Welding) 법이 있다. 이 용접 방법에 사용되는 플럭스 코어드 와이어는 플럭스가 길이방향으로 형성된 후프(Hoop)의 중심공(core cavity) 내에 충전되어 있는 용접용 와이어를 의미한다.In general, a flux-cored welding (FCW) method is a welding method that has the highest welding productivity and is easy to weld in various positions. The flux-cored wire used in this welding method means a welding wire in which the flux is filled in the core cavity of a hoop formed in the longitudinal direction.
플럭스 코어드 와이어를 성형하는 과정을 대략적으로 살펴보면, 일정한 두께 및 폭을 가지고 있는 후프를 가공하여 U자 형상으로 성형하고, 그 중심부분에 소정 성분의 플럭스를 주입하게 된다. 플럭스를 주입하고 나서는 U자로 가공된 후프가 플럭스를 완전히 감싸도록 하여 1차적인 반제품을 완성시킨다. 이러한 반제품을 신선과정을 통하여 원하는 직경을 갖도록 함으로써 최종적인 플럭스 코어드 와이어가 완성되며, 이를 사용하여 용접을 행하게 되는 것이다.Looking at the process of forming the flux-cored wire roughly, a hoop having a certain thickness and width is machined to form a U-shape, and a flux of a predetermined component is injected into the center of the hoop. After injecting the flux, make the U-shaped hoop completely surround the flux to complete the primary semi-finished product. By making the semi-finished product have a desired diameter through a wire drawing process, the final flux-cored wire is completed, and welding is performed using this semi-finished product.
기존의 플럭스 코어드 와이어는 합금성분이 거의 없는 후프에 약 10 내지 20가지 정도의 입자를 가진 플럭스를 섞어 주입하는 형태로 생산되었다. 즉, 슬래그를 형성시켜 전자세나 오버헤드 기능을 갖게 하기 위해 또는 가스를 발생시키기 위해 또는 용접 작업성을 용이하게 하기 위한 목적으로 파우더(powder) 형태로 플럭스를 후프에 보충하여 플럭스 코어드 와이어를 생산하였다.The conventional flux-cored wire was produced in the form of mixing and injecting a flux having about 10 to 20 kinds of particles into a hoop having almost no alloy components. That is, flux cored wire is produced by supplementing the flux into the hoop in the form of powder for the purpose of forming slag to have an electric charge or overhead function, or for generating gas or for facilitating welding workability. did
이때, 약 15가지 내외의 플럭스들이 입자 모양, 겉보기 밀도, 크기, 형상 등이 다르므로 블렌딩(blending)을 하더라도 완전히 균일하게 혼합이 되지 않고, 또한 제품화를 위해 위치 에너지 영향이 있는 철재 컨테이너(container)로부터 후프에 충전하는 과정에서 편석이 발생하여 품질의 균일성이 떨어지게 된다. 또한, 조관된 와이어가 인발을 통해 최종 제품으로 가공되는 과정에서 플럭스가 파쇄됨에 따라 와이어 내부에서 미세한 편석이 발생하게 된다.At this time, since about 15 fluxes have different particle shapes, apparent densities, sizes, shapes, etc., they are not completely uniformly mixed even after blending. Segregation occurs in the process of filling the hoop from In addition, fine segregation occurs inside the wire as the flux is crushed while the piped wire is processed into a final product through drawing.
그리고, 플럭스 코어드 와이어는 플럭스를 사용하는 다른 용접 프로세스인 피복봉이나 SAW에 비해 편석으로 인한 야금학적 편차가 커서 중요한 구조물에 적용이 어려운데, 특히 극저온 충격인성 보증이 어렵고, 편석으로 인한 초층 고온균열 문제, 횡 크랙 문제, CTOD성 편차 등의 문제점이 있다.In addition, flux-cored wire is difficult to apply to important structures because of its large metallurgical deviation due to segregation compared to sheathed rods or SAW, which are other welding processes that use flux. There are problems such as problem, lateral crack problem, CTOD property deviation, and the like.
따라서, 저온 충격치나 기계물성에 영향을 미치는 주요한 합금 원소가 플럭스 혼합과정이나 후프에 충전되는 과정에서 발생되는 편석을 근본적으로 없애기 위한 방안이 요구된다.Therefore, there is a need for a method to fundamentally eliminate segregation generated during the process of mixing the flux or filling the hoop with the major alloying elements affecting the low-temperature impact value or mechanical properties.
선행기술문헌Prior art literature
(특허문헌 1) 한국 등록특허공보 제10-0821426호 (2008.04.03)(Patent Document 1) Korean Patent Publication No. 10-0821426 (2008.04.03)
본 발명은 전술한 종래기술의 문제점을 해결하기 위한 것으로, 본 발명의 목적은 합금 성분이 함유된 강제 외피를 사용하여 편석이 방지됨에 따라 저온인성이 안정화되고, 품질 균일성, 내결함성 및 내균열성이 향상된 플럭스 코어드 와이어를 제공하는 것이다.The present invention is to solve the problems of the prior art described above, and an object of the present invention is to prevent segregation by using a steel shell containing an alloy component, thereby stabilizing low-temperature toughness, uniformity of quality, defect resistance and cracking resistance It is to provide this improved flux cored wire.
상기와 같은 목적을 달성하기 위해, 본 발명의 일 측면은 합금형 강제 외피 내부에 플럭스가 충전된 플럭스 코어드 와이어로서, 상기 외피는 상기 와이어 전체 중량에 대하여, C : 0.001∼0.06중량%, P+S : 0.02중량% 이하(0중량% 제외), Si : 0.01∼0.80중량%, Mn : 0.01∼3.0중량%, Ni : 0.01∼3.5중량%, Cr : 0.01∼18.0중량%, Mo : 0.01∼1.0중량%, 잔부로서 Fe, 산화물 및 불가피한 불순물을 포함하고, 상기 플럭스는 상기 와이어 전체 중량에 대하여, C : 0.08중량% 이하(0중량% 제외), Si : 0.01∼1.5중량%, Mn : 0.01∼3.0중량%, Al : 0.50중량% 이하(0중량% 제외), Mg : 0.1∼1.0중량%, Ti : 0.01∼5.0중량%, Zr : 0.02∼1.0중량%, Ni : 0.01∼4.0중량%, Mo : 0.01∼1.0중량%, Cr : 0.01∼18중량%, 잔부로서 Fe, 산화물 및 불가피한 불순물을 포함하는, 플럭스 코어드 와이어를 제공한다.In order to achieve the above object, one aspect of the present invention is a flux-cored wire filled with flux inside an alloy-type steel sheath, wherein the sheath is based on the total weight of the wire, C: 0.001 to 0.06% by weight, P +S: 0.02% by weight or less (excluding 0% by weight), Si: 0.01 to 0.80% by weight, Mn: 0.01 to 3.0% by weight, Ni: 0.01 to 3.5% by weight, Cr: 0.01 to 18.0% by weight, Mo: 0.01 to 1.0% by weight, the balance contains Fe, oxides and unavoidable impurities, the flux is based on the total weight of the wire, C: 0.08% by weight or less (excluding 0% by weight), Si: 0.01 to 1.5% by weight, Mn: 0.01 -3.0 wt%, Al: 0.50 wt% or less (excluding 0 wt%), Mg: 0.1 to 1.0 wt%, Ti: 0.01 to 5.0 wt%, Zr: 0.02 to 1.0 wt%, Ni: 0.01 to 4.0 wt%, Mo: 0.01 to 1.0% by weight, Cr: 0.01 to 18% by weight, the balance Fe, oxides and unavoidable impurities are included, to provide a flux-cored wire.
본 발명의 일 실시예에 있어서, 용접부 균열발생 최소화를 위해 와이어 전체 중량에 대하여, S ≤ 200ppm을 만족하면서, P+S ≤ 400ppm 인 것을 특징으로 하는, 플럭스 코어드 와이어일 수 있다.In one embodiment of the present invention, it may be a flux-cored wire, characterized in that P+S ≤ 400 ppm while satisfying S ≤ 200 ppm, based on the total weight of the wire in order to minimize cracking in the weld zone.
본 발명의 일 실시예에 있어서, 외피 내부에 충진된 플럭스의 최종 제품 입자 사이즈에 대하여, 플럭스 입도(α) : 5㎛ 이하 합계 ≤ 40중량% (0중량% 제외), 플럭스 입도(β) : 60㎛ 이하 합계 ≤ 80중량%, 플럭스 입도(γ : 1,000㎛ 이하 합계 = 100중량% 인 것을 특징으로 하는, 플럭스 코어드 와이어일 수 있다.In one embodiment of the present invention, with respect to the particle size of the final product of the flux filled inside the shell, the flux particle size (α): 5 μm or less Total ≤ 40 wt% (excluding 0 wt%), flux particle size (β): It may be a flux-cored wire, characterized in that the sum of 60 μm or less ≤ 80% by weight, and the flux particle size (γ: the total of 1,000 μm or less = 100% by weight).
본 발명의 일 실시예에 있어서, 용접결함 방지 및 확산성 수소량 저감을 위해 와이어의 총 수분량은 와이어 전체 중량에 대하여, 500ppm(0중량% 제외) 이하인 것을 특징으로 하는, 플럭스 코어드 와이어일 수 있다.In one embodiment of the present invention, in order to prevent welding defects and reduce the amount of diffusible hydrogen, the total moisture content of the wire is 500ppm (excluding 0% by weight) or less based on the total weight of the wire, It can be a flux-cored wire there is.
본 발명의 일 측면에 따르면, 합금 성분이 함유된 강제 외피를 사용하고, 상기 외피와 플럭스의 성분 구성을 제어함으로써 편석이 방지되고, 저온인성이 안정화되며, 품질 균일성, 내결함성 및 내균열성이 향상될 수 있다.According to one aspect of the present invention, segregation is prevented, low-temperature toughness is stabilized, and quality uniformity, defect resistance and crack resistance are improved by using a steel sheath containing an alloy component and controlling the composition of the sheath and the flux. can be improved
본 발명의 효과는 상기한 효과로 한정되는 것은 아니며, 본 발명의 상세한 설명 또는 특허청구범위에 기재된 발명의 구성으로부터 추론 가능한 모든 효과를 포함하는 것으로 이해되어야 한다.It should be understood that the effects of the present invention are not limited to the above-described effects, and include all effects that can be inferred from the configuration of the invention described in the detailed description or claims of the present invention.
도 1의 (a)는 내균열성 시험시의 조건을 나타내는 평면도이다.Figure 1 (a) is a plan view showing the conditions at the time of the crack resistance test.
도 1의 (b)는 도 1의 (a)에 대한 단면도이다.Figure 1 (b) is a cross-sectional view of Figure 1 (a).
이하에서는 첨부한 도면을 참조하여 본 발명을 설명하기로 한다. 그러나 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며, 따라서 여기에서 설명하는 실시예로 한정되는 것은 아니다. 그리고 도면에서 본 발명을 명확하게 설명하기 위해서 설명과 관계없는 부분은 생략하였으며, 명세서 전체를 통하여 유사한 부분에 대해서는 유사한 도면 부호를 붙였다.Hereinafter, the present invention will be described with reference to the accompanying drawings. However, the present invention may be embodied in several different forms, and thus is not limited to the embodiments described herein. And in order to clearly explain the present invention in the drawings, parts irrelevant to the description are omitted, and similar reference numerals are attached to similar parts throughout the specification.
명세서 전체에서, 어떤 부분이 다른 부분과 "연결"되어 있다고 할 때, 이는 "직접적으로 연결"되어 있는 경우뿐 아니라, 그 중간에 다른 부재를 사이에 두고 "간접적으로 연결"되어 있는 경우도 포함한다. 또한 어떤 부분이 어떤 구성요소를 "포함"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 구비할 수 있다는 것을 의미한다. 또한, 특별히 언급하지 않는 한 %는 중량%를 의미하며, 1ppm 은 0.0001중량%이다.Throughout the specification, when a part is "connected" with another part, this includes not only the case where it is "directly connected" but also the case where it is "indirectly connected" with another member interposed therebetween. . In addition, when a part "includes" a certain component, this means that other components may be further provided without excluding other components unless otherwise stated. In addition, unless otherwise specified, % means weight %, and 1 ppm is 0.0001 weight %.
이하 첨부된 도면을 참고하여 본 발명의 실시예를 상세히 설명하기로 한다.Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings.
본 발명의 일 실시예에 따른 플럭스 코어드 와이어는, 합금형 강제 외피 내부에 플럭스가 충전된 플럭스 코어드 와이어로서, 상기 외피는 상기 와이어 전체 중량에 대하여, C : 0.001∼0.06중량%, P+S : 0.02중량% 이하(0중량% 제외), Si : 0.01∼0.80중량%, Mn : 0.01∼3.0중량%, Ni : 0.01∼3.5중량%, Cr : 0.01∼18.0중량%, Mo : 0.01∼1.0중량%, 잔부로서 Fe, 산화물 및 불가피한 불순물을 포함하고, 상기 플럭스는 상기 와이어 전체 중량에 대하여, C : 0.08중량% 이하(0중량% 제외), Si : 0.01∼1.5중량%, Mn : 0.01∼3.0중량%, Al : 0.50중량% 이하(0중량% 제외), Mg : 0.1∼1.0중량%, Ti : 0.01∼5.0중량%, Zr : 0.02∼1.0중량%, Ni : 0.01∼4.0중량%, Mo : 0.01∼1.0중량%, Cr : 0.01∼18중량%, 잔부로서 Fe, 산화물 및 불가피한 불순물을 포함한다.The flux-cored wire according to an embodiment of the present invention is a flux-cored wire in which a flux is filled inside an alloy-type steel sheath, wherein the sheath is based on the total weight of the wire, C: 0.001 to 0.06% by weight, P+ S: 0.02% by weight or less (excluding 0% by weight), Si: 0.01 to 0.80% by weight, Mn: 0.01 to 3.0% by weight, Ni: 0.01 to 3.5% by weight, Cr: 0.01 to 18.0% by weight, Mo: 0.01 to 1.0 % by weight, including Fe, oxides and unavoidable impurities as the balance, and the flux is based on the total weight of the wire, C: 0.08% by weight or less (excluding 0% by weight), Si: 0.01 to 1.5% by weight, Mn: 0.01 to 3.0 wt%, Al: 0.50 wt% or less (excluding 0 wt%), Mg: 0.1 to 1.0 wt%, Ti: 0.01 to 5.0 wt%, Zr: 0.02 to 1.0 wt%, Ni: 0.01 to 4.0 wt%, Mo : 0.01 to 1.0% by weight, Cr: 0.01 to 18% by weight, the balance contains Fe, oxides and unavoidable impurities.
상술된 플럭스 코어드 와이어의 외피를 구성하는 합금 원소들은 와이어 전체 중량에 대하여 다음과 같으며, 각각의 합금 원소의 함유량은 중량비로 나타낸다.The alloying elements constituting the outer shell of the above-described flux-cored wire are as follows with respect to the total weight of the wire, and the content of each alloying element is expressed as a weight ratio.
C : 0.001 내지 0.06중량%C: 0.001 to 0.06 wt%
탄소(C)는 탄화물을 형성함으로써 강도를 개선하는 원소이고, 용접 열영향부가 모재와 유사한 특성을 갖도록 하기 위하여 첨가하는 원소이다. C 함량이 0.001중량% 미만인 경우에는 그 효과가 충분히 얻어지지 않아 용접 금속의 내력이 저하될 수 있다. 반면에, C 함량이 0.06중량% 초과인 경우에는 높은 강도 또는 가공 경화로 인해 인발 공정시 단선이 일어나는 등의 문제가 발생할 수 있다. 또한 용접 이음부의 저온 균열이 발생하거나 충격 인성이 저하할 뿐만 아니라 높은 경도로 인해 다수의 열처리를 행하여야 목적하는 최종 제품으로 가공이 가능하다는 단점이 있다. 따라서, C 함량은 0.001 내지 0.06중량%일 수 있다.Carbon (C) is an element that improves strength by forming carbides, and is an element added to make the weld heat-affected zone have properties similar to those of the base material. If the C content is less than 0.001 wt %, the effect may not be sufficiently obtained, and thus the proof strength of the weld metal may be reduced. On the other hand, when the C content is more than 0.06% by weight, problems such as breakage during the drawing process may occur due to high strength or work hardening. In addition, there is a disadvantage that low-temperature cracking of the weld joint occurs or the impact toughness is lowered, and a number of heat treatments must be performed due to high hardness to be able to process into a desired final product. Accordingly, the C content may be 0.001 to 0.06% by weight.
P+S : 0.02중량% 이하 (0중량% 제외)P+S: 0.02% by weight or less (excluding 0% by weight)
인(P)은 강 중 고용원소로 존재하면서 고용강화를 일으켜 강도 및 경도를 향상시키는 원소이다. P의 함량이 너무 적으면, 일정 수준의 강성을 유지하기 어려울 수 있다. P 함량이 너무 많은 경우에는 주조시 중심 편석을 일으키고 연성이 저하되어 와이어 가공성을 열위하게 할 수 있다. 황(S)은 강 중 망간과 결합해 비금속 개재물을 형성하고 적열 취성(red shortness)의 요인이 되므로 가능한 그 함량을 낮추는 것이 바람직하다. 따라서, 따라서, P+S 함량은 0.02중량% 이하(0중량% 제외)일 수 있다.Phosphorus (P) is an element that improves strength and hardness by causing solid solution strengthening while being present as a solid solution element in steel. If the content of P is too small, it may be difficult to maintain a certain level of rigidity. If the P content is too large, center segregation may occur during casting and ductility may be lowered, which may deteriorate wire workability. Sulfur (S) combines with manganese in steel to form non-metallic inclusions and becomes a factor of red shortness, so it is desirable to lower the content as much as possible. Therefore, therefore, the P+S content may be 0.02 wt% or less (excluding 0 wt%).
Si : 0.01 내지 0.80중량%Si: 0.01 to 0.80 wt%
실리콘(Si)은 고용 강화에 의해 강도를 개선하는 원소이다. 이와 같은 Si는 용접시 산화를 방지하며, 재료의 강도를 높이는 고용강화가 이루어지도록 한다. 여기서 Si 함량이 너무 적으면, 충분한 강도를 확보할 수 없고, Si 함량이 과도하면, 인성이 저하될 수 있다. 따라서, 외피의 Si 함량은 0.01 내지 0.80중량%일 수 있다.Silicon (Si) is an element that improves strength by solid solution strengthening. Such Si prevents oxidation during welding and enables solid solution strengthening to increase the strength of the material. Here, when the Si content is too small, sufficient strength cannot be secured, and when the Si content is excessive, toughness may decrease. Accordingly, the Si content of the shell may be 0.01 to 0.80 wt%.
Mn : 0.01 내지 3.0중량%Mn: 0.01 to 3.0 wt%
망간(Mn)의 경우 고용강화 원소로서 강의 강도를 높이고 열간 가공성을 향상시키는 역할을 한다. 다만, Mn 함량이 과도하면, 연성이 저하되고 중심 편석 발생의 요인으로 작용하여 용접봉 제조공정에서의 인발 작업시 단선을 유발할 수 있다. Mn 함량이 너무 적으면, 충분한 강도를 확보할 수 없고, 적열취성의 발생 요인이 될 수 있다. 따라서, 외피의 Mn 함량은 0.01 내지 3.0중량%일 수 있다.In the case of manganese (Mn), as a solid solution strengthening element, it serves to increase the strength of steel and improve hot workability. However, if the Mn content is excessive, the ductility is lowered and it acts as a factor in the occurrence of center segregation, which may cause disconnection during the drawing operation in the welding electrode manufacturing process. If the Mn content is too small, sufficient strength may not be secured, and it may become a cause of red hot brittleness. Accordingly, the Mn content of the skin may be 0.01 to 3.0% by weight.
Ni : 0.01 내지 3.5중량%Ni: 0.01 to 3.5 wt%
니켈(Ni)은 연성을 향상시켜 인발 가공성을 향상시키는데 효과적일 뿐만 아니라 극저온에서도 안정된 조직을 형성하여 저온 충격 특성 개선을 위해 필요한 원소이다. Ni 함량이 너무 적으면, 이와 같은 효과를 얻기 어려울 수 있고, 플럭스 조성의 안정적인 운영이 어려울 수 있다. 반면에 Ni 함량이 과도하면 강도 상승에 의해 인발 가공성이 열위해질 수 있으며, 표면 결함을 유발할 수 있다. 따라서, Ni 함랸은 0.01 내지 3.5중량%일 수 있다.Nickel (Ni) is not only effective in improving ductility to improve drawing processability, but also forms a stable structure even at cryogenic temperatures and is a necessary element to improve low-temperature impact properties. If the Ni content is too small, it may be difficult to obtain such an effect, and it may be difficult to stably operate the flux composition. On the other hand, if the Ni content is excessive, the drawability may deteriorate due to an increase in strength, and surface defects may be caused. Accordingly, the Ni content may be 0.01 to 3.5 wt%.
Cr : 0.01 내지 18.0중량%Cr: 0.01 to 18.0 wt%
크롬(Cr)은 용접 이음부의 강도에 유리한 원소로써 안정적인 녹층을 형성시키는 역할도 수행하여 내식성 향상에도 기여하는 원소이다. Cr 함량이 너무 적으면, 전술한 효과를 충분히 발휘하기 어려울 수 있다. 반면에 Cr 함량이 과도하면 크롬계 탄화물들이 형성되어 취성을 일으킬 수 있고 이로 인해 가공이 안되는 문제점이 발생할 수 있다. 따라서 Cr 함량은 0.01 내지 18.0중량%일 수 있다.Chromium (Cr) is an element beneficial to the strength of the weld joint and also serves to form a stable rust layer, thereby contributing to the improvement of corrosion resistance. If the Cr content is too small, it may be difficult to sufficiently exhibit the above-described effect. On the other hand, if the Cr content is excessive, chromium-based carbides may be formed and cause brittleness, which may cause a problem in that processing cannot be performed. Therefore, the Cr content may be 0.01 to 18.0% by weight.
Mo : 0.01 내지 1.0중량%Mo: 0.01 to 1.0% by weight
몰리브덴(Mo)은 소입성을 높여 용접 이음부의 강도 확보 측면에서 유리한 원소이다. Mo 함량이 너무 적으면, 이와 같은 효과를 얻기 어려울 수 있다. Mo 함량이 과도하면, 몰리브덴 탄화물의 형성량이 증가하여 취성을 일으킬 수 있고 이로 인해 가공성이 열화되는 문제가 발생할 수 있다. 따라서, Mo 함량은 0.01 내지 1.0중량%일 수 있다.Molybdenum (Mo) is an advantageous element in terms of securing the strength of the weld joint by increasing hardenability. If the Mo content is too small, it may be difficult to obtain such an effect. If the Mo content is excessive, the formation amount of molybdenum carbide may increase to cause brittleness, which may cause a problem in that workability is deteriorated. Accordingly, the Mo content may be 0.01 to 1.0% by weight.
상술된 플럭스 코어드 와이어의 플럭스를 구성하는 합금 원소들은 와이어 전체 중량에 대하여 다음과 같으며, 각각의 합금 원소의 함유량은 중량비로 나타낸다.The alloying elements constituting the flux of the above-described flux-cored wire are as follows with respect to the total weight of the wire, and the content of each alloying element is expressed by weight ratio.
C : 0.08중량% 이하 (0중량% 제외)C: 0.08% by weight or less (excluding 0% by weight)
탄소(C)는 탄화물을 형성함으로써 강도를 개선하는 원소이고, 용접 열영향부가 모재와 유사한 특성을 갖도록 하기 위하여 첨가하는 원소이다. C 함량이 너무 적은 경우에는 충분한 강도를 확보할 수 없다. 반면에, C 함량이 0.08중량% 초과인 경우에는 높은 강도 또는 가공 경화로 인해 인발 공정시 단선이 일어나는 등의 문제가 발생할 수 있다. 따라서, C 함량은 0.08중량% 이하일 수 있다.Carbon (C) is an element that improves strength by forming carbides, and is an element added to make the weld heat-affected zone have properties similar to those of the base material. When the C content is too small, sufficient strength cannot be secured. On the other hand, when the C content is more than 0.08 wt %, problems such as disconnection may occur during the drawing process due to high strength or work hardening. Accordingly, the C content may be 0.08% by weight or less.
Si : 0.01 내지 1.5중량%Si: 0.01 to 1.5 wt%
실리콘(Si)은 고용 강화에 의해 강도를 개선하는 원소이다. 이와 같은 Si는 용접시 산화를 방지하며, 재료의 강도를 높이는 고용강화가 이루어지도록 한다. 여기서 Si 함량이 너무 적으면, 충분한 강도를 확보할 수 없고, Si 함량이 과도하면, 인성이 저하될 수 있다. 따라서, 플럭스의 Si 함량은 0.01 내지 0.80중량%일 수 있다.Silicon (Si) is an element that improves strength by solid solution strengthening. Such Si prevents oxidation during welding and enables solid solution strengthening to increase the strength of the material. Here, when the Si content is too small, sufficient strength cannot be secured, and when the Si content is excessive, toughness may decrease. Accordingly, the Si content of the flux may be 0.01 to 0.80 wt %.
Mn : 0.01 내지 3.0중량%Mn: 0.01 to 3.0 wt%
망간(Mn)의 경우 고용강화 원소로서 강의 강도를 높이고 열간 가공성을 향상시키는 역할을 한다. 다만, Mn 함량이 과도하면, 연성이 저하되고 중심 편석 발생의 요인으로 작용하여 용접봉 제조공정에서의 인발 작업시 단선을 유발할 수 있다. Mn 함량이 너무 적으면, 충분한 강도를 확보할 수 없고, 적열취성의 발생 요인이 될 수 있다. 따라서, Mn 함량은 0.01 내지 3.0중량%일 수 있다.In the case of manganese (Mn), as a solid solution strengthening element, it serves to increase the strength of steel and improve hot workability. However, if the Mn content is excessive, the ductility is lowered and it acts as a factor in the occurrence of center segregation, which may cause disconnection during the drawing operation in the welding electrode manufacturing process. If the Mn content is too small, sufficient strength may not be secured, and it may become a cause of red hot brittleness. Accordingly, the Mn content may be 0.01 to 3.0% by weight.
Al : 0.50중량% 이하 (0중량% 제외)Al: 0.50 wt% or less (excluding 0 wt%)
알루미늄(Al)은 탈산 작용이 있는 원소로서, 산화물을 조대화시켜 인성이 저하시킬 수 있다. 따라서, Al 함량은 0.50중량% 이하(0중량% 제외)로 제한함이 바람직하다. Aluminum (Al) is an element having a deoxidizing action, and may coarsen oxides to reduce toughness. Therefore, it is preferable to limit the Al content to 0.50 wt% or less (excluding 0 wt%).
Mg : 0.1 내지 1.0중량%Mg: 0.1 to 1.0 wt%
마그네슘(Mg)은 탈산 작용이 있는 원소이다. Mg 함량이 0.1중량% 미만인 경우에는 인성이 저하될 수 있으며, 1.0중량% 초과인 경우에는 강도가 과도하게 증가하여, 저온 균열이 발생할 수 있다. 따라서, Mg 함량은 0.1 내지 1.0중량%일 수 있다.Magnesium (Mg) is an element having a deoxidizing action. When the Mg content is less than 0.1% by weight, toughness may be reduced, and when it is more than 1.0% by weight, the strength is excessively increased, and low-temperature cracking may occur. Accordingly, the Mg content may be 0.1 to 1.0% by weight.
Ti : 0.01 내지 5.0중량%Ti: 0.01 to 5.0 wt%
티타늄(Ti)은 와이어의 인성 향상에 기여하는 원소이다. Ti 함량이 0.01중량% 미만인 경우에는 인성이 저하될 수 있으며, 5.0중량% 초과인 경우 용접결함이 발생할 수 있다. 따라서, Ti 함량은 0.01 내지 5.0중량%일 수 있다.Titanium (Ti) is an element contributing to the improvement of the toughness of the wire. If the Ti content is less than 0.01% by weight, toughness may be reduced, and if it is more than 5.0% by weight, welding defects may occur. Accordingly, the Ti content may be 0.01 to 5.0% by weight.
Zr : 0.02 내지 1.0중량%Zr: 0.02 to 1.0 wt%
지르코늄(Zr)은 석출물 형성을 통한 용접부의 저온 인성 확보 측면에서 유리할 뿐만 아니라 용접소재의 작업성 개선에도 크게 기여하는 원소이다. Zr이 0.02중량% 미만이면, 이와 같은 효과를 얻기 어려울 수 있다. 반면에 Zr이 1.0중량% 초과면, 지르코늄 석출물량이 증가하여 가공성이 열화될 뿐만 아니라 작업 온도 상승에 따른 조업특성이 나빠질 수 있다. 따라서, Zr 함량은 0.02 내지 1.0중량%일 수 있다.Zirconium (Zr) is advantageous in terms of securing the low-temperature toughness of the weld zone through the formation of precipitates, and is an element that greatly contributes to the improvement of workability of the welding material. If Zr is less than 0.02% by weight, it may be difficult to obtain such an effect. On the other hand, when Zr exceeds 1.0% by weight, the amount of zirconium precipitates increases to deteriorate workability as well as to deteriorate operating characteristics according to an increase in working temperature. Accordingly, the Zr content may be 0.02 to 1.0% by weight.
Ni : 0.01 내지 4.0중량%Ni: 0.01 to 4.0 wt%
니켈(Ni)은 연성을 향상시켜 인발 가공성을 향상시키는데 효과적일 뿐만 아니라 극저온에서도 안정된 조직을 형성하여 저온 충격 특성 개선을 위해 필요한 원소이다. Ni 함량이 너무 적으면, 이와 같은 효과를 얻기 어려울 수 있고, 플럭스 조성의 안정적인 운영이 어려울 수 있다. 반면에 Ni 함량이 과도하면 강도 상승에 의해 인발 가공성이 열위해질 수 있으며, 표면 결함을 유발할 수 있다. 따라서, Ni 함랸은 0.01 내지 4.0중량%일 수 있다.Nickel (Ni) is not only effective in improving ductility to improve drawing processability, but also forms a stable structure even at cryogenic temperatures and is a necessary element to improve low-temperature impact properties. If the Ni content is too small, it may be difficult to obtain such an effect, and it may be difficult to stably operate the flux composition. On the other hand, if the Ni content is excessive, the drawability may deteriorate due to an increase in strength, and surface defects may be caused. Accordingly, the Ni content may be 0.01 to 4.0% by weight.
Mo : 0.01 내지 1.0중량%Mo: 0.01 to 1.0% by weight
몰리브덴(Mo)은 소입성을 높여 용접 이음부의 강도 확보 측면에서 유리한 원소이다. Mo 함량이 너무 적으면, 이와 같은 효과를 얻기 어려울 수 있다. Mo 함량이 과도하면, 몰리브덴 탄화물의 형성량이 증가하여 취성을 일으킬 수 있고 이로 인해 가공성이 열화되는 문제가 발생할 수 있다. 따라서, Mo 함량은 0.01 내지 1.0중량%일 수 있다.Molybdenum (Mo) is an advantageous element in terms of securing the strength of the weld joint by increasing hardenability. If the Mo content is too small, it may be difficult to obtain such an effect. If the Mo content is excessive, the formation amount of molybdenum carbide may increase to cause brittleness, which may cause a problem in that workability is deteriorated. Accordingly, the Mo content may be 0.01 to 1.0% by weight.
Cr : 0.01 내지 18.0중량%Cr: 0.01 to 18.0 wt%
크롬(Cr)은 용접 이음부의 강도에 유리한 원소로써 안정적인 녹층을 형성시키는 역할도 수행하여 내식성 향상에도 기여하는 원소이다. Cr 함량이 너무 적으면, 전술한 효과를 충분히 발휘하기 어려울 수 있다. 반면에 Cr 함량이 과도하면 크롬계 탄화물들이 형성되어 취성을 일으킬 수 있고 이로 인해 가공이 안되는 문제점이 발생할 수 있다. 따라서 Cr 함량은 0.01 내지 18.0중량%일 수 있다.Chromium (Cr) is an element beneficial to the strength of the weld joint and also serves to form a stable rust layer, thereby contributing to the improvement of corrosion resistance. If the Cr content is too small, it may be difficult to sufficiently exhibit the above-described effect. On the other hand, if the Cr content is excessive, chromium-based carbides may be formed and cause brittleness, which may cause a problem in that processing cannot be performed. Therefore, the Cr content may be 0.01 to 18.0% by weight.
본 발명의 일 실시예에 따른 플럭스 코어드 와이어는, 와이어 전체 중량에 대하여, S ≤ 200ppm을 만족하면서, P+S ≤ 400ppm 인 것을 특징으로 한다. 황(S) 및 인(P) 함유량이 너무 많으면 응고 균열 감수성 및 응력 완화 균열성을 현저하게 증가시킬 수 있다. 따라서, P와 S의 함량을 최소화함으로써 저온인성 및 용접부의 균열발생을 최소화할 수 있다.The flux-cored wire according to an embodiment of the present invention is characterized in that, with respect to the total weight of the wire, S ≤ 200 ppm and P+S ≤ 400 ppm. If the content of sulfur (S) and phosphorus (P) is too large, the solidification cracking susceptibility and stress relaxation cracking property can be significantly increased. Therefore, by minimizing the content of P and S, it is possible to minimize the low-temperature toughness and the occurrence of cracks in the weld zone.
본 발명의 일 실시예에 따른 플럭스 코어드 와이어는, 외피 내부에 충진된 플럭스의 최종 제품 입자 사이즈에 대하여, 플럭스 입도(α) : 5㎛ 이하 합계 ≤ 40중량% (0중량% 제외), 플럭스 입도(β) : 60㎛ 이하 합계 ≤ 80중량%, 플럭스 입도(γ : 1,000㎛ 이하 합계 = 100중량% 인 것을 특징으로 한다. 플럭스 입자 사이즈가 일정 범위 크기로 치우치게 되면 합금 원소들이 플럭스 내에서 편석 현상을 일으킬 수 있다. 따라서, 플럭스 입자 사이즈를 전술한 범위로 제어하여 편석을 방지함에 따라 용접 작업성이 향상될 수 있다. In the flux-cored wire according to an embodiment of the present invention, with respect to the particle size of the final product of the flux filled inside the outer shell, the flux particle size (α): 5 μm or less Total ≤ 40 wt% (excluding 0 wt%), flux Particle size (β): 60㎛ or less Total ≤ 80% by weight, Flux particle size (γ: 1,000㎛ or less Total = 100% by weight. When the flux particle size is biased to a certain range, alloy elements are segregated in the flux Therefore, by controlling the flux particle size within the above-mentioned range to prevent segregation, welding workability can be improved.
본 발명의 일 실시예에 따른 플럭스 코어드 와이어는, 와이어의 총 수분량이 와이어 전체 중량에 대하여, 500ppm(0% 제외) 이하인 것을 특징으로 한다. 와이어의 총 수분량이 지나치게 많으면 확산성 수소량이 증가하여 저온 균열이 발생할 우려가 있다. 이에 따라 와이어의 총 수분량을 전술한 범위로 제어하여 용접부의 저온 충격인성을 확보하고 용접소재의 작업성을 개선할 수 있다.The flux-cored wire according to an embodiment of the present invention is characterized in that the total moisture content of the wire is 500 ppm (excluding 0%) or less based on the total weight of the wire. When the total moisture content of the wire is too large, the diffusible hydrogen content increases and there is a risk of low-temperature cracking. Accordingly, it is possible to control the total moisture content of the wire within the above-described range to secure the low-temperature impact toughness of the welded portion and improve the workability of the welding material.
실시예Example
하기 표 1에 정리된 합금 성분 및 잔부 Fe, 산화물, 및 불가피한 불순물로 이루어지고, 표 2에 정리된 최종 제품내 충진 플럭스 입자 사이즈를 갖으며, 표 3에 정리된 최종 제품의 총 수분량을 포함하는 플럭스 코어드 와이어의 실시예(1) 내지 실시예(10)을 제조하였다. It consists of the alloy components and the remainder Fe, oxides, and unavoidable impurities summarized in Table 1 below, has the filling flux particle size in the final product summarized in Table 2, and contains the total moisture content of the final product summarized in Table 3 Examples (1) to (10) of the flux cored wire were prepared.
품질 균일성(a)은 AWS 용접규격에 따라 순수 용착금속 화학성분을 각 시편당 5회씩 분석하여 합금성분(Si, Mn, Cr, Ni, Mo)의 표준편차를 측정 후 그 값이 0.03 이하이면 "양호", 0.03초과 0.1미만이면 "보통", 0.1 이상이면 불량으로 표기하였다.Quality uniformity (a) is measured by measuring the standard deviation of alloy components (Si, Mn, Cr, Ni, Mo) by analyzing the chemical composition of the pure deposited metal 5 times for each specimen according to the AWS welding standards, and if the value is less than 0.03 "Good", greater than 0.03 and less than 0.1 were indicated as "normal", and greater than 0.1 as poor.
내결함성(b)은 표 4의 용접조건에 따라 AWS A5.20 또는 A5.28 또는 A5.29의 기계물성 시편 제작조건으로 다층 용접 후 X-ray 판독으로 내부 결함발생 유무 평가방법(1)과 표 5에 명시된 용접조건으로 용접을 실시하였을 때 용접부 표면의 웜홀(wormhole) 발생 유무 평가방법(2)를 관찰하여 (1)과 (2)가 모두 양호할 경우 (○), (2)는 양호하나 (1)에서 용접부 내부에 기공이 1~2점 발생될 경우 (△), (1)과 (2)에서 모두 용접결함이 발생할 경우를 (×)로 평가하였다.Fault tolerance (b) is based on the welding conditions in Table 4, with the mechanical properties of AWS A5.20, A5.28, or A5.29, and the evaluation method (1) and the table Observe the evaluation method (2) for the presence or absence of wormholes on the surface of the weld when welding is performed under the welding conditions specified in 5. If (1) and (2) are both good, (○) and (2) are In (1), when 1 or 2 porosity occurs inside the weld, (Δ), and in (1) and (2), when a welding defect occurs, was evaluated as (×).
내균열성(c)은 도 1과 같은 형상으로 강재를 사전 조립하여 표 6의 조건으로 용접시행 후 상온까지 냉각시켜 PT(비파괴 액상 침투 검사) 용접검사로 용접결함 유무를 평가하였다. 전체 용접장 길이에 대해 균열이 발생하지 않으면 "○", 10% 이내로 균열이 발생하면 "△", 10% 이상이면 "×"로 평가하였다. 단, 실시예(6)은 내열재료이고, 실시예(9)는 자동차용 스테인리스 박판용접용, 실시예(10)은 표면경화 육성용으로 용도 특성상 내균열성 평가에서 제외되었다.Crack resistance (c) was evaluated by pre-assembled steel materials in the shape shown in FIG. 1, welding under the conditions of Table 6, cooled to room temperature, and welding defects by PT (non-destructive liquid penetration test) welding test. If cracks did not occur for the entire length of the welding field, it was evaluated as “○”, if cracks occurred within 10%, “Δ”, and if more than 10%, “×” was evaluated. However, Example (6) is a heat-resistant material, Example (9) is for welding stainless steel thin plates for automobiles, and Example (10) is for surface hardening growth.
Figure PCTKR2021008946-appb-img-000001
Figure PCTKR2021008946-appb-img-000001
Figure PCTKR2021008946-appb-img-000002
Figure PCTKR2021008946-appb-img-000002
Figure PCTKR2021008946-appb-img-000003
Figure PCTKR2021008946-appb-img-000003
Figure PCTKR2021008946-appb-img-000004
Figure PCTKR2021008946-appb-img-000004
Figure PCTKR2021008946-appb-img-000005
Figure PCTKR2021008946-appb-img-000005
Figure PCTKR2021008946-appb-img-000006
Figure PCTKR2021008946-appb-img-000006
Figure PCTKR2021008946-appb-img-000007
Figure PCTKR2021008946-appb-img-000007
표 7은 실시예(1) 내지 실시예(10)의 용접부 기계적 특성과 표4 내지 표 6에 의한 품질 균일성(a), 내결함성(b), 내균열성(c)를 측정한 결과를 나타낸다.Table 7 shows the results of measuring the mechanical properties of the welded part of Examples (1) to (10) and the quality uniformity (a), defect resistance (b), and crack resistance (c) according to Tables 4 to 6 .
상기 표 7에서 알 수 있듯이, 실시예(1) 내지 실시예(10)은 항복강도(Y.S : Yeild Strength)가 405MPa 이상이고, 인장강도(T.S : Tensile Strength)는 510MPa 이상이며, 연신율(EL : Elongation)은 22% 이상으로 모두 우수한 것을 알 수 있다. 또한, 실시예(2) 내지 (5), 실시예(7) 및 실시예(8)은 -40℃에서의 충격에너지가 68J 이상으로 우수한 저온 충격인성을 확보한 것을 확인할 수 있다.As can be seen in Table 7, Examples (1) to Example (10) have a yield strength (YS: Yeild Strength) of 405 MPa or more, and a tensile strength (TS: Tensile Strength) of 510 MPa or more, and elongation (EL: Elongation) is 22% or more, and it can be seen that all of them are excellent. In addition, in Examples (2) to (5), Examples (7) and (8), it can be confirmed that the impact energy at -40 ° C. is 68J or more, ensuring excellent low-temperature impact toughness.
또한, 상기 표 7에서 알 수 있듯이, 실시예(1) 내지 실시예(10)은 합금성분(Si, Mn, Cr, Ni, Mo)의 표준편차가 전부 0.03 이하로 측정되어 품질 균일성(a)이 전부 양호하게 나타났다. In addition, as can be seen from Table 7, in Examples (1) to (10), the standard deviation of the alloy components (Si, Mn, Cr, Ni, Mo) was all measured to be 0.03 or less, so that the quality uniformity (a ) were all good.
그리고, 실시예(1) 내지 실시예(10)은 내부 결함발생 및 용접부 표면 웜홀 발생이 없어 내결함성(b)도 양호하게 나타났다. And, in Examples (1) to (10), there was no occurrence of internal defects and no occurrence of wormholes on the surface of the welded portion, so the defect resistance (b) was also good.
또한, 실시예(1) 및 실시예(2)는 비파괴 액상 침투 검사 시 전체 용접장 길이에 대해 10% 이내로 균열이 발생하였지만, 실시예(3) 내지 실시예(5), 실시예(7) 및 실시예(8)은 전체 용접장 길이에 대해 균열이 발생하지 않아 내균열성이 양호하게 나타났다. 단, 단, 실시예(6)은 내열재료이고, 실시예(9)는 자동차용 스테인리스 박판용접용, 실시예(10)은 표면경화 육성용으로 용도 특성상 내균열성 평가에서 제외되었다.In addition, in Examples (1) and (2), cracks occurred within 10% of the total length of the welding field during the non-destructive liquid penetration test, but Examples (3) to (5), and Example (7) and Example (8) showed good crack resistance because cracks did not occur over the entire length of the welding field. However, Example (6) is a heat-resistant material, Example (9) is for welding stainless steel thin plates for automobiles, and Example (10) is for surface hardening growth.
이처럼, 본 발명에 따른 플럭스 코어드 와이어는 합금 성분이 함유된 강제 외피를 사용하고, 상기 외피와 플럭스의 성분 구성을 제어함으로써 편석이 방지되고, 저온인성이 안정화되며, 품질 균일성, 내결함성 및 내균열성이 향상될 수 있다.As such, the flux-cored wire according to the present invention uses a steel sheath containing alloy components, and by controlling the component composition of the sheath and flux, segregation is prevented, low-temperature toughness is stabilized, quality uniformity, defect resistance and resistance to defects Crackability can be improved.
전술한 본 발명의 설명은 예시를 위한 것이며, 본 발명이 속하는 기술분야의 통상의 지식을 가진 자는 본 발명의 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 쉽게 변형이 가능하다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다. 예를 들어, 단일형으로 설명되어 있는 각 구성 요소는 분산되어 실시될 수도 있으며, 마찬가지로 분산된 것으로 설명되어 있는 구성 요소들도 결합된 형태로 실시될 수 있다.The description of the present invention described above is for illustration, and those of ordinary skill in the art to which the present invention pertains can understand that it can be easily modified into other specific forms without changing the technical spirit or essential features of the present invention. will be. Therefore, it should be understood that the embodiments described above are illustrative in all respects and not restrictive. For example, each component described as a single type may be implemented in a dispersed form, and likewise components described as distributed may be implemented in a combined form.
본 발명의 범위는 후술하는 특허청구범위에 의하여 나타내어지며, 특허청구범위의 의미 및 범위 그리고 그 균등 개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본 발명의 범위에 포함되는 것으로 해석되어야 한다.The scope of the present invention is indicated by the following claims, and all changes or modifications derived from the meaning and scope of the claims and their equivalents should be construed as being included in the scope of the present invention.

Claims (4)

  1. 합금형 강제 외피 내부에 플럭스가 충전된 플럭스 코어드 와이어로서,A flux-cored wire filled with flux inside an alloy-type steel sheath, comprising:
    상기 외피는 상기 와이어 전체 중량에 대하여, C : 0.001∼0.06중량%, P+S : 0.02중량% 이하(0중량% 제외), Si : 0.01∼0.80중량%, Mn : 0.01∼3.0중량%, Ni : 0.01∼3.5중량%, Cr : 0.01∼18.0중량%, Mo : 0.01∼1.0중량%, 잔부로서 Fe, 산화물 및 불가피한 불순물을 포함하고,The outer shell is based on the total weight of the wire, C: 0.001 to 0.06% by weight, P+S: 0.02% by weight or less (excluding 0% by weight), Si: 0.01 to 0.80% by weight, Mn: 0.01 to 3.0% by weight, Ni : 0.01 to 3.5% by weight, Cr: 0.01 to 18.0% by weight, Mo: 0.01 to 1.0% by weight, the balance contains Fe, oxides and unavoidable impurities,
    상기 플럭스는 상기 와이어 전체 중량에 대하여, C : 0.08중량% 이하(0중량% 제외), Si : 0.01∼1.5중량%, Mn : 0.01∼3.0중량%, Al : 0.50중량% 이하(0중량% 제외), Mg : 0.1∼1.0중량%, Ti : 0.01∼5.0중량%, Zr : 0.02∼1.0중량%, Ni : 0.01∼4.0중량%, Mo : 0.01∼1.0중량%, Cr : 0.01∼18중량%, 잔부로서 Fe, 산화물 및 불가피한 불순물을 포함하는, 플럭스 코어드 와이어.The flux is based on the total weight of the wire, C: 0.08% by weight or less (excluding 0% by weight), Si: 0.01 to 1.5% by weight, Mn: 0.01 to 3.0% by weight, Al: 0.50% by weight or less (excluding 0% by weight) ), Mg: 0.1 to 1.0 wt%, Ti: 0.01 to 5.0 wt%, Zr: 0.02 to 1.0 wt%, Ni: 0.01 to 4.0 wt%, Mo: 0.01 to 1.0 wt%, Cr: 0.01 to 18 wt%, A flux cored wire comprising as balance Fe, oxides and unavoidable impurities.
  2. 제1항에 있어서,According to claim 1,
    용접부 균열발생 최소화를 위해 와이어 전체 중량에 대하여,For the total weight of the wire to minimize the occurrence of cracks in the weld zone,
    S ≤ 200ppm을 만족하면서, P+S ≤ 400ppm 인 것을 특징으로 하는, 플럭스 코어드 와이어.While satisfying S ≤ 200 ppm, flux-cored wire, characterized in that P+S ≤ 400 ppm.
  3. 제1항에 있어서,According to claim 1,
    외피 내부에 충진된 플럭스의 최종 제품 입자 사이즈에 대하여,Regarding the particle size of the final product of the flux filled inside the shell,
    플럭스 입도(α) : 5㎛ 이하 합계 ≤ 40중량% (0중량% 제외), 플럭스 입도(β) : 60㎛ 이하 합계 ≤ 80중량%, 플럭스 입도(γ : 1,000㎛ 이하 합계 = 100중량% 인 것을 특징으로 하는, 플럭스 코어드 와이어.Flux particle size (α): 5 μm or less in total ≤ 40 wt% (excluding 0 wt%), flux particle size (β): 60 μm or less in total ≤ 80 wt%, flux particle size (γ: 1,000 μm or less in total = 100 wt% Characterized in that, flux-cored wire.
  4. 제1항에 있어서,According to claim 1,
    용접결함 방지 및 확산성 수소량 저감을 위해 와이어의 총 수분량은 와이어 전체 중량에 대하여, 500ppm(0중량% 제외) 이하인 것을 특징으로 하는, 플럭스 코어드 와이어.A flux-cored wire, characterized in that the total moisture content of the wire is 500ppm (excluding 0% by weight) or less based on the total weight of the wire in order to prevent welding defects and reduce the amount of diffusible hydrogen.
PCT/KR2021/008946 2020-09-25 2021-07-13 Flux cored wire WO2022065648A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020200124571A KR102302988B1 (en) 2020-09-25 2020-09-25 Flux cored wire
KR10-2020-0124571 2020-09-25

Publications (1)

Publication Number Publication Date
WO2022065648A1 true WO2022065648A1 (en) 2022-03-31

Family

ID=77923983

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/008946 WO2022065648A1 (en) 2020-09-25 2021-07-13 Flux cored wire

Country Status (2)

Country Link
KR (1) KR102302988B1 (en)
WO (1) WO2022065648A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008093715A (en) * 2006-10-13 2008-04-24 Nippon Steel Corp High yield strength and high toughness flux-cored wire for gas-shielded arc welding
JP2011255385A (en) * 2010-06-04 2011-12-22 Nippon Steel Corp Flux-cored wire for carbon dioxide gas-shielded arc welding for high-tensile steel
KR101535399B1 (en) * 2012-05-08 2015-07-08 신닛테츠스미킨 카부시키카이샤 Flux-containing wire for welding ultrahigh-tensile steel
KR101831049B1 (en) * 2015-03-30 2018-02-21 가부시키가이샤 고베 세이코쇼 Flux cored wire for gas shielded arc welding
KR102156027B1 (en) * 2018-03-29 2020-09-15 가부시키가이샤 고베 세이코쇼 Flux cored wire

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL1032551C2 (en) 2005-11-07 2007-08-07 Kobe Seiko Sho Kobe Steel Kk Gas-shielded-arc-welding flux cored wire for high tensile steel, contains preset amount of carbon, silicon, manganese, nickel, chromium, molybdenum, titanium, iron and nitrogen

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008093715A (en) * 2006-10-13 2008-04-24 Nippon Steel Corp High yield strength and high toughness flux-cored wire for gas-shielded arc welding
JP2011255385A (en) * 2010-06-04 2011-12-22 Nippon Steel Corp Flux-cored wire for carbon dioxide gas-shielded arc welding for high-tensile steel
KR101535399B1 (en) * 2012-05-08 2015-07-08 신닛테츠스미킨 카부시키카이샤 Flux-containing wire for welding ultrahigh-tensile steel
KR101831049B1 (en) * 2015-03-30 2018-02-21 가부시키가이샤 고베 세이코쇼 Flux cored wire for gas shielded arc welding
KR102156027B1 (en) * 2018-03-29 2020-09-15 가부시키가이샤 고베 세이코쇼 Flux cored wire

Also Published As

Publication number Publication date
KR102302988B1 (en) 2021-09-17

Similar Documents

Publication Publication Date Title
JP3758040B2 (en) Flux-cored wire for gas shielded arc welding for low alloy heat resistant steel
JP5157606B2 (en) TIG welding method of high strength steel using flux cored wire
KR20130127943A (en) Ni-base alloy weld metal, strip electrode, and welding method
EP2206796A1 (en) Austenitic heat resistant alloy
CN113319469B (en) High-strength heat-resistant steel gas shielded welding wire and preparation method thereof
CA1066922A (en) Heat-resistant allow for welded structures
KR20200126001A (en) Antioxidant heat-resistant alloy and manufacturing method
WO2015099218A1 (en) Welding material for heat resistant steel
NO330699B1 (en) Welding electrode made of a nickel-based alloy, and its use
US20230265547A1 (en) Nickel-Based Superalloy Steel And Preparation Method Thereof
CN110253173A (en) A kind of austenitic stainless steel self-shielded arc welding increasing material manufacturing flux cored wire
US3914506A (en) Welding material for austenitic stainless steels
WO2022148426A1 (en) High-aluminum austenitic alloy having excellent high-temperature anticorrosion capabilities and creep resistance
JP2004042116A (en) WELDING WIRE FOR HIGH Cr FERRITIC HEAT RESISTANT STEEL
JPH09168891A (en) Low hydrogen covered electrode for high strength cr-mo steel
WO2021107580A1 (en) Ni-based alloy flux-cored wire
WO2022065648A1 (en) Flux cored wire
JPS6344814B2 (en)
US4626408A (en) Ni-based alloy excellent in intergranular corrosion resistance, stress corrosion cracking resistance and hot workability
JPH11277292A (en) Welding metal and welding joint for high temp. high strength steel
KR102639546B1 (en) Solid wire for gas metal arc welding and gas metal arc welding method
CN106583966A (en) Ultralow-nitrogen austenite stainless steel welding rod for nuclear power
WO2018117464A1 (en) Welding joint part having excellent cryogenic toughness and strength
US3778256A (en) Heat-resistant alloy for a combustion liner of a gas turbine
JPH08108296A (en) Flux cored wire for welding cr-mo low-alloy heat resistant steel

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21872682

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21872682

Country of ref document: EP

Kind code of ref document: A1