JP2009082947A - Flux-cored wire for electrogas arc welding - Google Patents

Flux-cored wire for electrogas arc welding Download PDF

Info

Publication number
JP2009082947A
JP2009082947A JP2007254416A JP2007254416A JP2009082947A JP 2009082947 A JP2009082947 A JP 2009082947A JP 2007254416 A JP2007254416 A JP 2007254416A JP 2007254416 A JP2007254416 A JP 2007254416A JP 2009082947 A JP2009082947 A JP 2009082947A
Authority
JP
Japan
Prior art keywords
mass
wire
slag
less
strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007254416A
Other languages
Japanese (ja)
Other versions
JP5165322B2 (en
Inventor
Hiroyuki Sumi
博幸 角
Yoshihito Ishizaki
圭人 石▲崎▼
Tetsuya Hashimoto
哲哉 橋本
Toshihiko Nakano
利彦 中野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Kobe Steel Ltd
Original Assignee
JFE Steel Corp
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp, Kobe Steel Ltd filed Critical JFE Steel Corp
Priority to JP2007254416A priority Critical patent/JP5165322B2/en
Priority to CN2008101489984A priority patent/CN101396777B/en
Priority to KR1020080094716A priority patent/KR101003249B1/en
Publication of JP2009082947A publication Critical patent/JP2009082947A/en
Application granted granted Critical
Publication of JP5165322B2 publication Critical patent/JP5165322B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/30Selection of soldering or welding materials proper with the principal constituent melting at less than 1550 degrees C
    • B23K35/3053Fe as the principal constituent
    • B23K35/3073Fe as the principal constituent with Mn as next major constituent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/36Selection of non-metallic compositions, e.g. coatings, fluxes; Selection of soldering or welding materials, conjoint with selection of non-metallic compositions, both selections being of interest
    • B23K35/3601Selection of non-metallic compositions, e.g. coatings, fluxes; Selection of soldering or welding materials, conjoint with selection of non-metallic compositions, both selections being of interest with inorganic compounds as principal constituents
    • B23K35/3602Carbonates, basic oxides or hydroxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/40Making wire or rods for soldering or welding
    • B23K35/406Filled tubular wire or rods
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/54Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/02Iron or ferrous alloys

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Nonmetallic Welding Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a flux-cored wire for electrogas arc welding having excellent workability in the one-electrode electrogas arc welding of a thick steel plate, and capable of obtaining a weld metal of high strength and excellent impact performance. <P>SOLUTION: The flux-cored wire for electrogas arc welding contains, by mass, 0.03-0.07% C, 0.3-0.6% Si, 1.8-2.0% Mn, 0.9-1.2% Ni, ≤0.1% Cr, ≤0.3% Cu, 0.3-0.8% Mo, 0.10-0.27% Ti, 0.008-0.014% B, 0.15-0.30% Mg, ≤0.05% Al, ≤0.025% P, ≤0.025% S, and 1.0-2.0% slag generating agent while containing 0.4-0.7% F in the slag generating agent. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、YP460鋼等の厚鋼板の立向1パス溶接が可能な1電極エレクトロガスアーク溶接用フラックス入りワイヤに関する。   The present invention relates to a flux-cored wire for one-electrode electrogas arc welding capable of vertical one-pass welding of thick steel plates such as YP460 steel.

エレクトロガスアーク溶接は、高能率立向溶接方法として、船舶、石油貯蔵タンク及び橋梁等の幅広い分野に適用されている。近時、中国・東アジア諸国の経済、産業の発展が著しく、物流量の増加に伴い、コンテナ貨物の効率的な輸送を目的に、コンテナ船の大型化が急速に進んでいる。   Electrogas arc welding is applied to a wide range of fields such as ships, oil storage tanks and bridges as a highly efficient vertical welding method. In recent years, the economic and industrial development of China and East Asian countries has been remarkable, and with the increase of goods flow, the size of container ships has been increasing rapidly for the purpose of efficient transportation of container cargo.

コンテナ船の大型化に伴い、船側外板又はハッチコーミング等の厚肉化が進んでおり、コンテナ積載数が8000TEUの場合、降伏強度が390N/mmの鋼材を使用すると、適用板厚は80mm程度となる。一方で、鋼材の降伏強度を460N/mm以上とすることで、適用板厚は60mm程度に薄くすることができ、船体の軽量化が可能である。これにより、燃費効率が向上するうえ、溶接施工能率も向上する。従って、鋼材の高強度化が進んでおり、それに対応したエレクトロガスアーク溶接用フラックス入りワイヤの開発が望まれている。 Along with the increase in size of container ships, thickening of ship side shells or hatch coaming is progressing. When the number of containers loaded is 8000 TEU, when steel material with a yield strength of 390 N / mm 2 is used, the applicable plate thickness is 80 mm. It will be about. On the other hand, by setting the yield strength of the steel material to 460 N / mm 2 or more, the applicable plate thickness can be reduced to about 60 mm, and the weight of the hull can be reduced. As a result, fuel efficiency is improved and welding construction efficiency is also improved. Accordingly, the strength of steel materials has been increased, and the development of a flux-cored wire for electrogas arc welding corresponding to that has been desired.

従来から、降伏強度が460N/mm以上のような高強度の鋼材に対するエレクトロガスアーク溶接の適用に関する検討がなされている。例えば、特許文献1はワイヤの化学組成及び溶接金属の化学組成を規定することにより、耐脆性破壊特性を向上させたエレクトロガスアーク溶接方法を提案している。 Conventionally, studies have been made on the application of electrogas arc welding to high-strength steel materials having a yield strength of 460 N / mm 2 or more. For example, Patent Document 1 proposes an electrogas arc welding method in which the brittle fracture resistance is improved by defining the chemical composition of the wire and the chemical composition of the weld metal.

しかし、このような高強度の鋼材を適用するためには、溶接継手強度の確保が重要であり、エレクトロガスアーク溶接のような大入熱溶接の場合には、鋼材の熱影響部の幅が大きいため、熱影響による鋼材の軟化幅も増大し、十分な継手強度が確保できないという問題点がある。   However, in order to apply such a high-strength steel material, it is important to ensure the strength of the welded joint. In the case of large heat input welding such as electrogas arc welding, the width of the heat-affected zone of the steel material is large. For this reason, there is a problem that the softening width of the steel material due to the heat effect increases, and sufficient joint strength cannot be secured.

そこで、このような課題の解決のため、溶接金属の強度を従来よりも高めて、熱影響部の塑性変形を拘束し、継手強度の確保を図ることが提案された。   Therefore, in order to solve such a problem, it has been proposed to increase the strength of the weld metal as compared with the prior art to restrain the plastic deformation of the heat-affected zone and secure the joint strength.

特開2005−329460号公報JP 2005-329460 A

しかしながら、単純に、従来ワイヤよりも更に合金成分を添加し、強度を高めると、溶接時のスラグの粘度が高くなり、作業性が悪くなるうえ、母材希釈も小さくなるため、溶接金属の強度が高くなり過ぎ、靭性が劣化するという問題点がある。   However, simply adding more alloy components than conventional wires to increase the strength will increase the viscosity of the slag during welding, resulting in poor workability and reduced base metal dilution. However, there is a problem that the toughness is deteriorated.

本発明はかかる問題点に鑑みてなされたものであって、厚鋼板の1電極エレクトロガスアーク溶接における作業性が優れており、更に、強度が高く、かつ衝撃性能が優れた溶接金属を得ることができるエレクトロガスアーク溶接用フラックス入りワイヤを提供することを目的とする。   The present invention has been made in view of such a problem, and is capable of obtaining a weld metal having excellent workability in one-electrode electrogas arc welding of a thick steel plate, and further having high strength and excellent impact performance. An object of the present invention is to provide a flux-cored wire for electrogas arc welding.

本発明に係るエレクトロガスアーク溶接用フラックス入りワイヤは、表面側が裏面側より幅広である開先が形成された1対の被溶接板を前記開先が上下方向に延びるように配置し、前記被溶接板の表面側に前記被溶接板に相対的に上方に摺動する摺動銅板を当て、前記被溶接板の裏面側に前記被溶接板に対して固定された裏当材を当てて、前記開先内を1電極エレクトロガスアーク溶接により立向突き合わせ溶接するために使用するフラックス入りワイヤにおいて、ワイヤ全質量あたり
C:0.03乃至0.07質量%、
Si:0.3乃至0.6質量%、
Mn:1.8乃至2.0質量%、
Ni:0.9乃至1.2質量%、
Mo:0.3乃至0.8質量%、
Ti:0.10乃至0.27質量%、
B:0.008乃至0.014質量%、
Mg:0.15乃至0.30質量%、
スラグ生成剤:1.0乃至2.0質量%、
スラグ生成剤のうちF:0.4乃至0.7質量%(F換算値でワイヤ全質量あたり)、
を含有し、
Cr:0.1質量%以下、
Cu:0.3質量%以下、
Al:0.05質量%以下、
P:0.025質量%以下、
S:0.025質量%以下、
に規制することを特徴とする。
The flux cored wire for electrogas arc welding according to the present invention has a pair of welded plates formed with a groove whose front side is wider than the back side so that the groove extends in the vertical direction, and the welded wire Applying a sliding copper plate that slides upward relative to the welded plate to the surface side of the plate, applying a backing material fixed to the welded plate to the back side of the welded plate, In a flux-cored wire used for vertical butt welding in the groove by one-electrode electrogas arc welding, C: 0.03 to 0.07 mass% per total mass of the wire,
Si: 0.3 to 0.6% by mass,
Mn: 1.8 to 2.0% by mass,
Ni: 0.9 to 1.2% by mass,
Mo: 0.3 to 0.8 mass%,
Ti: 0.10 to 0.27% by mass,
B: 0.008 to 0.014% by mass,
Mg: 0.15 to 0.30 mass%,
Slag generating agent: 1.0 to 2.0% by mass,
F: 0.4 to 0.7% by mass of the slag forming agent (F converted value per wire total mass),
Containing
Cr: 0.1% by mass or less,
Cu: 0.3 mass% or less,
Al: 0.05% by mass or less,
P: 0.025 mass% or less,
S: 0.025 mass% or less,
It is characterized by restricting to.

本発明に係る他のエレクトロガスアーク溶接用フラックス入りワイヤは、更に、ワイヤ全質量あたりCO:0.10乃至0.25質量%を含有することを特徴とする。 Another flux cored wire for electrogas arc welding according to the present invention is characterized by containing CO 2 : 0.10 to 0.25% by mass with respect to the total mass of the wire.

本発明によれば、厚鋼板の1電極エレクトロガスアーク溶接における作業性が向上し、更に、強度が高く、かつ衝撃性能が優れた溶接金属を得ることができる。   According to the present invention, it is possible to obtain a weld metal having improved workability in one-electrode electrogas arc welding of a thick steel plate, high strength, and excellent impact performance.

以下、本発明の実施の形態について、添付の図面を参照して具体的に説明する。図1は、本発明のフラックス入りワイヤを使用して、1電極エレクトロガスアーク溶接により、立向突き合わせ溶接する方法を示す模式図である。この図1は被溶接鋼板1のV開先の内部を示す図であり、図の右側が被溶接鋼板の表面、左側が裏面である。被溶接板1の裏面側の開先部分に被溶接板1に対して固定された裏当材3を当て、被溶接板1の表面側の開先部分に被溶接板1に対して上方に摺動する摺動銅板2を当てる。この摺動銅板2の上部にシールドガスを開先内に供給するシールドガスの供給部4を設け、摺動銅板2自体は、パイプ8を介して冷却水が供給されて冷却される。そして、被溶接板1の表面側から溶接電極7を開先内に挿入し、溶接電極7からアークを生成し、被溶接板1の厚さ方向にウィービングしつつ、摺動銅板2を上昇させて、被溶接板1を溶接する。これにより溶融スラグ及び溶融池6が形成され、溶融池6が凝固して溶接金属5が形成される。摺動銅板2と被溶接板1との間には、スラグ逃がし溝9が形成される。   Hereinafter, embodiments of the present invention will be specifically described with reference to the accompanying drawings. FIG. 1 is a schematic view showing a method of vertical butt welding by one-electrode electrogas arc welding using the flux-cored wire of the present invention. FIG. 1 is a view showing the inside of a V groove of a steel plate 1 to be welded. The right side of the drawing is the front surface of the steel plate to be welded and the left side is a back surface. The backing material 3 fixed to the welded plate 1 is applied to the groove portion on the back side of the welded plate 1, and the groove portion on the surface side of the welded plate 1 is directed upward with respect to the welded plate 1. The sliding copper plate 2 that slides is applied. A shield gas supply unit 4 for supplying a shield gas into the groove is provided on the upper portion of the sliding copper plate 2, and the sliding copper plate 2 itself is cooled by supplying cooling water via a pipe 8. Then, the welding electrode 7 is inserted into the groove from the surface side of the welded plate 1, an arc is generated from the weld electrode 7, and the sliding copper plate 2 is raised while weaving in the thickness direction of the welded plate 1. The welded plate 1 is welded. Thereby, molten slag and molten pool 6 are formed, and molten pool 6 is solidified to form weld metal 5. A slag relief groove 9 is formed between the sliding copper plate 2 and the welded plate 1.

このような1電極エレクトロガスアーク溶接による立向突き合わせ溶接において、本発明者らが鋭意検討した結果、ワイヤの化学組成を更に適切に規定することにより、高強度の溶接継手においても作業性が良好で、溶接金属の衝撃性能を高めることができることを見出した。   In the vertical butt welding by such one-electrode electrogas arc welding, the present inventors have intensively studied. As a result, the workability is good even in a high-strength welded joint by further appropriately defining the chemical composition of the wire. It has been found that the impact performance of weld metal can be enhanced.

熱影響部の塑性変形を拘束する拘束力を高めるためには、従来よりも溶接金属の強度を高める必要があるため、ワイヤのSi,Mn,Mo等の合金成分を増加させる必要があった。しかし、これらの成分が増加すると、溶融金属及び溶融スラグの粘度は高くなり、図1に示すスラグ逃がし溝から、スラグを良好に排出できなくなる。従って、溶融池にスラグが過度にたまり、アークが不安定となり、溶込みも浅くなり、融合不良が発生しやすくなる上、強度が高くなり過ぎ、靱性も劣化するという問題点がある。   In order to increase the restraining force that restrains the plastic deformation of the heat affected zone, it is necessary to increase the strength of the weld metal as compared with the prior art, so it is necessary to increase the alloy components such as Si, Mn, and Mo of the wire. However, when these components increase, the viscosity of the molten metal and molten slag increases, and the slag cannot be discharged well from the slag escape groove shown in FIG. Therefore, there is a problem that slag accumulates excessively in the molten pool, the arc becomes unstable, the penetration becomes shallow, poor fusion is likely to occur, the strength becomes too high, and the toughness deteriorates.

また、靱性劣化に対しては、従来、主に靭性を安定化させる効果のあるNi添加による改善を図ってきた。しかし、このようにNiが主体の成分系で、継手強度を確保するために合金成分を添加し、強度を高めると、靭性が劣化する傾向が認められた。   In addition, for toughness degradation, conventionally, improvement has been attempted by adding Ni, which mainly has an effect of stabilizing toughness. However, in such a component system mainly composed of Ni, it has been recognized that when an alloy component is added to secure joint strength and the strength is increased, the toughness tends to deteriorate.

そこで、本発明者らは、前述の溶接作業性の改善が可能であり、即ちスラグの排出性が良好であり、かつ衝撃性能が良好な溶接金属が得られるワイヤの成分系を開発すべく鋭意検討した結果、ワイヤに添加する合金成分の適正化、並びにスラグ生成剤の量及びそのうちのF量を厳密に規定することが有効であることが明らかとなった。   Therefore, the present inventors have eagerly developed a wire component system that can improve the above-described welding workability, that is, a slag discharge property and a weld metal with good impact performance. As a result of examination, it has become clear that it is effective to optimize the alloy components added to the wire, and to strictly define the amount of slag forming agent and the amount of F thereof.

溶融金属及び溶融スラグの粘度が高いと、前述のとおり、スラグの排出性が悪くなるが、Si,Mn添加量を過度にならないよう調整することで、溶融金属及び溶融スラグの粘度の上昇を抑えることができる。更には、スラグ生成剤の量を増やすことで、スラグ逃がし溝へ溶融スラグを流れやすくし、粘度の高い溶融金属がスラグ逃がし溝を塞ぐことを防止することができる。また、スラグ生成剤のうちのF量を増やすことで、溶融スラグの粘性を低くし、排出性をよくすることができる。   As described above, when the viscosity of the molten metal and molten slag is high, the slag discharge performance is deteriorated, but the increase in the viscosity of the molten metal and molten slag is suppressed by adjusting the addition amount of Si and Mn so as not to be excessive. be able to. Furthermore, by increasing the amount of the slag generating agent, the molten slag can easily flow into the slag escape groove, and it is possible to prevent molten metal having a high viscosity from blocking the slag escape groove. Moreover, the viscosity of molten slag can be lowered | hung and discharge property can be improved by increasing F amount of slag production | generation agents.

衝撃性能に関しては、従来よりもNi量を減らし、Moを添加することで、組織の微細化が可能となり、厚板における強度及び靭性の確保に有効であることを見出した。但し、Niを過度に減らすと、遷移温度を低下させる効果がなくなり、低温での靭性が劣化する。一方、Mo量が過大となると、焼入れ効果が高いため、強度が高くなり過ぎ、靱性が劣化する方向となり、Ni,Mo量の適正化が溶接金属の強度及び靭性の安定化に重要である。   Regarding the impact performance, it has been found that by reducing the amount of Ni and adding Mo as compared with the prior art, the structure can be made finer and effective in securing the strength and toughness of the thick plate. However, if Ni is excessively reduced, the effect of lowering the transition temperature is lost, and the toughness at low temperatures deteriorates. On the other hand, if the amount of Mo is excessive, the quenching effect is high, so that the strength becomes too high and the toughness deteriorates, and the optimization of the amounts of Ni and Mo is important for stabilizing the strength and toughness of the weld metal.

以下、本発明のフラックス入りワイヤの成分添加理由及び組成限定理由について説明する。   Hereinafter, the reasons for adding components and limiting the composition of the flux-cored wire of the present invention will be described.

「C:0.03乃至0.07質量%」
Cは溶接金属の強度を確保するためには欠かせない元素であるが、強度を高める目的で過度に添加すると、靱性が劣化するため、強度を高めるために従来以上にCを添加するということは好ましくない。Cの質量が0.03質量%未満では、溶接金属の強度が低下し、目的の強度が得られない。一方、Cが0.07質量%を超えると、溶接金属の強度が高くなり過ぎ、靭性が劣化する。なお、C源としては、鋼製外皮中のC,C単体、鉄粉及び金属粉中のC等がある。
“C: 0.03 to 0.07 mass%”
C is an element indispensable for ensuring the strength of the weld metal, but if added excessively for the purpose of increasing the strength, the toughness deteriorates, so that C is added more than before to increase the strength. Is not preferred. If the mass of C is less than 0.03% by mass, the strength of the weld metal decreases, and the desired strength cannot be obtained. On the other hand, when C exceeds 0.07 mass%, the strength of the weld metal becomes too high and the toughness deteriorates. Examples of the C source include C and C in the steel outer shell, C in iron powder and metal powder, and the like.

「Si:0.3乃至0.6質量%」
Siは溶接金属の強度を高めるため、従来よりも多く添加する必要がある。また、Siは脱酸剤として溶接金属の酸素量を低減し靭性を向上させる効果もある。Siの質量が0.3質量%未満では、溶接金属の靱性が劣化する。一方、Siが0.6質量%を超えると、溶融スラグの粘度が高くなり、スラグの排出性が悪く、アークが不安定となり、融合不良が発生する。なお、Si源としては、鋼製外皮中のSi,Fe−Si,Fe−Si−Mn,Fe−Si−B,Fe−Si−Mg,REM−Ca−Si等がある。
“Si: 0.3 to 0.6 mass%”
Since Si increases the strength of the weld metal, it needs to be added more than before. Si also has the effect of reducing the oxygen content of the weld metal and improving toughness as a deoxidizer. When the mass of Si is less than 0.3% by mass, the toughness of the weld metal deteriorates. On the other hand, when Si exceeds 0.6% by mass, the viscosity of the molten slag increases, the slag discharge performance is poor, the arc becomes unstable, and fusion failure occurs. Examples of the Si source include Si, Fe—Si, Fe—Si—Mn, Fe—Si—B, Fe—Si—Mg, and REM—Ca—Si in a steel shell.

「Mn:1.8乃至2.0質量%」
Mnも溶接金属の強度を高めるため、従来よりも多く添加する必要がある。また、Mnは脱酸剤として溶接金属の酸素量を低減し、靱性を向上させる効果もある。Mnの質量が1.8質量%未満では、溶接金属の強度が低下し、目的の強度が得られない。一方、Mnが2.0質量%を超えると、溶接金属の強度が高くなり過ぎ、靭性が劣化する。なお、Mn源としては、鋼製外皮中のMn,金属Mn,Fe−Mn,Fe−Si−Mn等がある。
“Mn: 1.8 to 2.0 mass%”
Mn also needs to be added more than before in order to increase the strength of the weld metal. Mn also has the effect of reducing the oxygen content of the weld metal and improving toughness as a deoxidizer. If the mass of Mn is less than 1.8% by mass, the strength of the weld metal is lowered and the intended strength cannot be obtained. On the other hand, when Mn exceeds 2.0 mass%, the strength of the weld metal becomes too high and the toughness deteriorates. Examples of the Mn source include Mn, steel Mn, Fe—Mn, and Fe—Si—Mn in the steel outer shell.

「Ni:0.9乃至1.2質量%」
Niはオーステナイト形成元素であり、前述したとおり、溶接金属の靱性を安定化させる効果がある。しかし、Mo等の合金成分を添加し、組織微細化効果により靭性を確保するため、靱性が不安定にならない程度まで、従来よりもNiの添加量を減らす必要がある。但し、Niの質量が0.9質量%未満では、溶接金属の靱性が不安定となり劣化する。一方、Niが1.2質量%を超えると、強度が高くなり過ぎ、靭性が劣化する。なお、Ni源としては、金属Ni,Fe−Ni,Ni−Mg等がある。
“Ni: 0.9 to 1.2 mass%”
Ni is an austenite forming element and has the effect of stabilizing the toughness of the weld metal as described above. However, in order to ensure the toughness by the effect of refining the structure by adding an alloy component such as Mo, it is necessary to reduce the amount of Ni added to the extent that the toughness does not become unstable. However, if the mass of Ni is less than 0.9 mass%, the toughness of the weld metal becomes unstable and deteriorates. On the other hand, if Ni exceeds 1.2% by mass, the strength becomes too high and the toughness deteriorates. Note that Ni sources include metal Ni, Fe—Ni, Ni—Mg, and the like.

「Mo:0.3乃至0.8質量%」
Moは溶接金属の強度を高めるため、従来よりも多く添加する必要がある。また、Moはフェライト形成元素であり、溶接金属の焼入れ性を高める効果があり、凝固組織微細化に有効な元素である。従って、Moは靱性を向上させる。Moの質量が0.3質量%未満では、溶接金属の強度が低下し、目的の溶接継手強度が得られない。一方、Moが0.8質量%を超えると、強度が高くなり靱性は劣化する。なお、Mo源としては、金属Mo,Fe−Mo等がある。
“Mo: 0.3 to 0.8 mass%”
In order to increase the strength of the weld metal, Mo needs to be added more than before. Mo is a ferrite-forming element, has an effect of improving the hardenability of the weld metal, and is an element effective for refining the solidified structure. Therefore, Mo improves toughness. If the mass of Mo is less than 0.3% by mass, the strength of the weld metal decreases, and the intended weld joint strength cannot be obtained. On the other hand, when Mo exceeds 0.8 mass%, the strength increases and the toughness deteriorates. As the Mo source, there are metal Mo, Fe-Mo, and the like.

「Ti:0.10乃至0.27質量%」
TiはBとの相乗効果により溶接金属組織を微細化し、靭性を向上させる効果がある。Tiの質量が0.10質量%未満では、組織の微細化効果が得られず、溶接金属の靭性が劣化する。一方、Tiが0.27質量%を超えると、溶接金属中にTiが過剰となり、靱性が劣化する。なお、Ti源としては、金属Ti,Fe−Ti等がある。
“Ti: 0.10 to 0.27 mass%”
Ti has the effect of refining the weld metal structure and improving toughness by a synergistic effect with B. If the mass of Ti is less than 0.10% by mass, the effect of refining the structure cannot be obtained, and the toughness of the weld metal deteriorates. On the other hand, when Ti exceeds 0.27 mass%, Ti becomes excessive in the weld metal and the toughness deteriorates. The Ti source includes metal Ti, Fe—Ti, and the like.

「B:0.008乃至0、014質量%」
Bは少量の添加でTiとの相乗効果により溶接金属組織を微細化し、靱性を向上させる効果がある。Bの質量が0.008質量%未満では、組織の微細化効果が得られず、溶接金属の靱性が劣化する。一方、Bが0.014質量%を超えると、溶接金属中にBが過剰となり、強度が高くなり過ぎ、靱性が劣化する。なお、B源としては、Fe−B,Fe−Si−B,B等がある。
“B: 0.008 to 0,014 mass%”
B has the effect of making the weld metal structure fine and improving toughness by synergistic effect with Ti with a small amount of addition. If the mass of B is less than 0.008 mass%, the effect of refining the structure cannot be obtained, and the toughness of the weld metal deteriorates. On the other hand, if B exceeds 0.014% by mass, B becomes excessive in the weld metal, the strength becomes too high, and the toughness deteriorates. Examples of the B source include Fe—B, Fe—Si—B, and B 2 O 3 .

「Mg:0.15乃至0.30質量%」
Mgは脱酸剤として溶接金属の酸素量を低減し、靭性を向上させる効果がある。Mgの質量が0.15質量%未満では、溶接金属の酸素量低減効果が得られず、溶接金属の靱性が劣化する。一方、Mgが0.30質量%を超えると、アークが不安定となり、スパッタが多発する。なお、Mg源としては、金属Mg,Al−Mg,Fe−Si−Mg,Ni−Mg等がある。
“Mg: 0.15 to 0.30 mass%”
Mg as a deoxidizer has the effect of reducing the oxygen content of the weld metal and improving toughness. If the mass of Mg is less than 0.15% by mass, the effect of reducing the oxygen content of the weld metal cannot be obtained, and the toughness of the weld metal deteriorates. On the other hand, if Mg exceeds 0.30% by mass, the arc becomes unstable and spattering occurs frequently. Note that the Mg source includes metal Mg, Al—Mg, Fe—Si—Mg, Ni—Mg, and the like.

「Al:0.05質量%以下」
溶接金属のAl量が高いと、Ti酸化物による組織微細化効果が抑制され、靭性は劣化するので、Alは0.05質量%以下に抑制する。
“Al: 0.05% by mass or less”
When the Al content of the weld metal is high, the effect of refining the structure due to the Ti oxide is suppressed and the toughness deteriorates, so Al is suppressed to 0.05% by mass or less.

「Cu:0.3質量%以下」
Cuは意図的には添加しない。ただし、フラックス入りワイヤの外周面のメッキにより、不可避的に0.3質量%以下含まれることがあるが、この程度の量は許容される。
“Cu: 0.3 mass% or less”
Cu is not intentionally added. However, although it may inevitably be contained in an amount of 0.3% by mass or less due to plating of the outer peripheral surface of the flux-cored wire, such an amount is allowed.

「Cr:0.1質量%以下」
Crはフェライト形成元素であり、溶接金属の焼入れ性を高める効果があるが、その効果はMoと比較して小さく、意図的には添加せず、不可避的に0.1質量%以下含まれることは許容される。
"Cr: 0.1 mass% or less"
Cr is a ferrite-forming element and has the effect of improving the hardenability of the weld metal, but the effect is small compared to Mo, intentionally not added, and inevitably contained 0.1% by mass or less Is acceptable.

「P、S:0.025質量%以下」
P,Sが高いと高温割れが発生しやすくなるため、0.025質量%以下に抑制する。
“P, S: 0.025 mass% or less”
When P and S are high, hot cracking is likely to occur, so the content is suppressed to 0.025% by mass or less.

「スラグ生成剤:1.0乃至2.0質量%」
スラグ生成剤は、アークの安定化、スパッタ低減、溶落防止等、溶接作業性の安定化に不可欠である。本発明の溶接金属成分は、合金元素が多く、溶融金属が酸化される成分量も多く、溶融金属及び溶融スラグの粘性が高くなり、溶融金属がスラグ逃がし溝を塞ぎ、さらには粘度の高い溶融スラグのため、スラグの排出性が著しく悪くなる。そこで、スラグの生成剤の量を従来よりも増やし、スラグ逃がし溝まで溶融金属がこないようにすることで作業性の劣化は抑えられる。スラグ生成剤の量が1.0質量%未満であると、スラグ量が不足し、溶融金属がスラグ逃がし溝を塞ぎ、スラグの排出性が悪くなるため、融合不良が発生する。更には、スラグが溶融金属を抑えられなくなり、溶落しやすくなる。一方、スラグ量が2.0質量%を超えると、供給されるスラグ量が過大となり、かえってスラグの排出性が悪くなる。従って、アークが不安定となり、融合不良が発生する。
"Slag generator: 1.0 to 2.0 mass%"
The slag generating agent is indispensable for stabilizing the welding workability such as arc stabilization, spatter reduction, and prevention of falling. The weld metal component of the present invention has a large amount of alloying elements and a large amount of the component that oxidizes the molten metal. Due to the slag, the slag discharge performance is remarkably deteriorated. Therefore, the deterioration of workability can be suppressed by increasing the amount of the slag forming agent as compared with the conventional case so that the molten metal does not come to the slag escape groove. When the amount of the slag generating agent is less than 1.0% by mass, the amount of slag is insufficient, the molten metal closes the slag escape groove, and the slag discharge performance is deteriorated, resulting in poor fusion. Furthermore, the slag cannot suppress the molten metal, and is easily melted down. On the other hand, if the amount of slag exceeds 2.0% by mass, the amount of slag to be supplied becomes excessive, and on the contrary, the slag discharge performance is deteriorated. Therefore, the arc becomes unstable and poor fusion occurs.

「スラグ生成剤のうちF量:0.4乃至0.7質量%(F換算値でワイヤ全質量あたり)」
前述のスラグ生成剤の量を規定するだけでは、作業性の向上を図ることができない。そこで、スラグ生成剤のF量について検討した。Fは溶融スラグの粘性を低くし、スラグの排出性を向上させる効果がある。その質量が0.4質量%未満であると、スラグの排出性が悪くなり、アークが不安定となって、融合不良が発生する。一方、Fが0.7質量%を超えると、溶融スラグの粘性が低くなり過ぎ、排出性が良くなり過ぎるため、溶融金属を保持しきれなくなり、溶融金属が溶落しやすくなる。F量は、より好ましくは、0.5乃至0.7質量%である。なお、F源としては、CaF,BaF,NaF,KSiF,SrF,AlF,MgF,LiF等がある。F量とは、これらの化合物の量をF量に換算した値であり、ワイヤ全質量あたりの含有量である。
"F amount of slag forming agent: 0.4 to 0.7 mass% (F converted value per total mass of wire)"
It is not possible to improve workability simply by defining the amount of the slag generating agent. Therefore, the amount of F of the slag forming agent was examined. F has the effect of lowering the viscosity of the molten slag and improving the dischargeability of the slag. If the mass is less than 0.4% by mass, the slag discharge property becomes poor, the arc becomes unstable, and poor fusion occurs. On the other hand, if F exceeds 0.7% by mass, the viscosity of the molten slag becomes too low and the discharge property becomes too good, so that the molten metal cannot be held and the molten metal is likely to fall off. The amount of F is more preferably 0.5 to 0.7% by mass. Examples of the F source include CaF 2 , BaF 2 , NaF, K 2 SiF 6 , SrF 2 , AlF 3 , MgF 2 , and LiF. The F amount is a value obtained by converting the amount of these compounds into an F amount, and is the content per total mass of the wire.

「CO:0.10乃至0.25質量%」
COは、通常、炭酸塩によりワイヤ中に添加される。炭酸塩の分解で発生するCOはアークを安定的に広げる効果がある。ワイヤに炭酸塩を添加することで、アークが広がった状態で安定しているため、溶融スラグがスラグ逃がし溝から安定的に排出される。CO量が0.10質量%未満であると、その効果が得られず、融合不良が発生しやすくなる。一方で、CO量が0.25質量%を超えると、ガス発生量が過大となり、アークが若干不安定となりやすい。なお、炭酸塩としては、CaCO,MgCO,BaCO,LiCO,NaCO,SrCO等がある。CO量とは、これらの炭酸塩のCO量換算値である。
“CO 2 : 0.10 to 0.25% by mass”
CO 2 is usually added into the wire by carbonate. CO 2 generated by the decomposition of carbonate has the effect of stably spreading the arc. By adding carbonate to the wire, the arc is spread and stable, so that the molten slag is stably discharged from the slag escape groove. If the amount of CO 2 is less than 0.10% by mass, the effect cannot be obtained, and poor fusion tends to occur. On the other hand, if the amount of CO 2 exceeds 0.25% by mass, the amount of gas generated becomes excessive, and the arc tends to be slightly unstable. As the carbonate, there is CaCO 2, MgCO 2, BaCO 2 , Li 2 CO 2, Na 2 CO 2, Sr 2 CO 2 or the like. The CO 2 amount is a CO 2 amount conversion value of these carbonates.

なお、スラグ生成剤としては、SiO,CaO,NaO,MgO,Al,LiO,CaF,BaF,NaF,SrF,KO,KSiF,AlF,MgF,LiF,CaCO,MgCO,BaCO,LiCO,NaCO,SrCO等がある。 As the slag-forming agent, SiO 2, CaO, Na 2 O, MgO, Al 2 O 3, Li 2 O, CaF 2, BaF 2, NaF, SrF 2, K 2 O, K 2 SiF 6, AlF 3 there are MgF 2, LiF, CaCO 3, MgCO 3, BaCO 3, Li 2 CO 3, Na 2 CO 3, Sr 2 CO 3 or the like.

フラックス入りワイヤの残部は、Fe、BのO、及びREM等の他は、不可避的不純物である。なお、残部のうち、Feは90質量%以上を含有し、そのFe源は、鋼製外皮、鉄粉、Fe合金のFe等がある。 The balance of the flux-cored wire is inevitable impurities other than Fe, B 2 O 3 O, REM, and the like. Of the balance, Fe contains 90% by mass or more, and the Fe source includes steel outer skin, iron powder, Fe alloy Fe, and the like.

また、本発明のフラックス入りワイヤのフラックス充填率は、20乃至30質量%である。   The flux filling rate of the flux-cored wire of the present invention is 20 to 30% by mass.

本発明のエレクトロガスアーク溶接においては、母材の影響も少なからず受けるため、適用鋼板としては、一般構造用圧延鋼材、溶接構造用圧延鋼材、溶接構造用高降伏点鋼板、建築構造用圧延鋼、船舶用に使用される鋼板のうち、下記表1に示す範囲(単位は質量%)とすることが好ましい。本実施例において使用した被溶接鋼板は、下記表2に示すもの(単位は質量%)である。この供試鋼板は板厚60mm、幅500mm、長さ1000mmの大きさを有する。これらの表1及び2において、炭素等量Ceqは、下記数式1により現される。   In the electrogas arc welding of the present invention, since the influence of the base material is not a little, as the applicable steel plate, rolled steel for general structure, rolled steel for welded structure, high yield point steel plate for welded structure, rolled steel for building structure, Of the steel plates used for ships, the ranges shown in Table 1 below (unit: mass%) are preferred. The welded steel plates used in this example are those shown in Table 2 below (unit: mass%). The test steel sheet has a thickness of 60 mm, a width of 500 mm, and a length of 1000 mm. In these Tables 1 and 2, the carbon equivalent Ceq is expressed by Equation 1 below.

Figure 2009082947
Figure 2009082947

Figure 2009082947
Figure 2009082947

Figure 2009082947
Figure 2009082947

そして、下記表3は試験条件、表4は溶接施工条件を示し、これらの表3及び表4に示す条件で1パス溶接を行った。そして、溶接中に作業性を確認した。溶接後、UT検査を行い、融合不良の有無を確認した。なお、溶接が安定していないスタート側及びクレータ側の各100mmは検査対象外とした。従って、有効長は800mmである。なお、途中で溶落したものは短くなる。有効長の範囲において、融合不良が認められないものを◎、融合不良の長さが2%未満のものを○、2%を超えるものを×とした。なお、ワイヤ径は1.6mmである。   Table 3 below shows test conditions, Table 4 shows welding conditions, and one-pass welding was performed under the conditions shown in Tables 3 and 4. And workability | operativity was confirmed during welding. After welding, a UT inspection was performed to confirm the presence of poor fusion. In addition, each 100 mm on the start side and crater side where welding was not stable was excluded from inspection. Therefore, the effective length is 800 mm. In addition, what melted down on the way becomes shorter. In the range of the effective length, the case where no fusion failure was observed was marked as ◎, the case where the fusion failure length was less than 2% was marked as ◯, and the case where the fusion length was over 2% was marked as ×. The wire diameter is 1.6 mm.

Figure 2009082947
Figure 2009082947

Figure 2009082947
開先形状:V開先
Figure 2009082947
Groove shape: V groove

溶接金属の衝撃試験については、JIS Z 3128に規定されている方法により−20℃における衝撃値を測定し、3本の値の平均値が53J以上のものを、衝撃性能が良好と判断した。溶接金属の強度は、溶接金属の中央部の位置でNK U1A号試験片を使用し(試験片直径10mm、標点距離50mm)、600N/mm以上を目標強度とした。 As for the weld metal impact test, the impact value at −20 ° C. was measured by the method defined in JIS Z 3128, and the average of the three values was determined to have good impact performance when the average value was 53 J or more. As for the strength of the weld metal, an NK U1A test piece was used at the position of the center of the weld metal (test piece diameter: 10 mm, gauge distance: 50 mm), and the target strength was 600 N / mm 2 or more.

下記表5及び表6はワイヤの化学組成(単位は質量%)を示す。また、これらのワイヤにより溶接したときの溶接金属の特性を下記表7に示す。この表5及び表6に示す組成の実施例1〜14のワイヤでは、溶接作業性は良好で、靱性も良好であり、目標とする溶接金属強度が得られた。比較例15のワイヤでは、ワイヤのスラグ生成剤のうち、Fの量が0.4質量%未満であり、スラグの排出性が悪くなり、融合不良が発生した。比較例16のワイヤでは、ワイヤのC量が0.03質量%未満,Mo量が0.3質量%未満であり、目的の強度が得られなかった。比較例17では、ワイヤのC量が0.07質量%を超え、Mn量が2.1質量%を超え、Mo量が0.8質量%を超えており、溶接金属の強度が高くなり過ぎ、靱性が劣化した。比較例18では、ワイヤSi量が0.3質量%未満であり、靱性が劣化した。比較例19では、ワイヤのTi量が0.27質量%を超え、B量が0.014質量%を超えており、溶接金属の強度が高くなり過ぎ、靱性が劣化した。比較例20では、ワイヤのスラグ生成剤の量が2.0質量%を超えており、スラグの排出性が悪くなり、融合不良が発生した。比較例21では、ワイヤのスラグ生成剤の量が1.0質量%未満であり、スラグの排出性が悪くなり、融合不良が発生した。更には、溶接途中で溶接金属が溶落した。比較例22では、ワイヤのSi量が0.6質量%を超えており、スラグの排出性が悪くなり、融合不良が発生した。更には、ワイヤNi量が1.2質量%を超えており、溶接金属強度が高くなり過ぎ、靭性が劣化した。比較例23では、ワイヤTi量が0.10質量%未満で、B量が0.008質量%未満であり、溶接金属組織の微細化効果が得られず、靭性が劣化した。比較例24では、ワイヤのスラグ生成剤のうちFの量が0.7質量%を超えており、溶接途中で溶落した。比較例25では、ワイヤのMn量が1.8質量%未満であり、目的の強度が得られなかった。比較例26では、ワイヤのNi量が0.9質量%未満であり、靱性が劣化した。比較例27では、ワイヤのMg量が0.15質量%未満であり、靱性が劣化した。比較例28では、ワイヤのMg量が0.30質量%を超えており、スパッタが多発した。
Tables 5 and 6 below show the chemical composition (unit: mass%) of the wire. The characteristics of the weld metal when welded with these wires are shown in Table 7 below. In the wires of Examples 1 to 14 having the compositions shown in Tables 5 and 6, welding workability was good and toughness was good, and the target weld metal strength was obtained. In the wire of Comparative Example 15, the amount of F in the wire slag forming agent was less than 0.4% by mass, the slag discharge performance was deteriorated, and poor fusion occurred. In the wire of Comparative Example 16, the C content of the wire was less than 0.03% by mass, the Mo content was less than 0.3% by mass, and the intended strength was not obtained. In Comparative Example 17, the C content of the wire exceeds 0.07 mass%, the Mn content exceeds 2.1 mass%, the Mo content exceeds 0.8 mass%, and the strength of the weld metal becomes too high. The toughness deteriorated. In Comparative Example 18, the amount of wire Si was less than 0.3% by mass, and the toughness deteriorated. In Comparative Example 19, the Ti amount of the wire exceeded 0.27 mass%, the B amount exceeded 0.014 mass%, the strength of the weld metal became too high, and the toughness deteriorated. In Comparative Example 20, the amount of the slag forming agent of the wire exceeded 2.0% by mass, the slag discharge performance was deteriorated, and poor fusion occurred. In Comparative Example 21, the amount of the slag generating agent of the wire was less than 1.0% by mass, the slag discharge performance was deteriorated, and poor fusion occurred. Furthermore, the weld metal melted down during welding. In Comparative Example 22, the amount of Si in the wire exceeded 0.6% by mass, the slag discharge performance deteriorated, and poor fusion occurred. Furthermore, the amount of wire Ni exceeded 1.2 mass%, the weld metal strength became too high, and the toughness deteriorated. In Comparative Example 23, the amount of Ti wire was less than 0.10% by mass and the amount of B was less than 0.008% by mass, so that the effect of refining the weld metal structure could not be obtained and the toughness deteriorated. In Comparative Example 24, the amount of F in the slag forming agent of the wire exceeded 0.7% by mass and melted down during welding. In Comparative Example 25, the Mn content of the wire was less than 1.8% by mass, and the desired strength was not obtained. In Comparative Example 26, the amount of Ni in the wire was less than 0.9% by mass, and the toughness deteriorated. In Comparative Example 27, the amount of Mg in the wire was less than 0.15% by mass, and the toughness deteriorated. In Comparative Example 28, the amount of Mg in the wire exceeded 0.30% by mass, and sputtering occurred frequently.

Figure 2009082947
Figure 2009082947

Figure 2009082947
Figure 2009082947

Figure 2009082947
Figure 2009082947

溶接方法を示す図である。It is a figure which shows the welding method.

符号の説明Explanation of symbols

1:被溶接板
2:摺動銅板
3:裏当材
4:シールドガス供給部
5:溶接金属
6:溶融スラグ及び溶融池
7:電極
8:パイプ
9:スラグ逃がし溝
1: welded plate 2: sliding copper plate 3: backing material 4: shield gas supply unit 5: weld metal 6: molten slag and molten pool 7: electrode 8: pipe 9: slag relief groove

Claims (2)

表面側が裏面側より幅広である開先が形成された1対の被溶接板を前記開先が上下方向に延びるように配置し、前記被溶接板の表面側に前記被溶接板に相対的に上方に摺動する摺動銅板を当て、前記被溶接板の裏面側に前記被溶接板に対して固定された裏当材を当てて、前記開先内を1電極エレクトロガスアーク溶接により立向突き合わせ溶接するために使用するフラックス入りワイヤにおいて、ワイヤ全質量あたり
C:0.03乃至0.07質量%、
Si:0.3乃至0.6質量%、
Mn:1.8乃至2.0質量%、
Ni:0.9乃至1.2質量%、
Mo:0.3乃至0.8質量%、
Ti:0.10乃至0.27質量%、
B:0.008乃至0.014質量%、
Mg:0.15乃至0.30質量%、
スラグ生成剤:1.0乃至2.0質量%、
スラグ生成剤のうちF:0.4乃至0.7質量%(F換算値でワイヤ全質量あたり)、
を含有し、
Cr:0.1質量%以下、
Cu:0.3質量%以下、
Al:0.05質量%以下、
P:0.025質量%以下、
S:0.025質量%以下、
に規制することを特徴とするエレクトロガスアーク溶接用フラックス入りワイヤ。
A pair of welded plates each having a groove whose front side is wider than the rear side are arranged so that the groove extends in the vertical direction, and the surface side of the welded plate is relatively to the welded plate. A sliding copper plate that slides upward is applied, a backing material fixed to the welded plate is applied to the back side of the welded plate, and the inside of the groove is vertically butt-matched by one-electrode electrogas arc welding. In the flux-cored wire used for welding, C: 0.03 to 0.07 mass% per total mass of the wire,
Si: 0.3 to 0.6% by mass,
Mn: 1.8 to 2.0% by mass,
Ni: 0.9 to 1.2% by mass,
Mo: 0.3 to 0.8 mass%,
Ti: 0.10 to 0.27% by mass,
B: 0.008 to 0.014% by mass,
Mg: 0.15 to 0.30 mass%,
Slag generating agent: 1.0 to 2.0% by mass,
F: 0.4 to 0.7% by mass of the slag forming agent (F converted value per wire total mass),
Containing
Cr: 0.1% by mass or less,
Cu: 0.3 mass% or less,
Al: 0.05% by mass or less,
P: 0.025 mass% or less,
S: 0.025 mass% or less,
A flux-cored wire for electrogas arc welding, characterized in that
ワイヤ全質量あたりCO:0.10乃至0.25質量%を含有することを特徴とする請求項1に記載のエレクトロガスアーク溶接用フラックス入りワイヤ。 2. The flux-cored wire for electrogas arc welding according to claim 1, comprising CO 2 : 0.10 to 0.25 mass% per total mass of the wire.
JP2007254416A 2007-09-28 2007-09-28 Flux-cored wire for electrogas arc welding Active JP5165322B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2007254416A JP5165322B2 (en) 2007-09-28 2007-09-28 Flux-cored wire for electrogas arc welding
CN2008101489984A CN101396777B (en) 2007-09-28 2008-09-22 Flux-cored wire for electrogas arc welding
KR1020080094716A KR101003249B1 (en) 2007-09-28 2008-09-26 Flux-cored wire for electrogas arc welding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007254416A JP5165322B2 (en) 2007-09-28 2007-09-28 Flux-cored wire for electrogas arc welding

Publications (2)

Publication Number Publication Date
JP2009082947A true JP2009082947A (en) 2009-04-23
JP5165322B2 JP5165322B2 (en) 2013-03-21

Family

ID=40515749

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007254416A Active JP5165322B2 (en) 2007-09-28 2007-09-28 Flux-cored wire for electrogas arc welding

Country Status (3)

Country Link
JP (1) JP5165322B2 (en)
KR (1) KR101003249B1 (en)
CN (1) CN101396777B (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011152579A (en) * 2010-01-28 2011-08-11 Nippon Steel Corp Metal powder-filled welding wire for electroslag welding
JP2011255385A (en) * 2010-06-04 2011-12-22 Nippon Steel Corp Flux-cored wire for carbon dioxide gas-shielded arc welding for high-tensile steel
JP2019104020A (en) * 2017-12-11 2019-06-27 日本製鉄株式会社 Flux-cored wire for vertical electrogas arc welding, and method for producing weld joint

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5400461B2 (en) * 2009-04-22 2014-01-29 株式会社神戸製鋼所 Flux cored wire
JP5400472B2 (en) * 2009-05-20 2014-01-29 株式会社神戸製鋼所 Flux cored wire
CN102528317B (en) * 2010-12-20 2015-03-11 昆山京群焊材科技有限公司 Flux-cored wire for electrogas welding
CN102554519A (en) * 2011-12-14 2012-07-11 安泰科技股份有限公司 Flux-cored wire for master cable energy forced shaping, and preparation and application method thereof
CN103962743B (en) * 2014-04-30 2016-02-24 西安理工大学 For welding wire that X100 pipe line steel full position welds and preparation method thereof
JP6190774B2 (en) * 2014-07-25 2017-08-30 株式会社神戸製鋼所 Electrogas arc welding method and electrogas arc welding apparatus
CN104511682A (en) * 2015-01-12 2015-04-15 大连中远川崎船舶工程有限公司 Method of single-gun single-wire vertical electrogas welding
JP2019171457A (en) * 2018-03-29 2019-10-10 株式会社神戸製鋼所 Flux-cored wire for high speed welding and high speed arc welding method
CN113001058B (en) * 2021-03-05 2022-09-20 李素坤 Flux-cored wire matched with steel for high heat input welding and application thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10109189A (en) * 1996-08-15 1998-04-28 Kobe Steel Ltd Flux cored wire for electrogas arc welding
JP2005296999A (en) * 2004-04-12 2005-10-27 Nippon Steel & Sumikin Welding Co Ltd Flux-cored wire for electrogas arc welding
JP2005305498A (en) * 2004-04-21 2005-11-04 Nippon Steel & Sumikin Welding Co Ltd Flux-cored wire for electrogas arc welding
JP2005329460A (en) * 2004-04-22 2005-12-02 Nippon Steel Corp Electrogas arc welding method excellent in brittle fracture initiation resistance characteristics of weld zone
JP2008126262A (en) * 2006-11-20 2008-06-05 Kobe Steel Ltd Flux-cored wire for electro-gas arc welding and elecro-gas arc weld metal

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4964480B2 (en) 2006-03-13 2012-06-27 新日本製鐵株式会社 High strength steel pipe excellent in toughness of welded portion and method for producing the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10109189A (en) * 1996-08-15 1998-04-28 Kobe Steel Ltd Flux cored wire for electrogas arc welding
JP2005296999A (en) * 2004-04-12 2005-10-27 Nippon Steel & Sumikin Welding Co Ltd Flux-cored wire for electrogas arc welding
JP2005305498A (en) * 2004-04-21 2005-11-04 Nippon Steel & Sumikin Welding Co Ltd Flux-cored wire for electrogas arc welding
JP2005329460A (en) * 2004-04-22 2005-12-02 Nippon Steel Corp Electrogas arc welding method excellent in brittle fracture initiation resistance characteristics of weld zone
JP2008126262A (en) * 2006-11-20 2008-06-05 Kobe Steel Ltd Flux-cored wire for electro-gas arc welding and elecro-gas arc weld metal

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011152579A (en) * 2010-01-28 2011-08-11 Nippon Steel Corp Metal powder-filled welding wire for electroslag welding
JP2011255385A (en) * 2010-06-04 2011-12-22 Nippon Steel Corp Flux-cored wire for carbon dioxide gas-shielded arc welding for high-tensile steel
JP2019104020A (en) * 2017-12-11 2019-06-27 日本製鉄株式会社 Flux-cored wire for vertical electrogas arc welding, and method for producing weld joint
JP7031271B2 (en) 2017-12-11 2022-03-08 日本製鉄株式会社 Flux-cored wire for vertical electrogas arc welding and welding joint manufacturing method

Also Published As

Publication number Publication date
KR101003249B1 (en) 2010-12-21
CN101396777A (en) 2009-04-01
CN101396777B (en) 2011-05-04
JP5165322B2 (en) 2013-03-21
KR20090033120A (en) 2009-04-01

Similar Documents

Publication Publication Date Title
JP5165322B2 (en) Flux-cored wire for electrogas arc welding
JP4776508B2 (en) Flux-cored wire for electrogas arc welding
JP4986563B2 (en) Flux-cored wire for electrogas arc welding and 2-electrode electrogas arc welding method
JP5005309B2 (en) Gas shielded arc welding flux cored wire for high strength steel
JP2007289965A (en) Flux-cored wire for gas shielded arc welding and welding method
CN106392369B (en) Ni-based alloy flux-cored wire
WO2017038610A1 (en) Flux-cored wire for gas-shielded arc welding
JP2015217393A (en) Flux-cored wire for carbon dioxide gas shielded arc welding
JP2008221231A (en) Flux cored wire for gas-shielded arc welding
JP2010188387A (en) Flux cored wire for welding duplex stainless steel
JP6155810B2 (en) High Ni flux cored wire for gas shielded arc welding
JP6453178B2 (en) Flux-cored wire for gas shielded arc welding
KR102050857B1 (en) Method for manufacturing Ni-based alloy core wire, sheathed arc welding rod, and sheathed arc welding rod for shielded arc welding rod
JP3170165B2 (en) Covered arc welding rod for Ni-based high Cr alloy
US10569369B2 (en) Wire containing flux for gas shield arc welding
JPH08257785A (en) Flux cored wire for arc welding to improve low temp. crack resistance of steel weld zone
JP6257489B2 (en) Gas shield arc welding method
JP7031271B2 (en) Flux-cored wire for vertical electrogas arc welding and welding joint manufacturing method
JP4309172B2 (en) Low hydrogen coated arc welding rod for low alloy heat resistant steel
KR101760828B1 (en) Ni-BASE FLUX CORED WIRE WELDING CONSUMABLE
JPH07276086A (en) Flux cored wire for mag welding small in welding deformation
JP5665663B2 (en) Submerged arc overlay welding flux
JP2020015092A (en) Flux-cored wire for welding two-phase stainless steel, welding method and weld metal
JPH08174267A (en) Flux cored wire for arc welding
JP7188899B2 (en) Flux-cored wire for self-shielded arc welding

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091022

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121009

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121128

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121218

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121219

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151228

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5165322

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250