JPH07276086A - Flux cored wire for mag welding small in welding deformation - Google Patents

Flux cored wire for mag welding small in welding deformation

Info

Publication number
JPH07276086A
JPH07276086A JP5275997A JP27599793A JPH07276086A JP H07276086 A JPH07276086 A JP H07276086A JP 5275997 A JP5275997 A JP 5275997A JP 27599793 A JP27599793 A JP 27599793A JP H07276086 A JPH07276086 A JP H07276086A
Authority
JP
Japan
Prior art keywords
welding
wire
deformation
amount
flux
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5275997A
Other languages
Japanese (ja)
Inventor
Tsukasa Yoshimura
司 吉村
Kazushi Suda
一師 須田
Atsutada Motoe
敦忠 本江
Kazuhiro Kojima
一浩 児嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP26040193A external-priority patent/JPH0788688A/en
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP5275997A priority Critical patent/JPH07276086A/en
Publication of JPH07276086A publication Critical patent/JPH07276086A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To make better the finished bead shape after welding by specifying the contents of C, Si, Mn, Ni or the like in flux as well as the components in the sheath made of steel and the parameter decided by the amt. of each elements. CONSTITUTION:The sheath made of steel is filled with metal powder type flux contg., to the total weight of the wire, 4.0 to 12.0% iron powder, 0.05 to 1.1% arc stabilizer and 0.3 to 3.5% slag forming agent other than arc stabilizers to form a wire including flux for MAG welding. The total weight of the wire in the compsn. of this wire is incorporated with 0.03 to 0.09% C, 0.2 to 1.0% Si, 0.3 to 3.0% Mn and 0.2 to 5.0% Ni. Moreover, one or >= two kinds among 0.1 to l.5% Cu, 0.1 to 3.0% Cr, 0.1 to 2.0% Mo, 0.1 to 0.7% V and 0.01 to 0.05% Nb are incorporated therein. Furthermore, the parameter T decided by the formula is regulated to <620. By using this wire, welding deformation is reduced in automatic and semiautomatic welding.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、建築、土木、海洋構造
物、造船等で用いられる鋼材用の溶接材料に係わり、さ
らに詳しくは溶接作業時に発生する面外の変形が少ない
ことから、歪取り作業を軽減もしくは省略することが可
能となる高能率な金属粉系マグ溶接フラックス入りワイ
ヤに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a welding material for steel materials used in construction, civil engineering, marine structures, shipbuilding and the like, and more specifically, because there is little out-of-plane deformation occurring during welding work, The present invention relates to a highly efficient metal-powder-based mag-welding flux-cored wire capable of reducing or omitting the taking work.

【0002】[0002]

【従来の技術】各種鋼構造物において鋼材の溶接時に
は、溶融金属の凝固収縮、およびその後の冷却と相変態
による収縮・膨張によって、例えばすみ肉溶接の継手形
状の場合は角変形と呼ばれる面外変形が発生する。この
ような残留変形は、例えば圧縮荷重が負荷される場合に
は座屈強度の低下を生じるといった構造強度の低下の原
因となる。またこの変形を拘束治具によって強制的に防
止しようとすると、過大な残留応力が発生することとな
る。さらに寸法精度が不十分となり製作上の不都合を生
じ、美観をも損ねることとなる。
2. Description of the Related Art During welding of steel materials in various steel structures, due to solidification shrinkage of molten metal and subsequent contraction / expansion due to cooling and phase transformation, for example, in the case of fillet welded joints, out-of-plane deformation called angular deformation Deformation occurs. Such residual deformation causes a decrease in structural strength such as a decrease in buckling strength when a compressive load is applied. Further, if it is attempted to forcibly prevent this deformation with a restraint jig, excessive residual stress will be generated. Further, the dimensional accuracy becomes insufficient, which causes inconvenience in manufacturing, and spoils the aesthetic appearance.

【0003】そこで例えば溶接学会誌第52巻(198
3年)第4〜5及び7〜9号に連載されている「溶接変
形の発生とその防止」に見られるように、溶接時に発生
した残留変形を局所的な加熱により矯正する手法が経験
的に多数提案されている。しかし溶接部の再加熱によっ
て材質が劣化することが避けられないことに加えて、矯
正作業に要する時間と費用は実用上重大な障害であり、
これを軽減もしくは省略することが可能な溶接方法の開
発が望まれていた。
Then, for example, Journal of Welding Society Vol. 52 (198)
3 years) As seen in "Generation and prevention of welding deformation" serialized in Nos. 4-5 and 7-9, a method of correcting residual deformation generated during welding by local heating is empirical. Have been proposed to many. However, in addition to unavoidable deterioration of the material due to reheating of the weld, the time and cost required for straightening work are serious obstacles to practical use.
It has been desired to develop a welding method capable of reducing or omitting this.

【0004】溶接部における残留応力や変形の発生機構
に関しては佐藤による「溶接構造要覧」1988、(黒
木出版)やK.Masubuchiの「Analysi
sof Welded Structures」198
0,PERGAMON PRESSに詳しい。しかし溶
接変形は主として溶接時の入熱に対する部材の幾何学的
形状によって決定されるというように、その際、使用さ
れる溶接材料の詳細な特性に注目したものでない。鋼構
造物溶接部の相変態温度が、残留応力や変形に影響を与
える因子であることは上記の書にも明記されてはいる
が、鋼構造物を対象とした溶接材料で具体的な影響度の
定量化や成分に関する検討はなされていない。また相変
態の超塑性現象に着目して、残留応力の緩和や変形低減
を検討した報告もある(溶接学会全国大会講演概要 第
37集p.314〜315、第38集p.78〜79、
第39集p.338〜341)。これらはいずれも低合
金鋼およびステンレス鋼のマルテンサイト変態温度に着
目したものであり、3.5〜12%のNiを含有し、軟
鋼および50キロ級高張力鋼にみられる普通鋼材の成分
および組織に対してそのまま適用できる知見ではない。
さらにこのように高い値のNiを含有している場合に
は、溶接材料費が高くなり、歪取り作業が省略可能であ
っても経済的知見から実用的なものでない。さらにこれ
を造船および海洋構造物の普通鋼および低合金鋼に適用
する場合には、溶接金属部が電気的に過度な貴になり、
溶接熱影響部における選択的な腐食現象が発生して不都
合が生じる。
Regarding the mechanism of generation of residual stress and deformation in the welded portion, Sato's "Welding Structure Manual" 1988, (Kuroki Publishing) and K. Masubichi's "Analysi
sof Welded Structures "198
Details on 0, PERGAMON PRESS. However, the welding deformation does not pay attention to the detailed characteristics of the welding material used, such that the welding deformation is mainly determined by the geometry of the component with respect to the heat input during welding. Although it is specified in the above-mentioned book that the phase transformation temperature of the welded part of the steel structure is a factor that affects the residual stress and the deformation, the specific effect on the welding material for the steel structure. The degree of quantification and the composition have not been examined. There are also reports of studies on relaxation of residual stress and reduction of deformation, paying attention to the superplasticity phenomenon of phase transformation (Abstracts of the National Meeting of Japan Welding Society Vol. 37, p. 314-315, Vol. 38, p. 78-79,
39th p. 338-341). These are all focused on the martensitic transformation temperatures of low alloy steels and stainless steels, which contain 3.5 to 12% Ni, and are contained in the mild steel and the components of ordinary steel found in 50kg class high strength steels and It is not a finding that can be directly applied to an organization.
Further, in the case of containing such a high value of Ni, the welding material cost becomes high, and even if the strain relief work can be omitted, it is not practical from the economic knowledge. Furthermore, when this is applied to ordinary steel and low alloy steel for shipbuilding and offshore structures, the weld metal becomes electrically noble,
A selective corrosion phenomenon occurs in the heat-affected zone of welding, which causes inconvenience.

【0005】溶接変形に及ぼす最大の影響因子は鋼材板
厚に対する溶接入熱量であり、続いて溶接金属の相変態
温度がある。これらに加えて変形が発生する温度におい
て、その変形に抗する材料の強度を挙げることができ
る。相変態温度は大略400〜700℃の範囲であり、
この温度域における強度をCr,Mo,V,Nb等の元
素添加によって増大させることによって変形量を低減さ
せ得ることが、例えばCr−Mo鋼の高温強度の知見か
ら推測できる。しかし溶接金属部の変態点温度における
高温強度を確保する検討は従来なされておらず、さらに
これらの添加元素は上述した変態点温度を上昇して溶接
変形を増大させる傾向のものであるために、適正添加量
は容易に決定できるものではなかった。
The most influential factor on the welding deformation is the welding heat input with respect to the steel plate thickness, and the phase transformation temperature of the weld metal is next. In addition to these, at the temperature at which the deformation occurs, the strength of the material against the deformation can be mentioned. The phase transformation temperature is generally in the range of 400 to 700 ° C,
It can be inferred from the knowledge of the high-temperature strength of Cr-Mo steel, for example, that the amount of deformation can be reduced by increasing the strength in this temperature range by adding elements such as Cr, Mo, V, and Nb. However, no study has been made so far to secure high-temperature strength at the transformation point temperature of the weld metal part, and since these additional elements tend to increase the transformation point temperature and increase the welding deformation as described above, The proper addition amount could not be easily determined.

【0006】また、これらを解決する方法として特開平
4−22596号および特開平4−22597号公報に
ガスシールドアーク溶接方法が提案されている。同公報
の方法に適用される溶接材料としては、ソリッドワイヤ
であるがソリッドワイヤで溶接した場合溶接時の溶込み
が深く、溶接変形を減少することに必ずしも満足できる
ものではなかった。
As a method for solving these problems, a gas shield arc welding method has been proposed in JP-A-4-22596 and JP-A-4-22597. The welding material applied to the method of the publication is a solid wire, but when welding with a solid wire, the penetration at the time of welding is deep and it is not always satisfactory to reduce welding deformation.

【0007】[0007]

【発明が解決しようとする課題】このように、溶接部材
・形状や溶接入熱量が与えられたものとして、溶接材料
の相変態点温度が溶接時に発生する変形量に及ぼす影響
を定量化して、溶接材料成分の設計指針を与えることが
有効であると考えられる。本発明は鋼構造物に最も汎用
的に使用される普通鋼材の溶接継手を対象として、溶接
材料のAr3 変態点温度に着目し、T字すみ肉溶接時に
発生する角変形量を例にして、Ar3 変態温度と角変形
量の関係を検討することにより、発生する角変形量が少
なく、さらに用途の拡大として角変形量の低減に加えて
溶接後の仕上がりビード形状を大幅に改善できると共に
高能率な溶接材料を提供することを目的とする。なお変
形量の尺度の一つとして角変形量を取り上げたものであ
って、適用を角変形に限定するものではない。
As described above, the effect of the phase transformation point temperature of the welding material on the amount of deformation generated during welding is quantified, given that the welding member / shape and the welding heat input amount are given, It is considered effective to provide design guidelines for welding material components. The present invention is intended for the welded joint of ordinary steel that is most commonly used for steel structures, paying attention to the Ar 3 transformation point temperature of the welding material, and taking the amount of angular deformation that occurs during T-shaped fillet welding as an example. , By studying the relationship between the transformation temperature of Ar 3 and the amount of angular deformation, the amount of angular deformation that occurs is small, and in addition to reducing the amount of angular deformation as an expanded application, the finished bead shape after welding can be greatly improved. The purpose is to provide a highly efficient welding material. Note that the amount of angular deformation is taken up as one of the measures of the amount of deformation, and the application is not limited to angular deformation.

【0008】[0008]

【課題を解決するための手段】本発明者らはさらに実験
を重ねた結果、フラックス入りワイヤはソリッドワイヤ
より溶接変形量を少なくできることを見いだした。ソリ
ッドワイヤでは溶接時の溶込みが深いこと、それに比べ
フラックス入りワイヤは溶込みが浅くなるのでさらに変
形量を少なくできることが判明した。
As a result of further experiments, the present inventors have found that the flux-cored wire can reduce the amount of welding deformation as compared with the solid wire. It was found that the solid wire has a deep penetration during welding, and the flux-cored wire has a smaller penetration than that of the solid wire, so that the amount of deformation can be further reduced.

【0009】すなわち、本発明の要旨とするところは、
鋼製外皮にワイヤ全重量に対して鉄粉;4.0〜12.
0%、アーク安定剤;0.05〜1.1%、アーク安定
剤以外のスラグ形成剤;0.3〜3.5%を含有する金
属粉系フラックスを充填してなるマグ溶接フラックス入
りワイヤであって、ワイヤ全重量に対してC;0.03
〜0.09%、Si;0.2〜1.0%、Mn;0.3
〜3.0%、Ni;0.2〜5.0%を含有し、さらに
Cu;0.1〜1.5%、Cr;0.1〜3.0%、M
o;0.1〜2.0%、V;0.1〜0.7%、Nb;
0.01〜0.05%のうちいずれか1種または2種以
上を含有し、かつワイヤ中に占める各元素の重量%によ
り下記(1)式で定まるパラメータTが620未満であ
ることを特徴とする溶接変形の少ないマグ溶接フラック
ス入りワイヤにある。 T=630.0−476.5C+56.0Si−19.7Mn −16.3Cu−26.6Ni−4.9Cr+38.1Mo +124.8V+136.3Ti−19.1Nb+198.4Al +3315.0B ・・・・・(1)
That is, the gist of the present invention is that
Iron powder on the steel shell based on the total weight of the wire; 4.0-12.
MAG welding flux-cored wire filled with a metal powder flux containing 0%, an arc stabilizer; 0.05 to 1.1%, a slag forming agent other than the arc stabilizer; 0.3 to 3.5% And C = 0.03 based on the total weight of the wire.
~ 0.09%, Si; 0.2-1.0%, Mn; 0.3
.About.3.0%, Ni; 0.2 to 5.0%, and Cu; 0.1 to 1.5%, Cr; 0.1 to 3.0%, M
o; 0.1-2.0%, V; 0.1-0.7%, Nb;
It is characterized in that it contains any one or more of 0.01 to 0.05%, and that the parameter T determined by the following formula (1) by the weight% of each element occupying in the wire is less than 620. MAG welding flux-cored wire with less welding deformation. T = 630.0-476.5C + 56.0Si-19.7Mn-16.3Cu-26.6Ni-4.9Cr + 38.1Mo + 124.8V + 136.3Ti-19.1Nb + 198.4Al + 3315.0B ... (1 )

【0010】またさらに、鋼製外皮にワイヤ全重量に対
して鉄粉;4.0〜12.0%、アーク安定剤;0.0
5〜1.1%、アーク安定剤以外のスラグ形成剤;0.
3〜3.5%を含有する金属粉系フラックスを充填して
なるマグ溶接フラックス入りワイヤであって、ワイヤ全
重量に対して、C;0.03〜0.15%、Si;0.
2〜1.0%、Mn;0.3〜3.0%、を含有し、さ
らに、Cu;0.1〜1.5%、Cr;0.1〜3.0
%、Mo;0.1〜2.0%、V;0.1〜0.7%、
Nb;0.01〜0.50%のうちのいずれか1種また
は2種以上を含有し、かつワイヤ中に占める各元素の重
量%により前記(1)式で定まるパラメータTが620
未満であることを特徴とする溶接変形の少ないマグ溶接
フラックス入りワイヤにある。またここにおいてワイヤ
全重量に対してさらに、Ni;0.2〜5.0%を含有
することも特徴とする。
Furthermore, iron powder; 4.0-12.0%, arc stabilizer; 0.0 with respect to the total weight of the wire on the steel shell.
5 to 1.1%, slag forming agent other than arc stabilizer;
A mag-welding flux-cored wire filled with a metal powder-based flux containing 3 to 3.5%, wherein C: 0.03 to 0.15%, Si: 0.
2 to 1.0%, Mn; 0.3 to 3.0%, and Cu: 0.1 to 1.5%, Cr: 0.1 to 3.0.
%, Mo; 0.1 to 2.0%, V; 0.1 to 0.7%,
Nb: 0.01 to 0.50% of any one kind or two kinds or more, and the parameter T determined by the above formula (1) is 620 depending on the weight% of each element occupying in the wire.
MAG welding flux-cored wire with less welding deformation. Further, it is characterized in that Ni: 0.2 to 5.0% is further contained in the total weight of the wire.

【0011】[0011]

【作用】通常のアーク溶接法の冷却速度の範囲において
Ar3 変態点温度Tは大略(1)式によって予測可能で
ある。この式から明確なようにγフォーマであるNi,
Mn,Cu,Nb,Cを所定量添加してAr3 変態点を
低下させることが可能である。一般に変態点温度が低い
ほど変態膨張量が大きくなり、冷却時の収縮によって発
生する溶接残留変形を緩和することになることから、変
態膨張量の増大が溶接変形の低減に寄与することが考え
られる。しかし過冷オーステナイトの変態はベイナイト
組織の出現等から単純に変態膨張量と明確な対応を示さ
ず、従ってここではAr3 変態点温度に着目した。
The Ar 3 transformation point temperature T can be roughly estimated by the equation (1) in the range of the cooling rate of the usual arc welding method. As is clear from this equation, γ-former Ni,
It is possible to lower the Ar 3 transformation point by adding Mn, Cu, Nb and C in a predetermined amount. Generally, the lower the transformation temperature is, the larger the transformation expansion amount is, which reduces the residual welding deformation caused by the shrinkage during cooling. Therefore, it is considered that the increase of the transformation expansion amount contributes to the reduction of the welding deformation. . However, the transformation of supercooled austenite does not simply show a clear correspondence with the transformation expansion amount due to the appearance of the bainite structure, etc. Therefore, the Ar 3 transformation point temperature was focused here.

【0012】一方、T形すみ肉溶接継手部に発生する角
変形量は図1に示すように、溶接材料のAr3 変態点温
度と明瞭な関係があり、変態点温度が低い値であるほど
発生する角変形量が小さな値であることを見いだした。
この事実は変態点温度が低くなることにより、変態膨張
量が大きくなり、凝固に伴う収縮をある程度解消するた
めであると思われる。
On the other hand, the amount of angular deformation generated in the T-shaped fillet welded joint has a clear relationship with the Ar 3 transformation point temperature of the welding material as shown in FIG. 1, and the lower the transformation point temperature, It has been found that the amount of angular deformation that occurs is a small value.
This fact seems to be because the transformation temperature becomes low and the transformation expansion amount becomes large, and the shrinkage due to solidification is eliminated to some extent.

【0013】さらにγフォーマであるNi,Mn,Cの
成分系に加えてCu,Cr,Mo,Nb,Vの元素を含
有する場合には(1)式によって与えられる相変態温度
Tの値が後者を含まない場合と比較して若干高い値であ
っても、発生する角変形量が小さいことを見いだした。
この事実はCr,Mo,Nb,Vの元素がいずれも変態
が生じる温度で機械的強度を増加することにより、変形
を拘束するためのものであると考えられる。溶接変形に
よって例えば圧縮荷重に対する座屈強度が低下すること
や、継手製作上の寸法精度等の検討から、上述した変形
矯正作業を必要としない角変形量の限界値を与える変態
点温度をCr,Mo,Nb,Vの元素添加の影響を考慮
した結果本発明の関係式(T<620)を見い出した。
Further, in the case where the elements of Cu, Cr, Mo, Nb and V are contained in addition to the component system of Ni, Mn and C which are γ-formers, the value of the phase transformation temperature T given by the equation (1) is It has been found that the amount of angular deformation that occurs is small even when the value is slightly higher than when the latter is not included.
It is considered that this fact is because the elements Cr, Mo, Nb, and V all increase the mechanical strength at the temperature at which the transformation occurs to restrain the deformation. From the fact that the buckling strength against a compressive load decreases due to welding deformation, and the dimensional accuracy in joint manufacturing is considered, the transformation point temperature that gives the limit value of the angular deformation amount that does not require the above-mentioned deformation correction work is Cr, As a result of considering the effect of adding elements of Mo, Nb, and V, the relational expression (T <620) of the present invention was found.

【0014】本発明は代表的な溶接時の冷却速度から、
溶接材料に含まれる各種成分のAr3 相変態点温度Tを
(1)式によって与える。 T=630.0−476.5C+56.0Si−19.7Mn −16.3Cu−26.6Ni−4.9Cr+38.1Mo +124.8V+136.3Ti−19.1Nb+198.4Al +3315.0B ・・・・・(1)
The present invention is based on a typical welding cooling rate,
The Ar 3 phase transformation temperature T of various components contained in the welding material is given by the equation (1). T = 630.0-476.5C + 56.0Si-19.7Mn-16.3Cu-26.6Ni-4.9Cr + 38.1Mo + 124.8V + 136.3Ti-19.1Nb + 198.4Al + 3315.0B ... (1 )

【0015】また溶接材料の相変態点温度と発生する角
変形量の関係を検討することから、実用的に発生する変
形量が十分に小さい値であると判断される(2)式の関
係を与えるものである。 T<620 ・・・・・・・(2)
Further, by studying the relationship between the phase transformation temperature of the welding material and the amount of angular deformation that occurs, the relationship of equation (2), which is judged to be a sufficiently small amount of deformation that occurs practically, To give. T <620 ····· (2)

【0016】以下に本発明における溶接ワイヤの成分元
素の特定値とその添加量について説明する(元素添加量
の値はワイヤ全重量に対する重量%である)。
The specific values of the constituent elements of the welding wire in the present invention and the addition amounts thereof will be described below (the value of the addition amount of elements is% by weight based on the total weight of the wire).

【0017】Cは変態点低下の効果があり、強度の点か
らも0.03%以上が必要である。しかし、過度の添加
は溶接金属部の高温割れ感受性の増大と靱性低下につな
がるために、上限は0.15%好ましくは0.09%と
する。
C has the effect of lowering the transformation point, and 0.03% or more is required also from the viewpoint of strength. However, excessive addition leads to an increase in hot crack susceptibility of the weld metal and a decrease in toughness, so the upper limit is made 0.15%, preferably 0.09%.

【0018】Siは溶接金属中の酸素量を低減すると共
にビード形状を改善する効果があり、少なくとも0.2
%以上が必要である。過度の添加は溶接金属の靱性を低
下させるので上限を1.0%とする必要がある。
Si has the effect of reducing the amount of oxygen in the weld metal and improving the bead shape, and at least 0.2
% Or more is required. Excessive addition lowers the toughness of the weld metal, so the upper limit must be 1.0%.

【0019】Mnは変態点低下の効果が大きく、Niの
補助として少なくとも0.3%以上、好ましくは0.8
%以上添加する必要がある。過度な添加は溶接金属の高
温割れ感受性の増大と靱性低下につながるために、上限
を3.0%とする必要がある。
Mn has a large effect of lowering the transformation point, and assists Ni by at least 0.3% or more, preferably 0.8%.
% Or more must be added. Excessive addition leads to an increase in hot crack susceptibility of the weld metal and a decrease in toughness, so the upper limit must be 3.0%.

【0020】Niは代表的なγフォーマであり、変態点
低下の効果が大きい。変態点低下の効果を十分得るため
には少なくとも0.2%好ましくは3.0%以上添加す
る必要がある。添加量が多すぎる場合にはコスト上昇と
なることに加えて、例えば海洋構造物において、電気的
に溶接金属部が貴になりすぎ、局部電池を形成して溶接
熱影響部が選択的に腐食されることになる。従ってNi
添加量の上限は5.0%にする必要がある。
Ni is a typical gamma former and has a great effect of lowering the transformation point. In order to sufficiently obtain the effect of lowering the transformation point, it is necessary to add at least 0.2%, preferably 3.0% or more. If the addition amount is too large, the cost will increase, and in the case of offshore structures, for example, the weld metal will become too noble electrically, forming a local battery and selectively corroding the heat affected zone. Will be done. Therefore Ni
The upper limit of the amount added should be 5.0%.

【0021】以上の元素は変態点を低下させることに効
果がある元素であり、これに加えて変態が生じる温度域
での強度を増加するものとして以下のCu,Cr,M
o,V,Nbの1種または2種以上の元素を含むもので
ある。
The above elements are elements which are effective in lowering the transformation point, and in addition to these elements, Cu, Cr, and M, which increase the strength in the temperature range where transformation occurs,
It contains one or more elements of o, V and Nb.

【0022】Cuについても変態点低下の効果があるた
めに0.1%以上添加する必要がある。過度な添加は溶
接金属の靱性低下につながるために、上限を1.5%と
する。
Since Cu also has the effect of lowering the transformation point, it is necessary to add Cu in an amount of 0.1% or more. Excessive addition leads to a decrease in the toughness of the weld metal, so the upper limit is made 1.5%.

【0023】Crによる強度増加の効果が生じるために
は0.1%以上の添加が必要である。添加量が多すぎる
場合には常温強度および硬度が増加して靱性が劣化し、
さらに溶接性も低下するので、上限を3.0%とする。
In order to produce the effect of increasing strength by Cr, it is necessary to add 0.1% or more. If the added amount is too large, the room temperature strength and hardness increase and the toughness deteriorates,
Further, since the weldability also decreases, the upper limit is made 3.0%.

【0024】Moについては強度の効果を得るため0.
1%以上の添加が必要である。変態温度を上昇させる効
果が大きいことから、上限を2.0%とする。
Regarding Mo, the strength of Mo.
It is necessary to add 1% or more. Since the effect of raising the transformation temperature is great, the upper limit is made 2.0%.

【0025】Vについても0.1%以上の添加で強度上
昇の効果がある。過大な添加は常温での強度・硬度の上
昇によって靱性が劣化し、変態温度を上昇させることに
なるので、上限を0.7%とする。
Also with respect to V, addition of 0.1% or more has the effect of increasing strength. An excessive addition causes the toughness to deteriorate due to an increase in strength and hardness at room temperature and raises the transformation temperature, so the upper limit is made 0.7%.

【0026】Nbについても0.01%以上の添加をす
ることにより強度上昇の効果がある。過大な添加は常温
強度および硬度の上昇をもたらすので上限を0.50%
とする。しかしさらに靱性劣化を防止するためには0.
05%以下とすることが好ましい。
With respect to Nb, addition of 0.01% or more has the effect of increasing strength. Since an excessive addition causes an increase in normal temperature strength and hardness, the upper limit is 0.50%.
And However, in order to prevent further deterioration of toughness,
It is preferably set to not more than 05%.

【0027】なお、上記元素の添加方法は外皮、フラッ
クスの一方または両方に添加してもよい。以上が溶接時
に発生する角変形量を低減させる手段であるが、本発明
者らはさらに溶接時の溶込みが浅く、溶接後の仕上がり
ビード形状の改善をすること、さらに高能率化(利用分
野の拡大)を考え、溶着速度の向上についても検討し
た。その結果、鉄粉の利用は溶接後のビード形状を改善
できる。さらに、溶接時に発生するスパッター量を減少
できると共に溶着速度が大幅に向上できることが可能と
なった。本発明では上記特性を踏まえ、各成分の含有率
を下記のように定めた。
The above-mentioned elements may be added to one or both of the outer coat and the flux. The above is the means for reducing the amount of angular deformation that occurs during welding, but the present inventors have found that the penetration at the time of welding is shallower, the finished bead shape after welding is improved, and the efficiency is further improved. We also considered the improvement of the welding speed. As a result, the use of iron powder can improve the bead shape after welding. Furthermore, the amount of spatter generated during welding can be reduced and the deposition rate can be significantly improved. In the present invention, based on the above characteristics, the content rate of each component is determined as follows.

【0028】鉄粉;4.0〜12.0% 金属粉系フラックス入りワイヤの特徴である溶接能率向
上効果を十分達成させるためには鉄粉は4.0%以上添
加する必要がある。4.0%未満ではワイヤの溶着速度
が遅くなり、溶接能率が低下する。一方12.0%を超
えるとフラックス中の他の成分、例えばスラグ形成剤、
脱酸剤、合金剤などの絶対量が不足してビード形状が劣
化したり、所定の強度が得られない。従って鉄粉は、
4.0〜12.0%の範囲とする。
Iron powder: 4.0 to 12.0% Iron powder must be added in an amount of 4.0% or more in order to sufficiently achieve the effect of improving the welding efficiency, which is the characteristic of the metal powder-based flux-cored wire. If it is less than 4.0%, the welding speed of the wire becomes slow and the welding efficiency is lowered. On the other hand, if it exceeds 12.0%, other components in the flux, such as a slag forming agent,
Absolute amounts of deoxidizing agents, alloying agents, etc. are insufficient to deteriorate the bead shape, and a predetermined strength cannot be obtained. Therefore, iron powder
It is set to a range of 4.0 to 12.0%.

【0029】アーク安定剤;0.05〜1.1% 鉄粉を主体とする本発明ワイヤにおいては、アークを安
定化してスパッタ発生量を低減させるために添加が必須
である。アーク安定剤が0.05%未満では、アーク安
定剤としての効果が得られない。一方1.1%を超える
と逆にアーク長が極端に長くなり溶滴移行性を妨げるた
めスパッタが多発する。従ってアーク安定剤は0.05
〜1.1%の範囲とする。なおここでいうアーク安定剤
とはLi,Na,K等のアルカリ金属およびその化合物
が挙げられる。
Arc stabilizer: 0.05 to 1.1% In the wire of the present invention containing iron powder as a main component, addition is essential in order to stabilize the arc and reduce the amount of spatter generated. If the amount of the arc stabilizer is less than 0.05%, the effect as the arc stabilizer cannot be obtained. On the other hand, when the content exceeds 1.1%, the arc length becomes extremely long, which hinders the droplet transfer property, resulting in frequent spattering. Therefore, the arc stabilizer is 0.05
˜1.1% range. The arc stabilizer mentioned here includes alkali metals such as Li, Na and K, and compounds thereof.

【0030】スラグ形成剤;0.3〜3.5% スラグ形成剤は、ビード形状を改善するために溶着速度
の低下をきたさない範囲で添加する必要がある。0.3
%未満では、ビード形状改善効果は認められず、3.5
%を超えるとスラグ量が増大してスラグ巻込み等の欠陥
を生じたり溶接能率が低下する。従って、アーク安定剤
を除くスラグ形成剤は0.3〜3.5%とする。なおス
ラグ形成剤としては、TiO2 ,SiO2 ,ZrO2
Al23 ,MnO,MgO等の酸化物、CaF2 ,B
aF2 ,MgF2 ,LiF等の弗化物およびCaCO
3 ,BaCO3 等の炭酸塩が使用できる。
Slag-forming agent: 0.3 to 3.5% The slag-forming agent must be added in order to improve the bead shape within a range that does not lower the deposition rate. 0.3
If less than%, no bead shape improving effect is observed and 3.5
If it exceeds 0.1%, the amount of slag increases, defects such as slag entrainment occur, and welding efficiency decreases. Therefore, the slag forming agent excluding the arc stabilizer is 0.3 to 3.5%. As the slag forming agent, TiO 2 , SiO 2 , ZrO 2 ,
Oxides such as Al 2 O 3 , MnO, and MgO, CaF 2 , B
Fluorides such as aF 2 , MgF 2 and LiF and CaCO
Carbonates such as 3 , BaCO 3 can be used.

【0031】以上が必須成分であるが、さらに、本発明
に係わるワイヤのフラックス充填率は8〜20%とする
ことが望ましい。その理由は、充填率が20%を超える
と伸線時に断線トラブルが多発し生産性が悪くなるから
であり、また8%より少なくなるとアークの安定性が損
なわれるからである。ワイヤの断面形状には何等の制限
もなく2mm以下の細径の場合は比較的単純な円筒状の
ものが一般的である。また、シームレスワイヤにおいて
は表面にCu等のメッキ処理を施すことも有効である。
Although the above are the essential components, it is desirable that the flux filling rate of the wire according to the present invention is 8 to 20%. The reason for this is that if the filling rate exceeds 20%, disconnection troubles frequently occur during wire drawing and productivity deteriorates, and if it is less than 8%, the stability of the arc is impaired. There is no restriction on the cross-sectional shape of the wire, and when the wire has a small diameter of 2 mm or less, it is generally a relatively simple cylindrical shape. Further, it is also effective to subject the surface of the seamless wire to a plating treatment such as Cu.

【0032】[0032]

【実施例】表1に本実施例ワイヤに用いた鋼製外皮の化
学成分を示す。表2、表3、表4、表5に実施例に用い
た本発明ワイヤと比較ワイヤのフラックス組成と(1)
式で計算されるAr3 点(T)を示した。ワイヤ径はい
ずれも1.2mmである。鋼板はJIS G3106の
SM400B材を用いた。この鋼板を図2に示すT形す
み肉溶接試験体を製作するために、表6に示す溶接条件
で両側1パス溶接した。なお図中1,2はすみ肉溶接さ
れる母材を、3は(2個所)は拘束部分を、4(4個
所)は仮付溶接部分を示す。
EXAMPLES Table 1 shows the chemical composition of the steel shell used for the wire of this example. Table 2, Table 3, Table 4, and Table 5 show the flux compositions of the wire of the present invention used in Examples and the comparative wire, and (1)
The Ar 3 point (T) calculated by the formula is shown. The wire diameter is 1.2 mm in each case. As the steel plate, a JIS G3106 SM400B material was used. This steel sheet was subjected to one-pass welding on both sides under the welding conditions shown in Table 6 in order to manufacture a T-shaped fillet welding test body shown in FIG. In the figure, reference numerals 1 and 2 denote a base metal to be fillet welded, 3 denotes a restraint portion (2 places), and 4 (4 places) a tack welded portion.

【0033】[0033]

【表1】 [Table 1]

【0034】[0034]

【表2】 [Table 2]

【0035】[0035]

【表3】 [Table 3]

【0036】[0036]

【表4】 [Table 4]

【0037】[0037]

【表5】 [Table 5]

【0038】[0038]

【表6】 [Table 6]

【0039】溶接終了後、角変形量δを測定したのち、
溶接金属の縦断面を観察し溶接金属の割れの有無および
ビード形状を判定した。総合評価として、角変形量δの
大きさとして図3に示されるwとdの値を用いて(3)
式で計算されるδの値が1.2×10-2ラジアン未満で
かつ割れの発生が見られないこと、およびビード形状、
外観の優れているものに合格、それ以外は不合格とし
た。 δ=0.5sin-1(2d/w) ・・・・・・・(3)
After welding, after measuring the amount of angular deformation δ,
The longitudinal section of the weld metal was observed and the presence or absence of cracks in the weld metal and the bead shape were determined. As a comprehensive evaluation, the values of w and d shown in FIG. 3 are used as the magnitude of the angular deformation amount δ (3).
The value of δ calculated by the formula is less than 1.2 × 10 -2 radian and no occurrence of cracks is observed, and the bead shape,
Those with excellent appearance were passed, and others were rejected. δ = 0.5 sin −1 (2d / w) ···· (3)

【0040】表7に試験結果を示す。表7で明らかなよ
うに本発明に係るワイヤによる溶接継手は、すべて角変
形量が少なく、割れ発生も無くかつビード形状、外観も
良好である。これに対して、比較ワイヤNo.21,2
2はパラメータTが620以上であるか、高温強度を増
大させる元素群を添加しない場合であり、No.22に
示すようにTの値533であっても角変形が大きくな
る。No.23,25,26,27,28は硬化性元素
が高いために溶接金属が硬化して割れが発生した。N
o.24はアーク安定剤が添加されていないために溶滴
の移行性が悪く、溶接時にスパッターが多発した。N
o.29,30は鉄粉添加量が少ないか過剰で本発明の
範囲外であり溶接後のビード外観および形状が劣る。ま
たT値が620を超えて角変形量が大きく不合格とな
る。
Table 7 shows the test results. As is clear from Table 7, all the welded joints made of the wire according to the present invention have a small amount of angular deformation, no occurrence of cracks, and good bead shape and appearance. On the other hand, the comparative wire No. 21,2
No. 2 is the case where the parameter T is 620 or more or the element group that increases the high temperature strength is not added, and No. As shown in 22, even if the value of T is 533, the angular deformation becomes large. No. In Nos. 23, 25, 26, 27, and 28, since the hardenable elements were high, the weld metal hardened and cracks occurred. N
o. In No. 24, since the arc stabilizer was not added, the droplet transferability was poor, and spatter frequently occurred during welding. N
o. In Nos. 29 and 30, the amount of iron powder added was too small or too large to be outside the range of the present invention, and the bead appearance and shape after welding were poor. In addition, the T value exceeds 620, the amount of angular deformation is large, and the test fails.

【0041】[0041]

【表7】 [Table 7]

【0042】なお、本実験ではSM400B材を用いた
が、母材希釈は小さいので鋼板の種類が変わっても、本
ワイヤの角変形量の低減効果は失われるものではない。
さらに、シールドガス組成についてもAr−CO2 混合
ガスに変更して使用しても本発明に係わるワイヤの場合
は、なんら性能に影響することなく角変形量は良好な性
能が得られる。
Although SM400B material was used in this experiment, the effect of reducing the amount of angular deformation of the wire is not lost even if the type of steel sheet is changed because the base material is diluted.
Further, even if the shield gas composition is changed to Ar—CO 2 mixed gas and used, in the case of the wire according to the present invention, good performance can be obtained in the angular deformation amount without affecting the performance.

【0043】[0043]

【発明の効果】鋼構造物の製作において溶接継手は必須
の技術要素であるが、溶接変形の防止とその矯正技術は
経験的に得られるものであることが多い。昨今、鋼構造
物の設計の合理化や美観等の観点から溶接変形低減技術
が求められていると同時に、熟練溶接工の不足や溶接工
程の自動化の点からも発生する変形が少ない溶接材料を
供給することが望まれていた。本発明により継手部の諸
特性を損なうことなく、自動および半自動の溶接工程に
おいて溶接変形が少なくなり、経済的に問題ない範囲で
変形矯正のための作業が省略可能となるうえに上述した
付加価値を実現することが可能であるという顕著な効果
が得られる。
Although the welded joint is an essential technical element in the production of steel structures, the prevention of welding deformation and its correction technology are often obtained empirically. Recently, welding deformation reduction technology has been demanded from the viewpoint of streamlining the design of steel structures and aesthetics, etc., and at the same time, supplies welding materials with less deformation that occurs due to lack of skilled welders and automation of welding process. It was desired to do. According to the present invention, the welding deformation is reduced in the automatic and semi-automatic welding processes without deteriorating the various characteristics of the joint portion, and the work for correcting the deformation can be omitted within a range where there is no economical problem. It is possible to achieve the remarkable effect.

【図面の簡単な説明】[Brief description of drawings]

【図1】変態点温度と角変形量の関係を示すグラフFIG. 1 is a graph showing the relationship between the transformation temperature and the amount of angular deformation.

【図2】T字すみ肉溶接継手の概略を示す図FIG. 2 is a diagram showing an outline of a T-shaped fillet welded joint.

【図3】角変形量δの定義を説明する図FIG. 3 is a diagram illustrating the definition of an angular deformation amount δ.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 児嶋 一浩 千葉県富津市新富20−1 新日本製鐵株式 会社技術開発本部内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Kazuhiro Kojima 20-1 Shintomi, Futtsu-shi, Chiba Nippon Steel Corporation Corporate Technology Development Division

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 鋼製外皮にワイヤ全重量に対して鉄粉;
4.0〜12.0%、アーク安定剤;0.05〜1.1
%、アーク安定剤以外のスラグ形成剤;0.3〜3.5
%を含有する金属粉系フラックスを充填してなるマグ溶
接フラックス入りワイヤであって、ワイヤ全重量に対し
て、 C ;0.03〜0.09% Si;0.2〜1.0% Mn;0.3〜3.0% Ni;0.2〜5.0% を含有し、さらに、 Cu;0.1〜1.5% Cr;0.1〜3.0% Mo;0.1〜2.0% V ;0.1〜0.7% Nb;0.01〜0.05% のうちのいずれか1種または2種以上を含有し、かつワ
イヤ中に占める各元素の重量%により下記(1)式で定
まるパラメータTが620未満であることを特徴とする
溶接変形の少ないマグ溶接フラックス入りワイヤ。 T=630.0−476.5C+56.0Si−19.7Mn −16.3Cu−26.6Ni−4.9Cr+38.1Mo +124.8V+136.3Ti−19.1Nb+198.4Al +3315.0B ・・・・・(1)
1. A steel shell with iron powder based on the total weight of the wire;
4.0-12.0%, arc stabilizer; 0.05-1.1
%, Slag forming agent other than arc stabilizer; 0.3 to 3.5
% Of the total wire weight, wherein C is 0.03 to 0.09% Si and 0.2 to 1.0% Mn. 0.3 to 3.0% Ni; 0.2 to 5.0% contained, and further Cu; 0.1 to 1.5% Cr; 0.1 to 3.0% Mo; 0.1 % To 2.0% V; 0.1 to 0.7% Nb; 0.01 to 0.05%, and 1% by weight or more of each element in the wire. Accordingly, the parameter T determined by the following formula (1) is less than 620. T = 630.0-476.5C + 56.0Si-19.7Mn-16.3Cu-26.6Ni-4.9Cr + 38.1Mo + 124.8V + 136.3Ti-19.1Nb + 198.4Al + 3315.0B ... (1 )
【請求項2】 鋼製外皮にワイヤ全重量に対して鉄粉;
4.0〜12.0%、アーク安定剤;0.05〜1.1
%、アーク安定剤以外のスラグ形成剤;0.3〜3.5
%を含有する金属粉系フラックスを充填してなるマグ溶
接フラックス入りワイヤであって、ワイヤ全重量に対し
て、 C ;0.03〜0.15% Si;0.2〜1.0% Mn;0.3〜3.0% を含有し、さらに、 Cu;0.1〜1.5% Cr;0.1〜3.0% Mo;0.1〜2.0% V ;0.1〜0.7% Nb;0.01〜0.50% のうちのいずれか1種または2種以上を含有し、かつワ
イヤ中に占める各元素の重量%により下記(1)式で定
まるパラメータTが620未満であることを特徴とする
溶接変形の少ないマグ溶接フラックス入りワイヤ。 T=630.0−476.5C+56.0Si−19.7Mn −16.3Cu−26.6Ni−4.9Cr+38.1Mo +124.8V+136.3Ti−19.1Nb+198.4Al +3315.0B ・・・・・(1)
2. A steel shell with iron powder based on the total weight of the wire;
4.0-12.0%, arc stabilizer; 0.05-1.1
%, Slag forming agent other than arc stabilizer; 0.3 to 3.5
% Of the total wire weight, which is a mag-weld flux-cored wire filled with a metal powder-based flux containing C: 0.03 to 0.15% Si; 0.2 to 1.0% Mn 0.3-3.0% is contained, Cu; 0.1-1.5% Cr; 0.1-3.0% Mo; 0.1-2.0% V; 0.1 .About.0.7% Nb; 0.01 to 0.50% of any one kind or two or more kinds, and a parameter T determined by the following formula (1) by the weight% of each element occupying in the wire. Is less than 620, and a mag-weld flux-cored wire with little welding deformation. T = 630.0-476.5C + 56.0Si-19.7Mn-16.3Cu-26.6Ni-4.9Cr + 38.1Mo + 124.8V + 136.3Ti-19.1Nb + 198.4Al + 3315.0B ... (1 )
【請求項3】 ワイヤ全重量に対してさらに、 Ni;0.2〜5.0% を含有することを特徴とする請求項2記載の溶接変形の
少ないマグ溶接フラックス入りワイヤ。
3. The mag-weld flux-cored wire with less welding deformation according to claim 2, further containing Ni: 0.2 to 5.0% with respect to the total weight of the wire.
JP5275997A 1993-09-07 1993-10-08 Flux cored wire for mag welding small in welding deformation Pending JPH07276086A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5275997A JPH07276086A (en) 1993-09-07 1993-10-08 Flux cored wire for mag welding small in welding deformation

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP5-260401 1993-09-07
JP26040193A JPH0788688A (en) 1993-09-27 1993-09-27 Mig welding flux cored wire having less welding deformation
JP5275997A JPH07276086A (en) 1993-09-07 1993-10-08 Flux cored wire for mag welding small in welding deformation

Publications (1)

Publication Number Publication Date
JPH07276086A true JPH07276086A (en) 1995-10-24

Family

ID=26544596

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5275997A Pending JPH07276086A (en) 1993-09-07 1993-10-08 Flux cored wire for mag welding small in welding deformation

Country Status (1)

Country Link
JP (1) JPH07276086A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030062217A (en) * 2002-01-13 2003-07-23 일리노이즈 툴 워크스 인코포레이티드 Low carbon high speed metal wire
JP2007296535A (en) * 2006-04-27 2007-11-15 Kobe Steel Ltd Gas-shielded arc welding flux-cored wire and welding method
US20110073570A1 (en) * 2009-09-25 2011-03-31 Nippon Steel & Sumikin Welding Co., Ltd. Flux cored wire for gas shielded arc welding of high strength steel
CN104646868A (en) * 2015-02-12 2015-05-27 西安理工大学 Self-shielded flux-cored wire for 17-4 ph precipitation-hardening stainless steel and preparation method
JP2015518427A (en) * 2012-04-17 2015-07-02 ホバート ブラザーズ カンパニー System and method for welding electrodes
JP2016124023A (en) * 2015-01-07 2016-07-11 日鐵住金溶接工業株式会社 HIGH-TENSION STEEL Ar-CO2 MIXTURE GAS SHIELD ARC-WELDING FLUX-CORED WIRE
WO2017221865A1 (en) * 2016-06-20 2017-12-28 株式会社神戸製鋼所 Gas-shielded arc welding method and method for manufacturing welded structure

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030062217A (en) * 2002-01-13 2003-07-23 일리노이즈 툴 워크스 인코포레이티드 Low carbon high speed metal wire
JP2007296535A (en) * 2006-04-27 2007-11-15 Kobe Steel Ltd Gas-shielded arc welding flux-cored wire and welding method
US20110073570A1 (en) * 2009-09-25 2011-03-31 Nippon Steel & Sumikin Welding Co., Ltd. Flux cored wire for gas shielded arc welding of high strength steel
JP2015518427A (en) * 2012-04-17 2015-07-02 ホバート ブラザーズ カンパニー System and method for welding electrodes
US9707643B2 (en) 2012-04-17 2017-07-18 Hobart Brothers Company Systems and methods for welding electrodes
US11130203B2 (en) 2012-04-17 2021-09-28 Hobart Brothers Llc Systems and methods for welding electrodes
JP2016124023A (en) * 2015-01-07 2016-07-11 日鐵住金溶接工業株式会社 HIGH-TENSION STEEL Ar-CO2 MIXTURE GAS SHIELD ARC-WELDING FLUX-CORED WIRE
CN104646868A (en) * 2015-02-12 2015-05-27 西安理工大学 Self-shielded flux-cored wire for 17-4 ph precipitation-hardening stainless steel and preparation method
CN104646868B (en) * 2015-02-12 2016-10-05 西安理工大学 17-4ph precipitation-hardening stainless steel self-protection flux-cored wire and preparation method
WO2017221865A1 (en) * 2016-06-20 2017-12-28 株式会社神戸製鋼所 Gas-shielded arc welding method and method for manufacturing welded structure
EP3473368A4 (en) * 2016-06-20 2019-12-18 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Gas-shielded arc welding method and method for manufacturing welded structure

Similar Documents

Publication Publication Date Title
JP5415998B2 (en) Flux-cored wire for gas shielded arc welding
EP2402103A1 (en) Fillet weld joint and method for gas shielded arc welding
JP5165322B2 (en) Flux-cored wire for electrogas arc welding
JP2007296535A (en) Gas-shielded arc welding flux-cored wire and welding method
JP4958872B2 (en) Large heat input electroslag welding method
JP5928726B2 (en) Covered arc welding rod
JP6155810B2 (en) High Ni flux cored wire for gas shielded arc welding
JP5744816B2 (en) Bond flux for submerged arc welding
KR100209273B1 (en) Steel plate having low welding strain and good bending workability by liner heating and method for producing the same and welding material and method for producing the same
JPH07276086A (en) Flux cored wire for mag welding small in welding deformation
JP3559806B2 (en) Basic flux cored wire for low temperature steel
JP3170165B2 (en) Covered arc welding rod for Ni-based high Cr alloy
JPH08257785A (en) Flux cored wire for arc welding to improve low temp. crack resistance of steel weld zone
JP2687006B2 (en) Flux-cored wire for gas shielded arc welding for refractory steel
CN106794559B (en) Flux-cored wire for gas-shielded arc welding
JP3354460B2 (en) Covered arc welding method for high strength steel
JPH11347790A (en) Coated electrode for ni group high cr alloy
JP6829111B2 (en) Filling material for TIG welding
JPH08197283A (en) Flux cored wire for mig welding by which high-toughness weld zone having lessened welding deformation is obtainable
JP7423395B2 (en) Manufacturing method of austenitic stainless steel welded joints
JP2711071B2 (en) Bond flux for submerged arc welding
JP2007054878A (en) Coated arc welding rod for steel for fire-resisting construction
KR101760828B1 (en) Ni-BASE FLUX CORED WIRE WELDING CONSUMABLE
JPH0788688A (en) Mig welding flux cored wire having less welding deformation
JP3208556B2 (en) Flux-cored wire for arc welding

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20010724