JP5400461B2 - Flux cored wire - Google Patents

Flux cored wire Download PDF

Info

Publication number
JP5400461B2
JP5400461B2 JP2009104481A JP2009104481A JP5400461B2 JP 5400461 B2 JP5400461 B2 JP 5400461B2 JP 2009104481 A JP2009104481 A JP 2009104481A JP 2009104481 A JP2009104481 A JP 2009104481A JP 5400461 B2 JP5400461 B2 JP 5400461B2
Authority
JP
Japan
Prior art keywords
amount
mass
wire
welding
flux
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009104481A
Other languages
Japanese (ja)
Other versions
JP2010253494A (en
Inventor
正樹 島本
斉 石田
浩一 坂本
智紀 柿崎
秀司 笹倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2009104481A priority Critical patent/JP5400461B2/en
Priority to CN201010162255XA priority patent/CN101870045B/en
Priority to KR1020100036686A priority patent/KR101153572B1/en
Publication of JP2010253494A publication Critical patent/JP2010253494A/en
Application granted granted Critical
Publication of JP5400461B2 publication Critical patent/JP5400461B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/36Selection of non-metallic compositions, e.g. coatings, fluxes; Selection of soldering or welding materials, conjoint with selection of non-metallic compositions, both selections being of interest
    • B23K35/368Selection of non-metallic compositions of core materials either alone or conjoint with selection of soldering or welding materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/02Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape
    • B23K35/0255Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape for use in welding
    • B23K35/0261Rods, electrodes, wires
    • B23K35/0266Rods, electrodes, wires flux-cored
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/36Selection of non-metallic compositions, e.g. coatings, fluxes; Selection of soldering or welding materials, conjoint with selection of non-metallic compositions, both selections being of interest
    • B23K35/3601Selection of non-metallic compositions, e.g. coatings, fluxes; Selection of soldering or welding materials, conjoint with selection of non-metallic compositions, both selections being of interest with inorganic compounds as principal constituents
    • B23K35/3608Titania or titanates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/36Selection of non-metallic compositions, e.g. coatings, fluxes; Selection of soldering or welding materials, conjoint with selection of non-metallic compositions, both selections being of interest
    • B23K35/3601Selection of non-metallic compositions, e.g. coatings, fluxes; Selection of soldering or welding materials, conjoint with selection of non-metallic compositions, both selections being of interest with inorganic compounds as principal constituents
    • B23K35/361Alumina or aluminates
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/02Iron or ferrous alloys

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Nonmetallic Welding Materials (AREA)

Description

本発明は、軟鋼、高張力鋼などからなる鋼板のガスシールドアーク溶接に適用されるフラックス入りワイヤに関するものである。   The present invention relates to a flux-cored wire applied to gas shielded arc welding of a steel plate made of mild steel, high-tensile steel, or the like.

従来、鋼板のガスシールドアーク溶接に適用されるフラックス入りワイヤには、以下のような構成を備えたものが提案されている。例えば、特許文献1では、ワイヤ全質量に対して質量%で、所定量のTiO、SiO、ZrO、CaO、NaO、KO、F、C、Si、Mn、Al、Mg、P、S、B、Biを含有し、残部がFeおよび不可避的不純物からなり、かつ、NaO+KO、Mn/Si、Al+Mgが所定量であるガスシールドアーク溶接用フラックス入りワイヤが提案されている。 Conventionally, a flux-cored wire applied to gas shielded arc welding of a steel sheet has been proposed with the following configuration. For example, in Patent Document 1, a predetermined amount of TiO 2 , SiO 2 , ZrO 2 , CaO, Na 2 O, K 2 O, F, C, Si, Mn, Al, Mg in mass% with respect to the total mass of the wire. , P, S, B, contains Bi, the balance being Fe and unavoidable impurities, and, Na 2 O + K 2 O , Mn / Si, Al + Mg flux-cored wire for gas shielded arc welding is a predetermined amount proposed Has been.

特開2006−289404号公報JP 2006-289404 A

しかしながら、特許文献1に記載されたワイヤは、Tiを含有せず、また、Mnの含有量も少量であるため、鋼板の片面突合せ継手溶接において、初層溶接部で高温割れが発生するという問題がある。また、ワイヤがAlを含有しないため、水平すみ肉溶接でのビード形状が悪かったり、立向上進溶接でビード垂れが発生したりする等の全姿勢溶接における溶接作業性が劣るという問題がある。さらに、ワイヤのMn量およびB量が少量であるため、溶接金属の機械的性質(靭性)が劣るという問題もある。 However, since the wire described in Patent Document 1 does not contain Ti and the content of Mn is also small, there is a problem that high-temperature cracking occurs in the first-layer welded portion in single-sided butt joint welding of steel plates. There is. In addition, since the wire does not contain Al 2 O 3 , there is a problem that welding workability in all-position welding is inferior, such as poor bead shape in horizontal fillet welding or bead sagging in standing improvement welding. There is. Furthermore, since the amount of Mn and B of the wire is small, there is a problem that the mechanical properties (toughness) of the weld metal are inferior.

本発明は、前記課題に鑑みてなされたもので、耐高温割れ性、溶接作業性および溶接金属の機械的性質に優れたフラックス入りワイヤを提供することを目的とする。   The present invention has been made in view of the above problems, and an object thereof is to provide a flux-cored wire excellent in hot crack resistance, welding workability and mechanical properties of a weld metal.

前記課題を解決するために、本発明に係るフラックス入りワイヤは、鋼製外皮内にフラックスが充填されたフラックス入りワイヤであって、ワイヤ全質量に対するフラックス充填率が10〜25質量%であり、ワイヤ全質量に対して、C:0.03〜0.08質量%、Si(ワイヤに含有される全てのSi源から算出されるSi量の総和):0.10〜1.00質量%、Mn(ワイヤに含有される全てのMn源から算出されるMn量の総和):2.4〜3.7質量%、Ti:0.15〜1.00質量%、TiO:5.0〜8.0質量%、Al:0.20〜0.50質量%、Al:0.05〜0.50質量%、B:0.003〜0.020質量%を含有し、残部がFeおよび不可避的不純物からなり、かつ、(4×Ti+10×Al−3×Si)≧1.0の関係式を満足し、前記関係式において(Ti)は前記ワイヤに含有される前記Tiおよび前記TiOのうちの前記Tiのみから算出されるTi量、(Al)は前記ワイヤに含有される前記Alおよび前記Al のうちの前記Alのみから算出されるAl量であることを特徴とする。 In order to solve the above-mentioned problem, the flux-cored wire according to the present invention is a flux-cored wire in which a flux is filled in a steel outer sheath, and the flux filling rate with respect to the total mass of the wire is 10 to 25% by mass, C: 0.03 to 0.08% by mass with respect to the total mass of the wire, Si (total amount of Si calculated from all Si sources contained in the wire): 0.10 to 1.00% by mass, Mn (total amount of Mn calculated from all Mn sources contained in the wire): 2.4 to 3.7% by mass, Ti: 0.15 to 1.00% by mass, TiO 2 : 5.0 to 8.0% by mass, Al: 0.20 to 0.50% by mass, Al 2 O 3 : 0.05 to 0.50% by mass, B: 0.003 to 0.020% by mass, the balance being Fe and inevitable impurities, and (4 × Ti + 10 × Al -3 satisfied × Si) ≧ 1.0 relational expression, in the relational expression (Ti) is Ti amount calculated only from the Ti of the Ti and the TiO 2 are contained prior Symbol wire , (Al) is an Al amount calculated only from the Al of the Al and the Al 2 O 3 contained in the wire .

前記構成によれば、ワイヤ全質量に対するフラックス充填率が所定量であって、ワイヤ全質量に対して、所定量のC、Si、Mn、Ti、TiO、Al、AlおよびBを含有することによって、溶接の際、スパッタ発生、ヒューム発生が抑制され、スラグ剥離性が改善されると共に、溶接継手(溶接金属)の機械的性質が向上し、かつ、初層溶接部における高温割れが抑制される。また、Ti量、Al量およびSi量とが、所定の関係を満足する、すなわち、(4×Ti+10×Al−3×Si)≧1.0を満足することによって、溶接時にTiが脱酸反応に寄与し、溶接金属中に生成する介在物の組成を核生成促進に効果的なTi系酸化物組成に制御できる。その結果、溶接金属の凝固組織を微細化でき、高温割れの抑制作用が向上する。 According to the above configuration, the flux filling rate with respect to the total mass of the wire is a predetermined amount, and a predetermined amount of C, Si, Mn, Ti, TiO 2 , Al, Al 2 O 3 and B with respect to the total mass of the wire. By containing, spatter generation and fume generation are suppressed during welding, slag peelability is improved, mechanical properties of the welded joint (welded metal) are improved, and high temperature cracking in the first layer weld zone Is suppressed. Further, when the Ti amount, the Al amount, and the Si amount satisfy a predetermined relationship, that is, (4 × Ti + 10 × Al−3 × Si) ≧ 1.0, Ti is deoxidized during welding. It is possible to control the composition of inclusions generated in the weld metal to a Ti-based oxide composition effective for promoting nucleation. As a result, the solidification structure of the weld metal can be refined, and the action of suppressing hot cracking is improved.

本発明に係るフラックス入りワイヤによれば、フラックス充填率が所定量であって、所定量のC、Si、Mn、Ti、TiO、Al、Al、Bを含有し、かつ、フラックス入りワイヤに含まれるTi量、Al量およびSi量とが所定の関係を満足することによって、片面突合わせ継手溶接の初層溶接部における耐高温割れ性が優れると共に、全姿勢溶接における溶接作業性(ビード外観を含む)および溶接金属の機械的特性が優れたものとなる。その結果、品質の優れた溶接製品を提供することができる。 According to the flux-cored wire of the present invention, the flux filling rate is a predetermined amount, contains a predetermined amount of C, Si, Mn, Ti, TiO 2 , Al, Al 2 O 3 , and B, and flux The amount of Ti, Al, and Si contained in the cored wire satisfies the predetermined relationship, so that the high-temperature crack resistance in the first layer welded part of single-sided butt joint welding is excellent, and the welding workability in all-position welding (Including bead appearance) and weld metal mechanical properties are excellent. As a result, it is possible to provide a welded product with excellent quality.

(a)〜(d)は、本発明に係るフラックス入りワイヤの構成を示す断面図である。(A)-(d) is sectional drawing which shows the structure of the flux cored wire which concerns on this invention. 耐高温割れ性の評価に使用する溶接母材の開先形状を示す断面図である。It is sectional drawing which shows the groove shape of the welding preform | base_material used for evaluation of hot cracking resistance.

本発明に係るフラックス入りワイヤについて詳細に説明する。図1(a)〜(d)は、フラックス入りワイヤの構成を示す断面図である。
図1(a)〜(d)に示すように、フラックス入りワイヤ(以下、ワイヤと称す)1は、筒状に形成された鋼製外皮2と、その筒内に充填されたフラックス3とからなる。また、ワイヤ1は、図1(a)に示すような継目のない鋼製外皮2の筒内にフラックス3が充填されたシームレスタイプ、図1(b)〜(d)に示すような継目4のある鋼製外皮2の筒内にフラックス3が充填されたシームタイプのいずれの形態でもよい。
The flux cored wire according to the present invention will be described in detail. Fig.1 (a)-(d) is sectional drawing which shows the structure of a flux cored wire.
As shown in FIGS. 1A to 1D, a flux-cored wire (hereinafter referred to as a wire) 1 includes a steel outer shell 2 formed in a cylindrical shape and a flux 3 filled in the cylinder. Become. Moreover, the wire 1 is a seamless type in which a flux 3 is filled in a seamless steel outer shell 2 as shown in FIG. 1 (a), and a seam 4 as shown in FIGS. 1 (b) to 1 (d). Any form of a seam type in which a flux 3 is filled in a cylinder of a steel outer shell 2 having a certain shape.

そして、ワイヤ1は、フラックス充填率が所定量であって、所定量のC、Si、Mn、Ti、TiO、Al、AlおよびBを含有し、残部がFeおよび不可避的不純物からなり、かつ、Ti量、Al量およびSi量とが所定の関係を満足する(具体的には、(4×Ti+10×Al−3×Si)が所定値以上である)。 The wire 1 has a predetermined amount of flux filling and contains a predetermined amount of C, Si, Mn, Ti, TiO 2 , Al, Al 2 O 3 and B, with the balance being Fe and inevitable impurities. And the amount of Ti, the amount of Al, and the amount of Si satisfy a predetermined relationship (specifically, (4 × Ti + 10 × Al−3 × Si) is a predetermined value or more).

以下に、ワイヤ成分(フラックス充填率および成分量)の数値範囲を、その限定理由と共に記載する。フラックス充填率は、鋼製外皮2内に充填されるフラックス3の質量を、ワイヤ1(鋼製外皮2+フラックス3)の全質量に対する割合で規定する。また、成分量は、鋼製外皮2とフラックス3における成分量の総和で表し、ワイヤ1(鋼製外皮2+フラックス3)に含まれる各成分の質量を、ワイヤ1の全質量に対する割合で規定する。なお、ワイヤ1を構成する成分のうち、C、Si、Mn、Ti、TiO、Al、AlおよびBは、鋼製外皮2から添加するか、フラックス3から添加するかは特に問わず、鋼製外皮2およびフラックス3の少なくとも一方に添加されていればよい。 Below, the numerical range of a wire component (flux filling rate and component amount) is described with the reason for limitation. The flux filling rate defines the mass of the flux 3 filled in the steel outer shell 2 as a ratio to the total mass of the wire 1 (steel outer sheath 2 + flux 3). The component amount is expressed as the sum of the component amounts in the steel outer sheath 2 and the flux 3, and the mass of each component contained in the wire 1 (steel outer sheath 2 + flux 3) is defined as a ratio to the total mass of the wire 1. . Of the components constituting the wire 1, C, Si, Mn, Ti, TiO 2 , Al, Al 2 O 3 and B are not particularly limited whether they are added from the steel outer shell 2 or the flux 3. It should just be added to at least one of steel outer skin 2 and flux 3.

(フラックス充填率:10〜25質量%)
フラックス充填率が10質量%未満では、アークの安定性が悪くなり、スパッタ発生量が増加し、溶接作業性が低下する。また、フラックス充填率が25質量%超えると、ワイヤ1の断線等が発生し、生産性が著しく劣化する。
(Flux filling ratio: 10 to 25% by mass)
When the flux filling rate is less than 10% by mass, the arc stability is deteriorated, the amount of spatter generated is increased, and the welding workability is lowered. On the other hand, when the flux filling rate exceeds 25% by mass, the wire 1 is disconnected and the productivity is remarkably deteriorated.

(C:0.03〜0.08質量%)
Cは、溶接部の焼入れ性を確保するために添加する。C量が0.03質量%未満の場合、焼入れ性不足により、溶接部の強度(引張強さ)、靭性(吸収エネルギー)が不足する。また、低C量により溶接部(初層溶接部)に高温割れが発生する。C量が0.08質量%を超えると、溶接時のスパッタ発生量またはヒューム発生量が増加し、溶接作業性が低下する。また、被溶接材である鋼材のC量が多い場合、溶接部(溶接金属)のC量が多くなる。そして、Cが包晶反応を起こす領域になると、溶接部(初層溶接部)に高温割れが発生しやすくなる。なお、C源としては、例えば、鋼製外皮、Fe−Mn等の合金粉、鉄粉等を用いる。
(C: 0.03-0.08 mass%)
C is added to ensure the hardenability of the weld. When the amount of C is less than 0.03% by mass, the strength (tensile strength) and toughness (absorbed energy) of the welded portion are insufficient due to insufficient hardenability. Moreover, a hot crack occurs in the welded portion (first layer welded portion) due to the low C content. If the amount of C exceeds 0.08% by mass, the amount of spatter generated during fusing or the amount of fume generated increases and welding workability decreases. Moreover, when there is much C amount of the steel materials which are to-be-welded materials, C amount of a welding part (welded metal) will increase. And when C becomes the area | region which raise | generates a peritectic reaction, it will become easy to generate | occur | produce a high temperature crack in a welding part (first layer welding part). As the C source, for example, steel outer skin, alloy powder such as Fe-Mn, iron powder, or the like is used.

(Si:0.10〜1.00質量%)
Siは、溶接部の延性確保、ビード形状維持のために添加する。Si量が0.10質量%未満では、溶接部の延性(伸び)不足となる。また、ビード形状が悪くなり、特に、立向上進溶接でビードが垂れ、溶接作業性が低下する。Si量が1.00質量%を超えると、溶接部(初層溶接部)に高温割れが発生する。ここで、Si量とは、ワイヤ1に含有される全てのSi源から算出されるSi量の総和である。なお、Si源としては、例えば、鋼製外皮、Fe−Si、Fe−Si−Mn等の合金、KSiF等のフッ化物、ジルコンサンド、珪砂、長石等の酸化物を用いる。
(Si: 0.10 to 1.00% by mass)
Si is added to ensure the ductility of the weld and maintain the bead shape. When the amount of Si is less than 0.10% by mass, the ductility (elongation) of the weld is insufficient. In addition, the bead shape is deteriorated. In particular, the bead hangs down in the vertical improvement welding, and the welding workability is lowered. When the amount of Si exceeds 1.00% by mass, hot cracking occurs in the welded part (first layer welded part). Here, the Si amount is the sum of the Si amounts calculated from all the Si sources contained in the wire 1. As the Si source, for example, a steel outer shell, an alloy such as Fe—Si or Fe—Si—Mn, a fluoride such as K 2 SiF 6 , an oxide such as zircon sand, silica sand, or feldspar is used.

(Mn:2.4〜3.7質量%)
Mnは、溶接部の焼入れ性確保のために添加する。Mn量が2.4質量%未満では、溶接部の焼入れ性が不足し、靭性が低下する。また、不可避的不純物として含有されるSと結合して得られるMnS量も少なくなるため、MnSによる高温割れの抑制作用が小さくなり、溶接部(初層溶接部)に高温割れが発生する。Mn量が3.7質量%を超えると、溶接部の強度が過多となり、靭性不足となる。また、溶接部に低温割れが発生する。ここで、Mn量とは、ワイヤ1に含有される全てのMn源から算出されるMn量の総和である。なお、Mn源としては、例えば、鋼製外皮、Mn金属粉、Fe−Mn、Fe−Si−Mn等の合金を用いる。
(Mn: 2.4 to 3.7% by mass)
Mn is added to ensure the hardenability of the weld. If the amount of Mn is less than 2.4% by mass, the hardenability of the welded portion is insufficient and the toughness is lowered. Moreover, since the amount of MnS obtained by combining with S contained as an unavoidable impurity is also reduced, the action of suppressing high-temperature cracking by MnS is reduced, and high-temperature cracking occurs in the welded portion (first layer welded portion). If the amount of Mn exceeds 3.7% by mass, the strength of the weld becomes excessive and the toughness becomes insufficient. In addition, cold cracks occur in the weld. Here, the amount of Mn is the total amount of Mn calculated from all the Mn sources contained in the wire 1. As the Mn source, for example, an alloy such as a steel outer shell, Mn metal powder, Fe—Mn, Fe—Si—Mn, or the like is used.

(Ti:0.15〜1.00質量%、好ましくは0.20〜1.00質量%)
Ti(金属Ti)は、溶接部(初層溶接部)の耐高温割れ性を改善するために添加する。Ti(金属Ti)は溶接時に脱酸反応に寄与し、溶接金属中の介在物をTi系酸化物組成に制御でき、その結果、溶接部(溶接金属)の凝固組織を微細にでき、溶接部(初層溶接部)の高温割れ抑制作用が改善される。Ti量(金属Ti)が0.15質量%未満では、溶接部(初層溶接部)に高温割れが発生する。Ti量(金属Ti)が1.00質量%を超えると、溶接金属再熱部が硬くて脆いベイナイト、マルテンサイトになりやすく、靭性が低下する。また、溶接時のスパッタ発生量が多くなり、溶接作業性が低下する。なお、Ti源としては、例えば、鋼製外皮、Fe−Ti等の合金粉を用いる。
(Ti: 0.15-1.00 mass%, preferably 0.20-1.00 mass%)
Ti (metal Ti) is added in order to improve the hot crack resistance of the weld zone (first layer weld zone). Ti (metal Ti) contributes to the deoxidation reaction during welding, and inclusions in the weld metal can be controlled to a Ti-based oxide composition. As a result, the solidification structure of the weld (weld metal) can be made fine, and the weld The effect of suppressing the high temperature cracking of the (first layer weld) is improved. If the amount of Ti (metal Ti) is less than 0.15% by mass, hot cracking occurs in the welded portion (first layer welded portion). When the amount of Ti (metal Ti) exceeds 1.00% by mass, the weld metal reheated portion tends to be hard and brittle bainite and martensite, and the toughness decreases. In addition, the amount of spatter generated during welding increases and welding workability decreases. As the Ti source, for example, an alloy powder such as a steel outer shell or Fe—Ti is used.

(TiO:5.0〜8.0質量%)
TiO(Ti酸化物)は、全姿勢溶接性を確保するために添加する。TiO量(Ti酸化物)が5.0質量%未満では、立向上進溶接でビードが垂れ、溶接作業性が低下する。TiO量(Ti酸化物)が8.0質量%を超えると、溶接時のスラグ剥離性が劣化し、溶接作業性が低下する。また、フラックス3のかさ比重が小さくなり、生産性が劣化する。なお、TiO源としては、例えば、ルチール等を用いる。
(TiO 2: 5.0 to 8.0 wt%)
TiO 2 (Ti oxide) is added to ensure all-position weldability. When the amount of TiO 2 (Ti oxide) is less than 5.0% by mass, the bead drips during the vertical improvement welding, and the workability of welding is lowered. When the amount of TiO 2 (Ti oxide) exceeds 8.0% by mass, the slag removability at the time of welding deteriorates and the welding workability decreases. Further, the bulk specific gravity of the flux 3 is reduced, and the productivity is deteriorated. As the TiO 2 source, for example, rutile or the like is used.

(Al:0.20〜0.50質量%、好ましくは0.20〜0.40質量%)
Alは強脱酸剤であり、溶接継手(溶接金属)中に生成する介在物から、Alに比べ脱酸力の弱いSiからなるSiOを還元し、介在物の組成を核生成促進に効果的なTi系酸化物組成の介在物に制御できる。その結果、溶接金属の凝固組織を微細にできる。さらに、溶接金属の酸素量を低下させ、Mnの歩留まりが安定し、溶接部(初層溶接部)の高温割れ抑制作用が改善し、靭性も安定化する。Al量が0.20質量%未満では、脱酸が十分でなく、溶接部(初層溶接部)に高温割れが発生する。また、靭性も低下する。Al量が0.50質量%を超えると、溶接時のスパッタ発生量が多くなり、溶接作業性が低下する。なお、Al源としては、例えば、鋼製外皮、Al金属粉、Fe−Al、Al−Mg等の合金粉を用いる。
(Al: 0.20 to 0.50 mass%, preferably 0.20 to 0.40 mass%)
Al is a strong deoxidizer, and it reduces SiO 2 made of Si, which has a weaker deoxidation power than Al, from inclusions formed in welded joints (welded metal), and the composition of inclusions is effective in promoting nucleation. It is possible to control the inclusion of a typical Ti-based oxide composition. As a result, the solidification structure of the weld metal can be made fine. Furthermore, the oxygen content of the weld metal is reduced, the yield of Mn is stabilized, the hot cracking suppressing action of the welded part (first layer welded part) is improved, and the toughness is also stabilized. When the amount of Al is less than 0.20% by mass, deoxidation is not sufficient, and hot cracking occurs in the welded portion (first layer welded portion). Also, toughness is reduced. If the Al amount exceeds 0.50% by mass, the amount of spatter generated during welding increases and welding workability decreases. As the Al source, for example, steel outer sheath, Al metal powder, Fe-Al, Al-Mg alloy powder or the like is used.

(Al:0.05〜0.50質量%、好ましくは0.05〜0.40質量%)
Alは、水平すみ肉姿勢でのビード形状、立向上進姿勢でのビードの垂れ防止のために添加する。Al量が0.05質量%未満では、水平すみ肉溶接でのビード形状(なじみ)が悪く、また、立向上進溶接でビード垂れが発生し、溶接作業性が低下する。Al量が0.50質量%を超えると、溶接時のスラグ剥離性が劣化し、溶接作業性が低下する。なお、Al源としては、例えば、アルミナや長石等の複合酸化物を用いる。
(Al 2 O 3: 0.05~0.50 wt%, preferably from 0.05 to 0.40 wt%)
Al 2 O 3 is added to prevent the bead from drooping in the horizontal fillet posture and in the standing improvement posture. If the amount of Al 2 O 3 is less than 0.05% by mass, the bead shape (familiarity) in horizontal fillet welding is poor, and bead sagging occurs in vertical improvement welding, resulting in poor welding workability. When the amount of Al 2 O 3 exceeds 0.50% by mass, the slag removability at the time of welding is deteriorated and the welding workability is lowered. As the Al 2 O 3 source, for example, a complex oxide such as alumina or feldspar is used.

(B:0.003〜0.020質量%)
Bのうち、溶存Bはγ粒界に偏析し、初析フェライトの生成を抑制する効果があり、溶接金属の靭性改善に有効である。B量が0.003質量%未満では、大部分のBがBNとして窒化物に固定化され、初析フェライトの生成を抑制する効果が無く、靭性改善効果が得られない。B量が0.020質量%を超えると、溶接金属の高温割れが発生しやすくなる。なお、B源としては、例えば、Fe−B、アトマイズB等の合金を用いる。
(B: 0.003-0.020 mass%)
Among B, dissolved B segregates at the γ grain boundary and has the effect of suppressing the formation of proeutectoid ferrite, which is effective in improving the toughness of the weld metal. When the amount of B is less than 0.003 mass%, most of B is fixed to nitride as BN, there is no effect of suppressing the formation of proeutectoid ferrite, and the effect of improving toughness cannot be obtained. If the amount of B exceeds 0.020% by mass, hot cracking of the weld metal tends to occur. As the B source, for example, an alloy such as Fe-B or atomized B is used.

((4×Ti+10×Al−3×Si)≧1.0)
ワイヤ1に含まれるTi量(金属Ti)を所定範囲内に制御することで、溶接時にTi(金属Ti)が脱酸反応に寄与し、溶接継手(溶接金属)中に生成する介在物の組成を核生成促進に効果的なTi系酸化物組成の介在物に制御できる。その結果、溶接金属の凝固組織を微細にでき、高温割れ抑制作用を著しく改善できるものである。また、核生成促進に効果的なTi系酸化物には、介在物融点を下げるSiOを含有しないことが好ましい。さらに、Alは強脱酸剤であり、Alに比べ脱酸力の弱いSiからなるSiOを還元し、介在物の組成を核生成促進に効果的なTi系酸化物組成の介在物に制御する効果がある。そのため、ワイヤ1に含まれるTi量(金属Ti)、Al量およびSi量の関係で規定することで、Ti系酸化物組成を凝固組織微細化により効果的な組成に制御可能となり、溶接金属の凝固組織を高温割れ抑制作用の改善において好ましいものに制御可能となる。
((4 × Ti + 10 × Al-3 × Si) ≧ 1.0)
By controlling the amount of Ti (metal Ti) contained in the wire 1 within a predetermined range, Ti (metal Ti) contributes to the deoxidation reaction during welding, and the composition of inclusions generated in the welded joint (welded metal) Can be controlled to be inclusions of a Ti-based oxide composition effective for promoting nucleation. As a result, the solidification structure of the weld metal can be made fine, and the hot cracking suppressing effect can be remarkably improved. Further, it is preferable that the Ti-based oxide effective for promoting nucleation does not contain SiO 2 that lowers the melting point of inclusions. Furthermore, Al is a strong deoxidizer, which reduces SiO 2 composed of Si, which has a weaker deoxidizing power than Al, and controls the inclusion composition to be an inclusion of a Ti-based oxide composition that is effective in promoting nucleation. There is an effect to. Therefore, by defining the relationship between the amount of Ti contained in the wire 1 (metal Ti), the amount of Al, and the amount of Si, the Ti-based oxide composition can be controlled to an effective composition by refining the solidified structure, and the weld metal It becomes possible to control the solidified structure to be preferable in improving the hot cracking suppression effect.

(4×Ti+10×Al−3×Si)<1.0であると、溶接継手の凝固組織が微細化しない。したがって、(4×Ti+10×Al−3×Si)≧1.0、である。
ここで、(Ti)は、ワイヤ1に含有される前記Tiおよび前記TiOのうちの前記Ti(金属Ti)のみから算出されるTi量で、ワイヤ1に含有された前記TiO(Ti酸化物)から算出(換算)されるTi量は含まない。
また、(Si)とは、ワイヤ1に含有される前記Si源の全てから算出されるSi量の総和である。なお、前記SiOは、Si源として用いられる、例えば、ジルコンサンド、珪砂、長石等の酸化物に含まれる。
If (4 × Ti + 10 × Al−3 × Si) <1.0, the solidified structure of the welded joint is not refined. Therefore, (4 × Ti + 10 × Al−3 × Si) ≧ 1.0.
Here, (Ti) is a Ti amount calculated only from the Ti (metal Ti) of the Ti and the TiO 2 contained in the wire 1, and the TiO 2 (Ti oxidation) contained in the wire 1. The amount of Ti calculated (converted) from the product) is not included.
Further, (Si) is the total amount of Si calculated from all the Si sources contained in the wire 1. The SiO 2 is used as an Si source, for example, oxides such as zircon sand, silica sand, and feldspar.

(Fe)
残部のFeは、鋼製外皮2を構成するFe、および/または、フラックス3に添加されている鉄粉、合金粉のFeに相当する。
(不可避的不純物)
残部の不可避的不純物としては、S、P、Ni、O、Zr等が挙げられ、本発明の効果を妨げない範囲で含有することが許容される。S量、P量、Ni量、O量、Zr量は、それぞれ、0.050質量%以下が好ましく、鋼製外皮2とフラックス3における各成分量の総和である。
(Fe)
The remaining Fe corresponds to Fe constituting the steel outer shell 2 and / or Fe of alloy powder or alloy powder added to the flux 3.
(Inevitable impurities)
The remaining inevitable impurities include S, P, Ni, O, Zr and the like, and it is allowed to be contained within a range that does not hinder the effects of the present invention. The amount of S, amount of P, amount of Ni, amount of O, and amount of Zr are each preferably 0.050% by mass or less, and are the total amount of each component in the steel outer sheath 2 and the flux 3.

なお、鋼製外皮2およびフラックス3は、ワイヤ作製時に前記ワイヤ成分(成分量)が前記範囲内になるように、鋼製外皮2およびフラックス3の各成分(各成分量)を選択する。
また、ワイヤ1の表面にCu鍍金を施すことも可能であり、ワイヤ全質量に対し、0.35質量%以下のCuを含有してもよい。
In addition, as for the steel outer sheath 2 and the flux 3, each component (each component amount) of the steel outer sheath 2 and the flux 3 is selected so that the wire component (component amount) is within the above range at the time of wire production.
Moreover, it is also possible to give Cu plating to the surface of the wire 1, and you may contain 0.35 mass% or less Cu with respect to the total mass of a wire.

本発明に係るフラックス入りワイヤについて、本発明の要件を満足する実施例と、本発明の要件を満足しない比較例とを比較して具体的に説明する。
鋼製外皮(鋼は、C:0.03質量%、Si:0.02質量%、Mn:0.25質量%、P:0.010質量%、S:0.007質量%を含有し、残部Feおよび不可避的不純物からなるものを使用)の内側にフラックスを充填して、表1、表2に示すワイヤ成分からなるワイヤ径1.2mmの図1(b)に示すワイヤ1(実施例:No.1〜19、比較例:No.20〜40)を作製した。
The flux-cored wire according to the present invention will be specifically described by comparing an example that satisfies the requirements of the present invention with a comparative example that does not satisfy the requirements of the present invention.
Steel outer shell (steel contains C: 0.03 mass%, Si: 0.02 mass%, Mn: 0.25 mass%, P: 0.010 mass%, S: 0.007 mass%, Wire 1 shown in FIG. 1 (b) having a wire diameter of 1.2 mm made of wire components shown in Tables 1 and 2 is filled inside with a flux inside the balance Fe and unavoidable impurities). : No. 1 to 19, Comparative Example: No. 20 to 40).

なお、ワイヤ成分は、以下の測定方法で測定、算出した。
C量は、「赤外線吸収法」によって測定した。Si量、Mn量およびB量は、ワイヤ全量を溶解し「ICP発光分光分析法」によって測定した。
The wire component was measured and calculated by the following measurement method.
The amount of C was measured by the “infrared absorption method”. The amount of Si, the amount of Mn, and the amount of B were measured by “ICP emission spectroscopic analysis” after dissolving the entire amount of wire.

TiO量(TiO等として存在し、Fe−Ti等は含まない)は、「酸分解法」により測定される。酸分解法に使用する溶媒は王水を用い、ワイヤ全量を溶解した。これにより、ワイヤ1に含まれるTi源(Fe−Ti等)は王水へ溶解するが、TiO源(TiO等)は王水に対し不溶なため、溶け残る。この溶液を、フィルター(ろ紙は5Cの目の細かさ)を用いてろ過し、フィルターごと残渣をニッケル製るつぼに移し、ガスバーナーで加熱して灰化した。次いで、アルカリ融剤(水酸化ナトリウムと過酸化ナトリウムの混合物)を加え、再度ガスバーナーで加熱して残渣を融解した。次に、18質量%塩酸を加えて融解物を溶液化した後、メスフラスコに移し、さらに純水を加えてメスアップして分析液を得た。分析液中のTi濃度を「ICP発光分光分析法」で測定した。このTi濃度をTiO量に換算し、TiO量を算出した。 The amount of TiO 2 (present as TiO 2 or the like but not including Fe—Ti or the like) is measured by the “acid decomposition method”. As a solvent used in the acid decomposition method, aqua regia was used, and the entire amount of the wire was dissolved. Thus, although Ti source contained in the wire 1 (Fe-Ti, etc.) is dissolved in aqua regia, TiO 2 source (TiO 2, etc.) because it insoluble in aqua regia, melt remains. This solution was filtered using a filter (the filter paper has a fineness of 5C). The residue together with the filter was transferred to a nickel crucible and heated with a gas burner to be incinerated. Next, an alkali flux (mixture of sodium hydroxide and sodium peroxide) was added and heated again with a gas burner to melt the residue. Next, 18 mass% hydrochloric acid was added to make the melt into a solution, and then the solution was transferred to a volumetric flask and further diluted with pure water to obtain an analysis solution. The Ti concentration in the analysis solution was measured by “ICP emission spectroscopy”. And converting the Ti concentration in the TiO 2 amount was calculated amount of TiO 2.

Ti量(Fe−Ti等として存在し、TiO等は含まない)は、「酸分解法」によりワイヤ全量を王水へ溶解して、不溶であったTiO源(TiO等)をろ過し、その溶液をワイヤ1に含まれるTi源(Fe−Ti等)とし得ることで、「ICP発光分光分析法」を用い、Ti量(Fe−Ti等)として存在を求めた。 Ti amount (existing as Fe-Ti etc., not including TiO 2 etc.) is obtained by dissolving the whole amount of wire in aqua regia by “acid decomposition method” and filtering the insoluble TiO 2 source (TiO 2 etc.). Then, by using the solution as a Ti source (Fe—Ti or the like) contained in the wire 1, the presence of the Ti amount (Fe—Ti or the like) was determined using “ICP emission spectroscopy”.

Al量(アルミナや長石等の複合酸化物として存在し、Al金属粉等の合金粉は含まない)は、「酸分解法」により測定される。酸分解法に使用する溶媒は王水を用い、ワイヤ全量を溶解した。これにより、ワイヤ1に含まれるAl源(Al金属粉等の合金粉)は王水へ溶解するが、Al源(アルミナや長石等の複合酸化物)は王水に対し不溶なため、溶け残る。この溶液を、フィルター(ろ紙は5Cの目の細かさ)を用いてろ過し、フィルターごと残渣をニッケル製るつぼに移し、ガスバーナーで加熱して灰化した。次いで、アルカリ融剤(水酸化ナトリウムと過酸化ナトリウムの混合物)を加え、再度ガスバーナーで加熱して残渣を融解した。次に、18質量%塩酸を加えて融解物を溶液化した後、メスフラスコに移し、さらに純水を加えてメスアップして分析液を得た。分析液中のAl濃度を「ICP発光分光分析法」で測定した。このAl濃度をAl量に換算し、Al量を算出した。 The amount of Al 2 O 3 (present as a composite oxide such as alumina and feldspar, and does not include alloy powder such as Al metal powder) is measured by the “acid decomposition method”. As a solvent used in the acid decomposition method, aqua regia was used, and the entire amount of the wire was dissolved. As a result, the Al source (alloy powder such as Al metal powder) contained in the wire 1 is dissolved in aqua regia, but the Al 2 O 3 source (a composite oxide such as alumina and feldspar) is insoluble in aqua regia. , It remains undissolved. This solution was filtered using a filter (the filter paper has a fineness of 5C). The residue together with the filter was transferred to a nickel crucible and heated with a gas burner to be incinerated. Next, an alkali flux (mixture of sodium hydroxide and sodium peroxide) was added and heated again with a gas burner to melt the residue. Next, 18 mass% hydrochloric acid was added to make the melt into a solution, and then the solution was transferred to a volumetric flask and further diluted with pure water to obtain an analysis solution. The Al concentration in the analysis solution was measured by “ICP emission spectroscopy”. And converting the Al concentration in the amount of Al 2 O 3, it was calculated the amount of Al 2 O 3.

Al量(Al金属粉等の合金粉として存在し、アルミナや長石等の複合酸化物は含まない)は、「酸分解法」によりワイヤ全量を王水へ溶解して、不溶であったAl源(アルミナや長石等の複合酸化物)をろ過し、その溶液をワイヤ1に含まれるAl源(Al金属粉等の合金粉)とし得ることで、「ICP発光分光分析法」を用い、Al量(Al金属粉等の合金粉)として存在を求めた。 (Present as an alloy powder such as Al metal powder, composite oxide of alumina and feldspar and the like are not included) Al amount, by dissolving the wire the total amount to aqua regia by "acid decomposition method", Al 2 was insoluble By filtering the O 3 source (composite oxide such as alumina and feldspar) and using the solution as the Al source (alloy powder such as Al metal powder) contained in the wire 1, the “ICP emission spectroscopy” is used. The presence of Al was determined as an Al amount (alloy powder such as Al metal powder).

Figure 0005400461
Figure 0005400461

Figure 0005400461
Figure 0005400461

作製されたワイヤ1を用いて、以下に示す方法で、耐高温割れ性、機械的性質(引張強さ、吸収エネルギー)、溶接作業性について評価した。その評価結果に基づいて、実施例および比較例のワイヤ1の総合評価を行った。   Using the produced wire 1, hot crack resistance, mechanical properties (tensile strength, absorbed energy), and welding workability were evaluated by the following methods. Based on the evaluation result, comprehensive evaluation of the wire 1 of an Example and a comparative example was performed.

(耐高温割れ性)
JIS G3106 SM400B鋼(C:0.12質量%、Si:0.2質量%、Mn:1.1質量%、P:0.008質量%、S:0.003質量%を含有し、残部Feおよび不可避的不純物)からなる溶接母材を、表3に示す溶接条件で片面溶接(下向突合せ溶接)した。
(High temperature crack resistance)
JIS G3106 SM400B steel (C: 0.12% by mass, Si: 0.2% by mass, Mn: 1.1% by mass, P: 0.008% by mass, S: 0.003% by mass, balance Fe And a welding base material composed of unavoidable impurities) was subjected to single-sided welding (downward butt welding) under the welding conditions shown in Table 3.

Figure 0005400461
Figure 0005400461

図2は、耐高温割れ性の評価に使用する溶接母材の開先形状を示す断面図である。図2に示すように、溶接母材11はV形状の開先を有し、このV形状の開先の裏面には、セラミック製の耐火物12およびアルミニウムテープ13等からなる裏当て材が配置されている。そして、開先角度を35°として、裏当て材が配置されている部分のルート間隔を4mmとした。   FIG. 2 is a cross-sectional view showing a groove shape of a weld base material used for evaluation of hot crack resistance. As shown in FIG. 2, the welding base material 11 has a V-shaped groove, and a backing material made of a ceramic refractory 12 and an aluminum tape 13 is disposed on the back surface of the V-shaped groove. Has been. The groove angle was set to 35 °, and the route interval of the portion where the backing material was arranged was set to 4 mm.

溶接終了後、初層溶接部(クレータ部を除く)について、X線透過試験(JIS Z 3104)にて、内部割れの有無を確認し、割れ発生部分のトータル長さを測定し、割れ率を算出した。ここで、割れ率は、割れ率W=(割れ発生部分のトータル長さ)/(初層溶接部長さ(クレータ部を除く))×100により算出される。その割れ率で耐高温割れ性を評価した。その結果を表4、表5に示す。   After welding, the first layer welded part (excluding the crater part) is checked for the presence of internal cracks in the X-ray transmission test (JIS Z 3104), the total length of the cracked part is measured, and the crack rate is determined. Calculated. Here, the cracking rate is calculated by the cracking rate W = (total length of cracked portion) / (first layer welded portion length (excluding crater portion)) × 100. The hot crack resistance was evaluated based on the crack rate. The results are shown in Tables 4 and 5.

なお、評価基準は、溶接電流240Aで割れ率0%かつ溶接電流260Aで割れ率0%のとき「優れている:◎」、溶接電流240Aで割れ率0%かつ溶接電流260Aで割れ率10%以下のとき「良好である:○」、溶接電流240Aで割れ有りかつ溶接電流260Aで割れ有りのとき「劣っている:×」とした。   The evaluation criteria are “Excellent: ◎” when the cracking rate is 0% at a welding current of 240A and the cracking rate is 0% at a welding current of 260A, and the cracking rate is 0% at a welding current of 240A and 10% at a welding current of 260A. In the following cases, “good: ○”, when there was a crack at the welding current 240A, and when there was a crack at the welding current 260A, it was judged as “inferior: x”.

(機械的性質)
JIS Z3313に準じて、引張強さ、0℃吸収エネルギー(靭性)について評価した。その結果を表4、表5に示す。
なお、引張強さの評価基準は、490MPa以上640MPa以下のとき「優れている:○」、490MPa未満または640MPa超のとき「劣っている:×」とした。また、0℃吸収エネルギーの評価基準は、60J以上のとき「優れている:○」、60J未満のとき「劣っている:×」とした。さらに、JIS Z3313に準じて、伸びを評価する場合には、その評価基準は、22%以上のとき「優れている:○」、22%未満のとき「劣っている:×」とした。
(mechanical nature)
In accordance with JIS Z3313, tensile strength and 0 ° C. absorbed energy (toughness) were evaluated. The results are shown in Tables 4 and 5.
The evaluation standard of tensile strength was “excellent: ◯” when 490 MPa or more and 640 MPa or less, and “poor: x” when less than 490 MPa or more than 640 MPa. In addition, the evaluation standard of the 0 ° C. absorbed energy was “excellent: ○” when it was 60 J or more, and “inferior: ×” when it was less than 60 J. Furthermore, when evaluating elongation according to JIS Z3313, the evaluation criterion was “excellent: ◯” when 22% or more, and “inferior: ×” when less than 22%.

(溶接作業性)
耐高温割れ性と同様の溶接母材を使用して、下向すみ肉溶接、水平すみ肉溶接、立向上進すみ肉溶接、立向下進すみ肉溶接の4種の溶接を行い、作業性を官能評価した。ここで、下向すみ肉溶接試験、水平すみ肉溶接試験および立向下進すみ肉溶接試験の溶接条件は、前記耐高温割れ性と同様とした(表3参照)。立向上進すみ肉溶接試験の溶接条件は、溶接電流200〜220A、アーク電圧24〜27Vとした。その結果を表4、表5に示す。
なお、評価基準は、スパッタ発生、ヒューム発生、ビード垂れ、ビード外観等の溶接不良が発生しないとき「優れている:○」、溶接不良が発生したとき「劣っている:×」とした。
(Welding workability)
Using weld base material similar to hot cracking resistance, 4 types of welding, vertical fillet welding, horizontal fillet welding, vertical improvement fillet welding, vertical down fillet welding, are performed. Sensory evaluation. Here, the welding conditions of the downward fillet welding test, the horizontal fillet welding test, and the vertical downward fillet welding test were the same as those of the hot crack resistance (see Table 3). The welding conditions for the vertical improvement fillet welding test were a welding current of 200 to 220 A and an arc voltage of 24 to 27V. The results are shown in Tables 4 and 5.
The evaluation criteria were “excellent: ◯” when no welding failure such as spatter generation, fume generation, bead sagging, and bead appearance occurred, and “inferior: x” when welding failure occurred.

(総合評価)
総合評価の評価基準は、前記評価項目のうち、耐高温割れ性が「◎」かつ機械的性質および溶接作業性が「○」のとき「優れている:◎」、耐高温割れ性が「○」かつ機械的性質および溶接作業性が「○」のとき「良好である:○」、前記評価項目の少なくとも1つが「×」のとき「劣っている:×」とした。その結果を表4、表5に示す。
(Comprehensive evaluation)
The evaluation criteria for the comprehensive evaluation are “Excellent: ◎” when the hot crack resistance is “」 ”and the mechanical properties and welding workability are“ ◯ ”among the above evaluation items, and the hot crack resistance is“ ○ ”. In addition, when the mechanical property and the welding workability are “◯”, it is “good”, and when at least one of the evaluation items is “x”, it is “inferior: ×”. The results are shown in Tables 4 and 5.

Figure 0005400461
Figure 0005400461

Figure 0005400461
Figure 0005400461

表1、表4に示すように、実施例(No.1〜19)は、全てのワイヤ成分が本発明の範囲を満足するため、耐高温割れ性、機械的性質および溶接作業性の全てにおいて、優れ(または良好で)、総合評価においても、優れていた(または良好であった)。   As shown in Tables 1 and 4, in Examples (Nos. 1 to 19), all the wire components satisfy the scope of the present invention. Therefore, in all of hot crack resistance, mechanical properties and welding workability. Excellent (or good), and excellent (or good) in the overall evaluation.

表2、表5に示すように、比較例(No.20)は、C量が下限値未満であるため、耐高温割れ性および機械的性質に劣り、総合評価も劣っていた。比較例(No.21)は、C量が上限値を超えるため、耐高温割れ性および溶接作業性に劣り、総合評価も劣っていた。比較例(No.22)は、Si量が下限値未満であるため、溶接作業性および機械的性質(伸び)が劣り、総合評価も劣っていた。比較例(No.23)は、Si量が上限値を超えるため、耐高温割れ性に劣り、総合評価も劣っていた。   As shown in Tables 2 and 5, the comparative example (No. 20) was inferior in hot cracking resistance and mechanical properties and inferior in overall evaluation because the C content was less than the lower limit. In Comparative Example (No. 21), the amount of C exceeded the upper limit value, so the hot crack resistance and welding workability were poor, and the overall evaluation was also poor. In Comparative Example (No. 22), since the Si amount was less than the lower limit, welding workability and mechanical properties (elongation) were inferior, and overall evaluation was also inferior. In Comparative Example (No. 23), since the Si amount exceeded the upper limit, the hot crack resistance was inferior, and the overall evaluation was also inferior.

比較例(No.24)は、Mn量が下限値未満であるため、耐高温割れ性および機械的性質に劣り、総合評価も劣っていた。比較例(No.25)は、Mn量が上限値を超えるため、機械的性質および溶接作業性に劣り、総合評価も劣っていた。比較例(No.26)は、Ti量が下限値未満であるため、耐高温割れ性に劣り、総合評価も劣っていた。比較例(No.27)は、Ti量が上限値を超えるため、機械的性質および溶接作業性に劣り、総合評価も劣っていた。   Since the amount of Mn was less than a lower limit, the comparative example (No. 24) was inferior in hot cracking resistance and mechanical properties, and was inferior in overall evaluation. In Comparative Example (No. 25), since the amount of Mn exceeded the upper limit value, the mechanical properties and welding workability were inferior, and the overall evaluation was also inferior. In Comparative Example (No. 26), since the Ti amount was less than the lower limit value, the hot crack resistance was inferior, and the overall evaluation was also inferior. In Comparative Example (No. 27), since the Ti amount exceeded the upper limit, the mechanical properties and welding workability were inferior, and the overall evaluation was also inferior.

比較例(No.28)は、TiO量が下限値未満であるため、溶接作業性に劣り、総合評価も劣っていた。比較例(No.29)は、TiO量が上限値を超えるため、溶接作業性に劣り、総合評価も劣っていた。比較例(No.30)は、Al量が下限値未満であるため、耐高温割れ性および機械的性質に劣り、総合評価も劣っていた。比較例(No.31)は、Al量が上限値を超えるため、溶接作業性に劣り、総合評価も劣っていた。 In Comparative Example (No. 28), the amount of TiO 2 was less than the lower limit value, so that the welding workability was poor and the overall evaluation was also poor. In Comparative Example (No. 29), the amount of TiO 2 exceeded the upper limit value, so that the welding workability was poor and the overall evaluation was also poor. In Comparative Example (No. 30), since the Al amount was less than the lower limit value, the hot crack resistance and mechanical properties were inferior, and the overall evaluation was also inferior. In Comparative Example (No. 31), since the Al amount exceeded the upper limit, the welding workability was inferior and the overall evaluation was also inferior.

比較例(No.32)は、Al量が下限値未満であるため、溶接作業性に劣り、総合評価も劣っていた。比較例(No.33)は、Al量が上限値を超えるため、溶接作業性に劣り、総合評価も劣っていた。比較例(No.34)は、B量が下限値未満であるため、機械的性質に劣り、総合評価も劣っていた。比較例(No.35)は、B量が上限値を超えるため、耐高温割れ性に劣り、総合評価も劣っていた。比較例(No.36〜38)は、(4×Ti+10×Al−3×Si)が下限値未満であるため、耐高温割れ性に劣り、総合評価も劣っていた。比較例(No.39)は、フラックス充填率が下限値未満であるため、溶接作業性に劣り、総合評価も劣っていた。比較例(No.40)は、フラックス充填率が上限値を超えるため、ワイヤ生産中に断線が発生し、総合評価としては劣っていた。 In Comparative Example (No. 32), the amount of Al 2 O 3 was less than the lower limit value, so that welding workability was poor and overall evaluation was poor. The comparative example (No. 33) was inferior in welding workability and inferior in overall evaluation because the amount of Al 2 O 3 exceeded the upper limit. Since the amount of B was less than a lower limit, the comparative example (No. 34) was inferior in mechanical properties and inferior in overall evaluation. The comparative example (No. 35) was inferior in hot cracking resistance and inferior in overall evaluation because the B amount exceeded the upper limit. In Comparative Examples (Nos. 36 to 38), (4 × Ti + 10 × Al-3 × Si) was less than the lower limit value, so the hot crack resistance was poor and the overall evaluation was also poor. The comparative example (No. 39) had poor flux workability and poor overall evaluation because the flux filling rate was less than the lower limit. In the comparative example (No. 40), since the flux filling rate exceeded the upper limit, disconnection occurred during wire production, and the overall evaluation was inferior.

以上の結果から、実施例(No.1〜19)は、比較例(No.20〜40)と比べて、フラックス入りワイヤ1として優れていることが確認された。   From the above results, it was confirmed that the examples (No. 1 to 19) are superior as the flux-cored wire 1 as compared with the comparative examples (No. 20 to 40).

1 フラックス入りワイヤ(ワイヤ)
2 鋼製外皮
3 フラックス
4 継目
11 溶接母材
12 耐火物
13 アルミニウムテープ
1 Flux-cored wire (wire)
2 Steel outer shell 3 Flux 4 Seam 11 Welding base material 12 Refractory 13 Aluminum tape

Claims (1)

鋼製外皮内にフラックスが充填されたフラックス入りワイヤであって、
ワイヤ全質量に対するフラックス充填率が10〜25質量%であり、
ワイヤ全質量に対して、
C:0.03〜0.08質量%、
Si(ワイヤに含有される全てのSi源から算出されるSi量の総和):0.10〜1.00質量%、
Mn(ワイヤに含有される全てのMn源から算出されるMn量の総和):2.4〜3.7質量%、
Ti:0.15〜1.00質量%、
TiO:5.0〜8.0質量%、
Al:0.20〜0.50質量%、
Al:0.05〜0.50質量%、
B:0.003〜0.020質量%
を含有し、残部がFeおよび不可避的不純物からなり、
かつ、(4×Ti+10×Al−3×Si)≧1.0の関係式を満足し、前記関係式において(Ti)は前記ワイヤに含有される前記Tiおよび前記TiOのうちの前記Tiのみから算出されるTi量、(Al)は前記ワイヤに含有される前記Alおよび前記Al のうちの前記Alのみから算出されるAl量であることを特徴とするフラックス入りワイヤ。
A flux-cored wire with a flux filled in a steel outer sheath,
The flux filling rate with respect to the total mass of the wire is 10 to 25% by mass,
For the total mass of the wire
C: 0.03-0.08 mass%,
Si (total amount of Si calculated from all Si sources contained in the wire): 0.10 to 1.00% by mass,
Mn (total amount of Mn calculated from all Mn sources contained in the wire): 2.4 to 3.7% by mass,
Ti: 0.15-1.00 mass%,
TiO 2: 5.0 to 8.0 wt%,
Al: 0.20 to 0.50 mass%,
Al 2 O 3: 0.05~0.50 wt%,
B: 0.003-0.020 mass%
And the balance consists of Fe and inevitable impurities,
And satisfying the (4 × Ti + 10 × Al -3 × Si) ≧ 1.0 relational expression, in the relational expression (Ti) is the one of said Ti and said TiO 2 is contained in the prior Symbol wire Ti amount calculated from Ti alone, (Al) is a flux cored wire which is a Al amount calculated from the Al only one of the Al and the Al 2 O 3 contained in the wire.
JP2009104481A 2009-04-22 2009-04-22 Flux cored wire Expired - Fee Related JP5400461B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2009104481A JP5400461B2 (en) 2009-04-22 2009-04-22 Flux cored wire
CN201010162255XA CN101870045B (en) 2009-04-22 2010-04-08 Flux-cored wire
KR1020100036686A KR101153572B1 (en) 2009-04-22 2010-04-21 Flux cored wire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009104481A JP5400461B2 (en) 2009-04-22 2009-04-22 Flux cored wire

Publications (2)

Publication Number Publication Date
JP2010253494A JP2010253494A (en) 2010-11-11
JP5400461B2 true JP5400461B2 (en) 2014-01-29

Family

ID=42995229

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009104481A Expired - Fee Related JP5400461B2 (en) 2009-04-22 2009-04-22 Flux cored wire

Country Status (3)

Country Link
JP (1) JP5400461B2 (en)
KR (1) KR101153572B1 (en)
CN (1) CN101870045B (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5438663B2 (en) * 2010-12-01 2014-03-12 株式会社神戸製鋼所 Flux cored wire
JP5438664B2 (en) * 2010-12-01 2014-03-12 株式会社神戸製鋼所 Flux cored wire
CN102319968A (en) * 2011-08-24 2012-01-18 北京工业大学 High-boron high-chromium wear-resistant surfacing flux-cored welding wire
JP5952597B2 (en) * 2012-03-08 2016-07-13 株式会社神戸製鋼所 Flux-cored wire for gas shielded arc welding
JP6040133B2 (en) * 2013-10-03 2016-12-07 株式会社神戸製鋼所 Gas shield arc welding method
CN104191111B (en) * 2014-08-15 2016-02-17 郑州机械研究所 A kind of preparation method of aluminium silicon seamless flux-cored wire of germanic, hafnium
JP2017042796A (en) * 2015-08-27 2017-03-02 株式会社神戸製鋼所 Ni-BASE ALLOY WELD METAL
CN105499837A (en) * 2015-12-18 2016-04-20 天津市庆鑫祥科技发展有限公司 Self-protecting flux-cored wire and welding method
CN114769938B (en) * 2022-04-24 2023-07-04 燕山大学 Metal flux-cored wire and preparation method and application thereof

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61206589A (en) * 1985-03-11 1986-09-12 Nippon Steel Corp Submerged arc welding method for hardening and build-up
JP2614969B2 (en) * 1993-03-31 1997-05-28 株式会社神戸製鋼所 Gas shielded arc welding titania-based flux cored wire
JPH06258672A (en) * 1993-03-09 1994-09-16 Toshiba Corp Optical shutter
JPH08197284A (en) * 1995-01-30 1996-08-06 Kobe Steel Ltd Flux cored wire for gas shielded arc welding
JPH09201697A (en) * 1996-01-26 1997-08-05 Nippon Steel Weld Prod & Eng Co Ltd Flux cored wire for gas shielded arc welding
KR100355369B1 (en) * 2000-06-07 2002-10-11 고려용접봉 주식회사 Flux cored wire for arc-welding of austenitic stainless steel
JP4209913B2 (en) * 2006-12-15 2009-01-14 株式会社神戸製鋼所 Flux-cored wire for gas shielded arc welding
JP5179073B2 (en) * 2007-03-08 2013-04-10 日鐵住金溶接工業株式会社 Flux-cored wire for gas shielded arc welding
JP5165322B2 (en) * 2007-09-28 2013-03-21 Jfeスチール株式会社 Flux-cored wire for electrogas arc welding
FR2931376B1 (en) * 2008-05-20 2011-02-18 Air Liquide OVEN WIRE FOR MIG / MAG WELDING WITH CO2-BASED GAS

Also Published As

Publication number Publication date
CN101870045B (en) 2013-03-06
KR20100116541A (en) 2010-11-01
JP2010253494A (en) 2010-11-11
CN101870045A (en) 2010-10-27
KR101153572B1 (en) 2012-06-12

Similar Documents

Publication Publication Date Title
JP5416605B2 (en) Flux cored wire
JP5400461B2 (en) Flux cored wire
JP5400472B2 (en) Flux cored wire
JP4970802B2 (en) Ni-based alloy flux cored wire
JP5438663B2 (en) Flux cored wire
JP5314339B2 (en) Flux cored wire
JP5242665B2 (en) Flux-cored wire for gas shielded arc welding
JP2014113615A (en) Flux-cored wire for carbon dioxide gas shielded arc welding
JP5438664B2 (en) Flux cored wire
JP2013151001A (en) Flux-cored wire for gas-shielded arc welding for weather-resistant steel
JP5153421B2 (en) Flux-cored wire for gas shielded arc welding
JP5314414B2 (en) Flux cored wire
JP2015217393A (en) Flux-cored wire for carbon dioxide gas shielded arc welding
JP5558406B2 (en) Flux-cored wire for carbon dioxide shielded arc welding
JP6599807B2 (en) Flux-cored wire for carbon dioxide shielded arc welding
JP6084948B2 (en) Flux-cored wire for gas shielded arc welding
JP2020175433A (en) Ni-BASED ALLOY FLUX-CORED WIRE
JP6726008B2 (en) Flux-cored wire for gas shield arc welding
JP5351641B2 (en) Flux cored wire
JP5457301B2 (en) Flux-cored wire for gas shielded arc welding
JP2021058905A (en) Iron powder low-hydrogen type coated electrode
JP2020121335A (en) Flux-cored wire for carbon dioxide gas shield arc welding of high tensile steel

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110901

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130813

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130925

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131015

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131025

R150 Certificate of patent or registration of utility model

Ref document number: 5400461

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees