JP4896483B2 - Austenitic stainless steel-coated arc welding rod with excellent resistance to Cu embrittlement cracking - Google Patents

Austenitic stainless steel-coated arc welding rod with excellent resistance to Cu embrittlement cracking Download PDF

Info

Publication number
JP4896483B2
JP4896483B2 JP2005295799A JP2005295799A JP4896483B2 JP 4896483 B2 JP4896483 B2 JP 4896483B2 JP 2005295799 A JP2005295799 A JP 2005295799A JP 2005295799 A JP2005295799 A JP 2005295799A JP 4896483 B2 JP4896483 B2 JP 4896483B2
Authority
JP
Japan
Prior art keywords
welding rod
stainless steel
arc welding
austenitic stainless
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005295799A
Other languages
Japanese (ja)
Other versions
JP2007105734A (en
Inventor
裕滋 井上
学 水本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Stainless Steel Corp
Original Assignee
Nippon Steel and Sumikin Stainless Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel and Sumikin Stainless Steel Corp filed Critical Nippon Steel and Sumikin Stainless Steel Corp
Priority to JP2005295799A priority Critical patent/JP4896483B2/en
Publication of JP2007105734A publication Critical patent/JP2007105734A/en
Application granted granted Critical
Publication of JP4896483B2 publication Critical patent/JP4896483B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、オーステナイト系ステンレス鋼の被覆アーク溶接棒に関し、特に石炭焚きボイラーやごみ焼却施設の煙突・煙道のような硫酸および塩酸環境、あるいは、海水淡水化プラントや海水熱交換器のような塩化物環境下で使用される高耐食ステンレス鋼の溶接に用いられ、母材と同等の耐食性を有する溶接金属が得られるとともに、耐Cu脆化割れ性に優れたオーステナイト系ステンレス鋼被覆アーク溶接棒に関する。   The present invention relates to an austenitic stainless steel coated arc welding rod, particularly sulfuric acid and hydrochloric acid environments such as chimneys and flues of coal-fired boilers and waste incineration facilities, or seawater desalination plants and seawater heat exchangers. An austenitic stainless steel-coated arc welding rod used for welding highly corrosion-resistant stainless steel used in a chloride environment, providing a weld metal with corrosion resistance equivalent to that of the base metal and having excellent resistance to Cu embrittlement cracking About.

一般に、耐食性の要求される環境で使用するオーステナイト系ステンレス鋼は、JISに規定されているSUS304、非酸化性酸に対する耐食性を向上させる目的にNiを増量し、Moを添加したSUS316、SUS317、また、硫酸腐食環境下での耐食性を向上させるためにCuを適量添加したSUS316J1(18Cr−12Ni−2Mo−2Cu)、SUS317J5L(21Cr−24.5Ni−4.5Mo−1.5Cu−低C)などがあり、腐食環境に応じてこれらの鋼種が選択されている。さらに、硫酸環境下での使用を目的としてCuが1.0〜3.0%添加されたオーステナイト系ステンレス鋼が知られている(例えば特許文献1および2、参照)。
これらのステンレス鋼の溶接に際しては、溶接金属の耐食性が母材と同等となるように、溶接材料にもCuが適量添加されており、Cuを0.5〜1.0%含有した高耐食ステンレス鋼用のTIGおよびプラズマ溶接ワイヤ(例えば特許文献3、参照)、Cuを0.8〜2.4%含有した高耐食ステンレス鋼溶接用フラックス入りワイヤ(例えば特許文献4、参照)、Cuを2.5〜4.5%含有した高耐食ステンレス鋼用溶接ワイヤ(例えば特許文献5、参照)が提案され、ガスシールドアーク溶接に用いられている。
In general, austenitic stainless steel used in an environment where corrosion resistance is required is SUS304 specified in JIS, SUS316, SUS317 added with Mo for the purpose of improving the corrosion resistance against non-oxidizing acid, and SUS317, SUS316J1 (18Cr-12Ni-2Mo-2Cu), SUS317J5L (21Cr-24.5Ni-4.5Mo-1.5Cu-low C) and the like to which an appropriate amount of Cu is added to improve the corrosion resistance in a sulfuric acid corrosion environment Yes, these steel types are selected according to the corrosive environment. Furthermore, an austenitic stainless steel to which Cu is added in an amount of 1.0 to 3.0% for use in a sulfuric acid environment is known (see, for example, Patent Documents 1 and 2).
When welding these stainless steels, an appropriate amount of Cu is added to the welding material so that the corrosion resistance of the weld metal is equivalent to that of the base metal, and high corrosion resistance stainless steel containing 0.5 to 1.0% of Cu. TIG and plasma welding wire for steel (for example, see Patent Document 3), flux-cored wire for high corrosion resistance stainless steel welding containing 0.8 to 2.4% of Cu (for example, see Patent Document 4), Cu for 2 A welding wire for high corrosion resistance stainless steel containing 0.5 to 4.5% (see, for example, Patent Document 5) has been proposed and used for gas shielded arc welding.

一方、例えば、石炭焚きボイラーやごみ焼却施設の煙突・煙道のライニングなどには溶接作業の効率性からガスシールドアーク溶接よりも被覆アーク溶接を用いるのが一般的である。このような用途に適用するために、発明者らは、ステンレス鋼心線または被覆剤の一方もしくは両方に溶接棒全質量に対する質量%で、Cuを0.3〜1.8%含有した高耐食ステンレス鋼用被覆アーク溶接棒(例えば特許文献6、参照)を提案した。しかし、その後の検討の結果、この高耐食ステンレス鋼用被覆アーク溶接棒により得られる溶接金属の耐食性、耐ブローホール性、スラグ剥離性は良好となるが、被覆剤中に含有するCuに起因し、溶融境界近傍の溶接熱影響部に微細割れが発生し、溶接部の靱性や疲労強度を低下させるという新たな技術的課題があることが判明した。
Cuを含有したステンレス鋼用被覆アーク溶接棒を製造する場合は、Cuを含有したステンレス鋼心線を用いると製造コストが高くなるため、Cuは少なくとも被覆剤中に含有させ、心線中にはCuを全く含有させないか、或いは、Cu量調整のために含有させる方法が工業的に一般化している。
On the other hand, for example, covering arc welding is generally used rather than gas shielded arc welding because of the efficiency of welding work, for example, for coal-fired boilers and chimney / flue linings of garbage incineration facilities. In order to apply to such a use, the inventors have developed a high corrosion resistance containing 0.3 to 1.8% of Cu in one or both of the stainless steel core wire and the coating material in terms of mass% with respect to the total mass of the welding rod. A coated arc welding rod for stainless steel (for example, see Patent Document 6) has been proposed. However, as a result of subsequent investigations, the corrosion resistance, blowhole resistance, and slag peelability of the weld metal obtained by this coated arc welding rod for high corrosion resistance stainless steel are good, but this is due to the Cu contained in the coating. It has been found that there is a new technical problem in that fine cracks occur in the weld heat-affected zone near the melting boundary and the toughness and fatigue strength of the weld are reduced.
In the case of manufacturing a coated arc welding rod for stainless steel containing Cu, since the manufacturing cost increases when a stainless steel core wire containing Cu is used, Cu is contained in at least the coating agent, A method of not containing Cu at all or adding it for adjusting the amount of Cu is industrially generalized.

しかしながら、発明者らの確認試験の結果によれば、Cuを多量に被覆剤中に含有した被覆アーク溶接棒を用いて溶接する場合には、被覆剤が溶融した後、Cuを含有したスラグが高温の溶接金属および溶接熱影響部を覆うが、Cuはスラグより融点が低いため、スラグが凝固した後も、Cuはスラグ中で溶融状態のまま残留する。この溶融状態のCuはスラグから溶接金属および溶接熱影響部のオーステナイト粒界に浸入し、特に溶融線近傍でCu脆化割れを発生させる原因となることがわかった。
このCu脆化割れは溶接部の靱性や疲労強度を低下させるとともに、腐食の起点となるため、母材と同等の機械的特性および耐食性を有する溶接継手が得られるための耐Cu脆化割れ性に優れた共金系のオーステナイト系ステンレス鋼被覆アーク溶接棒の開発が望まれている。
特願平2−170946号公報 特開2003−328087号公報 特開平1−95895号公報 特開平3−86392号公報 特開2003−311472号公報 特開2002−248598号公報
However, according to the results of the inventors' confirmation test, when welding is performed using a coated arc welding rod containing a large amount of Cu in the coating, the slag containing Cu is melted after the coating is melted. Although it covers the high-temperature weld metal and the weld heat affected zone, since Cu has a lower melting point than slag, Cu remains in a molten state in the slag even after the slag solidifies. It was found that this molten Cu penetrates from the slag into the weld metal and the austenite grain boundary of the weld heat affected zone, and causes Cu embrittlement cracking particularly in the vicinity of the melting line.
This Cu embrittlement crack reduces the toughness and fatigue strength of the welded part, and also serves as a starting point for corrosion. Therefore, the Cu embrittlement crack resistance for obtaining a welded joint having mechanical properties and corrosion resistance equivalent to the base metal The development of an excellent austenitic stainless steel-coated arc welding rod with excellent properties is desired.
Japanese Patent Application No. 2-170946 JP 2003-328087 A Japanese Patent Laid-Open No. 1-95895 JP-A-3-86392 JP 2003-31472 A JP 2002-248598 A

本発明は、上記の背景技術の問題点に鑑みて、Cuを含有する高耐食オーステナイト系ステンレス鋼用の共金系被覆アーク溶接棒であって、母材と同等の機械的特性および耐食性を有する溶接部が得られるとともに、耐Cu脆化割れ性に優れたオーステナイト系ステンレス鋼被覆アーク溶接棒を提供することを目的とする。   In view of the problems of the background art described above, the present invention is a co-metal-coated arc welding rod for high corrosion resistance austenitic stainless steel containing Cu, and has mechanical properties and corrosion resistance equivalent to those of a base material. An object of the present invention is to provide an austenitic stainless steel-coated arc welding rod having a welded portion and excellent Cu brittle crack resistance.

本発明は、上記課題を解決するものであって、その要旨とするところは下記の通りである。
(1)オーステナイト系ステンレス鋼心線に被覆剤を被覆塗装してなる被覆アーク溶接棒において、前記被覆剤中に、溶接棒全質量に対する質量%で、Cu:0.05〜3.0%を含有し、さらに、
Bi:0.05〜0.2%、および、
Bi23:0.05〜0.2%のうちの1種または2種をBiとBi23の合計含有量が0.2%以下の範囲で含有しており、
更に、前記オーステナイト系ステンレス鋼心線および前記被覆剤のいずれか一方または両方に、溶接棒全質量に対する質量%で、
C:0.005〜0.05%、
Si:0.1〜1.6%、
Mn:0.1〜2.5%、
Cr:15.0〜30.0%、
Ni:7.5〜25.0%、
Mo:0.5〜6.7%、
Cu:0.05〜5.0%、
N:0.05〜0.35%を含有し、残部が鉄および不可避的不純物からなることを特徴とするCu脆化割れ性に優れたオーステナイト系ステンレス鋼被覆アーク溶接棒。
The present invention solves the above-mentioned problems, and the gist thereof is as follows.
(1) In a coated arc welding rod formed by coating austenitic stainless steel core wire with a coating agent, Cu: 0.05 to 3.0% in the coating agent in terms of mass% with respect to the total mass of the welding rod. Contains, and
Bi: 0.05-0.2% and
Bi 2 O 3 : One or two of 0.05 to 0.2% are contained within a range where the total content of Bi and Bi 2 O 3 is 0.2% or less ,
Furthermore, in either one or both of the austenitic stainless steel core wire and the coating agent, in mass% with respect to the total mass of the welding rod,
C: 0.005-0.05%,
Si: 0.1 to 1.6%,
Mn: 0.1 to 2.5%
Cr: 15.0-30.0%,
Ni: 7.5-25.0%,
Mo: 0.5 to 6.7%,
Cu: 0.05 to 5.0%,
N: An austenitic stainless steel-coated arc welding rod excellent in Cu embrittlement cracking, characterized by containing 0.05 to 0.35% and the balance being iron and inevitable impurities.

本発明は、高耐食オーステナイト系ステンレス鋼溶接部の健全性が確保される耐Cu脆化割れ性が優れた被覆アーク溶接棒を容易にかつ安価に提供することを可能としたものであり、本発明の適用により産業の発展に貢献するところは極めて大きい。   The present invention makes it possible to easily and inexpensively provide a coated arc welding rod excellent in Cu embrittlement cracking resistance that ensures the soundness of a high corrosion resistance austenitic stainless steel weld zone. The application of the invention greatly contributes to industrial development.

本発明者らは、被覆剤中にCuを添加した種々のオーステナイト系ステンレス鋼被覆アーク溶接棒を試作し、Cu脆化割れを防止する被覆アーク溶接棒を見いだすことを目的として調査、検討した。その結果、被覆剤中にBiまたはBi23を含有させることで、耐Cu脆化割れ性が改善されることが判明した。
以下、本発明について詳細に説明する。
ステンレス心線に被覆塗装されたCuを含有する被覆剤は、溶接アークによって溶融した後、溶接金属中に混入し、溶接金属のCu量を所定の成分に調整される。それとともに、溶融された被覆剤は、溶接金属および溶接熱影響部の表面を覆い、スラグとして凝固することによって、高温の溶接金属および溶接熱影響部を大気から遮断し、酸化および窒化を防止する役割を担う。しかし、被覆剤中にCuを多量に含有した被覆アーク溶接棒を用いて溶接する場合には、被覆剤中のCuに起因して溶接部の特に溶融線近傍でCu脆化割れを発生させる原因となることがわかった。
The inventors of the present invention have made various types of austenitic stainless steel-coated arc welding rods in which Cu is added to the coating agent, and investigated and examined the purpose of finding a coated arc welding rod that prevents Cu embrittlement cracking. As a result, it was found that Cu embrittlement cracking resistance was improved by including Bi or Bi 2 O 3 in the coating agent.
Hereinafter, the present invention will be described in detail.
The coating agent containing Cu coated on the stainless steel core wire is melted by the welding arc and then mixed in the weld metal, and the Cu amount of the weld metal is adjusted to a predetermined component. At the same time, the melted coating covers the surface of the weld metal and the weld heat affected zone and solidifies as a slag, thereby shielding the hot weld metal and weld heat affected zone from the atmosphere and preventing oxidation and nitridation. Take a role. However, when welding using a coated arc welding rod containing a large amount of Cu in the coating, the cause of Cu embrittlement cracks in the vicinity of the melting line of the weld due to Cu in the coating I found out that

つまり、発明者らの確認試験によれば、スラグは大気と接するスラグ最外層から内面の鋼板方向に向かって凝固するため、分配係数の小さいCuはスラグ中の残留液相中に排出されながら凝固が進行し、スラグの最終凝固域である鋼板の表面近傍で薄い膜状となってCuは濃化する。さらに、Cuはスラグより融点が低いため、被覆剤が溶融した後、スラグが凝固を完了した時点でも、高温状態の鋼板表面近傍に濃化したCuは液相状態で凝固したスラグ中に残留し、このCuが溶接部(溶接金属または溶接熱影響部)、特に溶融線近傍の粗大化したオーステナイト粒界に浸入する結果、Cu脆化割れを発生させることが判明した。   That is, according to the confirmation test by the inventors, slag solidifies from the outermost layer of the slag in contact with the atmosphere toward the steel plate on the inner surface, so that Cu having a small distribution coefficient is solidified while being discharged into the residual liquid phase in the slag. Progresses and becomes a thin film near the surface of the steel sheet, which is the final solidification zone of the slag, and Cu is concentrated. Furthermore, since Cu has a lower melting point than slag, even after the slag is completely solidified after the coating has melted, Cu concentrated in the vicinity of the surface of the steel sheet in the high temperature state remains in the slag solidified in the liquid phase state. It has been found that Cu penetrates into the weld zone (welded metal or weld heat affected zone), in particular, the coarsened austenite grain boundary in the vicinity of the melt line, resulting in Cu embrittlement cracks.

そこで、発明者らは上記メカニズムで発生すると考えられるCu脆化割れの発生を抑制するために、Cuと同様にスラグより融点が低く、かつCuより酸素との親和力が強いBiに着目した。
一般に、BiまたはBi23は、フラックス入りワイヤによるアーク溶接のフラックス中またはサブマージアーク溶接のフラックス中に添加され、溶接時にスラグの剥離性を向上させる作用があることが知られている。しかし、被覆アーク溶接ではその効果がほとんどないため、一般に、被覆アーク溶接棒の被覆剤中には添加されていない。
Therefore, the inventors focused on Bi, which has a lower melting point than slag and a stronger affinity with oxygen than Cu, in order to suppress the occurrence of Cu embrittlement cracking, which is considered to occur due to the above mechanism.
In general, it is known that Bi or Bi 2 O 3 is added in the flux of arc welding using a flux-cored wire or in the flux of submerged arc welding, and has the effect of improving the slag peelability during welding. However, since there is almost no effect in the covering arc welding, it is generally not added to the covering agent of the covering arc welding rod.

本発明者らは、被覆剤中にCuと共にBiまたはBi23を添加した被覆アーク溶接棒を作製し、これを用いた溶接試験を行なった。その結果、溶接時に被覆剤が溶融した後、スラグが凝固する段階で、CuおよびBiはともに残留液相中に排出されながら凝固が進行するが、Cuより酸素との親和力の強く、かつ鋼板との濡れ性も良好なBiは、Cuより先に鋼板表面に酸化膜層を形成し、その上層にCu濃化層が形成されることが判明した。この結果、Cu濃化層と鋼板表面は、その間に介在するBi酸化膜層によって分断され、高温状態の凝固スラグ中に溶融状態のCuが存在しても、Cu融液が溶接部の粗大化したオーステナイト粒界へ浸入することを抑える作用により、Cu脆化割れが大幅に防止できることが判明した。 The present inventors made a coated arc welding rod in which Bi or Bi 2 O 3 was added together with Cu in the coating material, and a welding test was performed using this. As a result, after the coating material melts during welding, at the stage where the slag solidifies, both Cu and Bi are solidified while being discharged into the residual liquid phase, but have a stronger affinity for oxygen than Cu and It was found that Bi, which has good wettability, forms an oxide film layer on the steel plate surface prior to Cu, and a Cu concentrated layer is formed thereon. As a result, the Cu enriched layer and the steel plate surface are separated by the Bi oxide film layer interposed between them, and even if Cu in the molten state is present in the solidified slag in the high temperature state, the Cu melt becomes coarse in the welded portion. It has been found that Cu embrittlement cracking can be largely prevented by the action of suppressing entry into the austenite grain boundaries.

本発明は、上記知見に基づいて完成させたものであり、Cu脆化割れが発生しないためには、被覆剤中にCuと共にBiまたはBi23を含有することが必要となる。
以下に、本発明のオーステナイト系ステンレス鋼被覆アーク溶接棒中の成分組成の限定理由を述べる。なお、以下に示す「%」は特段の説明がない限り、「質量%」を意味するものとする。また、本発明において、溶接棒全質量に対する質量%とは、下記(A)式で定義されるものを示す。
溶接棒全質量に対する質量%=心線中の含有%×(100−被覆率)/100+被覆剤中の含有%×被覆率/100 ・・・(A)
但し、上記「心線中の含有%」は心線全質量に対する心線に含有する成分の質量%、上記「被覆剤中の含有%」は被覆剤全質量に対する被覆剤に含有する成分の質量%を意味し、さらに、上記「被覆率」とは溶接棒全質量に対する被覆剤全質量の占める割合を意味する。
The present invention has been completed based on the above findings, and in order not to cause Cu embrittlement cracking, it is necessary to contain Bi or Bi 2 O 3 together with Cu in the coating agent.
The reasons for limiting the component composition in the austenitic stainless steel-coated arc welding rod of the present invention will be described below. Note that “%” shown below means “% by mass” unless otherwise specified. Moreover, in this invention, the mass% with respect to the welding rod total mass shows what is defined by the following (A) formula.
Mass% with respect to the total mass of the welding rod =% in the core wire × (100−coverage) / 100 +% in the coating agent × coverage / 100 (A)
However, the above-mentioned “% in the core wire” means the mass% of the component contained in the core wire relative to the total mass of the core wire, and the above “% in the coating agent” means the mass of the component contained in the coating agent relative to the total mass of the coating material. Furthermore, the above-mentioned “coverage” means the ratio of the total mass of the coating material to the total mass of the welding rod.

まず、本発明において限定する被覆剤の成分について、以下に説明する。
Cu:Cuは耐食性を高めるのに顕著な効果があり、特にNi、Mo、Nと共存の形で硫酸環境および塩水環境などで高い耐食性を得るために必須の元素である。溶接棒全質量に対する質量%でCuが0.05%以上で共存添加効果が著しく、3.0%を超えると耐食性は飽和するだけでなく、後述するBi、Bi23の添加によっても被覆剤中に含有するCu起因の脆化割れを十分に抑制することは困難となる。したがって、その含有量を被覆剤中に溶接棒全質量に対する質量%で、0.05〜3.0%に限定する。
なお、後述するように被覆剤と心線の両方にCuを含有させる場合には、被覆剤中のCu含有量の上限:3.0%を超えないように、心線中にCuを更に溶接棒全質量に対する質量%で5.0%含有させることはできる。
また、被覆アーク溶接棒の場合、被覆率は一般的に25〜50%であるため、溶接棒全質量に対する質量%でCuを0.05〜3.0%に確保するためには、オーステナイト系ステンレス鋼心線にCuを含有しない場合も考慮して、被覆剤中には、被覆剤全質量に対する質量%で、0.1〜12.0%を含有する必要がある。
First, the components of the coating material limited in the present invention will be described below.
Cu: Cu has a remarkable effect in enhancing corrosion resistance, and is an essential element for obtaining high corrosion resistance particularly in a sulfuric acid environment and a salt water environment in the form of coexistence with Ni, Mo, and N. Co-addition effect is remarkable when Cu is 0.05% or more by mass% with respect to the total mass of the welding rod, and if it exceeds 3.0%, the corrosion resistance is not only saturated but also covered by the addition of Bi and Bi 2 O 3 described later. It becomes difficult to sufficiently suppress the embrittlement crack caused by Cu contained in the agent. Therefore, the content is limited to 0.05 to 3.0% in mass% with respect to the total mass of the welding rod in the coating agent.
As will be described later, when Cu is contained in both the coating agent and the core wire, the upper limit of the Cu content in the coating agent: Cu is further welded in the core wire so as not to exceed 3.0%. It can be made to contain 5.0% by mass% with respect to the total mass of the rod.
In the case of a coated arc welding rod, the coverage is generally 25 to 50%. Therefore, in order to ensure Cu to 0.05 to 3.0% by mass% with respect to the total mass of the welding rod, an austenitic system is used. Considering the case where the stainless steel core wire does not contain Cu, it is necessary that the coating material contains 0.1 to 12.0% by mass% with respect to the total mass of the coating material.

Bi:Biは酸素との親和力の強く、鋼板との濡れ性も良好なために、スラグの凝固中ではCuより先に鋼板表面に酸化膜層を形成する。このBi酸化膜の上層にCu濃化層が形成されが、Bi酸化膜層によって溶融したCuが鋼板のオーステナイト粒界へ浸入するのを阻止し、割れが防止できる。この割れ防止効果は被覆剤中に溶接棒全質量に対する質量%で0.05以上を含有すると効果が著しい。一方、被覆剤中のBiは溶接金属中にも混入するが、0.2%を超えると、高温割れが発生したり、溶接金属の延性を低下させる。したがって、その含有量を溶接棒全質量に対する質量%で、0.05〜0.2%に限定する。
なお、通常、オーステナイト系ステンレス鋼心線にはBiを含有しないため、被覆率を考慮すると、被覆剤中には、被覆剤全質量に対する質量%で、0.1〜1.0%となる。
Bi: Bi has a strong affinity for oxygen and good wettability with the steel sheet, so that during slag solidification, an oxide film layer is formed on the steel sheet surface prior to Cu. A Cu enriched layer is formed on the upper layer of the Bi oxide film. However, Cu melted by the Bi oxide film layer is prevented from entering the austenite grain boundaries of the steel sheet, and cracking can be prevented. The effect of preventing cracking is remarkable when the coating contains 0.05% or more by mass% based on the total mass of the welding rod. On the other hand, Bi in the coating agent is also mixed in the weld metal, but when it exceeds 0.2%, hot cracking occurs or the ductility of the weld metal is lowered. Therefore, the content is limited to 0.05 to 0.2% by mass% with respect to the total mass of the welding rod.
In general, since Bi is not contained in the austenitic stainless steel core wire, considering the coverage, the coating material has a mass% with respect to the total mass of the coating material and is 0.1 to 1.0%.

Bi23:Bi23は被覆剤が溶接アークによって溶融すると、溶融スラグ中では金属Bi単体となる。その後、スラグの凝固中には上記Biと同じ挙動を示す。したがって、その含有量を溶接棒全質量に対する質量%で、0.05〜0.2%に限定する。
上記Bi及びBi23は、これらのうちの1種または2種を上記範囲で被覆剤中に含有するが、Bi及びBi23を同時に添加する場合は、高温割れおよび延性低下を防止する観点から、その合計含有量を0.2%以下に制限する。
本発明は、オーステナイト系ステンレス鋼心線と用い、その上記被覆剤中の成分を限定することにより、従来に比べて溶接部の耐Cu脆化割れ性を十分に向上させることが可能となる。
Bi 2 O 3 : Bi 2 O 3 becomes a metal Bi alone in the molten slag when the coating material is melted by the welding arc. Thereafter, during the solidification of the slag, the same behavior as the Bi is shown. Therefore, the content is limited to 0.05 to 0.2% by mass% with respect to the total mass of the welding rod.
Bi and Bi 2 O 3 contain one or two of them in the above range within the above range, but when Bi and Bi 2 O 3 are added at the same time, hot cracking and ductility reduction are prevented. Therefore, the total content is limited to 0.2% or less.
By using the austenitic stainless steel core wire and limiting the components in the coating agent, the present invention can sufficiently improve the Cu embrittlement crack resistance of the welded portion as compared with the conventional case.

また、本発明は、上記被覆剤中の成分以外に、被覆溶接棒におけるオーステナイト系ステンレス鋼心線および前記被覆剤のいずれか一方または両方に、以下の目的で、さらに、以下の成分を溶接棒全質量に対する質量%で以下の所定範囲で含有させることが好ましい。
C:Cは耐食性に有害であるが、強度の観点から0.005%以上含有させるのが好ましい。その含有量が0.05%超では溶接のままの状態および再熱を受けるとCはCrと結合してCr炭化物を析出し、耐粒界腐食性および耐孔食性が著しく劣化するとともに、溶接金属の靱性、延性が著しく低下するため、その含有量を0.05%以下に限定した。
Si:Siは脱酸元素およびスラグの剥離性を良くする元素として添加されるが、0.1%未満ではその効果が十分でなく、一方、その含有量が1.6%超では延性低下に伴い、靱性が大きく低下するとともに、溶接時の溶融溶込みも減少し、実用溶接上の問題になる。したがって、その含有量を0.1〜1.6%に限定した。
In addition to the components in the above-mentioned coating agent, the present invention further includes the following components for welding rods in the one or both of the austenitic stainless steel core wire and the above-mentioned coating agent in the coated welding rod. It is preferable to contain in the following predetermined ranges by mass% with respect to the total mass.
C: C is harmful to corrosion resistance, but is preferably contained in an amount of 0.005% or more from the viewpoint of strength. If its content exceeds 0.05%, it will remain in the welded state and when it is reheated, C will combine with Cr to precipitate Cr carbide, which significantly deteriorates the intergranular corrosion resistance and pitting corrosion resistance. Since the toughness and ductility of the metal are significantly reduced, the content is limited to 0.05% or less.
Si: Si is added as a deoxidizing element and an element improving the slag releasability, but if it is less than 0.1%, the effect is not sufficient, while if its content exceeds 1.6%, the ductility decreases. Along with this, the toughness is greatly reduced and the melt penetration during welding is reduced, which becomes a problem in practical welding. Therefore, the content is limited to 0.1 to 1.6%.

Mn:Mnは脱酸元素として添加するが、その含有量が0.1%未満では効果が十分でなく、一方、2.5%を越えて添加すると延性が低下するのでその含有量を0.1〜2.5%に限定した。
Cr:Crはオーステナイト系ステンレス鋼の主要元素として不働態皮膜を形成し耐食性の向上に寄与する。このため、15.0%以上含有させる必要がある。一方、Cr含有量が多いほど海水環境下での耐孔食性は向上するが、シグマ相などの脆い金属間化合物が析出しやすくなるため靱性が低下し、また、ワイヤ製造性が低下するとともに製造コストも高くなるため、その含有量の上限を30.0%とした。
Mn: Mn is added as a deoxidizing element, but if its content is less than 0.1%, the effect is not sufficient. On the other hand, if it exceeds 2.5%, the ductility is lowered, so its content is reduced to 0. Limited to 1-2.5%.
Cr: Cr forms a passive film as a main element of austenitic stainless steel and contributes to improvement of corrosion resistance. For this reason, it is necessary to make it contain 15.0% or more. On the other hand, the greater the Cr content, the better the pitting corrosion resistance in the seawater environment, but the brittle intermetallic compounds such as the sigma phase are likely to precipitate, resulting in decreased toughness and reduced wire manufacturability. Since the cost increases, the upper limit of the content is set to 30.0%.

Ni:Niは中性塩環境や非酸化性の硫酸環境での腐食に対し、顕著な抵抗性を与え、かつ、不働態皮膜を強化するため、Ni含有量は多いほど耐食性に有効である。また、Niはオーステナイト生成元素でありオーステナイト系ステンレス鋼の主要元素として、オーステナイト相を生成・安定にする。このため、7.5%以上含有させる必要がある。しかしながら、Niは高価な元素であり、多量添加は製造コストが高くなるため、その含有量の上限を25.0%とした。
Mo:Moは不働態皮膜を安定化して高い耐食性を得るのに極めて有効な元素であり、その効果を十分に得るために0.5%以上含有させるのが好ましい。特に塩化物環境での耐孔食性向上は顕著であるが、その含有量が6.7%を越えるとシグマ相など脆い金属間化合物を生成して溶接金属の靱性が低下するため、6.7%以下に制限する。
Ni: Ni gives remarkable resistance to corrosion in a neutral salt environment or a non-oxidizing sulfuric acid environment, and strengthens the passive film. Therefore, the higher the Ni content, the more effective the corrosion resistance. Ni is an austenite-forming element, and as a main element of austenitic stainless steel, austenite phase is generated and stabilized. For this reason, it is necessary to make it contain 7.5% or more. However, Ni is an expensive element, and the addition of a large amount increases the production cost, so the upper limit of its content was made 25.0%.
Mo: Mo is an element that is extremely effective in stabilizing the passive film and obtaining high corrosion resistance, and is preferably contained in an amount of 0.5% or more in order to sufficiently obtain the effect. In particular, the improvement of pitting corrosion resistance in a chloride environment is remarkable. However, if its content exceeds 6.7%, brittle intermetallic compounds such as a sigma phase are formed and the toughness of the weld metal is lowered. % Or less.

Cu:Cuは上記の通り、耐食性を高めるのに顕著な効果があり、特にNi、Mo、Nと共存の形で硫酸環境および塩水環境などで高い耐食性を得るために必須の元素である。0.05%以上で共存添加効果が著しくなるが、5.0%を超えると耐食性は飽和するとともに延性が低下するため、その含有量は0.05〜5.0%に限定した。なお、上述したように被覆剤と心線の両方にCuを含有させる場合には、被覆剤中のCu含有量の上限:3.0%を超えないように、心線中にCuを更に溶接棒全質量に対する質量%で5.0%まで含有させても、上述したBi、Bi23の添加作用によって被覆剤中に含有するCu起因の脆化割れを十分に抑制することができる。 Cu: As described above, Cu has a significant effect on enhancing corrosion resistance, and is an essential element for obtaining high corrosion resistance particularly in a sulfuric acid environment and a salt water environment in the form of coexistence with Ni, Mo, and N. The coexistence additive effect becomes remarkable at 0.05% or more, but when it exceeds 5.0%, the corrosion resistance is saturated and the ductility is lowered, so the content is limited to 0.05 to 5.0%. In addition, when Cu is contained in both the coating agent and the core wire as described above, Cu is further welded in the core wire so as not to exceed 3.0% of the Cu content in the coating agent. Even if it is contained up to 5.0% by mass% with respect to the total mass of the rod, embrittlement cracking due to Cu contained in the coating agent can be sufficiently suppressed by the above-described addition action of Bi and Bi 2 O 3 .

N:Nは強力なオーステナイト生成元素であり、塩化物環境下での耐孔食性を向上させるため、0.05%以上含有させるのが好ましい。含有量が多いほどその効果は大きいが、0.35%を超えて添加すると、窒化物が多量析出して延性を低下させるとともに、ブローホールが発生しやすくなるため、その含有量は0.35%以下に限定した。
本発明では、オーステナイト系ステンレス鋼被覆アーク溶接棒として、上述のように成分含有量を規定した溶接棒を用いてオーステナイト系ステンレス鋼を溶接することにより、Cu脆化割れが発生せず、母材と同等の機械的特性および耐食性を有する溶接部が得られる。
なお、本発明の被覆アーク溶接棒の被覆剤中には、溶接中にCO2ガスを発生して溶接金属を大気から遮断することを目的に、炭酸石灰、炭酸バリウム、炭酸マグネシウムなどの金属炭酸塩、良好なスラグ流動性を確保することを目的に、蛍石、氷晶石、弗化バリウムなどの金属弗化物、およびアーク状態を良好に保つ目的に、SiO2、TiO2、NaO2、K2Oなどの金属酸化物が含まれる。
N: N is a strong austenite-forming element, and is preferably contained in an amount of 0.05% or more in order to improve the pitting corrosion resistance in a chloride environment. The greater the content, the greater the effect, but if added over 0.35%, a large amount of nitride precipitates to lower the ductility and blow holes are more likely to occur, so the content is 0.35. % Or less.
In the present invention, as an austenitic stainless steel-coated arc welding rod, by welding the austenitic stainless steel using the welding rod with the specified content as described above, Cu embrittlement cracking does not occur, and the base metal A weld having mechanical properties and corrosion resistance equivalent to the above is obtained.
In the coating agent for the coated arc welding rod of the present invention, a metal carbonate such as lime carbonate, barium carbonate, magnesium carbonate is used for the purpose of generating CO2 gas during welding and shielding the weld metal from the atmosphere. In order to ensure good slag fluidity, metal fluorides such as fluorite, cryolite and barium fluoride, and metals such as SiO2, TiO2, NaO2 and K2O in order to maintain a good arc state Oxides are included.

以下、実施例にて本発明を説明する。
表1に成分を示すオーステナイト系ステンレス鋼(板厚6.0mm)を母材として、開先角度60°、ルート面1mmの開先を作成した。また、表2に成分を示す供試心線に表3の成分の被覆剤(但し、表3の表示は、溶接棒全体に対する質量%である。)を同じく表3に示す被覆率にて被覆塗装して、表4に示す被覆アーク溶接棒を作成した。即ち、表4に示される成分値は、(表2に示す心線の化学成分値)×(100−被覆率)/100+(表3の成分値)で求められる。なお、表3中のその他のスラグ剤は、炭酸バリウム、炭酸マグネシウム、氷晶石、弗化バリウム、NaO2、K2O、CaO、FeO、Al23などであり、これらの合計含有量を示した。溶接方法は、棒径3.2mmの溶接棒を用い、溶接電流100〜140A、アーク電圧20〜25V、溶接速度10〜20cm/minで下向き溶接を行った。
Hereinafter, the present invention will be described with reference to examples.
A groove with a groove angle of 60 ° and a root surface of 1 mm was prepared using austenitic stainless steel (sheet thickness: 6.0 mm) having the components shown in Table 1 as a base material. In addition, the test cords showing the components shown in Table 2 are coated with the coating agents of the components shown in Table 3 (however, the indication in Table 3 is mass% with respect to the entire welding rod) at the coverage shown in Table 3 . The coated arc welding rod shown in Table 4 was prepared by painting. That is, the component values shown in Table 4 can be obtained by (chemical value of core wire shown in Table 2) × (100−coverage) / 100 + (component value in Table 3). The remaining slag agent in Table 3, barium carbonate, magnesium carbonate, cryolite, barium fluoride, and the like NaO 2, K 2 O, CaO , FeO, Al 2 O 3, the total content of these showed that. As the welding method, a welding rod having a rod diameter of 3.2 mm was used, and downward welding was performed at a welding current of 100 to 140 A, an arc voltage of 20 to 25 V, and a welding speed of 10 to 20 cm / min.

次に、それぞれの溶接継手から、JIS Z 3122に規定の表曲げ試験片を採取し、R=2t、曲げ角度180°で欠陥の有無を調査した。また、それぞれの溶接部の表層より溶接金属と溶接熱影響部の両方を含む腐食試験片を採取し、各種腐食試験を実施した。硫酸腐食性試験では、厚さ:3mm、幅:30mm、長さ:30mmの試験片の全面を600番エメリー紙で湿式研磨、脱脂後、40℃の50%硫酸溶液中に6時間浸漬し、浸漬前後の重量を測定して腐食減量を評価した。孔食試験では、40℃の3.5%NaCl溶液中にて孔食電位の測定をJIS G 0577に規定される方法に準拠して実施した。   Next, from each welded joint, a surface bending specimen specified in JIS Z 3122 was sampled, and the presence or absence of defects was investigated at R = 2t and a bending angle of 180 °. In addition, corrosion test pieces including both the weld metal and the weld heat affected zone were collected from the surface layer of each weld and various corrosion tests were performed. In the sulfuric acid corrosion test, the entire surface of the test piece having a thickness of 3 mm, a width of 30 mm, and a length of 30 mm was wet-polished with No. 600 emery paper, degreased, and immersed in a 50% sulfuric acid solution at 40 ° C. for 6 hours. The weight loss before and after immersion was measured to evaluate the corrosion weight loss. In the pitting corrosion test, the pitting corrosion potential was measured in a 3.5% NaCl solution at 40 ° C. according to the method specified in JIS G 0577.

表5に、曲げ試験結果、硫酸腐食試験結果、孔食試験結果を示す。曲げ試験結果は、溶接長さ20cm当たりの溶融線近傍の割れ個数を示す。なお、発生した割れについては、断面検鏡を行い、これらの割れがCu脆化割れであることを確認した。また、孔食試験結果は、電流密度:100mA/cm2の時の電位を示し、孔食電位の○印は、孔食は発生せず水の電気分解により酸素が発生したものを示す。 Table 5 shows the bending test results, the sulfuric acid corrosion test results, and the pitting corrosion test results. The bending test result indicates the number of cracks in the vicinity of the fusion line per 20 cm weld length. In addition, about the crack which generate | occur | produced, the cross-sectional examination was performed and it confirmed that these cracks were Cu embrittlement cracks. The pitting corrosion test result shows the potential at a current density of 100 mA / cm 2 , and the ◯ mark of the pitting corrosion potential indicates that no pitting corrosion occurred and oxygen was generated by electrolysis of water.

表5において、本発明例の記号1〜記号6は、被覆剤中のCu含有量に関わらず、表曲げ試験において割れは確認されず、耐Cu脆化割れ性に優れていることがわかる。また、硫酸腐食試験および孔食電位測定においても良好な結果が得られている。一方、比較例の記号7〜記号11は、BiまたはBi23が被覆剤中に添加されていないため、本発明の効果は発揮されず、表曲げ試験において、多数の割れが発生し、これらの割れはCu脆化割れであることも確認された。また、記号7、記号8、記号10、記号11の被覆剤処方は、それぞれ、本発明の記号1、記号3、記号4、記号6の被覆剤よりBiまたはBi23のみを削除したものであり、表4の溶接棒の成分では、Bi以外は同一成分であるのに関わらず、孔食電位が低下している。これは、上述の通りCu脆化割れが起こっているため、これらが腐食の起点となったためである。また、記号9は、記号8とCu以外はほぼ同一成分であるが、Cuが本発明範囲より少ないため、著しい硫酸腐食が発生している。記号12は、被覆剤中にBiおよびBi23が含まれているため、表曲げ試験では割れは発生せず、耐Cu脆化割れ性は優れているが、BiおよびBi23添加量が本発明範囲より多いため、溶接中に凝固割れが発生している。 In Table 5, it can be seen that the symbols 1 to 6 of the present invention example are excellent in resistance to Cu embrittlement cracking, regardless of the Cu content in the coating material, without cracking in the surface bending test. Good results have also been obtained in sulfuric acid corrosion tests and pitting potential measurements. On the other hand, since the symbols 7 to 11 of the comparative example are not added Bi or Bi 2 O 3 in the coating agent, the effect of the present invention is not exhibited, and a number of cracks occur in the surface bending test. These cracks were also confirmed to be Cu embrittlement cracks. Further, the coating formulations of symbol 7, symbol 8, symbol 10, and symbol 11 are obtained by deleting only Bi or Bi 2 O 3 from the coating agents of symbol 1, symbol 3, symbol 4, and symbol 6 of the present invention, respectively. In the components of the welding rod shown in Table 4, the pitting corrosion potential is lowered regardless of the same components except Bi. This is because Cu embrittlement cracking has occurred as described above, and these have become starting points of corrosion. Symbol 9 is substantially the same component except for symbol 8 and Cu, but since sulfuric acid is less than the scope of the present invention, significant sulfuric acid corrosion occurs. No. 12 shows that Bi and Bi 2 O 3 are contained in the coating material, so that no cracking occurs in the surface bending test and Cu brittle crack resistance is excellent, but Bi and Bi 2 O 3 are added. Since the amount is larger than the range of the present invention, solidification cracks are generated during welding.

Figure 0004896483
Figure 0004896483
Figure 0004896483
Figure 0004896483
Figure 0004896483
Figure 0004896483
Figure 0004896483
Figure 0004896483
Figure 0004896483
Figure 0004896483

Claims (1)

オーステナイト系ステンレス鋼心線に被覆剤を被覆塗装してなる被覆アーク溶接棒において、前記被覆剤中に、溶接棒全質量に対する質量%で、Cu:0.05〜3.0%を含有し、さらに、
Bi:0.05〜0.2%、および、
Bi23:0.05〜0.2%のうちの1種または2種をBiとBi23の合計含有量が0.2%以下の範囲で含有しており、
更に、前記オーステナイト系ステンレス鋼心線および前記被覆剤のいずれか一方または両方に、溶接棒全質量に対する質量%で、
C:0.005〜0.05%、
Si:0.1〜1.6%、
Mn:0.1〜2.5%、
Cr:15.0〜30.0%、
Ni:7.5〜25.0%、
Mo:0.5〜6.7%、
Cu:0.05〜5.0%、
N:0.05〜0.35%を含有し、残部が鉄および不可避的不純物からなることを特徴とするCu脆化割れ性に優れたオーステナイト系ステンレス鋼被覆アーク溶接棒。
In the coated arc welding rod formed by coating the austenitic stainless steel core wire with a coating agent, the coating agent contains Cu: 0.05 to 3.0% by mass% with respect to the total mass of the welding rod, further,
Bi: 0.05-0.2% and
Bi 2 O 3 : One or two of 0.05 to 0.2% are contained within a range where the total content of Bi and Bi 2 O 3 is 0.2% or less ,
Furthermore, in either one or both of the austenitic stainless steel core wire and the coating agent, in mass% with respect to the total mass of the welding rod,
C: 0.005-0.05%,
Si: 0.1 to 1.6%,
Mn: 0.1 to 2.5%
Cr: 15.0-30.0%,
Ni: 7.5-25.0%,
Mo: 0.5 to 6.7%,
Cu: 0.05 to 5.0%,
N: An austenitic stainless steel-coated arc welding rod excellent in Cu embrittlement cracking, characterized by containing 0.05 to 0.35% and the balance being iron and inevitable impurities.
JP2005295799A 2005-10-11 2005-10-11 Austenitic stainless steel-coated arc welding rod with excellent resistance to Cu embrittlement cracking Active JP4896483B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005295799A JP4896483B2 (en) 2005-10-11 2005-10-11 Austenitic stainless steel-coated arc welding rod with excellent resistance to Cu embrittlement cracking

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005295799A JP4896483B2 (en) 2005-10-11 2005-10-11 Austenitic stainless steel-coated arc welding rod with excellent resistance to Cu embrittlement cracking

Publications (2)

Publication Number Publication Date
JP2007105734A JP2007105734A (en) 2007-04-26
JP4896483B2 true JP4896483B2 (en) 2012-03-14

Family

ID=38031996

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005295799A Active JP4896483B2 (en) 2005-10-11 2005-10-11 Austenitic stainless steel-coated arc welding rod with excellent resistance to Cu embrittlement cracking

Country Status (1)

Country Link
JP (1) JP4896483B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5182652B2 (en) 2007-04-13 2013-04-17 住友大阪セメント株式会社 Nickel-iron-zinc alloy nanoparticles
CN103817458A (en) * 2012-11-16 2014-05-28 李彬 High-chromium welding rod
CN117506230B (en) * 2024-01-05 2024-03-15 成都工业学院 Welding rod core wire and wear-resistant surfacing welding electrode

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3441821B2 (en) * 1994-12-12 2003-09-02 新日本製鐵株式会社 Covered arc welding rod for austenitic stainless steel
JP3854553B2 (en) * 2002-08-14 2006-12-06 新日鐵住金ステンレス株式会社 Flux-cored wire for austenitic stainless steel with excellent sulfuric acid corrosion resistance, pitting corrosion resistance, ductility and toughness

Also Published As

Publication number Publication date
JP2007105734A (en) 2007-04-26

Similar Documents

Publication Publication Date Title
JP6809533B2 (en) Flux-cored wire, welded joint manufacturing method, and welded joint
JP4566899B2 (en) High strength stainless steel welding flux cored wire
WO2012105452A1 (en) Ni-BASED HIGH-CR ALLOY WIRE FOR WELDING, ROD FOR ARC-SHIELDED WELDING, AND METAL FOR ARC-SHIELDED WELDING
JP6719217B2 (en) Stainless steel flux cored wire
KR102154217B1 (en) Welded structural members
JP2010110817A (en) Low-hydrogen coated electrode
KR20180108731A (en) Flux cored wire, method of manufacturing weld joint, and weld joint
WO2017154122A1 (en) Flux-cored wire, weld joint manufacturing method and weld joint
CN106392369B (en) Ni-based alloy flux-cored wire
JP6390204B2 (en) Flux-cored wire for gas shielded arc welding
JP2017507027A (en) Welding materials for heat-resistant steel
JP5410039B2 (en) Stainless steel flux cored wire for electrogas arc welding
JP2019025524A (en) Flux-cored wire for gas-shielded arc welding, and manufacturing method of welded joint
JP6953931B2 (en) Flux-cored wire for gas shielded arc welding and welding joint manufacturing method
JP2018192520A (en) Flux-cored wire for gas shield arc welding, and manufacturing method of weld joint
JP5830278B2 (en) Submerged arc welding method for low alloy steel with excellent sulfuric acid resistance and hydrochloric acid resistance
JP4896483B2 (en) Austenitic stainless steel-coated arc welding rod with excellent resistance to Cu embrittlement cracking
JP2008126279A (en) Flux-cored wire for gas shielded arc welding
JP4874064B2 (en) Non-consumable electrode type metal cored wire for welding
WO2017154754A1 (en) Welded metal and welded structure containing said welded metal
JP2019025525A (en) Flux-cored wire for gas-shielded arc welding, and manufacturing method of welded joint
JP2019042782A (en) Gas shield arc-welding flux-cored wire and manufacturing method of welding joint
JP7215911B2 (en) Flux-cored wire for gas-shielded arc welding
JP3930782B2 (en) Coated arc welding rod for welding low alloy steel with excellent sulfuric acid resistance and hydrochloric acid resistance
JP6953930B2 (en) Flux-cored wire for gas shielded arc welding and welding joint manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080711

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110125

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110225

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111220

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111221

R150 Certificate of patent or registration of utility model

Ref document number: 4896483

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150106

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250