JP3552375B2 - Large heat input latent arc welding method for thick steel plate with excellent toughness of weld metal - Google Patents

Large heat input latent arc welding method for thick steel plate with excellent toughness of weld metal Download PDF

Info

Publication number
JP3552375B2
JP3552375B2 JP31641295A JP31641295A JP3552375B2 JP 3552375 B2 JP3552375 B2 JP 3552375B2 JP 31641295 A JP31641295 A JP 31641295A JP 31641295 A JP31641295 A JP 31641295A JP 3552375 B2 JP3552375 B2 JP 3552375B2
Authority
JP
Japan
Prior art keywords
weld metal
welding
flux
content
heat input
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP31641295A
Other languages
Japanese (ja)
Other versions
JPH09155588A (en
Inventor
直哉 早川
修一 阪口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP31641295A priority Critical patent/JP3552375B2/en
Publication of JPH09155588A publication Critical patent/JPH09155588A/en
Application granted granted Critical
Publication of JP3552375B2 publication Critical patent/JP3552375B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【0001】
【発明の属する技術分野】
この発明は、鉄骨ボックスの角継手溶接のような厚鋼板の大入熱潜弧溶接方法に関し、特に溶接金属について良好な靱性を得ることのできる方法を提案しようとするものである。
【0002】
【従来の技術】
近年、高層ビルに代表される構造物の大型化に伴い、板厚40mmを超える如き極厚の鋼板よりなる溶接構造部材が用いられるようになっている。かような極厚鋼板の溶接をする際には、溶着速度の大きい2電極、あるいは3電極の潜弧溶接方法が、溶接施工の高能率化が可能であることを理由として多用されている。
【0003】
このような極厚鋼板の大入熱潜弧溶接法に関しては、これまでにも種々に提案されていて、例えば特開平2−41795号公報では極厚鋼板の大入熱多層盛溶接において優れたスラグ剥離性を得るため、所定組成に調製した潜弧溶接用ボンドフラックスが提案され、また、発明者らも先に特開平2−258191号公報にて1層溶接施工の板厚限界を有効に向上させ、多層の大入熱潜弧溶接の場合のスラグ剥離性を改善し、併せて耐凝固割れ性も改善するために、フラックスの組成及び粒度分布並びに溶接電流条件を規定した高能率の溶接施工法を提案している。さらに、特開平4−167999号公報には溶接入熱が800kJ/cm程度といった大入熱溶接の場合において良好な耐水素割れ性、耐繰り返し使用性能及び優れたスラグ剥離性を有するフラックスが提案されている。
【0004】
【発明が解決しようとする課題】
ところで、極厚鋼板に施す大入熱潜弧溶接方法にあっては、溶接時の熱サイクルにおいて溶接金属部の冷却速度が非常に小さいことからこの溶接金属部のデンドライトは大きく成長し、粗大な初析フェライトが析出するため、溶接金属部の切欠靱性が劣化する問題がある。
【0005】
この点について、前述した特開平2−41795号公報、特開平2−258191号公報及び特開平4−167999号公報の提案は、いずれもスラグ剥離性を第1の目的とし、さらに耐水素割れ性、耐繰り返し使用性能、耐凝固割れ性等の改善を目指したものであり、溶接金属の靱性改善に主点をおいてはなかった。したがって、板厚60mm〜80mmの極厚鋼板に3電極潜弧溶接を施す場合のように、溶接後の冷却過程における溶接金属の冷却速度が非常に遅い超大入熱溶接においては、溶接金属の靱性を確保するのが困難であった。
【0006】
この発明は、上記の問題を有利に解決するもので、溶接金属の切欠靱性を改善することのできる極厚鋼板の大入熱潜弧方法を提案することを目的とする。
【0007】
【課題を解決するための手段】
発明者らは、大入熱潜弧溶接をした場合の溶接金属の靱性の向上を目指して鋭意研究を重ねた結果、以下のような新規知見を得るに到った。
まず、従来の大入熱潜弧溶接法において、溶接金属の切欠靱性は、溶接後の冷却過程における溶接金属の800 〜600 ℃間の冷却時間によって支配されていることが明らかとなった。とりわけ800 〜600 ℃間の冷却時間が、一般の大入熱溶接に比較してもはるかに長時間の、200 秒を超える超大入熱溶接の場合には、冷却速度が非常に遅くなるため、切欠靱性が顕著に劣化することが判明した。この劣化の原因は、800 〜600 ℃間の冷却時間が長いと、この溶接金属部のデンドライトが大きく成長し、粗大な初析フェライトが析出するためと考えられる。
【0008】
かかる知見からさらに、溶接金属部の靱性を改善するためには、焼入れ性を向上させれば良いことを究明した。すなわち、大入熱溶接で800 〜600 ℃間の冷却時間が200 秒を超える場合であっても良好な溶接金属靱性を得るには、従来の大入熱潜弧溶接法で得られていた程度の溶接金属の焼入れ性では不十分で、特に高い焼入れ性を確保することが必要不可欠となることを見い出したのである。この溶接金属の焼入れ性は、溶接金属中における焼入れ性向上成分(Mn、Mo等)の含有量を増加させること、及び溶接金属中の酸素量を低下させることにより高められる。
【0009】
次に、上述のごとく冷却速度が非常に遅い場合には、溶接金属中に含まれる微量のSiについても溶接金属の靱性に大きく影響を及ぼすことを新たに見い出した。すなわち、溶接金属が十分な焼入れ性を有していたとしても、溶接金属中のSi量が多量になると靱性は劣化するのである。
【0010】
これらの知見に基づき、極厚鋼板に3電極1層潜弧溶接を施す場合のように、溶接後の溶接金属の冷却過程において800 〜600 ℃間の冷却時間が200 秒を超えるような溶接金属の冷却速度が非常に遅い超大入熱溶接であっても溶接金属の靱性を確保することを第1の目的とし、その他溶接作業性、耐割れ性及びビード外観をも考慮して、溶接金属中のMn、Mo、Si及び酸素量を適正範囲内にするように溶接用フラックスや鋼ワイヤに工夫を加えたところがこの発明の骨子である。
【0011】
すなわちこの方法は、厚鋼板に大入熱潜弧溶接を施すに際し、
溶接用フラックス及び溶接用ワイヤとしてそれぞれ
total SiO:5 〜25wt%、
MgO :15〜35wt%、
CaCO :7 〜14wt%、
CaF:2 〜10wt%、
Al :4 〜20wt%、
TiO:3 〜10wt%及び
:0.7 〜2 wt%
を含み、かつ金属成分として
鉄粉:15〜35wt%及び
Ti粉、Mn粉、Mo粉
を含有するボンドフラックス、
C:0.08wt%以下及び
Si:0.40wt以下%に加えて
Ti、Mn、Mo
を含有する鋼ワイヤであって、
これらワイヤ中のMn含有量a(wt%)及びフラックス中のMn含有量b(wt%)が、次式
1.0 ≦a+0.33b≦4.0 (wt%)
の関係を満足し、さらにワイヤ中のMo含有量c(wt%)及びフラックス中のMo含有量d(wt%)が、次式
0.15≦c+0.33d≦1.00 (wt%)
の関係を満足し、かつワイヤ中のTi含有量e(wt%)及びフラックス中のTi含有量f(wt%)が、次式
0.01≦e+0.20f≦0.40 (wt%)
の関係を満足するものを用いることを特徴とする溶接金属の靱性に優れる厚鋼板の大入熱潜弧溶接方法である。
【0012】
この発明の大入熱潜弧溶接方法は、溶接しようとする厚鋼板の板厚が60mm以上であり、大入熱潜弧溶接が少なくとも一の電極の溶接電流を2500A以上とする3電極以上の多電極1層溶接である場合に特に有利に適合する。
【0013】
【発明の実施の形態】
この発明におけるボンドフラックス及び鋼ワイヤの成分組成範囲の限定理由について以下説明する。
(ボンドフラックスについて)
total SiO:5〜25%
SiOは造さい材として重要な成分であり、スラグの粘性を調整するのに必須の成分である。その一方でSiOは溶接中、還元反応によって溶接金属中にSiを添加する作用を有する。このため、溶接金属の800 〜600 ℃の冷却時間が200 秒を超えるような大入熱溶接において、SiOやSiが過剰にフラックス中に含まれると、溶接金属中のSi量が増加して溶接金属の切欠靱性が劣化する問題がある。フラックス中にSiOは、けい砂等のSiOを含有する鉱石又は合成物として添加するが、フラックスにFe−Si等の合金を添加する場合もある。このような合金添加の場合にはSiをSiOに換算し、SiOの総量として規定するものとした。このtotal SiOが5%に満たないと十分なスラグの粘性を確保できず、良好なビード外観が得られない。しかしながら25%を超えて含ませると溶接金属中のSiが増加して靱性が劣化するばかりでなく、融点が低下し、粘性が過剰となりビード外観が乱れるなどの不都合がある。
【0014】
MgO :15〜35%
MgO は融点が高いためにフラックスに耐火性を与え、大入熱溶接においてビード形状を安定化する効果があるだけでなく、スラグの塩基度を上げて溶接金属中の酸素量を低減し、靱性を確保する上で有用な成分である。しかし15%未満では十分な効果が期待できず、一方35%を超えて含有させると融点が上昇しすぎてビード外観が劣化する。
【0015】
CaCO :7〜14%
CaCO は溶接中にCaO とCOとに分解し、このCOガスによって溶接部を外気からシールドするとともに溶接雰囲気中の水素ガスの分圧を低下させるため、溶接金属中への水素侵入を低減するのに有効である。またCaO は塩基性成分であり、スラグの融点を上昇させ、靱性を向上させる効果を持つ。しかしCaCO量が7%未満ではCOによるシールド効果が少なく、耐水素割れ性が低下する。一方14%を超えるCaCO量ではCOの発生量が過剰になり。ガスの吹き上げが激しくなり、溶接作業性が劣化するとともに、ビード外観も劣化する。またスラグの剥離性も害する。
【0016】
CaF:2〜10%
CaFは融点を上昇させずに塩基度を上げ得るので、溶接金属の酸素量の調整に有効であるが、2%未満ではその添加効果に乏しく、10%を超えて多量に添加するとスラグの粘性が低下し過ぎてビード外観が悪化する。
【0017】
Al:4〜20%
Alは、粘性を低下させずに融点を上昇させ得るので、融点の調整に有効に寄与するが、4%未満では粘性の調整効果に乏しく、20%を超えるとスラグの融点が高くなり過ぎて、ビード幅の不均一やビード外観の劣化を招く。
【0018】
TiO:3〜10%
TiOはスラグに流動性を与え、スラグの剥離性を改善するとともに、アーク空洞内で還元されて部分的にTiとして溶接金属中に移行し、溶接金属の靱性を改善するのに有効である。しかし3%未満ではその効果が乏しく、10%を超えて添加してもこのような効果は増進せず、むしろビード外観を害する。さらにスラグ剥離性を害する。
【0019】
:0.7 〜2%
はアーク空洞内に還元されて部分的にBとして溶接金属中に移行し、オーステナイト粒界に偏析し、粗大な粒界フェライトの生成を抑制するため、安価に溶接金属の靱性を改善するのに有効である。しかし0.7 %未満ではその効果に乏しく、2%を超える量ではむしろ溶接金属の靱性は劣化する。
【0020】
鉄粉:15〜35%
鉄粉は、溶接入熱あたりの溶着量を増加させ、溶接能率を向上させるために添加する。しかし15%未満ではその効果に乏しく、35%を超える添加量ではビード外観が損なわれる。
【0021】
この他、Mn粉、Mo粉及びTi粉を、後述するように鋼ワイヤ中のMn量、Mo量及びTi量との関係で所定の範囲内で含有させるものとする。
さらに、通常フラックスに用いられるものは、添加しても差し支えない。かような成分とてはBaO,アルカリ金属酸化物(KO ,NaOなど)があり、BaO は5%以下の範囲で、アルカリ酸化物は合計5%以下の範囲でそれぞれ含有させることができる。
【0022】
(ワイヤ成分限定理由について)
C:0.08%以下
極厚鋼板の大入熱溶接においては、その溶接金属には凝固過程において大きな収縮力がかかるため割れ感受性が高くなる。そこで溶接金属の高温割れを防止するために溶接金属中のC量を低くする必要がある。また大入熱溶接では、溶接金属の冷却時間が長いために溶接金属中のC量が高い場合にはCのオーステナイト相への分配が進み、溶接金属中にマルテンサント−オーステナイト相が生成する。これがぜい性破壊の発生起点となり靱性が劣化する。この発明の溶接法を適用しようとする鋼板は、主としてJIS G 3106に規定されるような鋼板であり、そのC量は0.10〜0.18%が実勢である。ここに、この発明の溶接方法では鋼板の希釈率4割、ワイヤのそれは4割であるので、溶接金属中のC量を0.12%以下の範囲で生成するために、ワイヤのC量を0.08%以下と規定するものである。
【0023】
Si:0.40%以下
Siは強力な脱酸剤であるが、溶接金属の800 〜600 ℃の冷却時間が200 秒を超える大入熱溶接では、溶接金属中のSiは靱性を著しく劣化させる。ワイヤのSi量が0.40%を超えると溶接金属の靱性が劣化するためワイヤのSi量を0.40%以下に規定するものである。
【0024】
(フラックス中及びワイヤ中のMn量、Mo量及びTi量の限定理由について)
溶接金属の800 〜600 ℃の冷却時間が200 秒を超える場合、溶接金属の焼入れ性を非常に高めなければ、溶接金属中に粗大な初析フェライトが大きく発達し、靱性が劣化する。溶接金属の靱性向上には初析フェライトの生成を抑制する必要があり、溶接金属の焼入れ性を十分に確保する必要がある。ここに、Mnを、靱性及び引張強度確保のため、焼入れ性向上成分として添加する。すなわち、Mnは溶接金属の焼入れ性を安価に向上せさ、溶接金属の靱性を向上させるのに有効である。一方低温割れ防止の観点から溶接金属の強度が高くなり過ぎないような適正な範囲にMn量を調整することも必要である。かような観点からMn量の範囲を規定するにあたり、このMnは、フラックス及びワイヤの双方から添加することができるので、鋼板のMn量との兼ね合いから溶接金属中に含まれるMn量が1.0 〜2.0 %となるようにフラックス及びワイヤ中のMn量を調整する必要がある。具体的には、前述したJIS G 3106に記載された鋼板のMn量は、1.0 〜1.5 %が実勢であるため、ワイヤ中のMn量をa(%)、フラックス中のMn量をb(%)としたとき、次式
1.0 ≦a+0.33b≦4.0 (%)
を満足するようにフラックスとワイヤ中のMn量を調整する必要がある。上式におけるa+0.33bの値が1.0 %より少なければ焼入れ性が不足して、溶接金属の靱性を損ない、一方4.0 %より高くなると、強度が高くなり過ぎて、耐低温割れ性が低下する。より好適な範囲は、a+0.33bの値が 1.5〜3.5 %の範囲である。
【0025】
また、溶接金属の焼入れ性をMn同様に向上させる元素としては、Moがある。Moは、Mnに比べて高価であるが、少量の添加で溶接金属の靱性を格段に向上させることができる。かようなMoは、スラックス及びワイヤの一方又は双方からも添加できるので、鋼板のMo量との兼ね合いから溶接金属中に含まれるMo量が0.06〜0.40%となるようにフラックス及びワイヤ中のMo量を調整する必要がある。具体的には、ワイヤ中のMo量をc(%)、フラックス中のMo量をd(%)としたとき、次式
0.15≦c+0.33d≦1.00 (%)
を満足するようにフラックスとワイヤ中のMo量を調整する必要がある。上式におけるc+0.33dの値が0.15%より少なければ焼入れ性が不足して、溶接金属の靱性を損ない、一方1.00%より高くなると、強度が高くなり過ぎて、耐低温割れ性が低下する。より好適な範囲は、c+0.33dの値が 0.4〜0.7 %の範囲である。
【0026】
次にTi量の限定理由であるが、既に述べたように、溶接金属中の酸素量を低減することによって、溶接金属の焼入れ性が向上するために靱性を向上させることができる。溶接金属中の酸素量を低減するためには一般に、脱酸剤としてSiが用いられることもあるが、溶接金属の800 〜600 ℃の冷却時間が200 秒を越えるような大入熱溶接においてSiは、切欠靱性をむしろ劣化させるために積極的な添加はできない。そのため、溶接金属の靱性向上のために強力な脱酸剤である金属Tiを添加する。またTiは、脱酸後もTiOとなって溶接金属中に分散し、溶接金属の組織を微細化し、靱性向上に有効である。このような作用を有するTiは、フラックス及びワイヤの一方または双方からも添加できるので、溶接金属中に含まれるO量が0.013 〜0.033 wt%となるように、フラックス及びワイヤ中のTi含有量を調整する必要がある。具体的には、ワイヤ中のTi量をe(%)、フラックス中のTi量をf(%)としたとき、次式
0.01≦e+0.20f≦0.40 (%)
を満足するようにフラックスとワイヤ中のTi量を調整する必要がある。上式におけるe+0.20fの値が0.01%より少なければ十分な脱酸が行われず、靱性向上の効果が得られない。一方0.40%より高くなると、溶接金属中の酸素量が低下し過ぎてむしろ靱性を損なう。より好適な範囲は、e+0.20fの値が0.02〜0.20%の範囲である。
【0027】
この他、Ni及びCuなど、通常ワイヤに含まれるものは、添加しても差し支えない。
【0028】
ここで、ワイヤの各成分量は、用いる各ワイヤの平均値であり、各電極の溶着量が電流に比例するものとして、次の式に従って算出するとよい。
例えば、3電極溶接において平均のC量すなわちC(AV)は、
【数1】
(AV) (wt%) = 1電極目の電流×1電極目のワイヤのC量/電流の総和+2電極目の電流×2電極目のワイヤのC量/電流の総和+3電極目の電流×3電極目のワイヤのC量/電流の総和
とする。
【0029】
このような組成になる溶接用フラックス及び鋼ワイヤを用いた大入熱潜弧溶接法が有利に適用するのは、溶接金属の800 〜600 ℃の冷却時間が200 秒を超えるような大入熱の場合であり、すなわち溶接しようとする厚鋼板(JIS G 3106に規定されるような溶接構造用鋼)の板厚が60mm以上であり、大入熱潜弧溶接が少なくとも一の電極の溶接電流を2300A以上とする3電極以上の多電極1層溶接である場合である。ここに、少なくとも一の電極の溶接電流が2300Aに満たないと、溶け込み不足、溶着量不足という不利が生ずるので溶接電流は2300A以上が好ましい。
【0030】
【実施例】
溶接母材としてJIS G3106 に規定されたSM490B相当であって表1に示す板厚及び組成になる鋼板を用いた。かかる溶接母材の開先形状はY型で、各々の板厚において
板厚60mmでは開先角度40°でルートフェース10mmとし、
板厚70mmでは開先角度40°でルートフェース12mmとし、
板厚80mmでは開先角度40°でルートフェース13mmとした。
【0031】
【表1】

Figure 0003552375
【0032】
次に、溶接用ワイヤとしては、表2に示す組成で線径6.4 mmのものを用いた。
【表2】
Figure 0003552375
【0033】
さらに、溶接用フラックスとしては、表3に示すものを用いた。表3において、No. 1〜4はこの発明の要件を満たすフラックスであり、No. 5〜11は要件を満たさないものである。
【0034】
【表3】
Figure 0003552375
【0035】
これらの溶接母材、溶接用ワイヤ及び溶接用フラックスを用いた溶接の際しては、表4に示す条件にて、3電極1層サブマージドアーク溶接を行った。なお、3電極のうち先行電極をDC電源、追行する残りの2本の電極をAC電源とした。このAC電源の位相差は120 °とした。なお、この条件で溶接した際の溶接金属の800 〜600 ℃における冷却時間を測定し、その結果を表4に併記した。
【0036】
【表4】
Figure 0003552375
【0037】
このような溶接の後、溶接性を評価した。その結果を表5に示す。この評価項目中、溶接作業性(スラグの剥離性、ガスの吹き上げ)及びビード外観を観察し、目視によって判断して良否を○×で示し、また、耐割れ性について溶接部の割れの有無を超音波探傷によって判断して良否を○×で示した。さらに、溶接金属部から10mm,10mm,55mmのVノッチ付試験片を切り出し、0℃における衝撃吸収エネルギーを測定した。これらの評価に基づき、全般に優れる場合を総合評価で○とし、劣る場合を×とした。
【0038】
【表5】
Figure 0003552375
【0039】
試料No. 1〜6はこの発明に従う適合例であり、良好な靱性の溶接金属及び良好な形状のビードを欠陥なくかつ作業性を損なうことなく得ることができた。
これに対して、試料No. 7はワイヤ中のSi量及びフラックス中のtotal SiOが過大であり、溶接金属の靱性が劣り、ビード外観も不良であった。
試料No. 8はフラックス中のtotal SiOが少ないため、ビード外観が不良であり、また、溶接金属中のMn量が高すぎるために、割れが発生した。
試料No. 9はフラックス中のCaFが過大であり、ビードの幅が不均一となり、また、Tiの添加量が少ないため、溶接金属中の酸素量が高くなり、溶接部の靱性が劣っていた。
試料No. 10はフラックス中のAl が高いため、ビードが細く、不均一であり、また溶接金属のMn量が少なく、靱性が劣っていた。
試料No. 11はフラックス中のCaCO が過剰であり、溶接中のガス吹き上げが激しく、作業性が劣っており、また、溶接金属中のMo量が少なく、溶接金属の靱性が劣る。
試料No. 12はフラックス中のCaCO が少ないため、溶接金属中の拡散性水素量が多くなって割れが発生し、また、溶接金属に添加される金属Ti量が多いため、溶接金属中の酸素量が減少し、溶接金属の靱性が劣化した。
試料No. 13はフラックス中のMgO 量が高く、ビード外観が不良であった。
試料No. 14はフラックス中のtotal SiO量が高いため、ビード外観及び靱性が劣る。
【0040】
【発明の効果】
以上述べたようにこの発明の溶接方法によれば、極厚鋼板の大入熱3電極1層サブマージドアーク溶接のように溶接金属の800 〜600 ℃の冷却時間が200 秒を超える場合であっても良好な溶接金属の切欠靱性を得ることができるばかりでなく、良好な溶接作業性とビード外観、及び溶接金属の良好な耐水素割れ性を得ることができる。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for large heat input latent arc welding of a thick steel plate such as a corner joint welding of a steel frame box, and more particularly to propose a method capable of obtaining good toughness for a weld metal.
[0002]
[Prior art]
In recent years, with the increase in the size of structures represented by high-rise buildings, welded structural members made of extremely thick steel plates having a thickness of more than 40 mm have been used. When such an extremely thick steel plate is welded, a two-electrode or three-electrode latent arc welding method having a high welding speed is frequently used because it is possible to improve the efficiency of welding work.
[0003]
There have been various proposals for such a large heat input latent arc welding method for an extremely thick steel sheet. For example, Japanese Patent Application Laid-Open No. 2-41795 discloses an excellent method for large heat input multi-pass welding of an extremely thick steel sheet. In order to obtain slag removability, a bond flux for latent arc welding prepared to a predetermined composition has been proposed, and the present inventors have also previously disclosed in Japanese Patent Application Laid-Open No. 2-258191 an effective method for limiting the thickness of single-layer welding. In order to improve the slag peelability in the case of multi-layer large heat input latent arc welding and to improve the solidification cracking resistance, high-efficiency welding with specified flux composition, particle size distribution and welding current conditions A construction method is proposed. Furthermore, Japanese Patent Application Laid-Open No. 4-167999 proposes a flux having good hydrogen cracking resistance, repetitive use resistance and excellent slag peeling property in the case of large heat input welding with welding heat input of about 800 kJ / cm. ing.
[0004]
[Problems to be solved by the invention]
By the way, in the large heat input latent arc welding method applied to an extremely thick steel sheet, since the cooling rate of the weld metal part is very small in the heat cycle during welding, the dendrite of this weld metal part grows large and is coarse. Since proeutectoid ferrite is precipitated, there is a problem that the notch toughness of the weld metal portion is deteriorated.
[0005]
Regarding this point, the proposals of JP-A-2-41795, JP-A-2-258191 and JP-A-4-167999 mentioned above have slag releasability as a first object, and furthermore have a hydrogen cracking resistance. The purpose of the present invention is to improve repetition resistance, solidification cracking resistance, etc., and has not focused on improving the toughness of the weld metal. Therefore, in the case of ultra-high heat input welding in which the cooling rate of the weld metal in the cooling process after welding is extremely slow, such as when performing three-electrode latent arc welding on an extremely thick steel plate having a thickness of 60 mm to 80 mm, the toughness of the weld metal is reduced. Was difficult to secure.
[0006]
SUMMARY OF THE INVENTION The present invention advantageously solves the above-mentioned problems, and has as its object to propose a large heat input latent arc method for an extremely thick steel plate that can improve notch toughness of a weld metal.
[0007]
[Means for Solving the Problems]
The inventors have conducted intensive studies with the aim of improving the toughness of the weld metal when performing large heat input latent arc welding, and have obtained the following new findings.
First, it was found that in the conventional large heat input latent arc welding method, the notch toughness of the weld metal is governed by the cooling time of the weld metal between 800 and 600 ° C. in the cooling process after welding. In particular, in the case of very large heat input welding of more than 200 seconds, in which the cooling time between 800 and 600 ° C. is much longer than that of general large heat input welding, the cooling rate becomes very slow. The notch toughness was found to be significantly deteriorated. It is considered that the cause of this deterioration is that if the cooling time between 800 and 600 ° C. is long, the dendrite in the weld metal portion grows large and coarse proeutectoid ferrite precipitates.
[0008]
From such knowledge, it was further found that the hardenability should be improved in order to improve the toughness of the weld metal part. That is, even when the cooling time between 800 to 600 ° C. in the large heat input welding is longer than 200 seconds, in order to obtain good weld metal toughness, it is necessary to use the conventional method using the large heat input latent arc welding method. It has been found that the hardenability of the weld metal is insufficient, and it is indispensable to ensure particularly high hardenability. The hardenability of the weld metal is increased by increasing the content of the hardenability improving component (Mn, Mo, etc.) in the weld metal and decreasing the oxygen content in the weld metal.
[0009]
Next, it has been newly found that when the cooling rate is extremely low as described above, even a small amount of Si contained in the weld metal has a great effect on the toughness of the weld metal. That is, even if the weld metal has sufficient hardenability, the toughness is degraded when the amount of Si in the weld metal is large.
[0010]
Based on these findings, as in the case of three-electrode one-layer sub-arc welding on a very thick steel plate, a welding metal in which the cooling time between 800 to 600 ° C. exceeds 200 seconds in the cooling process of the weld metal after welding. The first object is to secure the toughness of the weld metal even in the case of very large heat input welding in which the cooling rate of the weld metal is extremely slow, and in consideration of the welding workability, crack resistance and bead appearance, The gist of the present invention is that the welding flux and the steel wire have been devised so that the amounts of Mn, Mo, Si and oxygen are within appropriate ranges.
[0011]
In other words, this method, when performing large heat input latent arc welding on steel plate,
Total SiO 2 : 5 to 25 wt% as welding flux and welding wire,
MgO: 15 to 35 wt%,
CaCO 3: 7 ~14wt%,
CaF 2: 2 ~10wt%,
Al 2 O 3 : 4 to 20 wt%,
TiO 2: 3 ~10wt% and B 2 O 3: 0.7 ~2 wt %
And a bond flux containing iron powder: 15 to 35 wt% as a metal component and Ti powder, Mn powder, Mo powder,
Ti: Mn, Mo in addition to C: 0.08 wt% or less and Si: 0.40 wt% or less
A steel wire containing
The Mn content a (wt%) in these wires and the Mn content b (wt%) in the flux are expressed by the following equation: 1.0 ≦ a + 0.33b ≦ 4.0 (wt%)
And the Mo content c (wt%) in the wire and the Mo content d (wt%) in the flux are 0.15 ≦ c + 0.33d ≦ 1.00 (wt%)
Is satisfied, and the Ti content e (wt%) in the wire and the Ti content f (wt%) in the flux are expressed by the following equation: 0.01 ≦ e + 0.20f ≦ 0.40 (wt%)
Is a method of welding a large heat input latent arc to a thick steel plate having excellent toughness of a weld metal, characterized by using a material satisfying the following relationship.
[0012]
According to the large heat input latent arc welding method of the present invention, the plate thickness of the thick steel plate to be welded is 60 mm or more, and the large heat input latent arc welding has a welding current of at least one electrode of 2500 A or more. It is particularly advantageous if it is a multi-electrode single-layer welding.
[0013]
BEST MODE FOR CARRYING OUT THE INVENTION
The reasons for limiting the component composition ranges of the bond flux and the steel wire in the present invention will be described below.
(About bond flux)
total SiO 2 : 5 to 25%
SiO 2 is an important component as a shaping material, and is an essential component for adjusting the viscosity of slag. On the other hand, SiO 2 has the effect of adding Si to the weld metal by a reduction reaction during welding. For this reason, in large heat input welding in which the cooling time at 800 to 600 ° C. of the weld metal exceeds 200 seconds, if SiO 2 or Si is excessively contained in the flux, the amount of Si in the weld metal increases. There is a problem that the notch toughness of the weld metal is deteriorated. SiO 2 is added to the flux as an ore or a composite containing SiO 2 such as silica sand, but an alloy such as Fe—Si may be added to the flux. In the case of such alloying additions are converted to Si in SiO 2, and shall be defined as the total amount of SiO 2. If the total SiO 2 is less than 5%, sufficient slag viscosity cannot be secured, and a good bead appearance cannot be obtained. However, when the content exceeds 25%, not only the Si in the weld metal increases to deteriorate the toughness, but also the melting point decreases, the viscosity becomes excessive, and the bead appearance is disturbed.
[0014]
MgO: 15 to 35%
Since MgO has a high melting point, it imparts fire resistance to the flux, not only has the effect of stabilizing the bead shape in large heat input welding, but also raises the basicity of slag to reduce the amount of oxygen in the weld metal and reduces toughness. It is a useful component for ensuring However, if the content is less than 15%, a sufficient effect cannot be expected. On the other hand, if the content is more than 35%, the melting point is too high and the bead appearance is deteriorated.
[0015]
CaCO 3: 7~14%
CaCO 3 is decomposed into CaO 2 and CO 2 during welding, and the CO 2 gas shields the weld from outside air and reduces the partial pressure of hydrogen gas in the welding atmosphere. It is effective to reduce. CaO 2 is a basic component and has the effect of increasing the melting point of slag and improving toughness. However, if the amount of CaCO 3 is less than 7%, the shielding effect of CO 2 is small, and the hydrogen cracking resistance is reduced. On the other hand, if the amount of CaCO 3 exceeds 14%, the amount of generated CO 2 becomes excessive. Gas blow-up becomes intense, welding workability deteriorates, and bead appearance also deteriorates. It also impairs the slag removability.
[0016]
CaF 2 : 2 to 10%
Since CaF 2 can increase the basicity without increasing the melting point, it is effective in adjusting the oxygen content of the weld metal. However, if it is less than 2%, its effect is poor. The viscosity is too low and the bead appearance deteriorates.
[0017]
Al 2 O 3 : 4 to 20%
Al 2 O 3 can increase the melting point without lowering the viscosity, and thus effectively contributes to the adjustment of the melting point. However, if it is less than 4%, the effect of adjusting the viscosity is poor, and if it exceeds 20%, the melting point of the slag is high. This leads to uneven bead width and deterioration of bead appearance.
[0018]
TiO 2 : 3 to 10%
TiO 2 imparts fluidity to the slag, improves slag exfoliation, and is effective in reducing the toughness of the weld metal by being reduced in the arc cavity and partially migrating into the weld metal as Ti. . However, if it is less than 3%, its effect is poor, and if it is added more than 10%, such an effect does not increase, but rather impairs the bead appearance. Further, the slag peeling property is impaired.
[0019]
B 2 O 3: 0.7 ~2%
B 2 O 3 is reduced into the arc cavity and partially migrates as B into the weld metal, segregates at the austenite grain boundaries, and suppresses the formation of coarse grain boundary ferrite. It is effective to improve. However, if the amount is less than 0.7%, the effect is poor, and if the amount exceeds 2%, the toughness of the weld metal is rather deteriorated.
[0020]
Iron powder: 15-35%
Iron powder is added to increase the amount of welding per welding heat input and improve welding efficiency. However, if the amount is less than 15%, the effect is poor, and if the amount exceeds 35%, the bead appearance is impaired.
[0021]
In addition, Mn powder, Mo powder, and Ti powder are contained within a predetermined range in relation to the Mn content, Mo content, and Ti content in the steel wire as described later.
Further, those usually used for flux may be added. Such components include BaO and alkali metal oxides (K 2 O, Na 2 O, etc.). BaO is contained in a range of 5% or less, and alkali oxide is contained in a total range of 5% or less. Can be.
[0022]
(Reasons for limiting wire components)
C: 0.08% or less In large heat input welding of an extremely thick steel plate, a large shrinkage force is applied to the weld metal during the solidification process, so that crack sensitivity is increased. Therefore, it is necessary to reduce the amount of C in the weld metal in order to prevent hot cracking of the weld metal. In large heat input welding, when the amount of C in the weld metal is high because of the long cooling time of the weld metal, the distribution of C to the austenite phase proceeds, and a martensant-austenite phase is formed in the weld metal. This serves as a starting point of brittle fracture and deteriorates toughness. The steel sheet to which the welding method of the present invention is to be applied is a steel sheet mainly specified in JIS G 3106, and the C content is 0.10 to 0.18% in actual use. Here, in the welding method of the present invention, since the dilution ratio of the steel sheet is 40% and that of the wire is 40%, in order to generate the C content in the weld metal within the range of 0.12% or less, the C content of the wire is reduced. It is specified as 0.08% or less.
[0023]
Si: 0.40% or less Si is a strong deoxidizer, but in large heat input welding in which the cooling time of the weld metal at 800 to 600 ° C. exceeds 200 seconds, Si in the weld metal significantly deteriorates toughness. . If the Si content of the wire exceeds 0.40%, the toughness of the weld metal deteriorates, so the Si content of the wire is specified to be 0.40% or less.
[0024]
(Reasons for limiting Mn content, Mo content and Ti content in flux and wire)
When the cooling time of the weld metal at 800 to 600 ° C. exceeds 200 seconds, coarse proeutectoid ferrite is largely developed in the weld metal unless the quenching property of the weld metal is extremely enhanced, and the toughness is deteriorated. In order to improve the toughness of the weld metal, it is necessary to suppress the formation of proeutectoid ferrite, and it is necessary to ensure sufficient hardenability of the weld metal. Here, Mn is added as a hardenability improving component for securing toughness and tensile strength. That is, Mn is effective for inexpensively improving the hardenability of the weld metal and improving the toughness of the weld metal. On the other hand, from the viewpoint of preventing low-temperature cracking, it is also necessary to adjust the Mn content to an appropriate range so that the strength of the weld metal does not become too high. In defining the range of the amount of Mn from such a viewpoint, since the Mn can be added from both the flux and the wire, the amount of Mn contained in the weld metal is set to 1. It is necessary to adjust the flux and the amount of Mn in the wire so as to be 0 to 2.0%. Specifically, since the Mn content of the steel sheet described in JIS G 3106 is 1.0 to 1.5% in actuality, the Mn content in the wire is a (%), and the Mn content in the flux is Where b (%) is the following equation: 1.0 ≦ a + 0.33b ≦ 4.0 (%)
It is necessary to adjust the flux and the amount of Mn in the wire so as to satisfy the following. If the value of a + 0.33b in the above equation is less than 1.0%, the hardenability will be insufficient and the toughness of the weld metal will be impaired, whereas if it is more than 4.0%, the strength will be too high and the low temperature cracking resistance will be too high. Decreases. More preferably, the value of a + 0.33b is in the range of 1.5 to 3.5%.
[0025]
Mo is an element that improves the hardenability of the weld metal in the same manner as Mn. Mo is more expensive than Mn, but can significantly improve the toughness of the weld metal by adding a small amount. Since such Mo can be added from one or both of the slacks and the wire, the flux and the flux are adjusted so that the Mo amount contained in the weld metal becomes 0.06 to 0.40% in consideration of the Mo amount of the steel sheet. It is necessary to adjust the amount of Mo in the wire. Specifically, assuming that the amount of Mo in the wire is c (%) and the amount of Mo in the flux is d (%), the following equation 0.15 ≦ c + 0.33d ≦ 1.00 (%)
It is necessary to adjust the flux and the amount of Mo in the wire so as to satisfy the following. If the value of c + 0.33d in the above equation is less than 0.15%, the hardenability will be insufficient and the toughness of the weld metal will be impaired, whereas if it is more than 1.00%, the strength will be too high and the low temperature cracking resistance will be high. Decreases. A more preferable range is a range where the value of c + 0.33d is 0.4 to 0.7%.
[0026]
Next, for the reason for limiting the amount of Ti, as described above, by reducing the amount of oxygen in the weld metal, the hardenability of the weld metal is improved, so that the toughness can be improved. In general, Si may be used as a deoxidizing agent to reduce the amount of oxygen in the weld metal. However, in a large heat input welding in which the cooling time at 800 to 600 ° C. of the weld metal exceeds 200 seconds, Si is used. Cannot be positively added to rather deteriorate the notch toughness. Therefore, metal Ti, which is a strong deoxidizer, is added to improve the toughness of the weld metal. Further, Ti becomes TiO 2 even after deoxidation and is dispersed in the weld metal, making the structure of the weld metal finer and effective in improving toughness. Ti having such an action can be added from one or both of the flux and the wire, so that the amount of O contained in the weld metal becomes 0.013 to 0.033 wt%, so that the amount of O in the flux and the wire is reduced. It is necessary to adjust the Ti content. Specifically, assuming that the amount of Ti in the wire is e (%) and the amount of Ti in the flux is f (%), the following equation 0.01 ≦ e + 0.20f ≦ 0.40 (%)
It is necessary to adjust the flux and the amount of Ti in the wire so as to satisfy the following. If the value of e + 0.20f in the above formula is less than 0.01%, sufficient deoxidation is not performed, and the effect of improving toughness cannot be obtained. On the other hand, if it is higher than 0.40%, the oxygen content in the weld metal is too low, and rather the toughness is impaired. A more preferable range is a range where the value of e + 0.20f is 0.02 to 0.20%.
[0027]
In addition, those usually contained in wires, such as Ni and Cu, may be added.
[0028]
Here, the amount of each component of the wire is an average value of each wire used, and it is good to calculate according to the following formula, assuming that the amount of welding of each electrode is proportional to the current.
For example, in three-electrode welding, the average C amount, ie, C (AV) is
(Equation 1)
C (AV) (wt%) = current of first electrode × sum of C amount / current of wire of first electrode + current of second electrode × sum of C amount / current of wire of second electrode + current of third electrode × The sum of the C amount of the wire of the third electrode / current.
[0029]
The high heat input latent arc welding method using a welding flux and a steel wire having such a composition is advantageously applied to a high heat input in which the cooling time of the weld metal at 800 to 600 ° C. exceeds 200 seconds. That is, when the thickness of a thick steel plate to be welded (steel for welding structure as defined in JIS G 3106) is 60 mm or more, and the large heat input latent arc welding is performed with a welding current of at least one electrode. Is a multi-electrode single-layer welding of three or more electrodes having a thickness of 2300 A or more. Here, if the welding current of at least one electrode is less than 2300 A, disadvantages such as insufficient penetration and insufficient welding amount occur, so the welding current is preferably 2300 A or more.
[0030]
【Example】
As a welding base material, a steel sheet having a thickness and a composition shown in Table 1 corresponding to SM490B specified in JIS G3106 was used. The groove shape of such a welding base metal is Y-shaped, and at each plate thickness, the root face is 10 mm at a groove angle of 40 ° at a plate thickness of 60 mm,
At a plate thickness of 70 mm, the groove angle is 40 ° and the root face is 12 mm,
At a plate thickness of 80 mm, the root face was 13 mm at a groove angle of 40 °.
[0031]
[Table 1]
Figure 0003552375
[0032]
Next, a wire having a composition shown in Table 2 and a wire diameter of 6.4 mm was used as the welding wire.
[Table 2]
Figure 0003552375
[0033]
Further, the flux shown in Table 3 was used as the welding flux. In Table 3, no. Nos. 1 to 4 are fluxes satisfying the requirements of the present invention. Nos. 5 to 11 do not satisfy the requirements.
[0034]
[Table 3]
Figure 0003552375
[0035]
At the time of welding using these welding base metal, welding wire, and welding flux, three-electrode one-layer submerged arc welding was performed under the conditions shown in Table 4. The DC power supply was used for the preceding electrode and the AC power supply was used for the remaining two electrodes to be followed. The phase difference of this AC power supply was 120 °. The cooling time at 800 to 600 ° C. of the weld metal when welding was performed under these conditions was measured, and the results are also shown in Table 4.
[0036]
[Table 4]
Figure 0003552375
[0037]
After such welding, the weldability was evaluated. Table 5 shows the results. In this evaluation item, the welding workability (slag removability, gas blow-up) and bead appearance were observed, and the quality was judged by visual inspection, and the quality was indicated by ×. Judgment by ultrasonic flaw detection was indicated by 良 or 否. Further, 10 mm, 10 mm, and 55 mm V-notched test pieces were cut out from the weld metal portion, and the impact absorption energy at 0 ° C. was measured. Based on these evaluations, the case where the overall evaluation was excellent was evaluated as ○ in the overall evaluation, and the case where the evaluation was poor was evaluated as ×.
[0038]
[Table 5]
Figure 0003552375
[0039]
Sample No. Nos. 1 to 6 are conforming examples according to the present invention, and a weld metal having good toughness and a bead having a good shape could be obtained without defects and without impairing workability.
On the other hand, the sample No. In No. 7, the amount of Si in the wire and the total SiO 2 in the flux were excessive, the toughness of the weld metal was poor, and the bead appearance was poor.
Sample No. In No. 8, the bead appearance was poor because the total SiO 2 in the flux was small, and cracking occurred because the Mn content in the weld metal was too high.
Sample No. In No. 9, CaF 2 in the flux was excessive, the width of the bead became uneven, and the addition amount of Ti was small, so that the amount of oxygen in the weld metal was increased and the toughness of the weld was inferior.
Sample No. In No. 10, since the Al 2 O 3 in the flux was high, the beads were thin and non-uniform, and the Mn content of the weld metal was small and the toughness was poor.
Sample No. No. 11 has an excessive amount of CaCO 3 in the flux, violently blows up the gas during welding, and is inferior in workability. In addition, the amount of Mo in the weld metal is small, and the toughness of the weld metal is inferior.
Sample No. In No. 12, the amount of diffusible hydrogen in the weld metal is increased due to a small amount of CaCO 3 in the flux, causing cracks. Also, the amount of oxygen in the weld metal is reduced due to the large amount of metal Ti added to the weld metal. And the toughness of the weld metal deteriorated.
Sample No. Sample No. 13 had a high MgO 2 content in the flux and had poor bead appearance.
Sample No. No. 14 is inferior in bead appearance and toughness because the total amount of total SiO 2 in the flux is high.
[0040]
【The invention's effect】
As described above, according to the welding method of the present invention, the cooling time of the weld metal at a temperature of 800 to 600 ° C. exceeds 200 seconds as in the case of large heat input three-electrode one-layer submerged arc welding of an extremely thick steel plate. Thus, not only good notch toughness of the weld metal can be obtained, but also good welding workability and bead appearance, and good hydrogen cracking resistance of the weld metal can be obtained.

Claims (2)

厚鋼板に大入熱潜弧溶接を施すに際し、
溶接用フラックス及び溶接用ワイヤとしてそれぞれ
total SiO:5 〜25wt%、
MgO :15〜35wt%、
CaCO :7 〜14wt%、
CaF:2 〜10wt%、
Al :4 〜20wt%、
TiO:3 〜10wt%及び
:0.7 〜2 wt%
を含み、かつ金属成分として
鉄粉:15〜35wt%及び
Ti粉、Mn粉、Mo粉
を含有するボンドフラックス、
C:0.08wt%以下及び
Si:0.40wt以下%に加えて
Ti、Mn、Mo
を含有する鋼ワイヤであって、
これらワイヤ中のMn含有量a(wt%)及びフラックス中のMn含有量b(wt%)が、次式
1.0 ≦a+0.33b≦4.0 (wt%)
の関係を満足し、さらにワイヤ中のMo含有量c(wt%)及びフラックス中のMo含有量d(wt%)が、次式
0.15≦c+0.33d≦1.00 (wt%)
の関係を満足し、かつワイヤ中のTi含有量e(wt%)及びフラックス中のTi含有量f(wt%)が、次式
0.01≦e+0.20f≦0.40 (wt%)
の関係を満足するものを用いることを特徴とする溶接金属の靱性に優れる厚鋼板の大入熱潜弧溶接方法。
When performing large heat input latent arc welding on thick steel plates,
Total SiO 2 : 5 to 25 wt% as welding flux and welding wire,
MgO: 15 to 35 wt%,
CaCO 3: 7 ~14wt%,
CaF 2: 2 ~10wt%,
Al 2 O 3 : 4 to 20 wt%,
TiO 2: 3 ~10wt% and B 2 O 3: 0.7 ~2 wt %
And a bond flux containing iron powder: 15 to 35 wt% as a metal component and Ti powder, Mn powder, Mo powder,
Ti: Mn, Mo in addition to C: 0.08 wt% or less and Si: 0.40 wt% or less
A steel wire containing
The Mn content a (wt%) in these wires and the Mn content b (wt%) in the flux are expressed by the following equation: 1.0 ≦ a + 0.33b ≦ 4.0 (wt%)
And the Mo content c (wt%) in the wire and the Mo content d (wt%) in the flux are 0.15 ≦ c + 0.33d ≦ 1.00 (wt%)
Is satisfied, and the Ti content e (wt%) in the wire and the Ti content f (wt%) in the flux are expressed by the following equation: 0.01 ≦ e + 0.20f ≦ 0.40 (wt%)
A large heat input latent arc welding method for a thick steel plate having excellent toughness of a weld metal, characterized by using a material satisfying the following relationship.
溶接しようとする厚鋼板の板厚が60mm以上であり、大入熱潜弧溶接が少なくとも一の電極の溶接電流を2300A以上とする3電極以上の多電極1層溶接である請求項1記載の方法。2. The large-heat-input latent-arc welding in which the thickness of a thick steel plate to be welded is 60 mm or more, and multi-electrode single-layer welding of three or more electrodes in which the welding current of at least one electrode is 2300 A or more. Method.
JP31641295A 1995-12-05 1995-12-05 Large heat input latent arc welding method for thick steel plate with excellent toughness of weld metal Expired - Fee Related JP3552375B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31641295A JP3552375B2 (en) 1995-12-05 1995-12-05 Large heat input latent arc welding method for thick steel plate with excellent toughness of weld metal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31641295A JP3552375B2 (en) 1995-12-05 1995-12-05 Large heat input latent arc welding method for thick steel plate with excellent toughness of weld metal

Publications (2)

Publication Number Publication Date
JPH09155588A JPH09155588A (en) 1997-06-17
JP3552375B2 true JP3552375B2 (en) 2004-08-11

Family

ID=18076789

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31641295A Expired - Fee Related JP3552375B2 (en) 1995-12-05 1995-12-05 Large heat input latent arc welding method for thick steel plate with excellent toughness of weld metal

Country Status (1)

Country Link
JP (1) JP3552375B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR19990042317A (en) * 1997-11-26 1999-06-15 이구택 500kJ / ㎝ welding material with excellent toughness of weld metal
JP3765761B2 (en) * 2002-02-08 2006-04-12 株式会社神戸製鋼所 Bond flux for submerged arc welding
JP5456396B2 (en) 2009-07-13 2014-03-26 中央発條株式会社 Belleville spring and manufacturing method thereof
WO2011048558A2 (en) * 2009-10-21 2011-04-28 Illinois Tool Works Inc. Weld wire, the usage of the weld wire and a method of manufacturing electricity power tower
JP6104090B2 (en) * 2013-08-05 2017-03-29 株式会社神戸製鋼所 Submerged arc welding flux and manufacturing method thereof
CN104816077B (en) * 2015-05-15 2017-03-22 武汉钢铁(集团)公司 Method capable of quickly determining one-off forming welding linear energy of submerged-arc welding of V-shaped groove
CN112108791B (en) * 2020-08-12 2022-03-11 中国船舶重工集团公司第七二五研究所 Alkaline seamless flux-cored wire for improving low-temperature toughness of low-alloy high-strength steel welding joint

Also Published As

Publication number Publication date
JPH09155588A (en) 1997-06-17

Similar Documents

Publication Publication Date Title
JP5179073B2 (en) Flux-cored wire for gas shielded arc welding
EP1295672A1 (en) Flux-cored wire for gas shielded arc welding
JP6437471B2 (en) Low hydrogen coated arc welding rod
JP2006289404A (en) Flux cored wire for gas shielded arc welding
JP2011025298A (en) Gas shielded arc welding method
JP6437419B2 (en) Flux-cored wire for carbon dioxide shielded arc welding
JP4300153B2 (en) Flux-cored wire for gas shielded arc welding
JP3552375B2 (en) Large heat input latent arc welding method for thick steel plate with excellent toughness of weld metal
JP3458452B2 (en) High heat input latent arc welding method for thick steel plate with excellent toughness of weld metal
JPH08257791A (en) Low hydrogen covered electrode
JPH08257789A (en) Submerged arc welding
JP2003001486A (en) Flux for submerged arc welding and method for producing submerged arc welded joint
JP4331340B2 (en) Flux-cored wire for carbon dioxide gas used for low alloy steel
JP2020131221A (en) Baked flux for submerged arc welding for high-strength steel
JP3718464B2 (en) Flux-cored wire for gas shielded arc welding
JP3547282B2 (en) Low hydrogen coated arc welding rod
JP2003094196A (en) Flux cored wire for gas shielded arc welding
JP2020131234A (en) Stainless steel flux-cored wire for self-shielded arc-welding
JP3163838B2 (en) Bond flux for submerged arc welding
JP3563614B2 (en) Low hydrogen coated arc welding rod
JP6227513B2 (en) Firing flux for submerged arc welding of high strength steel
JP7055731B2 (en) Low hydrogen coated arc welding rod
JP3184742B2 (en) Low hydrogen coated arc welding rod
JP7210410B2 (en) Iron Powder Low Hydrogen Type Coated Arc Welding Rod
JPH07303991A (en) Wire and bonded flux for submerged arc welding of 780mpa or 960mpa steel

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040330

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040413

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040426

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees