JP2007144429A - Bond flux for downward fillet submerged arc welding - Google Patents

Bond flux for downward fillet submerged arc welding Download PDF

Info

Publication number
JP2007144429A
JP2007144429A JP2005337949A JP2005337949A JP2007144429A JP 2007144429 A JP2007144429 A JP 2007144429A JP 2005337949 A JP2005337949 A JP 2005337949A JP 2005337949 A JP2005337949 A JP 2005337949A JP 2007144429 A JP2007144429 A JP 2007144429A
Authority
JP
Japan
Prior art keywords
welding
flux
weld metal
submerged arc
bead
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2005337949A
Other languages
Japanese (ja)
Inventor
Masaya Saito
雅哉 齋藤
Shigeo Oyama
繁男 大山
Katsutoshi Sueda
勝利 末田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Welding and Engineering Co Ltd
Original Assignee
Nippon Steel and Sumikin Welding Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel and Sumikin Welding Co Ltd filed Critical Nippon Steel and Sumikin Welding Co Ltd
Priority to JP2005337949A priority Critical patent/JP2007144429A/en
Publication of JP2007144429A publication Critical patent/JP2007144429A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Nonmetallic Welding Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide bonded flux for downward fillet submerged arc welding, a bonded flux that solves conventional technical problems, that enables superior bead appearance and welding workability comparable to fusible flux to be obtained, and that also enables improved mechanical performance of weld metal to be obtained, in fillet welding using bonded flux for submerged arc welding, particularly, in flat fillet submerged arc welding with deep penetration free of groove preparation. <P>SOLUTION: The bonded flux for downward fillet submerged arc welding is characterized in that it contains, by mass%, 5-15% SiO<SB>2</SB>, 12-25% MgO, 3-13% CaO, 1-7% CaF<SB>2</SB>, 8-20% Al<SB>2</SB>O<SB>3</SB>, 16-25% TiO<SB>2</SB>, 0.1-0.5% B<SB>2</SB>O<SB>3</SB>, 5-15% ZrO<SB>2</SB>, 0.5-1.0% Mn, 0.2-3.0% Si and 1.0-6.0% Fe, the balance being CO<SB>2</SB>, alkali metal oxide and unavoidable impurities. The bonded flux is also characterized in that it contains 0.01-0.04% 2Nb+V in one or two kinds of ≤0.02% Nb and ≤0.01% V. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、下向きすみ肉サブマージアーク溶接用ボンドフラックスに係り、特に鉄骨および橋梁等に多く使用されるビルトH材(3枚の鋼板を断面形状がH型となるように組み合わせてすみ肉溶接により接合した骨材)からなる柱、梁および桁の下向きすみ肉に使用した場合に優れたビード形状、溶接作業性、溶込み深さおよび機械性能の溶接金属を得ることができる下向きすみ肉サブマージアーク溶接用ボンドフラックスに関するものである。   The present invention relates to a bond flux for downward fillet submerged arc welding, and particularly, a built-in H material (three steel plates are combined so that the cross-sectional shape is H-type by combining fillet welds) frequently used for steel frames and bridges. Downward fillet submerged arc that can obtain weld metal with excellent bead shape, welding workability, penetration depth and mechanical performance when used for downward fillet of columns, beams and girders made of joined aggregates) The present invention relates to a welding bond flux.

下向きすみ肉サブマージアーク溶接によって形成されるすみ肉溶接継手は、溶込み深さ、必要脚長の確保、並びにビード形状の平滑性および溶接金属の母材とのなじみ性が良好であることが要求されている。また、最近では溶接金属の良好な機械性能が要求される傾向がある。従来、下向きすみ肉サブマージアーク溶接には、ボンドフラックスよりも高速溶接が可能な溶融型フラックスが多く使用されている。しかし、溶融型フラックスは溶接金属の所定の機械性能を得ること、または脚長を大きくすること、大入熱による溶接能率を上げることについては不十分であった。   Fillet welded joints formed by downward fillet submerged arc welding are required to have good penetration depth, required leg length, bead shape smoothness, and good compatibility with the base metal of the weld metal. ing. Recently, there is a tendency that good mechanical performance of the weld metal is required. Conventionally, in the case of downward fillet submerged arc welding, a melting type flux that can be welded at a higher speed than a bond flux is often used. However, the melt-type flux is insufficient for obtaining a predetermined mechanical performance of the weld metal, or increasing the leg length, and increasing the welding efficiency by large heat input.

そこで、これらの点を考慮し溶接作業性および機械性能が良好なボンドフラックスが検討されている。例えば、下向きすみ肉サブマージアーク溶接用ボンドフラックスが特開平7−100689号公報(特許文献1)に、すみ肉溶接も含む多目的溶接用ボンドフラックスが特開平11−347788号公報(特許文献2)、特開平8−99191号公報(特許文献3)および特開平11−354010号公報(特許文献4)等に開示されているが、SiO2含有量が多く、溶接金属の酸素量が高くなり靭性が低下するという問題がある。 In view of these points, bond fluxes having good welding workability and mechanical performance have been studied. For example, a downward fillet submerged arc welding bond flux is disclosed in Japanese Patent Laid-Open No. 7-100689 (Patent Document 1), and a multipurpose welding bond flux including fillet welding is disclosed in Japanese Patent Laid-Open No. 11-347788 (Patent Document 2). Although disclosed in Japanese Patent Application Laid-Open No. 8-99191 (Patent Document 3) and Japanese Patent Application Laid-Open No. 11-354010 (Patent Document 4), the SiO 2 content is large, the oxygen content of the weld metal is increased, and the toughness is increased. There is a problem of lowering.

また、すみ肉溶接専用のボンドフラックスが特開2002−331390号公報(特許文献5)に開示されているが、高速すみ肉溶接用でありビルトH材の溶接においては深い溶込みを得るため速度を落として溶接した場合、SiO2が多く靭性が低下すると共に、スラグの粘性が高いためビード形状が不良となる。 Moreover, although the bond flux only for fillet welding is disclosed in Japanese Patent Laid-Open No. 2002-331390 (Patent Document 5), it is used for high-speed fillet welding, and speed is required for obtaining deep penetration in the welding of a built-in H material. When welding is performed with a large amount of SiO 2 , the toughness is reduced due to a large amount of SiO 2 , and the bead shape becomes poor due to the high viscosity of slag.

さらに、良好な靭性を得ることができるボンドフラックスが特開2000−107885号公報(特許文献6)、極厚H型鋼用のボンドフラックスが特開平10−29041号公報(特許文献7)および特開平9−319146号公報(特許文献8)等に開示されているが、Fe含有量が多く、開先加工無しの深溶込み下向きすみ肉溶接方法では溶接金属量が過剰となるためビード形状が劣化し、スラグ剥離性が不良となるという問題がある。   Furthermore, a bond flux capable of obtaining good toughness is disclosed in Japanese Patent Application Laid-Open No. 2000-107885 (Patent Document 6), and a bond flux for extremely thick H-shaped steel is disclosed in Japanese Patent Application Laid-Open No. 10-29041 (Patent Document 7) and No. 9-319146 (Patent Document 8) and the like, but the bead shape is deteriorated because the amount of weld metal is excessive in the deep penetration downward fillet welding method with a large Fe content and no groove processing. However, there is a problem that the slag peelability becomes poor.

特開平7−100689号公報Japanese Patent Application Laid-Open No. 7-100689 特開平11−347788号公報Japanese Patent Laid-Open No. 11-347788 特開平8−99191号公報JP-A-8-99191 特開平11−354010号公報Japanese Patent Laid-Open No. 11-354010 特開2002−331390号公報JP 2002-331390 A 特開2000−107885号公報JP 2000-107885 A 特開平10−29041号公報Japanese Patent Laid-Open No. 10-29041 特開平9−319146号公報JP 9-319146 A

本発明は、サブマージアーク溶接用ボンドフラックスを使用するすみ肉溶接、特に開先加工無しの深溶込み下向きすみ肉サブマージアーク溶接において、上記従来技術の問題点を解決し、溶融型フラックスに相当する良好なビード外観および溶接作業性を得ると共に、良好な溶接金属の機械性能を得ることができる下向きすみ肉サブマージアーク溶接用ボンドフラックスを提供することを目的とする。   The present invention solves the above-mentioned problems in fillet welding using bond flux for submerged arc welding, particularly deep penetration downward fillet submerged arc welding without groove processing, and corresponds to a melt-type flux. An object is to provide a bond flux for downward fillet submerged arc welding which can obtain a good bead appearance and welding workability and can obtain a good weld metal mechanical performance.

本発明は、上記の課題を解決するものであり、その発明の要旨とするところは、以下の通りである。
(1)質量%で、SiO2:5〜15%、MgO:12〜25%、CaO:3〜13%、CaF2:1〜7%、Al23:8〜20%、TiO2:16〜25%、B23:0.1〜0.5%、ZrO2:5〜15%、Mn:0.5〜1.0%、Si:0.2〜3.0%、Fe:1.0〜6.0%を含有し、その他はCO2、アルカリ金属酸化物および不可避不純物であることを特徴とする下向きすみ肉サブマージアーク溶接用ボンドフラックス。
(2)さらに、Nb:0.02%以下およびV:0.01%以下の1種または2種を2Nb+Vで0.01〜0.04%含有することを特徴とする前記(1)記載の下向きすみ肉サブマージアーク溶接用ボンドフラックスにある。
The present invention solves the above-mentioned problems, and the gist of the invention is as follows.
(1) in mass%, SiO 2: 5~15%, MgO: 12~25%, CaO: 3~13%, CaF 2: 1~7%, Al 2 O 3: 8~20%, TiO 2: 16-25%, B 2 O 3 : 0.1-0.5%, ZrO 2 : 5-15%, Mn: 0.5-1.0%, Si: 0.2-3.0%, Fe : it contains 1.0 to 6.0%, others CO 2, alkali metal oxides and down fillet submerged arc welding bonded flux, characterized in that unavoidable impurities.
(2) Furthermore, 0.01-0.04% of Nb: 0.02% or less and V: 0.01% or less of 1 type or 2 types are contained by 2Nb + V as described in said (1) characterized by the above-mentioned It is in bond flux for downward fillet submerged arc welding.

本発明の下向すみ肉サブマージアーク溶接用ボンドフラックスによれば、特にビルトH材などの開先加工無しの下向きすみ肉溶接においても深溶込みが得られ、良好な溶接作業性、ビード形状および優れた機械的性質を得ることができ、溶接能率の向上および高品質の溶接部を得ることができる。   According to the bond flux for downward fillet submerged arc welding of the present invention, deep penetration can be obtained even in downward fillet welding without groove processing such as a built-in H material, and good welding workability, bead shape, and Excellent mechanical properties can be obtained, welding efficiency can be improved, and high quality welds can be obtained.

本発明者らは、まず下向きすみ肉サブマージアーク溶接に使用される従来の種々のフラックスについて検討したが、優れたビード形状、作業性、機械性能のいずれをも満足できるフラックスを得ることはできなかった。例えば、溶融型フラックスにおいては、シールド効果が不十分なため溶接金属の酸素量が高くなり、所定の機械性能を得ることができなかった。また、ボンドフラックスにおいてはSiO2が高く、溶接金属の酸素量が高くなり、所定の靭性を得ることができなかった。また、スラグの粘性が高く、ビード形状が凸になると共にスラグ剥離性が不十分であった。 The present inventors first examined various conventional fluxes used for downward fillet submerged arc welding, but could not obtain a flux satisfying all of the excellent bead shape, workability, and mechanical performance. It was. For example, in the melt type flux, since the shielding effect is insufficient, the oxygen amount of the weld metal is increased, and a predetermined mechanical performance cannot be obtained. Further, in the bond flux, SiO 2 is high, the oxygen amount of the weld metal is high, and the predetermined toughness cannot be obtained. Moreover, the viscosity of the slag was high, the bead shape became convex, and the slag peelability was insufficient.

そこでフラックスの成分組成について種々検討した結果、ボンドフラックスにSiを加え、SiO2を低くすることによって、スラグ剥離性およびビード形状が良好で且つ溶接金属の酸素量を抑えて良好な機械性能を得られることを見出した。
一般に、開先加工無しの深溶込み下向すみ肉サブマージアーク溶接においては、溶込み深さを得るため大入熱で溶接を行うが、大入熱の溶接は良好な溶接金属靭性が得られない。これは、溶接金属中のオーステナイト粒界に粗大な粒界フェライト(初析フェライト)が析出するためであり、高い焼入れ性を確保し粒界フェライトの析出を抑えることが必要となる。また、オーステナイト粒内では粗粒で硬く脆いセメンタイトが生成されるため溶接金属靭性を低下させる。
Therefore, as a result of various investigations on the component composition of the flux, by adding Si to the bond flux and lowering the SiO 2 , the slag peelability and bead shape are good, and the oxygen content of the weld metal is suppressed and good mechanical performance is obtained. I found out that
In general, in deep penetration down fillet submerged arc welding without groove processing, welding is performed with a large heat input in order to obtain a penetration depth, but welding with a large heat input provides good weld metal toughness. Absent. This is because coarse grain boundary ferrite (pre-deposited ferrite) precipitates at the austenite grain boundaries in the weld metal, and it is necessary to ensure high hardenability and suppress precipitation of the grain boundary ferrite. Moreover, since coarse, hard and brittle cementite is generated in the austenite grains, the weld metal toughness is lowered.

そこで、粗大な粒界フェライトを抑制するため、オーステナイトの粗大化を抑制する元素としてSi、Nb、Vの検討を行なった。また、粗大な粒界フェライトの生成を抑制する元素として、Bのオーステナイト粒界偏析作用を利用した。また、オーステナイト粒内の粗粒なセメンタイトを抑制し、アシキュラーフェライトの生成を促進するため、Si、Nb、Vの適正量の添加による焼入れ性向上およびTi源となるTiO2の適正量の添加により、アシキュラーフェライトの生成核となるTiを含む酸化物の利用が有効であった。さらに上記に加え、これまでFeは少量含有では溶着効率の向上および溶接アークの集中性には効果が不十分とされていたが、開先加工無しの深溶込み下向きすみ肉サブマージアーク溶接においては、少量の含有によって溶込み深さの向上および良好なビード幅が得られることを見出した。 Therefore, in order to suppress coarse grain boundary ferrite, Si, Nb, and V were studied as elements that suppress austenite coarsening. In addition, the austenite grain boundary segregation effect of B was used as an element that suppresses the formation of coarse grain boundary ferrite. In addition, in order to suppress coarse cementite in austenite grains and promote the formation of acicular ferrite, hardenability is improved by adding appropriate amounts of Si, Nb, and V, and an appropriate amount of TiO 2 serving as a Ti source is added. Therefore, it is effective to use an oxide containing Ti that becomes a nucleus of acicular ferrite. Furthermore, in addition to the above, it has been considered that the effect of improving the welding efficiency and the concentration of the welding arc has been insufficient with a small amount of Fe so far, but in deep penetration down fillet submerged arc welding without groove processing, It was found that the penetration depth can be improved and a good bead width can be obtained by containing a small amount.

以下、本発明におけるボンドフラックスの成分組成の限定理由について説明する。
SiO2は、高粘性の性質を有し、溶接作業性、ビード形状、溶接金属の機械性能に影響する。その含有量が5質量%(以下、%という。)未満の場合、スラグの粘性が不足するためビード形状が不良となりビードの蛇行、アンダカットが発生する。一方、15%を超えるとスラグの粘性が高くなりすぎるため下向すみ肉溶接においてはビード趾端部がオーバラップとなりスラグ剥離性も劣化する。さらに、溶接金属の酸素量が高くなるため、溶接金属の靭性が劣化する。
Hereinafter, the reasons for limiting the component composition of the bond flux in the present invention will be described.
SiO 2 has a highly viscous property and affects welding workability, bead shape, and mechanical performance of the weld metal. When the content is less than 5% by mass (hereinafter referred to as “%”), the viscosity of the slag is insufficient, so that the bead shape becomes poor and the bead meanders and undercuts occur. On the other hand, if it exceeds 15%, the viscosity of the slag becomes too high, so that in the case of downward fillet welding, the bead end is overlapped, and the slag peelability is also deteriorated. Furthermore, since the oxygen content of the weld metal increases, the toughness of the weld metal deteriorates.

MgOは、溶接金属の酸素量を低減するのに有効な成分であり、高融点、高粘性の性質を有している。MgOが12%未満の場合、溶接金属の酸素量が高くなり靭性が低下すると共に、スラグの粘性が不足するため、ビードの蛇行やアンダカットが発生する。一方、MgOが25%を超えると、フラックスの融点が高くなり、フラックスの溶融性が低下するため、十分なビード幅が得られず、スラグの粘性も高くなるため、下向きすみ肉溶接においてはビード趾端部がオーバラップとなる。   MgO is an effective component for reducing the oxygen content of the weld metal, and has a high melting point and high viscosity property. When MgO is less than 12%, the oxygen content of the weld metal is increased and the toughness is lowered, and the viscosity of the slag is insufficient, so that bead meandering and undercutting occur. On the other hand, if MgO exceeds 25%, the melting point of the flux increases and the meltability of the flux decreases, so that a sufficient bead width cannot be obtained and the viscosity of the slag increases. The heel end overlaps.

CaOは、溶接金属の酸素量、融点およびスラグの流動性を調整するために重要な成分である。CaOが3%未満では溶接金属の酸素量が高くなり、靭性が劣化する。また、スラグの流動性が劣化し、ビード趾端部がオーバラップとなり、母材とのなじみが劣化し、ビード形状が凸型になる。一方、13%を超えるとスラグの凝固温度が高くなり、アンダカットが発生しやすくなり、スラグ剥離性が劣化する。   CaO is an important component for adjusting the oxygen content, melting point, and slag fluidity of the weld metal. If CaO is less than 3%, the amount of oxygen in the weld metal increases, and the toughness deteriorates. In addition, the fluidity of the slag deteriorates, the bead collar ends overlap, the familiarity with the base material deteriorates, and the bead shape becomes convex. On the other hand, if it exceeds 13%, the solidification temperature of the slag becomes high, undercut is likely to occur, and the slag peelability is deteriorated.

CaF2は、低融点、低粘性の性質を有しており、大電流の溶接条件での溶接時にビードを平滑に保つのに有効な成分であり、溶接時に一部が分解し弗素ガスを発生する。弗素ガスは溶接時にシールド効果があり、溶接金属の酸素を低減し、靭性を向上させる。CaF2が1%未満ではビード形状の向上、靭性の向上に効果がなく、7%を超えるとスラグの流動性が過剰となり、アンダカットが発生しやすく、スラグ剥離性が劣化する。 CaF 2 has properties of low melting point and low viscosity, and is an effective component to keep the bead smooth when welding under high current welding conditions, and part of it decomposes during generation of fluorine gas. To do. Fluorine gas has a shielding effect during welding, reduces oxygen in the weld metal, and improves toughness. When CaF 2 is less than 1%, there is no effect in improving the bead shape and toughness, and when it exceeds 7%, the fluidity of the slag becomes excessive, undercut is likely to occur, and the slag peelability is deteriorated.

Al23は、スラグの粘性、凝固温度を調整するのに有効な成分である。Al23が8%未満であるとスラグの粘性が不足するため、アンダカットが発生しやすくなる。一方、20%を超えるとスラグの粘性が過剰となり、ビード形状が凸型となる。
TiO2は、ビード表面の平滑性を得るのに効果があり、さらに溶融時に還元されて溶接金属中にTiを含む酸化物として歩留まり、アシキュラーフェライトの核となって靭性の向上に非常に有効な成分である。TiO2が16%未満であるとビードの平滑性、靭性の向上に効果がなく、25%を超えるとスラグが焼付き、スラグ剥離性が劣化する。
Al 2 O 3 is an effective component for adjusting the viscosity and solidification temperature of slag. If Al 2 O 3 is less than 8%, the viscosity of the slag is insufficient, and undercut is likely to occur. On the other hand, if it exceeds 20%, the viscosity of the slag becomes excessive and the bead shape becomes convex.
TiO 2 is effective in obtaining the smoothness of the bead surface, and further reduced during melting and yielded as an oxide containing Ti in the weld metal, and is very effective in improving toughness as a core of acicular ferrite. Is an essential ingredient. When TiO 2 is less than 16%, there is no effect in improving the smoothness and toughness of the bead, and when it exceeds 25%, the slag is seized and the slag peelability is deteriorated.

23は、溶接熱で還元され、Bとして溶接金属中に歩留まり、オーステナイト粒界に偏析し粗大な粒界フェライトの生成を抑制して、溶接金属の靭性の向上に非常に有効な成分である。B23が0.1%未満では靭性向上の効果が得られず、0.5%を超えると高温割れが発生し易くなる。 B 2 O 3 is a component that is reduced by welding heat, is retained in the weld metal as B, segregates at the austenite grain boundaries, suppresses the formation of coarse grain boundary ferrite, and is a very effective component for improving the toughness of the weld metal. It is. If B 2 O 3 is less than 0.1%, the effect of improving toughness cannot be obtained, and if it exceeds 0.5%, hot cracking tends to occur.

ZrO2は、スラグの粘性を増加する。ZrO2が5%未満となるとスラグの粘性が不足するため、ビード趾端部にアンダカットが発生する。一方、15%を超えるとスラグの粘性が高くなりすぎてビード趾端部がオーバラップとなりビード形状が凸型となる。さらに、溶接金属の酸素量が高くなって、溶接金属の靭性が劣化する。 ZrO 2 increases the viscosity of the slag. If ZrO 2 is less than 5%, the viscosity of the slag is insufficient, and an undercut occurs at the end of the bead collar. On the other hand, if it exceeds 15%, the viscosity of the slag becomes too high, the bead collar ends overlap, and the bead shape becomes convex. Furthermore, the oxygen content of the weld metal increases, and the toughness of the weld metal deteriorates.

Mnは、焼入れ性を向上させて、強度および靭性を高めるのに有効な成分である。その含有量が0.5%未満であると大入熱溶接時の焼入れ性が不足し、靭性が低下する。1%を超えると焼入れ性が過剰となり、溶接金属の強度が高くなり靭性が低下する。なお、Mn源としては金属Mn、Fe−Mnの1種または2種を使用することができる。   Mn is an effective component for improving hardenability and increasing strength and toughness. If the content is less than 0.5%, the hardenability at the time of high heat input welding is insufficient, and the toughness is lowered. If it exceeds 1%, the hardenability becomes excessive, the strength of the weld metal increases, and the toughness decreases. As the Mn source, one or two of metal Mn and Fe—Mn can be used.

Siは、焼入れ性を向上させると共に、溶接時に酸素と結合しスラグアウトすることで脱酸成分として有効な成分であり、溶接金属の強度および靭性を高める。Si含有量が0.2%未満であると脱酸効果が得られず靭性が低下する。一方、3.0%を超えると溶接金属の硬さが過剰となり靭性が劣化する。なお、Si源としては金属Si、Fe−Siの1種または2種を使用することができる。   Si improves hardenability and is an effective component as a deoxidizing component by combining with oxygen during welding and slag-out, and increases the strength and toughness of the weld metal. If the Si content is less than 0.2%, the deoxidizing effect cannot be obtained and the toughness is lowered. On the other hand, if it exceeds 3.0%, the hardness of the weld metal becomes excessive and the toughness deteriorates. As the Si source, one or two of metal Si and Fe—Si can be used.

Feは、アークの集中性、溶着効率の向上に効果がある。Feが1.0%未満の場合、アークの集中性が弱く開先加工無しの深溶込み下向きすみ肉溶接においては、溶込み深さが不十分となる。また、溶接金属量も不足して十分なビード幅が得られない。一方、6.0%を超えるとアークの集中力が過剰となるため溶接時の吹上げが激しくなり溶接作業性が劣化する。溶接金属量も過剰となるためビード形状が凸型となり、ビードの脚長も過剰となりビード外観が劣化する。   Fe is effective in improving arc concentration and welding efficiency. When Fe is less than 1.0%, the depth of penetration becomes insufficient in deep penetration downward fillet welding without groove processing due to weak arc concentration. In addition, the amount of weld metal is insufficient and a sufficient bead width cannot be obtained. On the other hand, if it exceeds 6.0%, the concentration power of the arc becomes excessive, so that the blow-up during welding becomes intense and the welding workability is deteriorated. Since the amount of weld metal becomes excessive, the bead shape becomes convex, the leg length of the bead becomes excessive, and the bead appearance deteriorates.

本発明の成分としてさらに、Nb0.02%以下およびV0.01%以下の1種または2種を2Nb+Vで0.01〜0.04%含むことにより、溶接金属の焼入れ性を増し靭性を向上させる。2Nb+Vが0.01%未満の場合、溶接金属の焼入れ性が不足し靭性が低下する。一方、2Nb+Vが0.04%超、Nbが0.02%超、またはVが0.01%を超えると溶接金属の焼入れ性が過剰となり、強度が過剰となるため靭性が低下する。なお、上記成分以外の成分組成として、MgCO3やCaCO3等の金属炭酸塩のCO2およびフラックス製造時に用いる水ガラスからのK2O、Na2OおよびLi2O等のアルカリ金属酸化物を含み、その他は不可避不純物である。 Further, by including 0.01 to 0.04% of Nb 0.02% or less and V 0.01% or less of 1 or 2 at 2Nb + V as a component of the present invention, the hardenability of the weld metal is increased and the toughness is improved. . When 2Nb + V is less than 0.01%, the hardenability of the weld metal is insufficient and the toughness is lowered. On the other hand, if 2Nb + V exceeds 0.04%, Nb exceeds 0.02%, or V exceeds 0.01%, the hardenability of the weld metal becomes excessive and the strength becomes excessive, so that the toughness decreases. As component composition other than the above components, alkali metal oxides such as CO 2 of metal carbonates such as MgCO 3 and CaCO 3 and K 2 O, Na 2 O and Li 2 O from water glass used at the time of flux production are used. Others are inevitable impurities.

以下、実施例により本発明の効果を詳細に説明する。
表1に示す化学成分の板厚26mmのウェブ材と板厚36mmのフランジ材とを、図1に示す1000mm長さの開先加工無しで、フランジ鋼板S2を水平面に対して55°傾斜させて、フランジ鋼板S2の表面中央部に対して垂直となるように、ウェブ鋼板S1の端面を当接させて組み立てた開先に、表2に示すワイヤと表3に示す種々の成分組成のボンドフラックスを組合わせて、表4に示す溶接条件で2電極による1パス盛りの開先加工無し深溶込み下向きすみ肉サブマージアーク溶接を実施した。溶接後、スラグ剥離性、ビード形状、ビード趾端部、ビード幅、溶込み深さおよび溶接金属の靭性を調査した。
Hereinafter, the effects of the present invention will be described in detail by way of examples.
The flanged steel plate S2 is inclined by 55 ° with respect to the horizontal plane without the groove processing of the 1000 mm length shown in FIG. 1 with the web material having a thickness of 26 mm and the flange material having a thickness of 36 mm shown in Table 1. In the groove assembled with the end face of the web steel plate S1 in contact with the center of the surface of the flange steel plate S2, the wire flux shown in Table 2 and the bond flux of various components shown in Table 3 are used. In combination with each other, a deep penetration down fillet submerged arc welding without groove processing of one pass by two electrodes was performed under the welding conditions shown in Table 4. After welding, slag peelability, bead shape, bead edge, bead width, penetration depth and weld metal toughness were investigated.

Figure 2007144429
Figure 2007144429

Figure 2007144429
Figure 2007144429

Figure 2007144429
Figure 2007144429

Figure 2007144429
Figure 2007144429

溶接作業性の評価は、スラグ剥離性、ビード形状、ビード趾端部の欠陥の有無、溶込み深さを調査した。スラグ剥離性については、ハンマーまたはタガネを用いてスラグを軽打して簡単にスラグが剥離すれば良好とし○、軽打でスラグが剥離しなければ劣るとし△、軽打でスラグが剥離せず剥離後にスラグの焼付きが見られる場合を×とした。ビード外観については、ビード表面が均一で美しいビード形状であれば良好とし○、軽度の凸型となる物を△とし、過度の凸型となるものについては×とした。   Evaluation of welding workability investigated slag peelability, bead shape, the presence or absence of a defect of a bead edge, and penetration depth. Regarding slag peelability, it is good if the slag is easily peeled off by lightly hitting it with a hammer or chisel. The case where seizure of the slag was observed after peeling was taken as x. As for the bead appearance, a good bead shape was obtained when the bead surface was uniform and beautiful, and a slight convex shape was indicated by Δ, and an excessive convex shape was indicated by ×.

ビード趾端部の欠陥評価については、アンダカットやオーバラップなどの溶接欠陥が全くなければ○とし、0.3mm未満のアンダカットあるいはオーバラップがある場合は△とし、0.3mm以上のアンダカットあるいはオーバラップがある場合は×とした。溶込み深さは図2に示すように両面を溶接した場合に、最初に溶接した溶接金属M1と後から溶接した溶接金属M2の溶接金属の溶込み部が接触する、完全溶込みの場合は○とし、溶込み部が接触しない場合は×とした。   For the defect evaluation of the bead end, it is indicated as ○ if there is no welding defect such as undercut or overlap, and △ if there is an undercut or overlap less than 0.3 mm, and undercut greater than 0.3 mm. Or when there was an overlap, it was set as x. In the case of complete penetration, the penetration depth of the weld metal M1 welded first and the weld metal M2 welded later contact when both sides are welded as shown in FIG. It was set as ○, and when the penetration part did not contact, it was set as ×.

靭性は、図2に示す溶接金属部のビード表面下7mmを中心としてシャルピー衝撃試験片(JIS Z3111 4号)を採取し、靭性の評価は0℃におけるシャルピー衝撃試験により行い、各々繰返し数3本の平均により評価した。なお、シャルピー吸収エネルギーは、100J以上であれば良好とした。それらの結果を表5にまとめて示す。   As for toughness, Charpy impact test pieces (JIS Z3111-4) were sampled around 7 mm below the bead surface of the weld metal part shown in FIG. 2, and toughness was evaluated by Charpy impact test at 0 ° C., each with 3 repetitions. The average was evaluated. The Charpy absorbed energy was determined to be good if it was 100 J or more. The results are summarized in Table 5.

Figure 2007144429
Figure 2007144429

表5中溶接記号1〜10が本発明例、溶接記号11〜32は比較例である。本発明例である溶接記号1〜10は、組合わせたフラックス記号A1〜A10の各成分の量が適量であるので、溶接金属のシャルピー吸収エネルギーが100J以上の良好な値が得られた。また、スラグ剥離性が良く、ビード形状は平滑で滑らかであり、アンダカット、オーバラップのないビード趾端部および十分なビード幅が得られ、良好な溶接作業性とビード外観が得られた。また、溶込み深さは両側の溶接金属が接触する良好な完全溶込みが得られるなど、極めて満足な結果であった。   In Table 5, welding symbols 1 to 10 are examples of the present invention, and welding symbols 11 to 32 are comparative examples. In welding symbols 1 to 10 which are examples of the present invention, the amount of each component of the combined flux symbols A1 to A10 is an appropriate amount, and therefore, a good value with a Charpy absorbed energy of the weld metal of 100 J or more was obtained. Also, the slag peelability was good, the bead shape was smooth and smooth, the bead collar end portion with no undercut and overlap and a sufficient bead width were obtained, and good welding workability and bead appearance were obtained. Further, the penetration depth was extremely satisfactory, such as good complete penetration in which the weld metals on both sides were in contact.

比較例中溶接記号11は、フラックス記号B1のSiO2が低いためスラグの粘性が不足しビード趾端部にアンダカットが発生し、溶接金属の焼入れ性が劣りシャルピー吸収エネルギーが低値となった。
溶接記号12は、フラックス記号B2のSiO2が高いのでスラグの粘性が高くなり、ビード趾端部にオーバラップが発生し、ビード形状が凸型となった。また、溶接金属の酸素量が高くなりシャルピー吸収エネルギーが低値であった。
In the comparative example, the weld symbol 11 has a low SiO 2 flux symbol B1, so that the viscosity of the slag is insufficient, the undercut occurs at the end of the bead, the weld metal has poor hardenability, and the Charpy absorbed energy is low. .
In welding symbol 12, since the SiO 2 of flux symbol B2 is high, the viscosity of the slag becomes high, an overlap occurs at the end of the bead collar, and the bead shape becomes convex. Moreover, the oxygen content of the weld metal was high, and the Charpy absorbed energy was low.

溶接記号13は、フラックス記号B3のMgOが低いので、溶接金属の酸素量が高くなりシャルピー吸収エネルギーが低値であった。また、スラグの粘性が低下しビード趾端部にアンダカットが発生した。
溶接記号14は、フラックス記号B4のMgOが高いので粘性が高くなり、ビードが凸型となり、趾端部にオーバラップが発生し、十分なビード幅を得ることができなかった。
Since the welding symbol 13 had a low MgO of the flux symbol B3, the amount of oxygen in the weld metal was high and the Charpy absorbed energy was low. In addition, the viscosity of the slag decreased and undercut occurred at the bead end.
Since the weld symbol 14 has high MgO of the flux symbol B4, the viscosity becomes high, the bead becomes convex, overlap occurs at the flange end portion, and a sufficient bead width cannot be obtained.

溶接記号15は、フラックス記号B5のCaOが低いのでスラグの流動性が不足し、ビード外観が不良となり、溶接金属の酸素量が増加し、溶接金属のシャルピー吸収エネルギーが低値であった。
溶接記号16は、フラックス記号B6のCaOが高いので流動性が過剰となり、ビード趾端部にアンダカットが発生しスラグの剥離性が不良となった。
Since the weld symbol 15 had a low CaO of the flux symbol B5, the slag fluidity was insufficient, the bead appearance was poor, the oxygen content of the weld metal increased, and the Charpy absorbed energy of the weld metal was low.
Since the weld symbol 16 has high CaO of the flux symbol B6, the fluidity becomes excessive, undercut occurs at the end of the bead collar, and the slag peelability becomes poor.

溶接記号17は、フラックス記号B7のCaF2が低いのでスラグの流動性が不足となり、ビード趾端部にオーバラップが発生した。また、2Nb+Vが低いので焼入れ性が不足しシャルピー吸収エネルギーを改善する効果がなかった。
溶接記号18は、フラックス記号B8のCaF2が高いのでスラグの流動性が過剰となり、アンダカットが発生しスラグ剥離性が劣化した。
Since the welding symbol 17 had a low CaF 2 of the flux symbol B7, the fluidity of the slag was insufficient, and an overlap occurred at the end of the bead collar. Further, since 2Nb + V is low, the hardenability is insufficient and there is no effect of improving the Charpy absorbed energy.
Since the weld symbol 18 is high in CaF 2 of the flux symbol B8, the fluidity of the slag becomes excessive, undercut occurs, and the slag peelability deteriorates.

溶接記号19は、フラックス記号B9のAl23が低いのでスラグの粘性が不足し、アンダカットが発生した。
溶接記号20は、フラックス記号B10のAl23が高いのでスラグの粘性が過剰となり、オーバラップが発生した。
Since the welding symbol 19 was low in Al 2 O 3 of the flux symbol B9, the viscosity of the slag was insufficient and undercut occurred.
Since the welding symbol 20 is high in Al 2 O 3 of the flux symbol B10, the viscosity of the slag becomes excessive and an overlap occurs.

溶接記号21は、フラックス記号B11のTiO2が低いので溶接金属中のTiを含んだ酸化物が不足し、溶接金属のアシキュラーフェライトが減少し粗大な粒界フェライトが増加してシャルピー吸収エネルギーが低値であった。
溶接記号22は、フラックス記号B12のTiO2が高いのでスラグの流動性が過剰となりアンダカットが発生し、スラグ剥離性が劣化した。また、NbおよびVが高いので焼入れ性が過剰となりシャルピー吸収エネルギーが低値であった。
The welding symbol 21 has a low TiO 2 content of the flux symbol B11, so that the oxide containing Ti in the weld metal is insufficient, the acicular ferrite of the weld metal is reduced, coarse grain boundary ferrite is increased, and the Charpy absorbed energy is increased. It was low.
Since the welding symbol 22 is high in TiO 2 of the flux symbol B12, the fluidity of the slag becomes excessive, undercut occurs, and the slag peelability deteriorates. Moreover, since Nb and V were high, hardenability became excessive and Charpy absorbed energy was low.

溶接記号23は、フラックス記号B13のB23が低いので溶接金属中へのBの歩留まりが低下し、オーステナイト粒界への偏析作用が得られず、粗大な粒界フェライトが発生しシャルピー吸収エネルギーが低値であった。
溶接記号24は、フラックス記号B14のB23が高いので溶接金属中のB量が高くなり、高温割れが発生した。また、Nbが高いので、焼入れ性が過剰となりシャルピー吸収エネルギーが低値であった。
Since the weld symbol 23 has a low B 2 O 3 of the flux symbol B13, the yield of B in the weld metal is lowered, segregation action on the austenite grain boundary is not obtained, coarse grain boundary ferrite is generated, and Charpy absorption occurs. Energy was low.
Since the welding symbol 24 is high in B 2 O 3 of the flux symbol B14, the amount of B in the weld metal is high, and hot cracking occurs. Moreover, since Nb was high, hardenability became excessive and Charpy absorbed energy was low.

溶接記号25は、フラックス記号B15のZrO2が低いのでアンダカットが発生した。
溶接記号26は、フラックス記号B16のZrO2が高いので、シャルピー吸収エネルギーが低値であった。また、スラグの粘性が過剰となりオーバラップが発生し、ビード形状が凸型となり、ビード幅が不良となった。
In the welding symbol 25, undercutting occurred because ZrO 2 of the flux symbol B15 was low.
The weld symbol 26 had a low Charpy absorbed energy because the ZrO 2 of the flux symbol B16 was high. Moreover, the viscosity of the slag was excessive and overlapped, the bead shape became convex, and the bead width became poor.

溶接記号27は、フラックス記号B17のMnが低いので溶接金属の焼入れ性が不足となり、シャルピー吸収エネルギーが低値であった。
溶接記号28は、フラックス記号B18のMnが高いので溶接金属の強度が過剰となりシャルピー吸収エネルギーが低値であった。
Since the weld symbol 27 had a low Mn of the flux symbol B17, the hardenability of the weld metal was insufficient, and the Charpy absorbed energy was low.
Since the weld symbol 28 had a high Mn flux symbol B18, the strength of the weld metal was excessive and the Charpy absorbed energy was low.

溶接記号29は、フラックス記号B19のSiが低いので焼入れ性が不足し、シャルピー吸収エネルギーが低値であった。
溶接記号30は、フラックス記号B20Siが高いので溶接金属の強度が過剰となりシャルピー吸収エネルギーが低値であった。
The welding symbol 29 had a low Si value of the flux symbol B19, so that the hardenability was insufficient and the Charpy absorbed energy was low.
Since the welding symbol 30 has a high flux symbol B20Si, the strength of the weld metal was excessive, and the Charpy absorbed energy was low.

溶接記号31は、フラックス記号B21のFeが低いので溶着量が不足し、ビード幅が不足した。また、溶接アークの集中性が弱くなり十分な溶込みが得られなかった。また、Vが高いので、焼入れ性が過剰となりシャルピー吸収エネルギーが低値であった。
溶接記号32は、フラックス記号B22のFeが高く溶着量が過剰となり、ビードが凸型になり、スラグ剥離性が劣化した。また、溶接時に溶接アークの集中性が強く、吹上げが多く溶接作業性が劣化した。さらに、2Nb+Vが高いので焼入れ性が過剰となりシャルピー吸収エネルギーが低値であった。
As for the welding symbol 31, the amount of welding was insufficient because the Fe of the flux symbol B21 was low, and the bead width was insufficient. In addition, the concentration of the welding arc was weakened and sufficient penetration could not be obtained. Moreover, since V was high, hardenability became excessive and the Charpy absorbed energy was low.
In welding symbol 32, Fe of flux symbol B22 was high and the amount of welding became excessive, the bead became convex, and the slag peelability deteriorated. Moreover, the concentration of the welding arc was strong during welding, and the welding workability was deteriorated due to a lot of blowing. Furthermore, since 2Nb + V was high, the hardenability was excessive and the Charpy absorbed energy was low.

本発明の実施例に用いた開先加工無し下向きすみ肉試験板の開先形状を示す断面図である。It is sectional drawing which shows the groove shape of the downward fillet test board without groove processing used for the Example of this invention. 下向きすみ肉溶接の溶接金属の溶け込み状態を示す断面図である。It is sectional drawing which shows the penetration state of the weld metal of downward fillet welding.

符号の説明Explanation of symbols

S1 ウェブ鋼板
S2 フランジ鋼板
M1 最初に溶接した溶接金属
M2 後から溶接した溶接金属
a シャルピー衝撃試験片


特許出願人 日鐵住金溶接工業株式会社
代理人 弁理士 椎 名 彊 他1


S1 Web steel plate S2 Flange steel plate M1 Weld metal welded first M2 Weld metal welded later a Charpy impact test piece


Patent Applicant Nippon Steel & Sumikin Welding Industry Co., Ltd.
Attorney Attorney Shiina and others 1


Claims (2)

質量%で、SiO2:5〜15%、MgO:12〜25%、CaO:3〜13%、CaF2:1〜7%、Al23:8〜20%、TiO2:16〜25%、B23:0.1〜0.5%、ZrO2:5〜15%、Mn:0.5〜1.0%、Si:0.2〜3.0%、Fe:1.0〜6.0%を含有し、その他はCO2、アルカリ金属酸化物および不可避不純物であることを特徴とする下向きすみ肉サブマージアーク溶接用ボンドフラックス。 By mass%, SiO 2: 5~15%, MgO: 12~25%, CaO: 3~13%, CaF 2: 1~7%, Al 2 O 3: 8~20%, TiO 2: 16~25 %, B 2 O 3: 0.1~0.5 %, ZrO 2: 5~15%, Mn: 0.5~1.0%, Si: 0.2~3.0%, Fe: 1. contains 0 to 6.0%, others CO 2, alkali metal oxides and down fillet submerged arc welding bonded flux, characterized in that unavoidable impurities. さらに、Nb:0.02%以下およびV:0.01%以下の1種または2種を2Nb+Vで0.01〜0.04%含有することを特徴とする請求項1記載の下向きすみ肉サブマージアーク溶接用ボンドフラックス。 The downward fillet submerged according to claim 1, further comprising 0.01 to 0.04% of Nb: 0.02% or less and V: 0.01% or less of 2 or 1 Nb at 2Nb + V. Bond flux for arc welding.
JP2005337949A 2005-11-24 2005-11-24 Bond flux for downward fillet submerged arc welding Withdrawn JP2007144429A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005337949A JP2007144429A (en) 2005-11-24 2005-11-24 Bond flux for downward fillet submerged arc welding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005337949A JP2007144429A (en) 2005-11-24 2005-11-24 Bond flux for downward fillet submerged arc welding

Publications (1)

Publication Number Publication Date
JP2007144429A true JP2007144429A (en) 2007-06-14

Family

ID=38206457

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005337949A Withdrawn JP2007144429A (en) 2005-11-24 2005-11-24 Bond flux for downward fillet submerged arc welding

Country Status (1)

Country Link
JP (1) JP2007144429A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010125508A (en) * 2008-11-28 2010-06-10 Nippon Steel & Sumikin Welding Co Ltd Bond flux for downward fillet submerged arc welding
CN101985194A (en) * 2010-11-19 2011-03-16 天津市永昌焊丝有限公司 Surfacing flux special for alloy powder transition strip surfacing
CN104439655A (en) * 2014-11-27 2015-03-25 芜湖中集瑞江汽车有限公司 16 Mn H-shaped steel welding process

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010125508A (en) * 2008-11-28 2010-06-10 Nippon Steel & Sumikin Welding Co Ltd Bond flux for downward fillet submerged arc welding
CN101985194A (en) * 2010-11-19 2011-03-16 天津市永昌焊丝有限公司 Surfacing flux special for alloy powder transition strip surfacing
CN104439655A (en) * 2014-11-27 2015-03-25 芜湖中集瑞江汽车有限公司 16 Mn H-shaped steel welding process

Similar Documents

Publication Publication Date Title
JP4566899B2 (en) High strength stainless steel welding flux cored wire
JP2011125875A (en) Flux-cored wire for stainless steel arc welding
JP5097499B2 (en) Flux-cored wire for gas shielded arc welding for low alloy heat resistant steel
JP2006289404A (en) Flux cored wire for gas shielded arc welding
JP2009248137A (en) Flux cored wire for gas-shielded arc welding
JP4427416B2 (en) Large heat input submerged arc welding method with excellent weld metal toughness.
JP4297880B2 (en) Bond flux for submerged arc welding
JP2009202213A (en) High heat input electroslag welding process
JP5726708B2 (en) Submerged arc welding method for low temperature steel
CN112621016B (en) Welding material, weld metal, and electroslag welding method
JP5830278B2 (en) Submerged arc welding method for low alloy steel with excellent sulfuric acid resistance and hydrochloric acid resistance
JP2007144429A (en) Bond flux for downward fillet submerged arc welding
JP2005230906A (en) Gas shielded arc welding method
JP2010064087A (en) Flux cored wire for gas-shielded arc welding
JP5339870B2 (en) Bond flux for downward fillet submerged arc welding
JP2007229781A (en) Flux-cored wire
JP5431373B2 (en) Flux-cored wire for duplex stainless steel welding
JP3765761B2 (en) Bond flux for submerged arc welding
KR102150974B1 (en) Tandem gas shielded arc welding wire having good low temperature toughness
JP6071797B2 (en) Flux for single-sided submerged arc welding
JP2005296999A (en) Flux-cored wire for electrogas arc welding
JP2006326642A (en) Fused flux for submerged arc welding
JP2005254284A (en) Gas shielded arc welding method
JP3718464B2 (en) Flux-cored wire for gas shielded arc welding
JP6908547B2 (en) Bond flux for multi-electrode single-sided submerged arc welding

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20090203