KR20010060793A - 2 Pole tandem high input SAW for preventing hot cracking of fillet join in high thickness structural steels - Google Patents

2 Pole tandem high input SAW for preventing hot cracking of fillet join in high thickness structural steels Download PDF

Info

Publication number
KR20010060793A
KR20010060793A KR1019990063235A KR19990063235A KR20010060793A KR 20010060793 A KR20010060793 A KR 20010060793A KR 1019990063235 A KR1019990063235 A KR 1019990063235A KR 19990063235 A KR19990063235 A KR 19990063235A KR 20010060793 A KR20010060793 A KR 20010060793A
Authority
KR
South Korea
Prior art keywords
welding
fillet
range
high temperature
depth
Prior art date
Application number
KR1019990063235A
Other languages
Korean (ko)
Inventor
정홍철
Original Assignee
이구택
포항종합제철 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 이구택, 포항종합제철 주식회사 filed Critical 이구택
Priority to KR1019990063235A priority Critical patent/KR20010060793A/en
Publication of KR20010060793A publication Critical patent/KR20010060793A/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/095Monitoring or automatic control of welding parameters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/02Iron or ferrous alloys
    • B23K2103/04Steel or steel alloys

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Arc Welding In General (AREA)

Abstract

PURPOSE: A two electrode submerged arc welding method for preventing high temperature crack at a high heat input fillet welding part of an ultra thick steel for structural is provided to prevent high temperature crack of the fillet welding part by controlling groove angle and welding conditions, thus controlling a ratio of depth and width of a welding metal in two electrode submerged arc welding a fillet welding part of a high strength thick material for building. CONSTITUTION: The method is characterized in that the fillet welding part of an ultra thick steel for structural is welded by controlling a ratio of depth (D) and width (W) of a welding metal to within the range of 1:0.6 to 1:0.8, and applying a welding heat input of 90 kJ/cm or more under the welding conditions that a groove angle of the fillet welding part is 55 degrees, a welding current and a welding voltage applied to a preceding electrode are set to the range of 800 to 950 A and 34 to 36 V respectively while a welding current and a welding voltage applied to an accompanying electrode are set to the range of 650 to 800 A and 38 to 41 V respectively, and a welding speed is set within the range of 33 to 40 cm/min.

Description

극후물 구조용강의 대입열 필렛용접부의 고온균열을 방지하기 위한 2전극 서브머지드 아아크 용접방법 {2 Pole tandem high input SAW for preventing hot cracking of fillet join in high thickness structural steels}Two-electrode submerged arc welding method to prevent high temperature cracking of high heat fillet welds of extreme thick structural steel {2 Pole tandem high input SAW for preventing hot cracking of fillet join in high thickness structural steels}

본 발명은 50㎜ 두께 이상의 극후물재 고강도 구조용강재를 이용하여 강구조물의 기둥 및 보의 제작시 대입열 필렛(fillet)용접부의 고온균열을 방지할 수 있도록 하는 극후물 구조용강의 대입열 필렛용접부의 고온균열을 방지하기 위한 2전극 서브머지드(submerged) 아아크 용접방법에 관한 것이다.The present invention is a high temperature crack of the heat input fillet welding of the ultra thick structural steel to prevent the high temperature cracks of the high heat input fillet welds during the production of pillars and beams of the steel structure using the ultra-thick material high strength structural steel having a thickness of 50㎜ or more It relates to a two-electrode submerged arc welding method for preventing the damage.

일반적으로 용접구조물 사용환경의 가혹화 및 거대화에 따라 사용되는 강재는 더욱 더 후물화, 고강도화가 요구되고 있으며, 용접시공시 용접생산성 향상 및 시공시간 단축을 위하여 대입열 용접의 적용이 증가하는 추세에 있다.In general, steel materials used due to the harshness and enormity of the use environment of welded structures are required to be thickened and high in strength, and the application of high heat input welding is increasing in order to improve welding productivity and shorten the construction time. have.

그러나, 두께 50㎜ 이상의 극후물재 고강도 구조용강재의 대입열 필렛 용접시에는 용접금속의 용착량이 증가하여 고온에서 유지되는 시간이 증가됨에 따라 극후물재의 용접부에서 구속응력의 증가로 인하여 용접금속의 응고과정 중 용접금속에서 고온균열이 쉽게 발생되어, 용접생산성 향상을 위한 대입열 용접방법을 적용할 수 없기 때문에 소입열용접법을 적용하고 있으므로 용접 생산성이 저하되는 실정이다. 특히 대입열 용접을 위한 2전극 서브머지드 용접방법의 경우에도 극후물재 필렛용접부에서 대입열 용접 적용이 제한되어 소입열 적용으로 인한 용접작업 생산성 및 시공기간 지연으로 경제적으로 막대한 손실을 초래하고 있다.However, during the high heat fillet welding of high-strength structural steel materials with a thickness of 50 mm or more, the welding amount of the weld metal increases and the time to be maintained at high temperature increases, so that the restraint stress increases in the welded portion of the ultra-thin material. Since high temperature cracks are easily generated in the heavy weld metal, and the high heat input welding method for improving welding productivity cannot be applied, the welding heat reduction method is applied. Especially in the case of the two-electrode submerged welding method for the high heat input welding, the application of the high heat input welding in the ultra-thin material fillet weld is limited, resulting in economic losses due to the productivity of the welding work and the delay in the construction period.

본 발명은 상기한 바와 같은 종래기술의 문제점을 해결하기 위하여 발명된 것으로, 건축용 고강도 후물재 필렛용접부를 2전극 서브머지드 아아크 용접함에 있어서, 개선각도 및 용접조건을 조정하여 용접금속의 깊이와 폭의 비를 조절하여 고온균열을 방지할 수 있는 극후물 구조용강의 대입열 필렛용접부의 고온균열을 방지하기 위한 2전극 서브머지드 아아크 용접방법을 제공하는데 그 목적이 있다.The present invention has been invented to solve the problems of the prior art as described above, in the welding of the high-strength thick material fillet welds for construction of the two-electrode submerged arc, by adjusting the angle of improvement and welding conditions depth and width of the weld metal The purpose of the present invention is to provide a two-electrode submerged arc welding method for preventing the high temperature cracking of the high heat fillet welded portion of the ultra-thick structural steel, which can prevent the high temperature cracking by controlling the ratio of the ratios.

도 1은 필렛용접시의 개선각도를 나타내는 설명도,1 is an explanatory diagram showing an angle of improvement in fillet welding;

도 2는 필렛용접시의 용접금속의 깊이(D)와 폭(W)을 나타내는 설명도.2 is an explanatory diagram showing a depth D and a width W of a weld metal during fillet welding.

상기의 목적을 달성하기 위한 본 발명의 극후물 구조용강의 대입열 필렛용접부의 고온균열을 방지하기 위한 2전극 서브머지드 아아크 용접방법은, 필렛용접부의 개선각도를 55°로 하고, 선행전극에 가해지는 용접전류를 800∼950A, 용접전압을 34∼36V의 범위내로 설정하고, 후행전극에 가해지는 용접전류를 650∼800A, 용접전압을 38∼41V의 범위내로 설정하고, 용접속도를 33∼40㎝/min의 범위내로 설정하는 용접조건으로 용접금속의 깊이(D)와 폭(W)의 비를 1 : 0.6∼0.8의 범위로 조절하고, 용접입열량을 90kJ/㎝ 이상으로 적용하여 용접함을 특징으로 한다.The two-electrode submerged arc welding method for preventing high temperature cracking of the high heat input fillet welded portion of the ultra-thick structural steel of the present invention for achieving the above object, the improved angle of the fillet welded to 55 °, applied to the preceding electrode The welding current is set in the range of 800 to 950 A, the welding voltage is in the range of 34 to 36 V, the welding current applied to the trailing electrode is set in the range of 650 to 800 A, and the welding voltage is in the range of 38 to 41 V, and the welding speed is 33 to 40. Under the welding conditions set within the range of cm / min, the ratio of the depth (D) and the width (W) of the weld metal is adjusted in the range of 1: 0.6 to 0.8, and the welding heat input is applied at 90 kJ / cm or more. It is characterized by.

이하에서는 본 발명에 대해서 첨부한 도면을 참조하여 상세히 설명한다.Hereinafter, the present invention will be described in detail with reference to the accompanying drawings.

용접금속 및 용접열영향부에서 발생되는 용접 고온균열은 수지상정의 경계를 포함한 결정립계에서 발생되며, 크게 편석균열과 연성저하균열로 나누어지는데, 대부분 발생하는 고온균열은 저융점화합물의 형성으로 인한 편석균열이며, 연성저하균열은 구속응력이 매우 큰 경우가 아니면 잘 발생하지 않는다. 편석균열은 대부분이 용접금속의 응고과정에서 발생하기 때문에 응고균열로 분류되고 있다.The welding hot crack generated in the weld metal and weld heat affected zone is generated at the grain boundary including the boundary of the dendrite, and is mainly divided into segregation crack and ductile cracking. Most of the high temperature cracks are segregation cracks due to the formation of low melting point compounds. The ductile cracking does not occur very well unless the restraint stress is very large. Segregation cracks are classified as solidification cracks because most of them occur during the solidification process of weld metal.

고상선 이상에서 발생되는 응고균열은 용접시 아아크에 의해 용접재료가 녹아 액상에서 고상으로 응고되는 과정에서 용접금속 내의 최종응고부에서 쉽게 발생하고, 보통 용접 비이드 중앙부에 평행하게 발생되는데, 주로 강중에 함유되어 있는 인(P)과 황(S) 등의 불순물이 최종응고부의 입계에 편석되어 발생한다. 즉, 응고과정에서 성장하는 주상정 및 수지상정의 경계에서 인 및 황 등의 불순물에 의하여 용융온도가 낮은 저융점 화합물을 형성하여 액상으로 존재하고, 이 액상의 저융점화합물이 응고시의 수축응력 및 용접부의 구속응력이 작용할 때 균열로 발전된다. 따라서, 잔존하는 액상의 양 및 융점, 그리고 고상입계에서의 젖음성 등이 고온균열 감수성에 중요한 영향을 끼친다.Solidification cracks generated above the solid line are easily generated at the final solidification part of the weld metal during the process of melting the welding material by the arc during welding and solidifying it from the liquid phase to the solid phase, and usually occurs parallel to the center of the welding bead. It is generated when impurities such as phosphorus (P) and sulfur (S) contained in segregate at the grain boundaries of the final solidification part. That is, at the boundary between columnar and dendrite growing during solidification, impurities such as phosphorus and sulfur form low melting point compounds with low melting temperature and exist in the liquid phase. It develops into cracks when the restraint stress of the weld is applied. Therefore, the amount and melting point of the remaining liquid, and the wettability at the solid phase boundary have an important effect on the high temperature cracking sensitivity.

또한, 용접재료의 주요 화학성분인 탄소함량에 따라서 강의 응고시 초정상이 δ-페라이트인지, γ-오스테나이트인지가 결정되는데, 이러한 초정상은 고온균열을 조장하는 원소인 인, 황 등의 고용도를 지배하여 용접부의 고온균열을 조장하는 야금학적 인자로 작용하게 한다. 즉, δ-페라이트상에 비해 γ-오스테나이트상은 인과 황의 고용도가 작기 때문에 강의 응고시 인 및 황이 기지에 고용되지 못하고,수지상정의 입계에 편석되어 강의 고온균열을 조장하게 된다.In addition, depending on the carbon content, which is the main chemical component of the welding material, it is determined whether the solid phase is δ-ferrite or γ-austenite during solidification of the steel, and the solid phase is a solid solution of phosphorus, sulfur, etc., which promotes high temperature cracking. Dominating the furnace acts as a metallurgical factor that promotes high temperature cracking of the weld. That is, the γ-austenite phase has a smaller solubility of phosphorus and sulfur than the δ-ferrite phase, so that phosphorus and sulfur are not dissolved at the base during solidification of the steel, and segregate at the grain boundary of the resin phase to promote high temperature cracking of the steel.

또한, 시공적 인자로서는 용접금속의 형상 즉, 용접금속의 깊이 대 폭의 비가 고온균열에 영향을 미치는데, 이는 용접금속의 깊이 대 폭의 비가 증가할수록 용접부에 작용하는 구속응력의 크기가 증가하여 용접 고온균열감수성이 민감하게 되며, 용접금속의 깊이 대 폭의 비가 작으면 작을수록 용접금속에 작용하는 구속응력이 작게 되어 용접 고온균열 감수성이 감소한다.In addition, as a construction factor, the shape of the weld metal, that is, the depth-to-width ratio of the weld metal, affects high temperature cracking. As the depth-to-width ratio of the weld metal increases, the magnitude of the restraining stress acting on the weld portion increases. The welding hot crack susceptibility is sensitive, and the smaller the depth-to-width ratio of the weld metal, the smaller the constrained stress acting on the weld metal, thereby reducing the weld hot crack susceptibility.

한편, 구조용강재의 강도 및 두께가 증가할수록 용접금속의 수축응력 및 구속응력의 증가로 인하여 대입열 필렛용접부 용접금속에서 용접 고온균열을 초래하게 된다. 따라서 고강도이면서 극후물재인 경우 용접 고온균열이 잘 발생된다.On the other hand, as the strength and thickness of the structural steel increases, the high temperature cracking of the weld metal in the high heat input fillet weld due to the increase in shrinkage stress and restraint stress of the weld metal. Therefore, welding high temperature cracks are well generated in the case of high strength and extremely thick materials.

필렛용접부 개선각도의 경우 개선각도가 크면 클수록 용접금속의 깊이 대 폭의 비가 감소하여 용접 고온균열 방지에는 효과적이나 용착량이 많아야 하기 때문에 비경제적이다.In the case of the improvement angle of the fillet welded part, the larger the angle of improvement, the smaller the depth-to-width ratio of the weld metal is effective in preventing hot cracking of the weld, but it is uneconomical because the amount of welding must be large.

또한, 용접 고온균열에 미치는 용접조건의 경우 용접전류가 증가하면 할수록 용접입열량은 증가하며, 용접금속의 형상은 용접 고온균열에 민감한 형상 즉, 깊이 대 폭의 비가 큰 길쭉한 형상을 유지하게 되어 용접 고온균열에 민감하게 된다. 또한 용접전압의 경우는 용접전압이 증가하면 용접금속의 형상이 깊이 대 폭의 비가 약간 작아지게 되어 용접금속의 형상은 용접 고온균열에는 크게 민감하지 않으나, 용접금속의 깊이 대 폭의 감소폭이 매우 작다. 그러나 용접전압은 용접전류가 선택됨에 따라 조정되기 때문에 별도로 용접전류 및 용접전압을 조정하기는 곤란하다.In addition, in case of welding conditions affecting the welding high temperature crack, the welding heat input increases as the welding current increases, and the shape of the weld metal is sensitive to the welding high temperature crack, that is, it maintains an elongated shape having a large ratio of depth to width. Sensitive to high temperature cracks. Also, in the case of welding voltage, as the welding voltage increases, the shape of the weld metal decreases slightly in the ratio of depth to width. The shape of the weld metal is not very sensitive to the welding high temperature crack, but the decrease in the depth of width of the weld metal is very small. . However, since the welding voltage is adjusted as the welding current is selected, it is difficult to separately adjust the welding current and the welding voltage.

용접속도가 증가하는 경우는 용접금속의 용착량이 작아지기 때문에 용접 고온균열에는 크게 민감하지 않으나, 용접속도가 느린 경우 즉, 대입열 용접의 경우는 용착량이 증가하여 편석량이 증가하기 때문에 고온균열 발생에 영향을 미친다.If the welding speed is increased, it is not very sensitive to welding high temperature crack because welding amount of welding metal is small, but if welding speed is slow, that is, in case of high heat input welding, welding amount is increased and segregation amount is increased. Affects.

일반적으로 대입열 용접이란 용접전류를 증가시켜 용착량을 크게 하는 것을 말하는데, 용접전류를 증가시키면 시킬수록 용접금속의 형상 즉, 용접금속의 깊이 대 폭의 비가 증가하여 용접 고온균열이 잘 발생된다.In general, the high heat input welding refers to increasing the welding current to increase the welding amount. As the welding current is increased, the shape of the welding metal, that is, the ratio of the depth to the width of the welding metal increases, so that the welding high temperature crack is easily generated.

따라서, 본 발명에서는 용접 고온균열을 발생하지 않는 최대의 용접전류를 선택하여 선행전극이 800∼950A의 용접전류와 그에 따른 34∼36V의 용접전압을 갖도록 하고, 후행전극이 650∼800A의 용접전류와 그에 따른 38∼41V의 용접전압을 갖도록 하고, 용접 비이드 형상이 미려한 조건인 33∼40㎝/min 용접속도를 용접조건으로 갖는 입열량 90kJ/㎝ 이상의 대입열 용접조건으로 한정하였다.Therefore, in the present invention, the maximum welding current which does not generate a welding high temperature crack is selected so that the preceding electrode has a welding current of 800 to 950 A and a welding voltage of 34 to 36 V, and the following electrode has a welding current of 650 to 800 A. And a welding voltage of 38 to 41 V, and limited to a heat input welding condition of 90 kJ / cm or more with a heat input amount having a welding speed of 33 to 40 cm / min, which is a beautiful condition of the welding bead.

또한, 두께 50mm 이상의 극후물재 고강도 구조용강재의 경우 필렛용접부의 2전극 대입열 서브머지드 용접방법을 적용하는 경우에는 용접금속의 깊이(D) 대 폭(W)의 비가 증가하여 용접금속에 수축응력 및 구속응력을 증가시켜 용접금속의 응고시 고온균열에 대한 저항력을 크게 저하시킨다.In the case of high-strength structural steel with a thickness of 50mm or more, when applying the two-electrode high heat input submerged welding method of the fillet welding part, the ratio of the depth (D) to the width (W) of the weld metal increases, so that the shrinkage stress on the weld metal is increased. And increase the restraint stress greatly reduces the resistance to high temperature cracking during solidification of the weld metal.

따라서, 본 발명에서는 그 비를 1 : 0.6∼0.8로 하여 구조용강재의 필렛부에 대입열 서브머지드 아아크 용접이 행해지게 한다. 필렛용접부의 용접금속의 깊이(D)와 폭(W)을 도 2에 나타내었다.Accordingly, in the present invention, the ratio is 1: 0.6 to 0.8 so that the heat input submerged arc welding is performed on the fillet portion of the structural steel. The depth D and the width W of the weld metal of the fillet weld are shown in FIG. 2.

용접금속의 깊이(D)와 폭(W)의 비가 1 : 0.6 이하일 때에는 용접부의 고온균열이 발견되지는 않지만, 용접입열량이 낮아 불충분한 용접으로 용착량이 작기 때문에 반복용접을 행하여 용접작업 생산성을 크게 감소시키고, 1 : 0.8 이상일 경우에는 용접금속의 형상이 길쭉한 형상을 취하게 하여 고온균열이 발생할 수 있는 취약구조를 형성하기 때문에 용접금속의 깊이(D)와 폭(W)의 비를 1 : 0.6∼0.8로 하는 것이 바람직하다.When the ratio of the depth (D) and width (W) of the weld metal is less than 1: 0.6, high temperature cracks are not found in the weld zone, but due to insufficient welding heat and insufficient welding due to insufficient welding, repeated welding is performed to improve welding productivity. If it is greatly reduced and 1: 1 or more, the shape of the weld metal is elongated to form a fragile structure that can cause high temperature cracking. Therefore, the ratio of the depth (D) and the width (W) of the weld metal is 1: It is preferable to set it as 0.6-0.8.

또한, 용접부의 개선각도(groove angle)의 경우 55°보다 적은 경우에는 2전극 대입열 서브머지드 용접시 형성되는 용접금속의 깊이 대 폭의 비가 증가하여 용접 고온균열의 발생위험성이 증가하기 때문에 바람직하지 못하며, 55°이상인 경우에는 용접금속의 깊이 때 폭의 비는 감소하여 용접 고온균열의 발생 위험성은 감소하지만 용접작업량의 증가에 따른 용접생산성이 저하하여 바람직하지 못하므로, 본 발명에서는 용접부의 개선각도를 55°로 선정하였다.In addition, when the weld angle is smaller than 55 °, the ratio of the depth to width of the weld metal formed during the two-electrode high heat input submerged welding increases, which increases the risk of welding hot cracking. In the case of more than 55 °, the ratio of the width at the depth of the weld metal is reduced, so that the risk of occurrence of hot cracking of the weld is reduced, but the weld productivity is reduced due to the increase of the welding work, which is not preferable. The angle was selected at 55 degrees.

용접부에서의 시험재 및 용접금속의 화학성분에 대해서 다음 표 1에 나타내었고, 이들을 대상으로 용접조건 및 개선각도를 달리하면서, 용접금속의 깊이(D)와 폭(W)의 비에 따른 용접부의 고온균열의 발생여부를 역시 표 1에 요약하여 표시한다.The chemical components of test materials and weld metals in welded parts are shown in Table 1 below, and welding parts according to the ratio of the depth (D) and the width (W) of the weld metal, varying the welding conditions and angles of improvement for them. The occurrence of hot cracking is also summarized in Table 1.

위에서 상세히 설명한 바와 같이, 다음 표 1의 결과로 부터 본 발명의 범위에 속하는 경우에는 고온균열이 발생되지 않고 대입열 용접이 가능함을 확인할 수 있다.As described in detail above, in the case of falling within the scope of the present invention from the results of Table 1, it can be confirmed that high-temperature cracking does not occur and high heat input welding is possible.

시험예구분Test Example 시험재Test 용접금속Welding metal 화학성분(중량%)Chemical composition (% by weight) CC 0.1400.140 0.1100.110 SiSi 0.4300.430 0.2600.260 MnMn 1.1001.100 1.2601.260 PP 0.0180.018 0.0170.017 SS 0.0010.001 0.0030.003 NiNi 0.0300.030 0.1300.130 CrCr 0.0200.020 0.0200.020 MoMo 0.0100.010 0.0300.030 CuCu 0.0100.010 0.0100.010 AlAl 0.0400.040 0.0400.040 TiTi 0.0100.010 0.0100.010 NbNb 0.0100.010 0.0100.010 VV 0.0030.003 0.0010.001 두께(t=㎜)Thickness (t = mm) 6060 용접방법welding method 2 pole tandem SAW(Submerged Arc Welding)2 pole tandem Submerged Arc Welding (SAW) 개선각도(°)Angle of Improvement (°) 4545 5555 선행전극Leading electrode 전류(A)Current (A) 650650 800800 950950 12001200 14001400 650650 800800 950950 12001200 14001400 전압(V)Voltage (V) 3030 3434 3636 3535 3838 3030 3434 3636 3535 3838 후행전극Trailing electrode 전류(A)Current (A) 600600 650650 800800 10001000 12001200 600600 650650 800800 10001000 12001200 전압(V)Voltage (V) 3434 3838 4141 3636 4040 3434 3838 4141 3636 4040 용접속도(㎝/min)Welding speed (cm / min) 3333 3333 4040 3535 4040 3333 3333 4040 4040 4040 입열량(KJ/㎝)Heat input amount (KJ / cm) 7272 9494 100100 133133 152152 7272 9494 100100 120120 152152 W/DW / D 0.820.82 1.11.1 1.31.3 1.941.94 2.212.21 0.550.55 0.60.6 0.80.8 1.851.85 2.12.1 고온균열High temperature crack 발생Occur 발생Occur 발생Occur 발생Occur 발생Occur 미발생Not Occurred 미발생Not Occurred 미발생Not Occurred 발생Occur 발생Occur

이상에서 상세히 설명한 바와 같이, 본 발명의 극후물 구조용강의 대입열 필렛용접부의 고온균열을 방지하기 위한 2전극 서브머지드 아아크 용접방법을 사용하면, 극후물재 구조용강재의 대입열 필렛용접부를 2전극 서브머지드 아아크 용접시개선각도와 용접조건을 조정함으로써 용접금속의 깊이와 폭의 비를 조절하여 용접부의 고온균열을 방지할 수 있게 된다.As described in detail above, when the two-electrode submerged arc welding method for preventing high temperature cracking of the high heat fillet welded portion of the ultra thick structural steel of the present invention is used, the high heat fillet welded portion of the ultra thick structural steel is subjected to the 2-electrode sub By adjusting the angle and welding conditions of the merged arc welding start, it is possible to prevent the high temperature crack of the weld by adjusting the depth and width ratio of the weld metal.

Claims (1)

필렛용접부의 개선각도를 55°로 하고, 선행전극에 가해지는 용접전류를 800∼950A, 용접전압을 34∼36V의 범위내로 설정하고, 후행전극에 가해지는 용접전류를 650∼800A, 용접전압을 38∼41V의 범위내로 설정하고, 용접속도를 33∼40㎝/min의 범위내로 설정하는 용접조건으로 용접금속의 깊이(D)와 폭(W)의 비를 1 : 0.6∼0.8의 범위로 조절하고, 용접입열량을 90kJ/㎝ 이상으로 적용하여 용접함을 특징으로 하는 극후물 구조용강의 대입열 필렛용접부의 고온균열을 방지하기 위한 2전극 서브머지드 아아크 용접방법.The angle of improvement of the fillet weld is set to 55 °, the welding current applied to the preceding electrode is set within the range of 800 to 950 A, the welding voltage is within the range of 34 to 36 V, and the welding current is applied to the trailing electrode at 650 to 800 A and the welding voltage is set. The welding condition is set within the range of 38 to 41 V and the welding speed is set within the range of 33 to 40 cm / min. The ratio of the depth D and the width W of the weld metal is adjusted in the range of 1: 0.6 to 0.8. And welding at a heat input of 90 kJ / cm or more to prevent high temperature cracking of the high heat fillet welded portion of the ultra-thick structural steel.
KR1019990063235A 1999-12-28 1999-12-28 2 Pole tandem high input SAW for preventing hot cracking of fillet join in high thickness structural steels KR20010060793A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019990063235A KR20010060793A (en) 1999-12-28 1999-12-28 2 Pole tandem high input SAW for preventing hot cracking of fillet join in high thickness structural steels

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019990063235A KR20010060793A (en) 1999-12-28 1999-12-28 2 Pole tandem high input SAW for preventing hot cracking of fillet join in high thickness structural steels

Publications (1)

Publication Number Publication Date
KR20010060793A true KR20010060793A (en) 2001-07-07

Family

ID=19630594

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019990063235A KR20010060793A (en) 1999-12-28 1999-12-28 2 Pole tandem high input SAW for preventing hot cracking of fillet join in high thickness structural steels

Country Status (1)

Country Link
KR (1) KR20010060793A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR200451820Y1 (en) * 2008-07-10 2011-01-13 한만성 A sign flag pole exchanging flag easely for informing golf green hole cup
KR101279647B1 (en) * 2012-02-27 2013-06-26 대우조선해양 주식회사 Welding method for securing deep penetration on fillet joint
CN103182406A (en) * 2011-12-29 2013-07-03 洛阳智邦石化设备有限公司 Cold leveling method for after-welding deformation of gasoline and diesel hydrofining Phi3,000 redistribution plates
CN105215519A (en) * 2015-11-04 2016-01-06 唐山轨道客车有限责任公司 The welding method of DHV type weld seam
KR20160005401A (en) 2014-07-07 2016-01-15 현대중공업 주식회사 Twin tandem high speed fillet arc welding equipment

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0557448A (en) * 1991-08-30 1993-03-09 Kawasaki Steel Corp Fillet welding method with high efficiency for thick steel plates
JPH0768380A (en) * 1993-06-30 1995-03-14 Kawasaki Steel Corp High efficiency fillet welding method for thick steel plates
JPH08281436A (en) * 1995-02-15 1996-10-29 Kawasaki Steel Corp Two-electrode horizontal fillet welding submerged arc welding method for t-joint
KR0135346B1 (en) * 1994-12-19 1998-07-01 김만제 Method of sub-merged arc welding without high temperature crack
JP2000167670A (en) * 1998-12-08 2000-06-20 Kawasaki Steel Corp Fillet welding method of high strength thick plate steel

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0557448A (en) * 1991-08-30 1993-03-09 Kawasaki Steel Corp Fillet welding method with high efficiency for thick steel plates
JPH0768380A (en) * 1993-06-30 1995-03-14 Kawasaki Steel Corp High efficiency fillet welding method for thick steel plates
KR0135346B1 (en) * 1994-12-19 1998-07-01 김만제 Method of sub-merged arc welding without high temperature crack
JPH08281436A (en) * 1995-02-15 1996-10-29 Kawasaki Steel Corp Two-electrode horizontal fillet welding submerged arc welding method for t-joint
JP2000167670A (en) * 1998-12-08 2000-06-20 Kawasaki Steel Corp Fillet welding method of high strength thick plate steel

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR200451820Y1 (en) * 2008-07-10 2011-01-13 한만성 A sign flag pole exchanging flag easely for informing golf green hole cup
CN103182406A (en) * 2011-12-29 2013-07-03 洛阳智邦石化设备有限公司 Cold leveling method for after-welding deformation of gasoline and diesel hydrofining Phi3,000 redistribution plates
KR101279647B1 (en) * 2012-02-27 2013-06-26 대우조선해양 주식회사 Welding method for securing deep penetration on fillet joint
KR20160005401A (en) 2014-07-07 2016-01-15 현대중공업 주식회사 Twin tandem high speed fillet arc welding equipment
CN105215519A (en) * 2015-11-04 2016-01-06 唐山轨道客车有限责任公司 The welding method of DHV type weld seam

Similar Documents

Publication Publication Date Title
Meng et al. High speed TIG–MAG hybrid arc welding of mild steel plate
JP6198937B2 (en) HT550 steel sheet with ultra-high toughness and excellent weldability and method for producing the same
US20040140303A1 (en) Steel wire for carbon dioxide shielded arc welding and welding process using the same
DE2611248A1 (en) VERTICAL UPWARD ARC WELDING PROCESS
WO2018061526A1 (en) Method of manufacturing laser welded joint, laser welded joint, and automotive frame component
US20030189034A1 (en) Steel wire for MAG welding and MAG welding method using the same
KR20230042371A (en) Welded joints and manufacturing methods of welded joints
KR20010060793A (en) 2 Pole tandem high input SAW for preventing hot cracking of fillet join in high thickness structural steels
JP4879688B2 (en) Steel arc welded joint with excellent fatigue strength, its welding method and steel structure
KR100709521B1 (en) Welding joint of large heat input welding and welding method thereof
KR101911898B1 (en) WELDED JOINT OF HIGH Mn STEEL WITH EXCELLENT HOT CRACKING RESISTANCE
JP3114958B2 (en) High efficiency fillet welding method for thick steel plate
JPS6327120B2 (en)
JP2003225792A (en) Wire for carbon dioxide gas shielded arc welding
JP4979278B2 (en) Solid wire for gas shielded arc welding
FR2823768A1 (en) Reinforced durable tool steel includes chromium, manganese, molybdenum, tungsten, titanium and zirconium
KR0135346B1 (en) Method of sub-merged arc welding without high temperature crack
JP5280060B2 (en) Gas shield arc welding method
JP3523777B2 (en) Two-electrode electrogas arc welding method
JP5037369B2 (en) Solid wire for pulse MAG welding
JPH01262094A (en) Low hydrogen type coated electrode
KR100501984B1 (en) Steel wire for mag welding in dc-electrode and mag welding method using the same
JPH0796391A (en) Wire for gas shielded arc welding
JP3853482B2 (en) Welding material for welding joint between spheroidal graphite cast iron and mild steel, welding joining method, welding material for welding repair of spheroidal graphite cast iron, and welding repair method
SU1438942A1 (en) Composition of shielding gases for arc welding of high-melting metals

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
NORF Unpaid initial registration fee