JP5280060B2 - Gas shield arc welding method - Google Patents

Gas shield arc welding method Download PDF

Info

Publication number
JP5280060B2
JP5280060B2 JP2008026338A JP2008026338A JP5280060B2 JP 5280060 B2 JP5280060 B2 JP 5280060B2 JP 2008026338 A JP2008026338 A JP 2008026338A JP 2008026338 A JP2008026338 A JP 2008026338A JP 5280060 B2 JP5280060 B2 JP 5280060B2
Authority
JP
Japan
Prior art keywords
welding
gas
mass
shielded arc
arc welding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008026338A
Other languages
Japanese (ja)
Other versions
JP2008213042A (en
Inventor
時彦 片岡
倫正 池田
雅智 村山
真治 岩田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
JFE Engineering Corp
Original Assignee
JFE Steel Corp
JFE Engineering Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp, JFE Engineering Corp filed Critical JFE Steel Corp
Priority to JP2008026338A priority Critical patent/JP5280060B2/en
Publication of JP2008213042A publication Critical patent/JP2008213042A/en
Application granted granted Critical
Publication of JP5280060B2 publication Critical patent/JP5280060B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Arc Welding In General (AREA)
  • Butt Welding And Welding Of Specific Article (AREA)
  • Nonmetallic Welding Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a gas shielded arc welding method where, when thick steel plates are subjected to butt welding at a narrow bevel (e.g., at a bevel angle of &le;50&deg;), a stable penetration can be obtained, the high temperature cracks of the first layer are prevented, and also, the appearance of a weld bead is satisfactory. <P>SOLUTION: In the gas shielded arc welding method where welding is performed while oscillating a welding torch, gas shielded arc welding is performed at a bevel angle of &le;50&deg; while oscillating for 30 to 150 times per min in such a manner that the components parallel to the welding wire of the oscillating lie in the range of 10 to 45 mm. <P>COPYRIGHT: (C)2008,JPO&amp;INPIT

Description

本発明は、シールドガスでアーク点をシールドして溶接を行なうガスシールドアーク溶接方法に関するものであり、特に狭開先の厚鋼板を溶接する際に安定した溶け込みが得られ、溶接ビードの外観に優れかつ高温割れを防止できるガスシールドアーク溶接方法に関するものである。   The present invention relates to a gas shielded arc welding method in which an arc point is shielded with a shielding gas and welding is performed. Particularly, when welding a narrow groove thick steel plate, stable penetration is obtained, and the appearance of a weld bead is obtained. The present invention relates to a gas shielded arc welding method which is excellent and can prevent hot cracking.

ガスシールドアーク溶接は、能率の良い溶接技術であることから、各種鉄鋼材料の溶接に広く利用されている。特に自動溶接の急速な普及によって造船,建築,橋梁,自動車,建築機械等の種々の分野で使用されている。造船,建築,橋梁等の分野では厚鋼板の突合せ溶接にガスシールドアーク溶接技術が採用され、自動車,建築機械等の分野では薄鋼板の隅肉溶接にガスシールドアーク溶接技術が採用されている。   Since gas shielded arc welding is an efficient welding technique, it is widely used for welding various steel materials. In particular, due to the rapid spread of automatic welding, it is used in various fields such as shipbuilding, architecture, bridges, automobiles, and construction machinery. In the fields of shipbuilding, construction, bridges, etc., gas shielded arc welding technology is adopted for butt welding of thick steel plates, and in the fields of automobiles, construction machinery, etc., gas shielded arc welding technology is adopted for fillet welding of thin steel plates.

造船,建築,橋梁の分野で主要な溶接法として行なわれる厚鋼板の突合せ溶接では、溶接継手部における裏当て金の有無に応じて溶接条件(特に開先形状)が変化する。裏当て金を使用する場合はレ型開先またはV型開先(いずれもルートギャップ5〜10mm程度,開先角度35°程度)とし、裏当て金を使用しない場合はV型開先(ルートギャップなし,開先角度45〜60°程度)とするのが一般的である。突合せ溶接におけるこれらの開先角度は、初層の溶接金属の高温割れを抑制するために設定される。   In butt welding of thick steel plates, which is the main welding method in the fields of shipbuilding, construction, and bridges, the welding conditions (particularly the groove shape) change depending on the presence or absence of the backing metal in the weld joint. When using a backing metal, use a lave groove or V-shaped groove (both with a root gap of about 5 to 10 mm and a groove angle of about 35 °). In general, there is no gap and a groove angle of about 45 to 60 °. These groove angles in butt welding are set in order to suppress hot cracking of the weld metal of the first layer.

高温割れは、凝固割れあるいは梨割れとも呼ばれ、溶接ビード中央に溶接線と平行に生じる割れであり、高温割れが発生すると継手強度が著しく低下し、構造物(すなわち船舶,建築物,橋梁等)の倒壊という甚大な問題が生じる。
溶接金属は、溶融メタルの凝固によって形成され、この凝固過程において通常の鋼は体積が減少(すなわち収縮)し、最終凝固部においては溶融メタルが不足する。最終凝固部が溶接ビード表面であれば高温割れは発生しないが、溶接ビード内となる場合は高温割れを生じる可能性が高くなる。凝固は開先面に垂直に生じるため、ビードオンプレート溶接や広い開先内での溶接では凝固が溶接ビード表面に向かって生じるので高温割れは生じない。
Hot cracks, also called solidification cracks or pear cracks, are cracks that occur parallel to the weld line in the center of the weld bead. When hot cracks occur, joint strength decreases significantly, and structures (ie ships, buildings, bridges, etc.) ) Is a serious problem.
The weld metal is formed by solidification of the molten metal. In this solidification process, the volume of ordinary steel is reduced (that is, contracted), and the molten metal is insufficient in the final solidified portion. If the final solidified part is the surface of the weld bead, hot cracking does not occur, but if it is in the weld bead, the possibility of hot cracking is increased. Since solidification occurs perpendicular to the groove surface, bead-on-plate welding or welding in a wide groove does not cause hot cracking because solidification occurs toward the weld bead surface.

一方、狭開先の初層溶接では、凝固が溶接ビード中央に向かって生じるので、高温割れを生じ易い。
つまり、開先形状によって高温割れの発生頻度は大きく変化する。一般に溶接ビード幅に対する溶込み深さが0.8以下では、高温割れは発生しないと言われている。たとえば開先角度50°のレ形ギャップゼロの開先形状では、1÷tan50°≒0.8であるから、高温割れは発生しない。しかし開先角度を広くすると多量の溶接金属を必要とし、溶接施行の効率が低下する。
On the other hand, in the first layer welding with a narrow groove, since solidification occurs toward the center of the weld bead, hot cracking is likely to occur.
That is, the frequency of occurrence of hot cracking varies greatly depending on the groove shape. Generally, it is said that hot cracking does not occur when the penetration depth relative to the weld bead width is 0.8 or less. For example, in a groove shape with a groove angle of zero at a groove angle of 50 °, 1 ÷ tan50 ° ≈0.8, so no hot cracking occurs. However, if the groove angle is widened, a large amount of weld metal is required, and the efficiency of welding is reduced.

溶接施行の効率向上の観点から見ると、開先角度は狭い方が好ましい。ところが、たとえば開先角度30°のレ形ギャップゼロの開先形状では、1÷tan30°≒1.7であるから、高温割れは極めて発生し易くなる。
そこで、高温割れの発生を防止する技術が種々検討されている。
たとえば特許文献1には、2個以上の電極を用い、電極間の距離を100mm以下とすることによって高温割れを防止する技術が開示されている。この技術では装置が複雑になるばかりでなく、曲線の溶接が困難であるという問題がある。しかも、溶接を中断したときには非定常部が長いので、補修溶接に長時間を要する。
特開平9-85446号公報
From the viewpoint of improving the efficiency of welding, it is preferable that the groove angle is narrow. However, for example, in a groove shape with a lave gap of zero with a groove angle of 30 °, 1 ÷ tan30 ° ≈1.7, so high temperature cracking is very likely to occur.
Thus, various techniques for preventing the occurrence of hot cracking have been studied.
For example, Patent Document 1 discloses a technique for preventing hot cracking by using two or more electrodes and setting the distance between the electrodes to 100 mm or less. This technique not only complicates the apparatus but also makes it difficult to weld curved lines. Moreover, since the unsteady part is long when the welding is interrupted, it takes a long time for repair welding.
JP-A-9-85446

本発明は、たとえば25mm以上の厚鋼板を狭開先(すなわち開先角度50°以下)で突合せ溶接する際に安定した溶け込みが得られ、初層の高温割れを防止し、かつ溶接ビードの外観が良好なガスシールドアーク溶接方法を提供することを目的とする。   The present invention, for example, can provide stable penetration when butt welding a thick steel plate of 25 mm or more with a narrow groove (that is, a groove angle of 50 ° or less), prevents high-temperature cracking of the first layer, and appearance of the weld bead An object of the present invention is to provide a gas shielded arc welding method with good quality.

発明者らは、開先角度50°以下で突合せ溶接する際に安定した溶け込みが得られ、初層の高温割れを防止し、かつ溶接ビードの外観が良好なガスシールドアーク溶接方法について鋭意検討した。その結果、
(a)溶接トーチの先端を溶接線に平行な方向にオシレートさせて溶融メタルの凝固(すなわち溶接金属の形成)と溶接金属の再溶融(すなわち溶融メタルの生成)を繰り返すことによって、最終凝固を溶接ビードの表面とする、
(b)溶接速度を遅くする一方、オシレートを速くすることによって凝固が安定し、均一な溶接金属が得られる、
(c)希土類元素を含有するガスシールドアーク溶接用鋼ワイヤ(以下、溶接用鋼ワイヤという)を用い、正極性でガスシールドアーク溶接を行なうことによって安定した溶け込みが得られる、
(d)シールドガスとしてCO2 ガスとArガスとの混合ガスまたはCO2 ガスのみを用いることによって正極性のガスシールドアーク溶接における溶滴移行のスプレー化とアークの安定化を達成できる
ということが判明した。本発明は、これらの知見に基づいてなされたものである。
The inventors diligently studied a gas shielded arc welding method in which stable penetration was obtained when butt welding was performed at a groove angle of 50 ° or less, hot cracking of the first layer was prevented, and the appearance of the weld bead was good. . as a result,
(a) Final solidification is achieved by oscillating the tip of the welding torch in a direction parallel to the weld line and repeating solidification of the molten metal (ie, formation of the weld metal) and remelting of the weld metal (ie, formation of the molten metal). The surface of the weld bead,
(b) While decreasing the welding speed, increasing the oscillate stabilizes solidification, and a uniform weld metal is obtained.
(c) Using a steel wire for gas shielded arc welding containing a rare earth element (hereinafter referred to as a steel wire for welding), a stable penetration can be obtained by performing gas shielded arc welding with positive polarity.
(d) By using only a mixed gas of CO 2 gas and Ar gas or CO 2 gas as the shielding gas, spraying of droplet transfer and arc stabilization in positive polarity gas shielded arc welding can be achieved. found. The present invention has been made based on these findings.

すなわち本発明は、溶接トーチをオシレートさせながら初層溶接を行なうガスシールドアーク溶接方法において、オシレートの回数をW(回/分)とし、溶接速度をS(cm/分)として、下記の(1)式で算出されるD値が0.5〜10.0の範囲内を満足するとともに、溶接速度が5〜60cm/分の範囲内を満足し、オシレートの溶接線に平行な成分が15〜45mmの範囲内で毎分30〜150回オシレートさせながら、希土類元素を0.015〜0.100質量%含有する鋼素線からなる溶接用鋼ワイヤを用いて正極性で開先角度50°以下のガスシールドアーク溶接を行なう初層の高温割れを防止するガスシールドアーク溶接方法である。
That is, according to the present invention, in the gas shielded arc welding method in which the first layer welding is performed while oscillating the welding torch, the number of times of oscillating is W (times / minute) and the welding speed is S (cm / minute). ) The D value calculated by the formula is within the range of 0.5 to 10.0, the welding speed is within the range of 5 to 60 cm / min, and the component parallel to the oscillating weld line is within the range of 15 to 45 mm. First to perform gas shielded arc welding with positive polarity and groove angle of 50 ° or less using steel wire for welding consisting of steel wire containing 0.015 to 0.100% by mass of rare earth elements while oscillating at 30 to 150 times per minute A gas shielded arc welding method for preventing hot cracking of a layer .

D=W/S ・・・(1)
W:オシレートの回数(回/分)
S:溶接速度(cm/分)
さらにシールドガスが、CO2 ガスとArガスとを合計60体積%以上含有する混合ガスであることが好ましい。あるいはシールドガスが、CO2 ガス100体積%であることが好ましい。
D = W / S (1)
W: Number of times of oscillation (times / minute)
S: Welding speed (cm / min)
Further, the shielding gas is preferably a mixed gas containing CO 2 gas and Ar gas in a total amount of 60% by volume or more. Or shielding gas is preferably a CO 2 gas 100 vol%.

本発明によれば、厚鋼板を開先角度50°以下で突合せ溶接する際に安定した溶け込みが得られ、初層の高温割れを防止でき、しかも良好な外観の溶接ビードを得ることができる。   According to the present invention, stable penetration can be obtained when butt-welding a thick steel plate at a groove angle of 50 ° or less, high temperature cracking of the first layer can be prevented, and a weld bead having a good appearance can be obtained.

まず本発明における溶接トーチの動きについて説明する。
本発明ではガスシールドアーク溶接を行なうにあたって、溶接線に平行な成分(すなわち図1中のX成分)が15〜45mmの範囲内で、溶接トーチの先端が往復運動または円運動,円弧運動を行なう。その運動の例を図2に示す。ここでは、図2に例を示すような繰り返し行なわれる溶接トーチの往復運動または円運動,円弧運動をオシレートと記す。溶接トーチのオシレートは、図2に示すように溶接線に垂直な成分(すなわちY成分,Z成分)を含んでいても良い。
First, the movement of the welding torch according to the present invention will be described.
In the present invention, when performing gas shielded arc welding, the tip of the welding torch performs a reciprocating motion, a circular motion, or an arc motion within a range where the component parallel to the weld line (that is, the X component in FIG. 1) is 15 to 45 mm. . An example of the movement is shown in FIG. Here, the reciprocating motion, circular motion, or circular arc motion of the welding torch which is repeatedly performed as shown in FIG. 2 is referred to as “oscillate”. The oscillate of the welding torch may contain components perpendicular to the weld line (ie, Y component and Z component) as shown in FIG.

溶接金属に生じる高温割れは、溶接線および入熱方向に対して直角な方向に溶融メタルが凝固する場合に発生頻度が増加する。したがって溶接トーチを溶接線に平行な方向あるいは入熱方向に平行な方向にオシレートさせることによって、溶接金属の高温割れを防止できる。
通常の半自動溶接では、溶接線および入熱方向に直角な方向に溶接トーチをオシレートさせる。これは、溶接ビードの幅を調節するために行なうオシレートであるから、高温割れを防止する効果はない。
Hot cracks that occur in the weld metal increase in frequency when the molten metal solidifies in a direction perpendicular to the weld line and the heat input direction. Therefore, hot cracking of the weld metal can be prevented by oscillating the welding torch in a direction parallel to the weld line or in a direction parallel to the heat input direction.
In normal semi-automatic welding, the welding torch is oscillated in a direction perpendicular to the welding line and the heat input direction. Since this is an oscillate performed to adjust the width of the weld bead, there is no effect of preventing hot cracking.

しかし溶接トーチを溶接線に平行な方向にオシレートさせることによって、
(A) 溶融メタルの凝固(すなわち溶接金属の形成)と溶接金属の再溶融(すなわち溶融メタルの生成)が繰り返される、
(B)溶融メタルが入熱の対面方向から凝固する
という効果が得られ、溶接金属の高温割れを防止できる。
But by oscillating the welding torch in a direction parallel to the weld line,
(A) The solidification of the molten metal (that is, the formation of the weld metal) and the remelting of the weld metal (that is, the formation of the molten metal) are repeated.
(B) The effect that the molten metal solidifies from the facing direction of heat input can be obtained, and hot cracking of the weld metal can be prevented.

オシレートにおける溶接トーチの移動範囲が10mm未満では、初層の溶接ビードにて上記した(A)(B)の効果は得られず、溶接金属の高温割れは防止できない。一方、45mmを超えると、高温割れは防止できるが、アーク点のシールドは不十分となり溶接ビードにピットが生じる。本発明では、オシレートにおける溶接トーチの移動範囲は15〜45mmとする。好ましくは15〜25mmである。なお、溶接トーチの移動範囲は、図1に示すように、溶接トーチ5が最も前進したときの溶接トーチの先端位置3と最も後退したときの溶接トーチの先端位置4との間隔の溶接線2に平行な成分Xを指す。
When the moving range of the welding torch in the oscillate is less than 10 mm, the above-described effects (A) and (B) cannot be obtained with the first-layer weld bead, and hot cracking of the weld metal cannot be prevented. On the other hand, if it exceeds 45 mm, hot cracking can be prevented, but the shield at the arc point is insufficient and pits occur in the weld bead. In the present invention, the moving range of the welding torch in the oscillate is 15 to 45 mm. Preferably it is 15-25 mm. As shown in FIG. 1, the range of movement of the welding torch is a welding line 2 having an interval between the tip position 3 of the welding torch when the welding torch 5 is most advanced and the tip position 4 of the welding torch when it is most retracted. Refers to the component X parallel to.

また、オシレートにおける溶接トーチの往復回数(以下、オシレートの回数という)が毎分30回未満では、溶接線方向に均一な溶接ビードが得られず、部分的に高温割れを内在させた溶接ビードとなるばかりでなく、凸形状の溶接ビードが形成されるので、その溶接ビード上に次層を溶接する際に溶接欠陥が生じ易い。一方、毎分150回を超えると、高温割れを防止でき、かつ平坦な溶接ビードを形成できるが、アーク点のシールドは不十分となり溶接ビードにピットが生じる。したがって、オシレートの回数は毎分30〜150回とする。好ましくは毎分45〜90回である。   Also, if the number of reciprocations of the welding torch in the oscillate (hereinafter referred to as the number of oscillates) is less than 30 times per minute, a uniform weld bead cannot be obtained in the direction of the weld line, In addition, since a convex weld bead is formed, welding defects are likely to occur when the next layer is welded onto the weld bead. On the other hand, if it exceeds 150 times per minute, hot cracking can be prevented and a flat weld bead can be formed, but the arc point shield becomes insufficient and pits occur in the weld bead. Therefore, the frequency of oscillation is 30 to 150 times per minute. Preferably it is 45 to 90 times per minute.

このようにして溶接トーチをオシレートさせながらガスシールドアーク溶接を行なうと、開先形状がV型開先,レ型開先いずれであっても、開先角度50°以下の狭開先の突合せ溶接において、初層のみならず第2層以降の溶接金属の高温割れを防止でき、しかも良好な外観の溶接ビードを得ることができる。
本発明では溶接トーチのオシレートに加えて、溶接トーチの移動速度(以下、溶接速度という)を調整することによって、溶接金属の高温割れを防止する効果を高めることができる。
When gas shielded arc welding is performed while oscillating the welding torch in this way, narrow groove butt welding with a groove angle of 50 ° or less is possible regardless of whether the groove shape is a V-shaped groove or a labyrinth groove. In this case, not only the first layer but also the second and subsequent weld metals can be prevented from cracking at high temperatures, and a weld bead having a good appearance can be obtained.
In the present invention, the effect of preventing hot cracking of the weld metal can be enhanced by adjusting the moving speed of the welding torch (hereinafter referred to as the welding speed) in addition to the oscillation of the welding torch.

溶接速度が5cm/分未満では、高温割れを防止でき、かつ平坦な溶接ビードを形成できるが、凸形状の溶接ビードが形成されるので、その溶接ビード上に次層を溶接する際に溶接欠陥が生じ易い。一方、60cm/分を超えると、溶接線方向に均一な溶接ビードが得られず、狭開先(とりわけ開先角度25°以下)の突合せ溶接にて溶接金属の高温割れを生じ易い。したがって、溶接速度は5〜60cm/分とする。より好ましくは5.0〜30.0cm/分である。 If the welding speed is less than 5 cm / min, hot cracking can be prevented and a flat weld bead can be formed. However, since a convex weld bead is formed, a welding defect occurs when the next layer is welded onto the weld bead. Is likely to occur. On the other hand, if it exceeds 60 cm / min, a uniform weld bead cannot be obtained in the direction of the weld line, and hot cracking of the weld metal tends to occur during butt welding with a narrow groove (particularly with a groove angle of 25 ° or less). Thus, welding speed and 5~60Cm / min. More preferably, it is 5.0 to 30.0 cm / min.

この溶接速度をS(cm/分)とし、オシレートの回数をW(回/分)として、下記の(1)で算出されるD値が0.5未満では、溶接金属の高温割れを防止する効果は得られるが、平坦な溶接ビードが形成されない。一方、10.0を超えると、高温割れを防止でき、かつ平坦な溶接ビードを形成できるが、アーク点のシールドは不十分となり溶接ビードにピットが生じる。したがって、D値は0.5〜10.0とする。より好ましくは0.8〜6.0である。 If the welding speed is S (cm / min) and the number of oscillating times is W (times / min) and the D value calculated in (1) below is less than 0.5, the effect of preventing hot cracking of the weld metal is Although obtained, a flat weld bead is not formed. On the other hand, if it exceeds 10.0, hot cracking can be prevented and a flat weld bead can be formed, but the arc point shield becomes insufficient and pits occur in the weld bead. Accordingly, the D value is set to 0.5 to 10.0. More preferably, it is 0.8-6.0.

D=W/S ・・・(1)
W:オシレートの回数(回/分)
S:溶接速度(cm/分)
次に本発明で使用する溶接用鋼ワイヤについて説明する。
本発明では、溶接用フラックスを内装せず、素材となる鋼素線を主体とする溶接用鋼ワイヤ(いわゆるソリッドワイヤ)を使用する。なお、鋼素線の表面にめっきを施したり、あるいは潤滑剤を塗布したソリッドワイヤも支障なく使用できる。
D = W / S (1)
W: Number of times of oscillation (times / minute)
S: Welding speed (cm / min)
Next, the steel wire for welding used in the present invention will be described.
In the present invention, a welding steel wire (so-called solid wire) mainly composed of a steel wire as a raw material is used without incorporating a welding flux. In addition, the solid wire which plated the surface of the steel strand, or apply | coated the lubricant can also be used without trouble.

本発明では、希土類元素を含有する鋼素線からなる溶接用鋼ワイヤを使用することが好ましい。希土類元素は、製鋼および鋳造時の介在物の微細化,溶接金属の靭性改善のために有効な元素である。ただし、通常の逆極性(すなわち溶接用鋼ワイヤをプラス極)のガスシールドアーク溶接においては、鋼素線に希土類元素を添加するとアークの集中が生じて、スパッタが多量に発生する。しかし正極性(すなわち溶接用鋼ワイヤをマイナス極)のガスシールドアーク溶接においては、溶滴移行を安定化するとともに溶け込みを安定化するために不可欠な元素である。また、製鋼時に不可避的に混入するSと結合して高融点の介在物を形成する。そのため、溶接線の終端部に硫化物が濃化するのを防止できる。   In this invention, it is preferable to use the steel wire for welding which consists of a steel strand containing a rare earth element. Rare earth elements are effective elements for refinement of inclusions during steelmaking and casting, and to improve the toughness of weld metal. However, in gas shielded arc welding with a normal reverse polarity (that is, a welding steel wire is a plus electrode), when rare earth elements are added to the steel wire, arc concentration occurs and a large amount of spatter is generated. However, in gas shielded arc welding of positive polarity (that is, a welding steel wire minus electrode), it is an indispensable element for stabilizing droplet transfer and stabilizing penetration. Moreover, it combines with S inevitably mixed during steelmaking to form inclusions with a high melting point. Therefore, it is possible to prevent the sulfide from concentrating at the end portion of the weld line.

希土類元素の含有量が0.015質量%未満では、これらの効果が得られない。一方、0.100質量%を超えると、溶接用鋼ワイヤの製造工程で割れが生じたり、溶接金属の靭性の低下を招く。したがって、鋼素線の希土類元素の含有量は0.015〜0.100質量%とする。より好ましくは0.025〜0.050質量%である。
ここで希土類元素とは、周期表の3族に属する元素の総称である。本発明では、原子番号57〜71の元素を使用するのが好ましく、特にCe,Laが好適である。Ce,Laを鋼素線に添加する場合は、CeまたはLaを単独で添加しても良いし、CeおよびLaを併用しても良い。なお、CeおよびLaをともに添加する場合は、あらかじめCe:45〜80質量%,La:10〜45質量%を混合して得られた混合物を使用するのが好ましい。
When the rare earth element content is less than 0.015% by mass, these effects cannot be obtained. On the other hand, if it exceeds 0.100% by mass, cracking occurs in the manufacturing process of the welding steel wire, or the toughness of the weld metal is reduced. Accordingly, the content of rare earth elements of the steel element wires is set to 0.015 to 0.100 mass%. More preferably, it is 0.025 to 0.050 mass%.
Here, the rare earth element is a general term for elements belonging to Group 3 of the periodic table. In the present invention, it is preferable to use an element having an atomic number of 57 to 71, and Ce and La are particularly preferable. When Ce and La are added to the steel strand, Ce or La may be added alone, or Ce and La may be used in combination. In addition, when adding Ce and La together, it is preferable to use the mixture obtained by mixing Ce: 45-80 mass% and La: 10-45 mass% previously.

鋼素線は、希土類元素に加えて、下記の元素を含有することが好ましい。
C:0.20質量%以下
Cは、溶接金属の強度を確保するのに必要な元素であり、溶融メタルの粘性を低下させて流動性を向上させる効果がある。しかしC含有量が0.20質量%を超えると、正極性の溶接において溶滴および溶融メタルの挙動が不安定となるのみならず、溶接金属の靭性の低下を招く。したがって、C含有量は0.20質量%以下が好ましい。一方、C含有量を過剰に減少させると溶接金属の強度を確保できない。そのため、0.01〜0.20質量%が一層好ましい。より好ましくは0.01〜0.10質量%である。
The steel wire preferably contains the following elements in addition to the rare earth elements.
C: 0.20 mass% or less C is an element necessary for ensuring the strength of the weld metal, and has the effect of reducing the viscosity of the molten metal and improving the fluidity. However, if the C content exceeds 0.20% by mass, not only the behavior of droplets and molten metal becomes unstable in positive polarity welding, but also the toughness of the weld metal is reduced. Therefore, the C content is preferably 0.20% by mass or less. On the other hand, if the C content is excessively reduced, the strength of the weld metal cannot be ensured. Therefore, 0.01 to 0.20 mass% is more preferable. More preferably, it is 0.01-0.10 mass%.

Si:0.15〜2.5質量%
Siは、脱酸作用を有し、溶融メタルの脱酸のためには不可欠な元素である。Si含有量が0.15質量%未満では、溶融メタルの脱酸が不足し、溶接金属にブロー欠陥が発生する。一方、2.5質量%を超えると、溶接金属の靭性が著しく低下する。したがって、Si含有量は0.15〜2.5質量%が好ましい。
Si: 0.15-2.5 mass%
Si has a deoxidizing action and is an indispensable element for deoxidizing molten metal. When the Si content is less than 0.15% by mass, deoxidation of the molten metal is insufficient, and blow defects occur in the weld metal. On the other hand, if it exceeds 2.5 mass%, the toughness of the weld metal is significantly reduced. Therefore, the Si content is preferably 0.15 to 2.5% by mass.

Mn:0.25〜3.5質量%
Mnは、Siと同様に脱酸作用を有し、溶融メタルの脱酸のためには不可欠な元素である。Mn含有量が0.25質量%未満では、溶融メタルの脱酸が不足し、溶接金属にブロー欠陥が発生する。一方、3.5質量%を超えると、溶接金属の靭性が著しく低下する。したがって、Mn含有量は0.25〜3.5質量%が好ましい。
Mn: 0.25 to 3.5% by mass
Mn has a deoxidizing action similar to Si and is an indispensable element for deoxidizing molten metal. If the Mn content is less than 0.25% by mass, deoxidation of the molten metal is insufficient, and blow defects occur in the weld metal. On the other hand, if it exceeds 3.5 mass%, the toughness of the weld metal is significantly reduced. Therefore, the Mn content is preferably 0.25 to 3.5% by mass.

P:0.050質量%以下
Pは、鋼の融点を低下させるとともに、電気抵抗率を向上させ、溶融効率を向上させる元素である。さらに正極性のガスシールドアーク溶接においてアークを安定化する作用も有する。しかしP含有量が0.050質量%を超えると、正極性のガスシールドアーク溶接において溶融メタルの粘性が著しく低下し、アークが不安定となり、小粒のスパッタが増加する。また、溶融メタルが凝固する際にPが結晶粒界に濃化し、溶接金属の高温割れが生じ易くなる。したがって、P含有量は0.050質量%以下が好ましい。
P: 0.050% by mass or less P is an element that lowers the melting point of steel, improves electrical resistivity, and improves melting efficiency. Furthermore, it has the effect | action which stabilizes an arc in positive polarity gas shielded arc welding. However, if the P content exceeds 0.050% by mass, the viscosity of the molten metal is significantly lowered in positive gas shielded arc welding, the arc becomes unstable, and small-particle spatter increases. Further, when the molten metal is solidified, P is concentrated at the crystal grain boundaries, and hot cracking of the weld metal is likely to occur. Therefore, the P content is preferably 0.050% by mass or less.

S:0.050質量%以下
Sは、溶融メタルの粘性を低下させ、溶接用鋼ワイヤの先端に懸垂した溶滴の離脱を促進し、正極性のガスシールドアーク溶接においてアークを安定化する。またSは、溶融メタルの粘性を低下させることによって溶接ビードを平坦にする効果も有する。しかしS含有量が0.050質量%を超えると、小粒のスパッタが増加するとともに、溶接金属の靭性が低下する。また、溶融メタルが凝固する際にSが結晶粒界に濃化し、溶接金属の高温割れが生じ易くなる。したがって、S含有量は0.050質量%以下が好ましい。一方、鋼素線の鋼材を溶製する製鋼段階でSを低減するためには長時間を要するので、生産性向上の観点から0.015質量%以上(したがって0.015〜0.050質量%)が一層好ましい。より好ましくは0.015〜0.030質量%である。
S: 0.050% by mass or less S lowers the viscosity of the molten metal, promotes the detachment of the droplet suspended from the tip of the welding steel wire, and stabilizes the arc in positive polarity gas shielded arc welding. S also has the effect of flattening the weld bead by reducing the viscosity of the molten metal. However, when the S content exceeds 0.050% by mass, the spatter of small grains increases and the toughness of the weld metal decreases. Further, when the molten metal solidifies, S is concentrated at the crystal grain boundaries, and the hot cracking of the weld metal is likely to occur. Therefore, the S content is preferably 0.050% by mass or less. On the other hand, since it takes a long time to reduce S in the steelmaking stage where the steel material of the steel wire is melted, 0.015% by mass or more (and therefore 0.015 to 0.050% by mass) is more preferable from the viewpoint of improving productivity. More preferably, it is 0.015-0.030 mass%.

Ca:0.0008質量%以下
Caは、製鋼および鋳造時に不純物として溶鋼に混入したり、あるいは伸線加工時に不純物として鋼素線に混入する。正極性のガスシールドアーク溶接ではCa含有量が0.0008質量%を超えると、アークの安定化という希土類元素の効果が損なわれる。したがって、Ca含有量は0.0008質量%以下が好ましい。
Ca: 0.0008 mass% or less
Ca is mixed into the molten steel as an impurity during steelmaking and casting, or mixed into the steel strand as an impurity during wire drawing. In the positive gas shielded arc welding, if the Ca content exceeds 0.0008 mass%, the effect of rare earth elements for stabilizing the arc is impaired. Therefore, the Ca content is preferably 0.0008% by mass or less.

Ti:0.02〜0.30質量%,Zr:0.02〜0.30質量%およびAl:0.02〜0.50質量%のうちの1種または2種以上
Ti,Zr,Alは、いずれも強脱酸剤として作用するとともに、溶接金属の強度を増加する元素である。さらに溶融メタルの脱酸によって粘性を向上してビード形状を安定化(溶接線方向の凹凸を抑制)する効果がある。このような効果を有する故に300A以上の高電流溶接において有効な元素であり、必要に応じて添加する。Tiが0.02質量%未満,Zrが0.02質量%未満,Alが0.02質量%未満では、この効果は得られない。一方、Tiが0.30質量%を超える場合,Zrが0.30質量%を超える場合,Alが0.50質量%を超える場合は、溶滴が粗大化して大粒のスパッタが多量に発生する。したがって、Ti,Zr,Alを含有する場合は、Ti:0.02〜0.30質量%,Zr:0.02〜0.30質量%,Al:0.02〜0.50質量%が好ましい。
One or more of Ti: 0.02-0.30 mass%, Zr: 0.02-0.30 mass%, and Al: 0.02-0.50 mass%
Ti, Zr, and Al are elements that act as strong deoxidizers and increase the strength of the weld metal. Further, there is an effect of improving the viscosity by deoxidation of the molten metal and stabilizing the bead shape (suppressing unevenness in the weld line direction). Since it has such an effect, it is an effective element in high current welding of 300 A or more, and is added as necessary. This effect cannot be obtained if Ti is less than 0.02 mass%, Zr is less than 0.02 mass%, and Al is less than 0.02 mass%. On the other hand, when Ti exceeds 0.30% by mass, Zr exceeds 0.30% by mass, or Al exceeds 0.50% by mass, the droplets become coarse and a large amount of large spatter is generated. Therefore, when Ti, Zr, and Al are contained, Ti: 0.02 to 0.30 mass%, Zr: 0.02 to 0.30 mass%, and Al: 0.02 to 0.50 mass% are preferable.

Cr:0.02〜3.0質量%,Ni:0.05〜3.0質量%,Mo:0.05〜1.5質量%,Cu:0.05〜3.0質量%,B:0.0005〜0.015質量%
Cr,Ni,Mo,Cu,Bは、いずれも溶接金属の強度を増加し、耐候性を向上させる元素である。これらの元素の含有量が微少である場合は、このような効果は得られない。一方、過剰に添加すると、溶接金属の靭性の低下を招く。したがって、Cr,Ni,Mo,Cu,Bを含有する場合は、Cr:0.02〜3.0質量%,Ni:0.05〜3.0質量%,Mo:0.05〜1.5質量%,Cu:0.05〜3.0質量%,B:0.0005〜0.015質量%が好ましい。
Cr: 0.02-3.0 mass%, Ni: 0.05-3.0 mass%, Mo: 0.05-1.5 mass%, Cu: 0.05-3.0 mass%, B: 0.0005-0.015 mass%
Cr, Ni, Mo, Cu, and B are all elements that increase the strength of the weld metal and improve the weather resistance. When the content of these elements is very small, such an effect cannot be obtained. On the other hand, when it adds excessively, the fall of the toughness of a weld metal will be caused. Therefore, when Cr, Ni, Mo, Cu, and B are contained, Cr: 0.02 to 3.0 mass%, Ni: 0.05 to 3.0 mass%, Mo: 0.05 to 1.5 mass%, Cu: 0.05 to 3.0 mass%, B : 0.0005 to 0.015 mass% is preferable.

Nb:0.005〜0.05質量%,V:0.005〜0.05質量%
Nb,Vは、いずれも溶接金属の強度,靭性を向上し、アークの安定性を向上させる元素である。これらの元素の含有量が微少である場合は、このような効果は得られない。一方、過剰に添加すると、溶接金属の靭性の低下を招く。したがって、Nb,Vを含有する場合は、Nb:0.005〜0.05質量%,V:0.005〜0.05質量%が好ましい。
Nb: 0.005-0.05 mass%, V: 0.005-0.05 mass%
Nb and V are elements that improve the strength and toughness of the weld metal and improve the stability of the arc. When the content of these elements is very small, such an effect cannot be obtained. On the other hand, when it adds excessively, the fall of the toughness of a weld metal will be caused. Therefore, when Nb and V are contained, Nb: 0.005 to 0.05 mass% and V: 0.005 to 0.05 mass% are preferable.

上記した鋼素線の成分以外の残部は、Feおよび不可避的不純物である。たとえば、鋼材を溶製する段階や鋼素線を製造する段階で不可避的に混入する代表的な不可避的不純物であるO,Nは、いずれも0.0010〜0.020質量%が好ましい。より好ましくは0.0010〜0.0080質量%である。
次に、本発明の溶接用鋼ワイヤの製造方法について説明する。
The balance other than the components of the steel strand described above is Fe and inevitable impurities. For example, O and N, which are typical inevitable impurities inevitably mixed in the stage of melting a steel material and the stage of manufacturing a steel strand, are preferably 0.0010 to 0.020 mass%. More preferably, it is 0.0010-0.0080 mass%.
Next, the manufacturing method of the steel wire for welding of this invention is demonstrated.

転炉または電気炉等を用いて、上記した組成を有する溶鋼を溶製する。この溶鋼の溶製方法は、特定の技術に限定せず、従来から知られている技術を使用する。次いで、得られた溶鋼を、連続鋳造法や造塊法等によって鋼材(たとえばビレット等)を製造する。この鋼材を加熱した後、熱間圧延を施し、さらに乾式の冷間圧延(すなわち伸線)を施して鋼素線を製造する。熱間圧延や冷間圧延の操業条件は、特定の条件に限定せず、所望の寸法形状の鋼素線を製造する条件であれば良い。   Using a converter or an electric furnace, molten steel having the above composition is produced. The melting method of the molten steel is not limited to a specific technique, and a conventionally known technique is used. Next, a steel material (for example, billet) is manufactured from the obtained molten steel by a continuous casting method, an ingot-making method, or the like. After this steel material is heated, hot rolling is performed, and dry cold rolling (that is, wire drawing) is further performed to manufacture a steel strand. The operating conditions for hot rolling and cold rolling are not limited to specific conditions, and may be any conditions as long as they produce a steel wire having a desired size and shape.

さらに鋼素線は、焼鈍−酸洗−銅めっき−伸線加工−潤滑剤塗布の工程を必要に応じて順次施して、所定の製品すなわち溶接用鋼ワイヤとなる。
正極性の炭酸ガスシールドアーク溶接においては、逆極性の溶接に比べて、給電不良に起因してアークが不安定になりやすい。しかし、鋼素線の表面に厚さ0.5μm以上の銅めっきを施すことによって、溶接用鋼ワイヤの給電不良に起因するアークの不安定化を防止できる。なお、銅めっきの厚さを0.8μm以上とすると、給電不良防止の効果が顕著に発揮されるので一層好ましい。このようにして銅めっきを厚目付とすることによって、給電チップの損耗も低減できるという効果も得られる。
Further, the steel wire is sequentially subjected to annealing, pickling, copper plating, wire drawing, and lubricant application as necessary to form a predetermined product, that is, a steel wire for welding.
In positive carbon dioxide shielded arc welding, the arc is likely to become unstable due to power feeding failure as compared with welding with reverse polarity. However, by performing copper plating with a thickness of 0.5 μm or more on the surface of the steel wire, it is possible to prevent arc instability due to poor power feeding of the welding steel wire. In addition, it is more preferable that the thickness of the copper plating is 0.8 μm or more because an effect of preventing power feeding failure is remarkably exhibited. By making the copper plating thicker in this way, there is also an effect that the wear of the power supply tip can be reduced.

しかし鋼素線中のCu含有量も含めて、溶接用鋼ワイヤのCu量が3.0質量%を超えると、溶接金属の靭性が著しく低下する。したがって、溶接用鋼ワイヤのCu量(すなわち鋼素線のCu含有量と銅めっきのCu含有量の合計)を3.0質量%以下とするのが好ましい。
このようにして製造した溶接用鋼ワイヤを用いて炭酸ガスシールドアーク溶接を行なう際に、給電の安定性を高めて、溶滴のスプレー移行を安定して維持するために、溶接用鋼ワイヤの平坦度(すなわち実表面積/理論表面積)を1.01未満とすることが好ましい。溶接用鋼ワイヤの平坦度は、伸線加工におけるダイス管理を厳格に行なうことによって1.01未満の範囲に維持することが可能である。
However, when the Cu content of the steel wire for welding, including the Cu content in the steel strand, exceeds 3.0% by mass, the toughness of the weld metal is significantly reduced. Therefore, it is preferable that the Cu content of the steel wire for welding (that is, the sum of the Cu content of the steel strand and the Cu content of the copper plating) is 3.0 mass% or less.
When carbon dioxide shielded arc welding is performed using the welding steel wire thus manufactured, in order to increase the stability of the power feeding and stably maintain the spray transfer of the droplets, The flatness (that is, the actual surface area / theoretical surface area) is preferably less than 1.01. The flatness of the welding steel wire can be maintained in a range of less than 1.01 by strictly controlling the dies in the wire drawing.

溶接用鋼ワイヤの送給性を向上するために、溶接用鋼ワイヤの表面(すなわち鋼素線の表面あるいは銅めっきの表面)に潤滑油を塗布しても良い。潤滑油の塗布量は、溶接用鋼ワイヤ10kgあたり0.35〜1.7gの範囲内が好ましい。
なお、溶接用鋼ワイヤを製造する工程で、溶接用鋼ワイヤの表面に種々の不純物が付着する。特に固体の不純物の付着量を、溶接用鋼ワイヤ10kgあたり0.01g以下に抑制すると、給電の安定性が一層向上する。
In order to improve the feedability of the welding steel wire, lubricating oil may be applied to the surface of the welding steel wire (that is, the surface of the steel wire or the surface of the copper plating). The application amount of the lubricating oil is preferably within a range of 0.35 to 1.7 g per 10 kg of the welding steel wire.
In the process of manufacturing a welding steel wire, various impurities adhere to the surface of the welding steel wire. In particular, when the amount of solid impurities deposited is suppressed to 0.01 g or less per 10 kg of the welding steel wire, the power feeding stability is further improved.

このようして製造した溶接用鋼ワイヤを用いてガスシールドアーク溶接を行なう際のシールドガスと極性について、以下に説明する。
シールドガスは、ArガスとCO2 ガスとを合計60体積%以上含有する混合ガスを用いる。なお、CO2 ガスを単独(すなわちCO2 ガスの比率:100体積%)でシールドガスとして使用しても、支障なくガスシールドアーク溶接を行なうことができる。
The shield gas and polarity when performing gas shielded arc welding using the steel wire for welding thus manufactured will be described below.
As the shielding gas, a mixed gas containing 60% by volume or more of Ar gas and CO 2 gas is used. Even if CO 2 gas is used alone (that is, CO 2 gas ratio: 100% by volume) as a shielding gas, gas shield arc welding can be performed without any trouble.

ガスシールドアーク溶接は、酸化性ガスを含まない不活性ガスのArをシールドガスとして用いるミグ溶接,不活性なArと活性なCO2 との混合ガスをシールドガスとして用いる混合ガスシールドアーク溶接,活性なCO2 をシールドガスとして用いる炭酸ガスシールドアーク溶接に大別される。一般に、ミグ溶接と混合ガスシールドアーク溶接では溶滴のスプレー移行が可能であるが、炭酸ガスシールドアーク溶接ではCO2 の解離−吸熱反応によって溶滴はグロビュール移行となることが知られている。しかし本発明を適用すれば、炭酸ガスシールドアーク溶接であっても溶滴のスプレー移行が可能となる。 For gas shielded arc welding, MIG welding using inert gas Ar, which does not contain oxidizing gas, as shielding gas, mixed gas shielding arc welding, using mixed gas of inert Ar and active CO 2 as shielding gas, active And carbon dioxide shielded arc welding using CO 2 as the shielding gas. In general, spray transfer of droplets is possible in MIG welding and mixed gas shielded arc welding, but it is known that in carbon dioxide shielded arc welding, the droplets become globule transfer due to the dissociation-endothermic reaction of CO 2 . However, by applying the present invention, spray transfer of droplets is possible even with carbon dioxide shielded arc welding.

また希土類元素を含有する鋼素線からなる溶接用鋼ワイヤを用いるので、正極性でガスシールドアーク溶接を行なうことが好ましい。その理由は、希土類元素が正極性でアークを安定させ、溶滴のスプレー移行を促進するからである。 Further, since a steel wire for welding made of a steel wire containing a rare earth element is used, it is preferable to perform gas shield arc welding with positive polarity. The reason is that the rare earth element is positive, stabilizes the arc, and promotes spray transfer of the droplets.

製鋼段階で成分を調整し、連続鋳造によって製造されたビレットを熱間圧延して、直径5.5〜7.0mmの線材とした。次いで冷間圧延(すなわち伸線)によって直径2.0〜2.8mmの鋼素線とした。得られた鋼素線の成分を表1,2に示す。   The components were adjusted in the steel making stage, and the billet produced by continuous casting was hot-rolled to obtain a wire having a diameter of 5.5 to 7.0 mm. Subsequently, the steel strand having a diameter of 2.0 to 2.8 mm was formed by cold rolling (that is, wire drawing). The components of the obtained steel wire are shown in Tables 1 and 2.

Figure 0005280060
Figure 0005280060

Figure 0005280060
Figure 0005280060

その後、これらの鋼素線を、露点10℃以下,酸素濃度200体積ppm以下,二酸化炭素濃度0.1体積%以下の窒素雰囲気中で焼鈍した。その後、 鋼素線に酸洗を施し、次いで必要に応じて鋼素線の表面に銅めっきを施した。さらに冷間で伸線加工(乾式伸線)を施して、直径0.8〜1.6mmの溶接用鋼ワイヤを製造した。さらに、溶接用鋼ワイヤの表面に潤滑油を溶接用鋼ワイヤ10kgあたり0.4〜0.8g塗布した。   Thereafter, these steel wires were annealed in a nitrogen atmosphere having a dew point of 10 ° C. or less, an oxygen concentration of 200 volume ppm or less, and a carbon dioxide concentration of 0.1 volume% or less. Then, the steel strand was pickled, and then the surface of the steel strand was plated with copper as necessary. Furthermore, cold drawing was performed (dry drawing) to produce a welding steel wire having a diameter of 0.8 to 1.6 mm. Furthermore, 0.4 to 0.8 g of lubricating oil was applied to the surface of the welding steel wire per 10 kg of the welding steel wire.

これらの溶接用鋼ワイヤを用いて厚鋼板(V型開先)のガスシールドアーク溶接を初層のみ行なった。ガスシールドアーク溶接は6軸溶接ロボットを用い、シールドノズルはV字型に加工してシールド性を確保した。シールドガスの流量は20〜25 liter/分とした。その他の溶接条件は表3に示す。   Using these steel wires for welding, only the first layer was subjected to gas shielded arc welding of a thick steel plate (V-shaped groove). For gas shielded arc welding, a 6-axis welding robot was used, and the shield nozzle was processed into a V shape to ensure shielding properties. The flow rate of the shielding gas was 20-25 liter / min. Other welding conditions are shown in Table 3.

Figure 0005280060
Figure 0005280060

初層の溶接ビードを目視で観察し、溶接ビード中央の盛り上がり(凸)が2mm未満を良(○),溶接ビード中央の盛り上がり(凸)が2mm以上5mm未満を可(△),溶接ビード中央の盛り上がり(凸)が5mm以上またはピットが認められたものを不可(×)として評価した。その結果を表4に示す。
また、初層の溶接ビードの溶接開始点から20mm,100mm,中央(=125mm),150mm,230mmの5ケ所で高温割れの有無を調査した。5ケ所の調査結果にて、いずれも高温割れが認められなかったものを良(○),1ケ所でも高温割れが認められたものを不可(×)として評価した。その結果を表4に示す。
The weld bead in the first layer is visually observed, and the bulge (convex) at the center of the weld bead is less than 2 mm (○), the bulge (convex) at the center of the weld bead is 2 mm or more and less than 5 mm (△), the center of the weld bead When the swell (convex) of 5 mm or more or a pit was recognized, it was evaluated as impossible (x). The results are shown in Table 4.
In addition, the presence or absence of hot cracking was investigated at five locations of 20 mm, 100 mm, center (= 125 mm), 150 mm, and 230 mm from the welding start point of the first layer weld bead. According to the results of the five surveys, the case where no hot cracking was observed was evaluated as good (◯), and the case where hot cracking was observed in one location was evaluated as unacceptable (×). The results are shown in Table 4.

さらに、初層の溶接ビードの溶接開始点から20mm,100mm,中央(=125mm),150mm,230mmの5ケ所の断面を観察して、溶け込みを観察した。5ケ所の調査結果にて、いずれも深さ1mm以上の溶け込みが認められたものを良(○),いずれも溶け込みが認められるが1ケ所でも深さ1mm未満の溶け込みが認められたものを可(△),1ケ所でも溶け込みが認められなかったもの(溶け込み深さ0mm)を不可(×)として評価した。その結果を表4に示す。   Furthermore, from the welding start point of the first-layer weld bead, cross sections at five locations of 20 mm, 100 mm, center (= 125 mm), 150 mm, and 230 mm were observed to observe penetration. According to the survey results at 5 locations, all were found to have a penetration of 1 mm or more in depth (○), all of which were found to have penetration but less than 1 mm in depth were accepted at one location. (Δ), the case where no penetration was observed even at one place (penetration depth 0 mm) was evaluated as impossible (×). The results are shown in Table 4.

Figure 0005280060
Figure 0005280060

表4から明らかなように、溶接ビードの外観は発明例の方が優れていた。また高温割れは発明例では認められず、溶け込みも発明例の方が良好であった。   As is apparent from Table 4, the appearance of the weld bead was superior to that of the inventive example. Also, hot cracking was not observed in the invention example, and the penetration was better in the invention example.

溶接トーチの移動範囲の例を模式的に示す平面図である。It is a top view which shows typically the example of the moving range of a welding torch. 溶接トーチの先端の運動の例を示す平面図である。It is a top view which shows the example of a motion of the front-end | tip of a welding torch.

符号の説明Explanation of symbols

1 溶融プール
2 溶接線
3 溶接トーチが最も前進したときの溶接トーチの先端位置
4 溶接トーチが最も後退したときの溶接トーチの先端位置
5 溶接トーチ
DESCRIPTION OF SYMBOLS 1 Molten pool 2 Welding line 3 Welding torch tip position when welding torch is most advanced 4 Welding torch tip position when welding torch is most retracted 5 Welding torch

Claims (3)

溶接トーチをオシレートさせながら初層溶接を行なうガスシールドアーク溶接方法において、前記オシレートの回数をW(回/分)とし、溶接速度をS(cm/分)として、下記の(1)式で算出されるD値が0.5〜10.0の範囲内を満足するとともに、前記溶接速度が5〜60cm/分の範囲内を満足し、前記オシレートの溶接線に平行な成分が15〜45mmの範囲内で毎分30〜150回オシレートさせながら、希土類元素を0.015〜0.100質量%含有する鋼素線からなる溶接用鋼ワイヤを用いて正極性で開先角度50°以下のガスシールドアーク溶接を行なうことを特徴とする初層の高温割れを防止するガスシールドアーク溶接方法。
D=W/S ・・・(1)
W:オシレートの回数(回/分)
S:溶接速度(cm/分)
In the gas shielded arc welding method in which the first layer welding is performed while oscillating the welding torch, the number of times of oscillating is W (times / minute), the welding speed is S (cm / minute), and the following equation (1) is used. The D value is within the range of 0.5 to 10.0, the welding speed is within the range of 5 to 60 cm / min, and the component parallel to the weld line of the oscillate is within the range of 15 to 45 mm. Characterized by gas shielded arc welding with a positive polarity and a groove angle of 50 ° or less using a steel wire made of steel wire containing 0.015 to 0.100% by mass of rare earth elements while oscillating 30 to 150 times per minute A gas shielded arc welding method that prevents hot cracking of the first layer .
D = W / S (1)
W: Number of times of oscillation (times / minute)
S: Welding speed (cm / min)
前記シールドガスが、CO2 ガスとArガスとを合計60体積%以上含有する混合ガスであることを特徴とする請求項1に記載の初層の高温割れを防止するガスシールドアーク溶接方法。 The gas shielded arc welding method for preventing hot cracking of the first layer according to claim 1, wherein the shielding gas is a mixed gas containing 60% by volume or more of CO 2 gas and Ar gas in total. 前記シールドガスが、CO2 ガス100体積%であることを特徴とする請求項1に記載の初層の高温割れを防止するガスシールドアーク溶接方法。
The gas shielded arc welding method for preventing hot cracking of an initial layer according to claim 1, wherein the shielding gas is 100 volume% of CO 2 gas.
JP2008026338A 2007-02-09 2008-02-06 Gas shield arc welding method Active JP5280060B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008026338A JP5280060B2 (en) 2007-02-09 2008-02-06 Gas shield arc welding method

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2007030582 2007-02-09
JP2007030582 2007-02-09
JP2008026338A JP5280060B2 (en) 2007-02-09 2008-02-06 Gas shield arc welding method

Publications (2)

Publication Number Publication Date
JP2008213042A JP2008213042A (en) 2008-09-18
JP5280060B2 true JP5280060B2 (en) 2013-09-04

Family

ID=39833707

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008026338A Active JP5280060B2 (en) 2007-02-09 2008-02-06 Gas shield arc welding method

Country Status (1)

Country Link
JP (1) JP5280060B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5402824B2 (en) * 2010-05-13 2014-01-29 新日鐵住金株式会社 Multi-electrode submerged arc welding method with excellent weldability
US9950394B2 (en) * 2012-03-12 2018-04-24 Hobart Brothers Company Systems and methods for welding electrodes

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5212647A (en) * 1975-07-22 1977-01-31 Kobe Steel Ltd Arc welding process
JP2005230868A (en) * 2004-02-20 2005-09-02 Jfe Steel Kk High speed rotary arc welding method

Also Published As

Publication number Publication date
JP2008213042A (en) 2008-09-18

Similar Documents

Publication Publication Date Title
CA2498116C (en) Metal-core gas-metal arc welding of ferrous steels with noble gas shielding
JP2007289965A (en) Flux-cored wire for gas shielded arc welding and welding method
JP5472244B2 (en) Narrow groove butt welding method for thick steel plates
EP1350592A1 (en) Steel wire for mag welding and mag welding method using the same
JP6800770B2 (en) Pulse MAG welding method for thin steel sheets
JP2002239725A (en) Gas-shielded arc welding for steel sheet
JP2007118068A (en) Narrow groove butt welding method for thick steel plate
JP4930048B2 (en) Plasma arc hybrid welding method to improve joint fatigue strength of lap fillet welded joint
JP4830308B2 (en) Multi-layer carbon dioxide shielded arc welding method for thick steel plates
JP3951593B2 (en) MAG welding steel wire and MAG welding method using the same
JP5280060B2 (en) Gas shield arc welding method
JP3941528B2 (en) Carbon dioxide shielded arc welding wire
JP2007268577A (en) Method of tandem arc welding
JP3945396B2 (en) Steel wire for carbon dioxide shielded arc welding and welding method using the same
JP2007118069A (en) Gas-shielded arc welding method
JP4529482B2 (en) Fillet welding method
JP7541650B2 (en) Positive polarity MAG welding wire and positive polarity MAG welding method using the same
JP3969322B2 (en) Steel wire for carbon dioxide shielded arc welding and welding method using the same
JP3906827B2 (en) Steel wire for carbon dioxide shielded arc welding and welding method using the same
EP4306254A1 (en) Arc-welded joint and arc-welding method
JP3941756B2 (en) Carbon steel wire for carbon dioxide shielded arc welding
KR100501984B1 (en) Steel wire for mag welding in dc-electrode and mag welding method using the same
JP5051966B2 (en) Sideways carbon dioxide shielded arc welding method
JP2004249353A (en) Steel wire for carbon dioxide gas shielded arc welding, and welding method using the same
JP3941755B2 (en) Steel wire for carbon dioxide shielded arc welding and welding method using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100730

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111220

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120216

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120731

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121030

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20121106

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20130125

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130522

R150 Certificate of patent or registration of utility model

Ref document number: 5280060

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250