JP3941756B2 - Carbon steel wire for carbon dioxide shielded arc welding - Google Patents

Carbon steel wire for carbon dioxide shielded arc welding Download PDF

Info

Publication number
JP3941756B2
JP3941756B2 JP2003281580A JP2003281580A JP3941756B2 JP 3941756 B2 JP3941756 B2 JP 3941756B2 JP 2003281580 A JP2003281580 A JP 2003281580A JP 2003281580 A JP2003281580 A JP 2003281580A JP 3941756 B2 JP3941756 B2 JP 3941756B2
Authority
JP
Japan
Prior art keywords
mass
welding
steel wire
less
carbon dioxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003281580A
Other languages
Japanese (ja)
Other versions
JP2005046879A (en
Inventor
時彦 片岡
倫正 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2003281580A priority Critical patent/JP3941756B2/en
Publication of JP2005046879A publication Critical patent/JP2005046879A/en
Application granted granted Critical
Publication of JP3941756B2 publication Critical patent/JP3941756B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Arc Welding In General (AREA)

Description

本発明は、炭酸ガスシールドアーク溶接用鋼ワイヤ(以下、溶接用鋼ワイヤという)の鋼素線に係り、特に希土類元素を均一に分布し、かつ優れた製造性を有し、溶接用鋼ワイヤとして用いると安定した溶滴移行が得られる溶接用鋼ワイヤの鋼素線に関する。   The present invention relates to a steel wire of a carbon dioxide shielded arc welding steel wire (hereinafter referred to as a welding steel wire), and more particularly, a rare earth element is uniformly distributed and has excellent manufacturability. It is related with the steel strand of the steel wire for welding from which the stable droplet transfer is obtained when used as.

シールドガスとしてCO 2 ガスを用いるガスシールドアーク溶接は、CO 2 ガスが安価であるとともに、能率の良い溶接法であるので、鉄鋼材料の溶接に広く利用されている。特に自動溶接の急速な普及によって、造船,建築,橋梁,自動車,建設機械等の種々の分野で使用されている。造船,建築,橋梁の分野では厚板の高電流多層溶接に使用され、自動車,建築機械の分野では薄板の隅肉溶接に使用されることが多い。 Gas shielded arc welding using CO 2 gas as the shielding gas is widely used for welding steel materials because CO 2 gas is inexpensive and is an efficient welding method. In particular, due to the rapid spread of automatic welding, it is used in various fields such as shipbuilding, architecture, bridges, automobiles and construction machinery. It is often used for high-current multilayer welding of thick plates in the fields of shipbuilding, construction, and bridges, and is often used for fillet welding of thin plates in the fields of automobiles and construction machinery.

ArガスとCO 2 ガスとの混合ガス(CO 2 の混合比率:2〜40体積%)をシールドガスとする溶接法(いわゆる混合ガスアーク溶接)は、溶滴が溶接ワイヤの直径よりも小さい微細なスプレー移行が可能となる。この溶滴のスプレー移行は、溶滴移行形態の中で最も優れており、スパッタの発生が少なく、溶接のビード形状が優れ、高速溶接にも適していることが知られている。そのため混合ガスアーク溶接は、高品質な溶接を必要とする分野で利用されている。 A welding method (so-called mixed gas arc welding) in which a mixed gas of Ar gas and CO 2 gas (mixing ratio of CO 2 : 2 to 40% by volume) is a shielding gas is a fine method in which droplets are smaller than the diameter of the welding wire. Spray transfer is possible. It is known that the spray transfer of the droplet is the best among the droplet transfer modes, the generation of spatter is small, the weld bead shape is excellent, and it is suitable for high-speed welding. Therefore, mixed gas arc welding is used in fields that require high-quality welding.

しかしながらArガスのコストは、CO 2 ガスの5倍と高価であるから、実際の溶接施工においてはArガスの使用量を削減して、CO 2 ガスの混合比率を50体積%以上とした混合ガスをシールドガスとして使用する場合が多い。このようなCO 2 ガスの混合比率が50体積%以上のシールドガスを用いると、通常の混合ガスアーク溶接(シールドガスのCO 2 混合比率:2〜40体積%)に比べて10〜20倍の粗大な溶滴が溶接ワイヤ先端に懸垂し、アーク力によって揺れ動きながら移行(いわゆるグロビュール移行)する。このようなグロビュール移行が生じると、母材(すなわち鋼板)との短絡や再アークによるスパッタが多量に発生し、ビード形状が安定しない。特に高速溶接においては、ビード形状が凹凸(いわゆるハンピングビード)になりやすいという問題があった。 However the cost of Ar gas, because it is expensive and 5 times the CO 2 gas, in the actual welding is by reducing the amount of Ar gas, a mixed gas obtained by the mixing ratio of CO 2 gas and 50 vol% or more Is often used as a shielding gas. When a shielding gas having a CO 2 gas mixing ratio of 50% by volume or more is used, it is 10 to 20 times coarser than ordinary mixed gas arc welding ( CO 2 mixing ratio of shielding gas: 2 to 40% by volume). A small droplet hangs on the tip of the welding wire and moves while swinging by the arc force (so-called globule transfer). When such globule transition occurs, a large amount of short circuit with the base material (that is, steel plate) and spatter due to re-arcing occur, and the bead shape is not stable. Particularly in high-speed welding, there is a problem that the bead shape tends to be uneven (so-called humping bead).

この問題点に対して、特開2002-14408 号公報や特開昭63-281796 号公報に示されるように、希土類元素(以下、REM という)の添加によるガスシールドアーク溶接のアーク安定化の効果が開示されている。しかし、これらの技術では鋼素線の長手方向に均一に REMを分布させるのは困難である。そのため、CO 2 ガスを主成分するシールドガス(シールドガスのCO 2 混合比率:60体積%以上)を用いる炭酸ガスシールドアーク溶接では、安定した溶滴の移行を得ることは困難であった。
特開2002-14408 号公報 特開昭63-281796 号公報
To solve this problem, as shown in Japanese Patent Laid-Open No. 2002-14408 and Japanese Patent Laid-Open No. 63-281796, the effect of arc stabilization of gas shielded arc welding by adding rare earth elements (hereinafter referred to as REM). Is disclosed. However, with these techniques, it is difficult to distribute REM uniformly in the longitudinal direction of the steel wire. Therefore, it is difficult to obtain stable droplet transfer in carbon dioxide shielded arc welding using a shielding gas containing CO 2 gas as a main component ( CO 2 mixing ratio of shielding gas: 60% by volume or more).
Japanese Patent Laid-Open No. 2002-14408 JP 63-281796 A

本発明は上記の問題に鑑み開発されたもので、CO 2 ガスを主成分とするシールドガス(シールドガスのCO 2 混合比率:60体積%以上)を用いる炭酸ガスシールドアーク溶接において、常に安定したスプレー移行が得られ、高入熱溶接におけるスパッタ発生の低減のみならず、優れた製造性が得られる溶接用鋼ワイヤの素材となる鋼素線を提供することを目的とする。 The present invention has been developed in view of the above problems, (CO 2 the shielding gas mixture ratio: 60 vol% or more) shielding gas mainly composed of CO 2 gas in the carbon dioxide gas shielded arc welding using, always stable An object of the present invention is to provide a steel wire that is a raw material for a steel wire for welding that can achieve spray transfer and reduce spatter generation in high heat input welding as well as excellent manufacturability.

なお通常の炭酸ガスシールドアーク溶接ではArガスとCO 2 ガスとを混合したシールドガス(CO 2 の混合比率:2〜40体積%)を用いるが、本発明では、CO 2 ガスを主成分(すなわちCO 2 の混合比率:60体積%以上)とするシールドガスを使用する。したがって本発明における炭酸ガスシールドアーク溶接とは、CO 2 の混合比率が60体積%以上となるようにArガスとCO 2 ガスとを混合したシールドガスと用いる炭酸ガスシールドアーク溶接を指す。 In ordinary carbon dioxide shielded arc welding, a shield gas in which Ar gas and CO 2 gas are mixed ( CO 2 mixing ratio: 2 to 40% by volume) is used. In the present invention, CO 2 gas is used as a main component (ie, A shielding gas having a CO 2 mixing ratio of 60% by volume or more is used. Therefore, the carbon dioxide shielded arc welding in the present invention refers to carbon dioxide shielded arc welding using a shield gas in which Ar gas and CO 2 gas are mixed so that the mixing ratio of CO 2 is 60% by volume or more.

本発明者らは、CO 2 を主成分(すなわちCO 2 の混合比率:60体積%以上)とするシールドガスを用いる炭酸ガスシールドアーク溶接において、溶滴のスプレー移行を可能とし、スパッタ発生量を低減しかつビード形状を改善する技術について鋭意検討した。その結果、以下に述べる知見を得た。本発明は、これらの知見に基づいてなされたものである。 In the carbon dioxide shielded arc welding using a shielding gas containing CO 2 as a main component (that is, CO 2 mixing ratio: 60% by volume or more), the present inventors enable spray transfer of droplets and reduce the amount of spatter generated. We intensively studied the technology to reduce and improve the bead shape. As a result, the following knowledge was obtained. The present invention has been made based on these findings.

(a) 溶接用鋼ワイヤをマイナス極とする正極性の溶接を行ない、溶接用鋼ワイヤの鋼素線に REMを添加することによって、溶滴の安定したスプレー移行が可能となる。   (a) By performing positive polarity welding with the welding steel wire as the negative electrode and adding REM to the steel wire of the welding steel wire, stable spray transfer of the droplets becomes possible.

(b) 鋼素線の REMとSの相互作用を考慮して、REMとSの含有量を調整することによって、鋼素線の製造段階での歩留りを向上し、かつREM を均一に分布させて、溶接用鋼ワイヤとして使用する際に安定した溶滴移行を得ることが可能となる。   (b) By adjusting the content of REM and S in consideration of the interaction between REM and S in the steel wire, the yield at the manufacturing stage of the steel wire is improved and REM is distributed uniformly. Thus, it is possible to obtain stable droplet transfer when used as a welding steel wire.

すなわち本発明は、正極性の炭酸ガスシールドアーク溶接に使用する溶接用鋼ワイヤの鋼素線であって、C:0.20質量%以下、Si:2.5質量%以下、Mn:0.25〜3.5 質量%、O:0.0200質量%以下、Ca:0.0050質量%以下、希土類元素: 0.025〜0.050 質量%、P:0.05質量%以下、S:0.020質量%以下を含有し、必要に応じてAl:0.02〜3.00質量%,Ti:0.02〜0.50質量%,Zr:0.02〜0.50質量%,Cr:0.02〜3.0 質量%,Ni:0.05〜3.0 質量%,Mo:0.05〜1.5 質量%,Cu:0.05〜3.0 質量%,B:0.0005〜0.015 質量%,Mg: 0.001〜0.2 質量%,Nb: 0.005〜0.5 質量%またはV: 0.005〜0.5 質量%を含有し、残部がFeおよび不可避的不純物であり、かつ下記の (1)式で算出されるF値が6以下である炭酸ガスシールドアーク溶接用鋼ワイヤの鋼素線である。 That is, the present invention is a steel wire of a steel wire for welding used for positive carbon dioxide shielded arc welding, and C: 0.20 mass% or less, Si: 2.5 mass% or less, Mn: 0.25 to 3.5 mass%, O: 0.0200 mass% or less, Ca: 0.0050 mass% or less, rare earth element: 0.025 to 0.050 mass%, P: 0.05 mass% or less, S: 0.020 mass% or less, and Al: 0.02 to 3.00 mass as necessary %, Ti: 0.02-0.50 mass%, Zr: 0.02-0.50 mass%, Cr: 0.02-3.0 mass%, Ni: 0.05-3.0 mass%, Mo: 0.05-1.5 mass%, Cu: 0.05-3.0 mass%, B: 0.0005 to 0.015% by mass, Mg: 0.001 to 0.2% by mass, Nb: 0.005 to 0.5% by mass or V: 0.005 to 0.5% by mass with the balance being Fe and inevitable impurities, ) Is a steel strand of a carbon dioxide shielded arc welding steel wire having an F value of 6 or less.

F=10000×[REM ]×[S] ・・・ (1)
[REM ]:鋼素線の希土類元素含有量(質量%)
[S] :鋼素線のS含有量(質量%
F = 10000 × [REM] × [S] (1)
[REM]: Rare earth element content of steel wire (mass%)
[S]: S content of steel wire (mass% )

なお、ここで鋼素線からなる溶接用鋼ワイヤとは、溶接用フラックスを内装せず、素材となる鋼素線を主体とするワイヤ(いわゆるソリッドワイヤ)を指す。また本発明は、鋼素線の表面にめっきを施したり、あるいは潤滑剤を塗布したソリッドワイヤにも支障なく適用できる。   In addition, the steel wire for welding which consists of a steel strand here refers to the wire (what is called a solid wire) which does not incorporate the welding flux and mainly has the steel strand used as a raw material. Further, the present invention can be applied to a solid wire in which the surface of a steel wire is plated or a lubricant is applied without any trouble.

本発明によれば、正極性の炭酸ガスシールドアーク溶接において不可能とされてきた極低スパッタ化を達成でき、かつビード形状を改善でき、安定した厚鋼板継手溶接が可能となる。   According to the present invention, it is possible to achieve ultra-low sputtering, which has been impossible in positive carbon dioxide shielded arc welding, improve the bead shape, and enable stable thick steel plate joint welding.

まず本発明の炭酸ガスシールドアーク溶接用鋼ワイヤ(すなわち溶接用鋼ワイヤ)の鋼素線の成分を限定した理由について説明する。   First, the reason why the steel wire component of the steel wire for carbon dioxide shielded arc welding of the present invention (that is, the steel wire for welding) is limited will be described.

C:0.20質量%以下
Cは、溶接金属の強度を確保するのに必要な元素であり、溶融メタルの粘性を低下させて流動性を向上させる効果がある。しかしC含有量が0.20質量%を超えると、溶滴および溶融メタルの挙動が不安定となるのみならず、炭酸ガスシールドアーク溶接に用いた場合の溶接金属の靭性低下を招く。したがって、Cは0.20質量%以下とした。一方、C含有量を過剰に減少させると溶接金属の強度を確保できない。そのため、 0.003〜0.20質量%とするのが好ましい。なお、0.01〜0.10質量%が一層好ましい。
C: 0.20 mass% or less C is an element necessary for ensuring the strength of the weld metal, and has the effect of reducing the viscosity of the molten metal and improving the fluidity. However, if the C content exceeds 0.20% by mass, not only the behavior of the droplets and the molten metal becomes unstable, but also the toughness of the weld metal when used in carbon dioxide shielded arc welding is reduced. Therefore, C is 0.20% by mass or less. On the other hand, if the C content is excessively reduced, the strength of the weld metal cannot be ensured. Therefore, it is preferable to set it as 0.003-0.20 mass%. In addition, 0.01-0.10 mass% is still more preferable.

Si:2.5 質量%以下
Siは、脱酸作用を有し、溶融メタルの脱酸に有効な元素である。 2.5質量%を超えると、溶接金属の靱性が著しく低下する。したがって、Siは2.5 質量%以下の範囲内を満足する必要がある。さらに正極性(すなわち溶接用鋼ワイヤをマイナス極)の炭酸ガスシールドアーク溶接におけるアークの広がりを抑え、溶滴の移行回数を増大させるためには、0.25質量%以上が望ましい。そのため、0.25〜2.5 質量%とするのが好ましい。
Si: 2.5% by mass or less
Si has a deoxidizing action and is an effective element for deoxidizing molten metal. If it exceeds 2.5% by mass, the toughness of the weld metal is significantly reduced. Therefore, Si needs to satisfy the range of 2.5% by mass or less. Further, in order to suppress the spread of the arc in the positive polarity (that is, the negative electrode of the welding steel wire) carbon dioxide shielded arc welding and increase the number of times of droplet transfer, 0.25% by mass or more is desirable. Therefore, it is preferable to set it as 0.25-2.5 mass%.

Mn:0.25〜3.5 質量%
Mnは、Siと同様に脱酸作用を有し、炭酸ガスシールドアーク溶接における溶融メタルの脱酸のためには不可欠な元素である。Mn含有量が0.25質量%未満では、溶融メタルの脱酸が不足し、溶接金属にブローホールが発生する。一方、 3.5質量%を超えると、溶接金属の靭性が低下する。したがって、Mnは0.25〜3.5 質量%の範囲内を満足する必要がある。なお、溶融メタルの脱酸を促進し、ブローホールを防止するためには、0.45質量%以上が望ましい。そのため、0.45〜3.5 質量%とするのが好ましい。
Mn: 0.25 to 3.5% by mass
Mn has a deoxidizing action like Si, and is an indispensable element for deoxidizing molten metal in carbon dioxide shielded arc welding. When the Mn content is less than 0.25% by mass, deoxidation of the molten metal is insufficient, and blow holes are generated in the weld metal. On the other hand, if it exceeds 3.5% by mass, the toughness of the weld metal decreases. Therefore, Mn needs to satisfy the range of 0.25 to 3.5% by mass. In order to promote deoxidation of molten metal and prevent blowholes, 0.45% by mass or more is desirable. Therefore, it is preferable to set it as 0.45-3.5 mass%.

O:0.0200質量%以下
Oは、正極性の炭酸ガスシールドアーク溶接において溶接用鋼ワイヤの先端に懸垂した溶滴に発生するアーク点を不安定にし、溶滴を微細化する作用がある。しかし、O含有量が 0.0200質量%を超えると、正極性の高電流溶接におけるアークの安定化というREM 添加の効果が損なわれ、溶滴の揺動が増大してスパッタが多量に発生する。またOは、鋼素線の鋼材を溶製する製鋼段階で REMと激しく反応してスラグを形成する作用を有しており、O含有量が0.0200質量%を超えると、REM の歩留りが著しく低下する。したがって、Oは0.0200質量%以下とした。ただし、O含有量が0.0010質量%未満では、O添加の効果は充分に得られない。したがって、 0.0010〜0.0200質量%が好ましく、さらに0.0010〜0.0050質量%が一層好ましい。
O: 0.0200% by mass or less O has an effect of destabilizing an arc point generated in a droplet suspended from a tip of a welding steel wire in positive carbon dioxide shielded arc welding and making the droplet fine. However, if the O content exceeds 0.0200% by mass, the effect of REM addition for stabilizing the arc in high-current welding with positive polarity is impaired, and the fluctuation of the droplets increases, resulting in a large amount of spatter. In addition, O has the effect of reacting violently with REM to form slag at the steelmaking stage where the steel material of the steel wire is melted. If the O content exceeds 0.0200 mass%, the yield of REM decreases significantly. To do. Therefore, O is set to 0.0200 mass% or less. However, if the O content is less than 0.0010% by mass, the effect of adding O cannot be sufficiently obtained. Therefore, 0.0010-0.0200 mass% is preferable, and 0.0010-0.0050 mass% is still more preferable.

REM : 0.025〜0.050 質量%
REM は、製鋼および鋳造時の硫化物の中央偏析を抑制し、その形態をフィルム状から球状に変化させることで、鋼材板厚方向の靱性改善のために有効な元素である。正極性(すなわち溶接用鋼ワイヤをマイナス極)の炭酸ガスシールドアーク溶接においては、溶滴移行を安定化するために不可欠な元素である。REM 含有量が 0.025質量%未満では、アークの安定化が十分ではなく、スプレー移行とグロビュール移行が混在した不安定な移行形態となる。しかしREM 硫化物は加工における延性が乏しく、REM含有量が0.050質量%を超えると、粗大な硫化物による鋼素線に表面欠陥が発生するばかりでなく、硫化物が不均一に分散することに起因して溶滴移行が不安定になる。また、後述するAl,Ti,Zrと結合して、さらに粗大な複合硫化物を形成しやすい。したがって、REM は 0.025〜0.050 質量%の範囲内を満足する必要がある。
REM: 0.025 to 0.050 mass%
REM is an effective element for improving the toughness in the steel sheet thickness direction by suppressing the central segregation of sulfide during steelmaking and casting, and changing its form from a film shape to a spherical shape. In carbon dioxide shielded arc welding with positive polarity (that is, a welding steel wire minus electrode), this element is indispensable for stabilizing droplet transfer. When the REM content is less than 0.025% by mass, the arc is not sufficiently stabilized, resulting in an unstable transition form in which spray transition and globule transition are mixed. However, REM sulfide has poor ductility in processing, and if the REM content exceeds 0.050% by mass, not only will surface defects occur in the steel strands due to coarse sulfides, but sulfides may be dispersed unevenly. As a result, droplet transfer becomes unstable. Moreover, it is easy to form a coarser composite sulfide by combining with Al, Ti, and Zr described later. Therefore, REM needs to satisfy the range of 0.025 to 0.050 mass%.

ここで REMとは、周期表の3族に属する元素の総称である。本発明では、原子番号57〜71の元素を使用するのが好ましく、特にCe,Laが好適である。Ce,Laを鋼素線に添加する場合は、CeまたはLaを単独で添加しても良いし、CeおよびLaを併用しても良い。なお、CeおよびLaをともに添加する場合は、あらかじめCe:45〜80質量%,La:10〜45質量%の範囲内で混合して得られた混合物(たとえばミッシュメタル)を使用するのが好ましい。   Here, REM is a general term for elements belonging to Group 3 of the periodic table. In the present invention, it is preferable to use an element having an atomic number of 57 to 71, and Ce and La are particularly preferable. When Ce and La are added to the steel strand, Ce or La may be added alone, or Ce and La may be used in combination. In addition, when adding both Ce and La, it is preferable to use a mixture (for example, misch metal) obtained by mixing in the range of Ce: 45 to 80% by mass and La: 10 to 45% by mass in advance. .

P:0.05質量%以下
Pは、鋼の融点を低下させるとともに、電気抵抗率を向上させ、溶融効率を向上させる元素である。さらに正極性の炭酸ガスシールドアーク溶接において、溶滴を微細化し、アークを安定化する作用も有する。しかしP含有量が0.05質量%を超えると、正極性の炭酸ガスシールドアーク溶接において溶融メタルの粘性が著しく低下し、アークが不安定となり、小粒のスパッタが増加する。また、溶接金属の高温割れを生じる危険性が増大する。したがって、Pは0.05質量%以下とした。なお、好ましくは0.03質量%以下である。一方、 鋼素線の鋼材を溶製する製鋼段階でPを低減するためには長時間を要するので、生産性向上の観点から 0.002質量%以上が望ましい。そのため、 0.002〜0.03質量%とするのが好ましい。
P: 0.05% by mass or less P is an element that lowers the melting point of steel, improves electrical resistivity, and improves melting efficiency. Further, in the positive polarity carbon dioxide shielded arc welding, the droplets are refined to stabilize the arc. However, if the P content exceeds 0.05% by mass, the viscosity of the molten metal is significantly reduced in positive polarity carbon dioxide shielded arc welding, the arc becomes unstable, and small-particle spatter increases. In addition, the risk of hot cracking of the weld metal increases. Therefore, P is set to 0.05% by mass or less. In addition, Preferably it is 0.03 mass% or less. On the other hand, since it takes a long time to reduce P in the steelmaking stage where the steel material of the steel wire is melted, 0.002% by mass or more is desirable from the viewpoint of improving productivity. Therefore, it is preferable to set it as 0.002-0.03 mass%.

Ca:0.0050質量%以下
Caは、製鋼および鋳造時に不純物として溶鋼に混入したり、あるいは伸線加工時に不純物として鋼素線に混入する。正極性の炭酸ガスシールドアーク溶接では、Ca含有量が0.0050質量%を超えると、高電流溶接におけるアークの安定化というREM 添加の効果が損なわれる。したがって、Caは0.0050質量%以下とするのが好ましい。
Ca: 0.0050 mass% or less
Ca is mixed into the molten steel as an impurity during steelmaking and casting, or mixed into the steel strand as an impurity during wire drawing. In positive carbon dioxide shielded arc welding, if the Ca content exceeds 0.0050% by mass, the effect of REM addition, which stabilizes the arc in high current welding, is impaired. Therefore, Ca is preferably 0.0050% by mass or less.

S:0.020質量%以下
Sは、溶融メタルの粘性を低下させ、溶接用鋼ワイヤの先端に懸垂した溶滴の離脱を促進し、正極性の炭酸ガスシールドアーク溶接においてアークを安定化する。しかしS含有量が0.020質量%を超えると、粗大なREM 硫化物を形成し、偏析に起因して表面の凹凸により鋼素線の歩留りを著しく低下させる。したがって、Sは0.020質量%以下とした。なお、好ましくは0.015質量%以下である。一方、 鋼素線の鋼材を溶製する製鋼段階でSを低減するためには長時間を要するので、生産性向上の観点から 0.001質量%以上が望ましい。そのため、 0.001〜0.015質量%とするのが好ましい。
S: 0.020% by mass or less S lowers the viscosity of the molten metal, promotes the detachment of the droplet suspended from the tip of the welding steel wire, and stabilizes the arc in positive carbon dioxide shielded arc welding. However, if the S content exceeds 0.020% by mass, coarse REM sulfide is formed, and the yield of the steel wire is significantly reduced due to surface irregularities due to segregation. Therefore, S is set to 0.020% by mass or less. In addition, Preferably it is 0.015 mass% or less. On the other hand, since it takes a long time to reduce S in the steelmaking stage where the steel material of the steel wire is melted, 0.001% by mass or more is desirable from the viewpoint of improving productivity. Therefore, it is preferable to set it as 0.001-0.015 mass%.

さらに、鋼素線の鋼材を溶製する製鋼段階で REMの歩留り向上と均一分布を達成し、かつ加工性を向上させて優れた製造性を確保するためには、下記の (1)式で算出されるF値が6.0以下を満足する必要がある。   Furthermore, in order to achieve REM yield improvement and uniform distribution in the steelmaking stage where the steel material of the steel wire is melted, and to improve workability and ensure excellent manufacturability, the following equation (1) is used: The calculated F value must satisfy 6.0 or less.

F=10000×[REM ]×[S] ・・・ (1)
[REM ]:鋼素線の希土類元素含有量(質量%)
[S] :鋼素線のS含有量(質量%)
F値が6.0を超えると、REM とSとが結合して粗大なREM 硫化物を形成し、その偏析に起因して鋼素線の歩留りを著しく低下させるとともに、鋼素線長手方向の REM分布が不均一になり、正極性の炭酸ガスシールドアーク溶接においてアークの安定化を阻害する。鋼素線の表面に凹凸を生じて、正極性の炭酸ガスシールドアーク溶接においてアークの安定化を阻害する。
F = 10000 × [REM] × [S] (1)
[REM]: Rare earth element content of steel wire (mass%)
[S]: S content of steel wire (mass%)
When the F value exceeds 6.0, REM and S combine to form coarse REM sulfide, which significantly reduces the yield of the steel wire due to the segregation, and the REM distribution in the longitudinal direction of the steel wire. Becomes non-uniform and hinders the stabilization of the arc in positive polarity carbon dioxide shielded arc welding. Irregularities are produced on the surface of the steel wire, and the stabilization of the arc is inhibited in the positive carbon dioxide shielded arc welding.

さらに本発明では上記した組成に加えて、鋼素線が、Al:0.02〜3.00質量%,Ti:0.02〜0.50質量%およびZr:0.02〜0.50質量%のうちの1種または2種以上を含有することが好ましい。その理由について説明する。   Further, in the present invention, in addition to the above-described composition, the steel wire contains one or more of Al: 0.02-3.00 mass%, Ti: 0.02-0.50 mass%, and Zr: 0.02-0.50 mass%. It is preferable to do. The reason will be described.

Al,Ti,Zrは、いずれも強脱酸剤として作用するとともに、溶接金属の強度を増加する元素である。さらに溶融メタルの脱酸によって粘性を低下してビード形状を安定化(すなわちハンピングビードを抑制)する効果がある。このような効果を有する故に 350A以上の高電流溶接において有効な元素であり、必要に応じて添加する。Alが0.02質量%未満,Tiが0.02質量%未満,Zrが0.02質量%未満では、この効果は得られない。一方、 Alが3.00質量%を超える場合,Tiが0.50質量%を超える場合,Zrが0.50質量%を超える場合は、溶滴が粗大化して大粒のスパッタが多量に発生する。したがって、Al,Ti,Zrを含有する場合は、Al:0.02〜3.00質量%,Ti:0.02〜0.50質量%,Zr:0.02〜0.50質量%の範囲内を満足するのが好ましい。   Al, Ti, and Zr are all elements that act as strong deoxidizers and increase the strength of the weld metal. Furthermore, there exists an effect which stabilizes a bead shape (namely, suppresses a humping bead) by reducing a viscosity by deoxidation of molten metal. Because of this effect, it is an effective element for high current welding at 350 A or more, and it is added as necessary. This effect cannot be obtained if Al is less than 0.02 mass%, Ti is less than 0.02 mass%, and Zr is less than 0.02 mass%. On the other hand, when Al exceeds 3.00% by mass, Ti exceeds 0.50% by mass, or Zr exceeds 0.50% by mass, the droplets become coarse and a large amount of large spatter is generated. Therefore, when Al, Ti, and Zr are contained, it is preferable to satisfy the ranges of Al: 0.02 to 3.00 mass%, Ti: 0.02 to 0.50 mass%, and Zr: 0.02 to 0.50 mass%.

さらに必要に応じて下記の元素を添加しても、本発明の効果を減じるものではない。   Furthermore, the effects of the present invention are not reduced by adding the following elements as necessary.

Cr:0.02〜3.0 質量%,Ni:0.05〜3.0 質量%,Mo:0.05〜1.5 質量%,Cu:0.05〜3.0 質量%,B:0.0005〜0.015 質量%,Mg: 0.001〜0.2 質量%
Cr,Ni,Mo,Cu,B,Mgは、いずれも溶接金属の強度を増加し、耐候性を向上させる元素である。これらの元素の含有量が微少である場合は、このような効果は得られない。一方、過剰に添加すると、溶接金属の靭性の低下を招く。したがって、Cr,Ni,Mo,Cu,B,Mgを含有する場合は、Cr:0.02〜3.0 質量%,Ni:0.05〜3.0 質量%,Mo:0.05〜1.5 質量%,Cu:0.05〜3.0 質量%,B:0.0005〜0.015 質量%,Mg: 0.001〜0.2 質量%の範囲内を満足するのが好ましい。
Cr: 0.02 to 3.0 mass%, Ni: 0.05 to 3.0 mass%, Mo: 0.05 to 1.5 mass%, Cu: 0.05 to 3.0 mass%, B: 0.0005 to 0.015 mass%, Mg: 0.001 to 0.2 mass%
Cr, Ni, Mo, Cu, B, and Mg are all elements that increase the strength of the weld metal and improve the weather resistance. When the content of these elements is very small, such an effect cannot be obtained. On the other hand, when it adds excessively, the fall of the toughness of a weld metal will be caused. Therefore, when Cr, Ni, Mo, Cu, B, and Mg are contained, Cr: 0.02 to 3.0 mass%, Ni: 0.05 to 3.0 mass%, Mo: 0.05 to 1.5 mass%, Cu: 0.05 to 3.0 mass% B: 0.0005 to 0.015% by mass, Mg: 0.001 to 0.2% by mass is preferably satisfied.

Nb: 0.005〜0.5 質量%,V: 0.005〜0.5 質量%
Nb,Vは、いずれも溶接金属の強度,靭性を向上し、アークの安定性を向上させる元素である。これらの元素の含有量が微少である場合は、このような効果は得られない。一方、過剰に添加すると、溶接金属の靭性の低下を招く。したがって、Nb,Vを含有する場合は、Nb: 0.005〜0.5 質量%,V: 0.005〜0.5 質量%の範囲内を満足するのが好ましい。
Nb: 0.005 to 0.5 mass%, V: 0.005 to 0.5 mass%
Nb and V are elements that improve the strength and toughness of the weld metal and improve the stability of the arc. When the content of these elements is very small, such an effect cannot be obtained. On the other hand, when it adds excessively, the fall of the toughness of a weld metal will be caused. Therefore, when Nb and V are contained, it is preferable to satisfy the ranges of Nb: 0.005 to 0.5% by mass and V: 0.005 to 0.5% by mass.

上記した鋼素線の成分以外の残部は、Feおよび不可避的不純物である。たとえば、鋼材を溶製する段階や鋼素線を製造する段階で不可避的に混入する代表的な不可避的不純物であるNは、0.020質量%以下に低減するのが好ましい。   The balance other than the components of the steel strand described above is Fe and inevitable impurities. For example, N, which is a typical inevitable impurity inevitably mixed in the stage of melting a steel material or the stage of manufacturing a steel wire, is preferably reduced to 0.020% by mass or less.

次に、本発明の鋼素線の製造方法と、その鋼素線を用いた溶接用鋼ワイヤの製造方法について説明する。   Next, the manufacturing method of the steel strand of this invention and the manufacturing method of the steel wire for welding using the steel strand are demonstrated.

転炉または電気炉等を用いて、上記した組成を有する溶鋼を溶製する。この溶鋼の溶製方法は、特定の技術に限定せず、従来から知られている技術を使用する。次いで、得られた溶鋼を、連続鋳造法や造塊法等によって鋼材(たとえばビレット等)を製造する。この鋼材を加熱した後、熱間圧延を施し、さらに乾式の冷間圧延(すなわち伸線)を施して鋼素線を製造する。熱間圧延や冷間圧延の操業条件は、特定の条件に限定せず、所望の寸法形状の鋼素線を製造する条件であれば良い。   Using a converter or an electric furnace, molten steel having the above composition is produced. The melting method of the molten steel is not limited to a specific technique, and a conventionally known technique is used. Next, a steel material (for example, billet) is manufactured from the obtained molten steel by a continuous casting method, an ingot-making method, or the like. After this steel material is heated, hot rolling is performed, and dry cold rolling (that is, wire drawing) is further performed to manufacture a steel strand. The operating conditions of hot rolling and cold rolling are not limited to specific conditions, and may be any conditions that produce a steel wire having a desired size and shape.

さらに鋼素線は、焼鈍−酸洗−銅めっき−伸線加工−潤滑剤塗布の工程を必要に応じて順次施して、所定の製品すなわち溶接用鋼ワイヤとなる。   Further, the steel wire is sequentially subjected to annealing, pickling, copper plating, wire drawing, and lubricant application as necessary to form a predetermined product, that is, a steel wire for welding.

正極性の炭酸ガスシールドアーク溶接においては、逆極性の溶接に比べて、給電不良に起因してアークが不安定になりやすい。しかし、鋼素線の表面に厚さ 0.6μm以上の銅めっきを施すことによって、溶接用鋼ワイヤの給電不良に起因するアークの不安定化を防止できる。なお、銅めっきの厚さを 0.8μm以上とすると、給電不良防止の効果が顕著に発揮されるので一層好ましい。このようにして銅めっきを厚目付とすることによって、給電チップの損耗も低減できるという効果も得られる。   In positive carbon dioxide shielded arc welding, the arc is likely to become unstable due to power feeding failure as compared with welding with reverse polarity. However, by applying copper plating with a thickness of 0.6 μm or more to the surface of the steel wire, it is possible to prevent arc destabilization due to poor power feeding of the welding steel wire. In addition, it is more preferable that the thickness of the copper plating is 0.8 μm or more because the effect of preventing power feeding failure is remarkably exhibited. By making the copper plating thicker in this way, there is also an effect that the wear of the power supply tip can be reduced.

しかし鋼素線中のCu含有量も含めて、溶接用鋼ワイヤのCu量が 3.0質量%を超えると、溶接金属の靭性が著しく低下する。したがって、溶接用鋼ワイヤのCu量(すなわち鋼素線のCu含有量と銅めっきのCu含有量の合計)を 3.0質量%以下とするのが好ましい。   However, when the Cu content of the steel wire for welding, including the Cu content in the steel strand, exceeds 3.0% by mass, the toughness of the weld metal is significantly reduced. Therefore, it is preferable that the Cu content of the steel wire for welding (that is, the sum of the Cu content of the steel element wire and the Cu content of the copper plating) is 3.0 mass% or less.

このようにして製造した溶接用鋼ワイヤを用いて炭酸ガスシールドアーク溶接を行なう際に、給電の安定性を高めて、溶滴のスプレー移行を安定して維持するために、溶接用鋼ワイヤの平坦度(すなわち実表面積/理論表面積)を1.01未満とすることが好ましい。溶接用鋼ワイヤの平坦度は、伸線加工におけるダイス管理を厳格に行なうことによって1.01未満の範囲に維持することが可能である。   When carbon dioxide shielded arc welding is performed using the welding steel wire thus manufactured, in order to increase the stability of the power feeding and stably maintain the spray transfer of the droplets, The flatness (that is, the actual surface area / theoretical surface area) is preferably less than 1.01. The flatness of the welding steel wire can be maintained in a range of less than 1.01 by strictly controlling the dies in the wire drawing.

溶接用鋼ワイヤの送給性を向上するために、溶接用鋼ワイヤの表面(すなわち鋼素線の表面あるいは銅めっきの表面)に潤滑油を塗布しても良い。潤滑油の塗布量は、溶接用鋼ワイヤ10kgあたり0.35〜1.7gの範囲内が好ましい。   In order to improve the feedability of the welding steel wire, lubricating oil may be applied to the surface of the welding steel wire (that is, the surface of the steel wire or the surface of the copper plating). The application amount of the lubricating oil is preferably within a range of 0.35 to 1.7 g per 10 kg of the welding steel wire.

なお、溶接用鋼ワイヤを製造する工程で、溶接用鋼ワイヤの表面に種々の不純物が付着する。特に固体の不純物の付着量を、溶接用鋼ワイヤ10kgあたり0.01g以下に抑制すると、給電の安定性が一層向上する。   In the process of manufacturing a welding steel wire, various impurities adhere to the surface of the welding steel wire. In particular, when the amount of solid impurities deposited is suppressed to 0.01 g or less per 10 kg of the welding steel wire, the power feeding stability is further improved.

このようして製造した溶接用鋼ワイヤを用いて正極性炭酸ガスシールドアーク溶接を行なう際の好適な溶接条件について、以下に説明する。   Suitable welding conditions for performing positive polarity carbon dioxide shielded arc welding using the welding steel wire thus manufactured will be described below.

シールドガスは、ArとCO 2 との混合ガスを用いる。シールドガス中のCO 2 の混合比率は60体積%以上とする。なお、CO 2 ガスを単独(すなわちCO 2 の混合比率: 100体積%)でシールドガスとして使用しても、支障なく正極性炭酸ガスシールドアーク溶接を行なうことができる。 As the shielding gas, a mixed gas of Ar and CO 2 is used. The mixing ratio of CO 2 in the shielding gas is 60% by volume or more. Even if CO 2 gas is used alone (that is, CO 2 mixing ratio: 100% by volume) as a shielding gas, positive carbon dioxide shielded arc welding can be performed without hindrance.

溶接電流は 300〜450 A,溶接電圧は27〜38V(電流とともに上昇),溶接速度は20〜250 cm/分,突き出し長さは15〜30mm,ワイヤ径は 0.8〜1.6mm ,溶接入熱は5〜40kJ/cmの範囲内が好ましい。厚さが10mm以上の厚鋼板の溶接を行なう場合は、多層溶接も可能である。溶接する母材(すなわち鋼板)の鋼種は特に限定されないが、JIS規格G3106 に規定されるSi−Mn系の溶接構造用圧延鋼材(SM材)や、JIS規格G3136 に規定される建築構造用鋼材(SN材)に適用するのが好ましい。厚さが10mm以上の厚鋼板の溶接を行なう場合は、多層溶接も可能である。   Welding current is 300 to 450 A, welding voltage is 27 to 38 V (increase with current), welding speed is 20 to 250 cm / min, protrusion length is 15 to 30 mm, wire diameter is 0.8 to 1.6 mm, welding heat input is A range of 5 to 40 kJ / cm is preferable. When welding thick steel plates with a thickness of 10 mm or more, multilayer welding is also possible. There are no particular restrictions on the type of steel to be welded (ie, steel plate), but rolled steel (SM material) for Si-Mn welded structures specified in JIS standard G3106 and steel for building structures specified in JIS standard G3136. It is preferable to apply to (SN material). When welding thick steel plates with a thickness of 10 mm or more, multilayer welding is also possible.

製鋼段階で成分を調整し、連続鋳造によって製造されたビレットを熱間圧延して、直径 5.5〜7.0mm の鋼素線とした。   The components were adjusted in the steelmaking stage, and billets manufactured by continuous casting were hot-rolled to form steel strands having a diameter of 5.5 to 7.0 mm.

得られた鋼素線の成分を表1〜3に示す。   The components of the obtained steel strand are shown in Tables 1-3.

Figure 0003941756
Figure 0003941756

Figure 0003941756
Figure 0003941756

Figure 0003941756
Figure 0003941756

なお表1〜3中のCr含有量の−は<0.01,Ca含有量の−は<0.0001,Zr含有量の−は<0.01,B含有量の−は<0.0001を示す。   In Tables 1 to 3, the Cr content − indicates <0.01, the Ca content − indicates <0.0001, the Zr content − indicates <0.01, and the B content − indicates <0.0001.

次いで冷間圧延(すなわち伸線)によって直径 2.0〜2.8mm の線材とした。   Subsequently, the wire rod was 2.0 to 2.8 mm in diameter by cold rolling (that is, wire drawing).

その後、これらの鋼素線を、露点−2℃以下,酸素濃度 200体積ppm 以下,二酸化炭素濃度 0.1体積%以下の窒素雰囲気中で焼鈍した。   Thereafter, these steel wires were annealed in a nitrogen atmosphere with a dew point of −2 ° C. or lower, an oxygen concentration of 200 vol ppm or lower, and a carbon dioxide concentration of 0.1 vol% or lower.

このようにして焼鈍した後、必要に応じて鋼素線に酸洗を施し、次いで必要に応じて必要に応じて鋼素線の表面に銅めっきを施した。さらに冷間で伸線加工(乾式伸線)を施して、直径 0.8〜1.6mm の溶接用ワイヤを製造した。さらに、溶接用ワイヤの表面に潤滑油を溶接用ワイヤ10kgあたり 0.4〜0.8 g塗布した。   After annealing in this way, the steel strand was pickled as necessary, and then the surface of the steel strand was subjected to copper plating as necessary. Further, cold drawing was performed (dry drawing) to produce a welding wire having a diameter of 0.8 to 1.6 mm. Furthermore, 0.4 to 0.8 g of lubricating oil was applied to the surface of the welding wire per 10 kg of the welding wire.

溶鋼から熱間圧延後の鋼素線までの歩留りを表4,5に示す。歩留りが90%以上を良(○),70%以上〜90%未満を可(△),70%未満を不可(×)として評価した。また、(1)式を用いて算出したF値を表4,5に示す。   Tables 4 and 5 show the yield from molten steel to the steel wire after hot rolling. Yield of 90% or more was evaluated as good (◯), 70% to less than 90% was acceptable (△), and less than 70% was evaluated as unacceptable (×). In addition, Tables 4 and 5 show the F values calculated using Equation (1).

Figure 0003941756
Figure 0003941756

Figure 0003941756
Figure 0003941756

表4,5から明らかなように、F値が6.0以下である発明例1〜26の歩留りは高かった。   As is clear from Tables 4 and 5, the yields of Invention Examples 1 to 26 having F values of 6.0 or less were high.

これらの溶接用ワイヤを用いて正極性炭酸ガスシールドアーク溶接を行ない、溶接中に発生したスパッタを全量捕集して、その重量を測定した。スパッタ発生量が 0.35g/分以下を良(○), 0.35g/分超え〜 0.7g/分以下を可(△), 0.7g/分超えを不可(×)として評価した。その結果は表6,7に示す通りである。   Using these welding wires, positive carbon dioxide shielded arc welding was performed, and all the spatter generated during welding was collected and its weight was measured. The spatter generation rate was evaluated as good (◯) when the spatter generation amount was 0.35 g / min or less, acceptable (Δ) when exceeding 0.35 g / min to 0.7 g / min or less (x) when exceeding 0.7 g / min. The results are as shown in Tables 6 and 7.

なお、正極性炭酸ガスシールドアーク溶接の条件を表8に示す。   The conditions for positive carbon dioxide shielded arc welding are shown in Table 8.

Figure 0003941756
Figure 0003941756

Figure 0003941756
Figure 0003941756

Figure 0003941756
Figure 0003941756

表6,7から明らかなように、発明例は、高電流,高入熱の正極性炭酸ガスシールドアーク溶接において、スパッタ発生量は0.19〜0.67であり、スパッタ発生量が低下した。特に、鋼素線にAl,Ti,Zrのいずれかを 0.2質量%以上添加した発明例6〜26のスパッタ発生量は0.19〜0.35であり、スパッタ発生量を一層低減することができた。   As is apparent from Tables 6 and 7, in the positive carbon dioxide shielded arc welding with high current and high heat input, the inventive example had a spatter generation amount of 0.19 to 0.67, and the spatter generation amount decreased. In particular, the amount of spatter generated in Invention Examples 6 to 26 in which 0.2% by mass or more of Al, Ti, or Zr was added to the steel wire was 0.19 to 0.35, and the amount of spatter generated could be further reduced.

一方、鋼素線の成分が本発明の範囲を外れる比較例では、スパッタ発生量は3.25〜6.05であった。   On the other hand, in the comparative example in which the steel wire component deviated from the scope of the present invention, the amount of spatter generated was 3.25 to 6.05.

Claims (1)

正極性の炭酸ガスシールドアーク溶接に使用する溶接用鋼ワイヤの鋼素線であって、C:0.20質量%以下、Si:2.5 質量%以下、Mn:0.25〜3.5 質量%、O:0.0200質量%以下、Ca:0.0050質量%以下、希土類元素: 0.025〜0.050 質量%、P:0.05質量%以下、S:0.020質量%以下を含有し、必要に応じてAl:0.02〜3.00質量%、Ti:0.02〜0.50質量%、Zr:0.02〜0.50質量%、Cr:0.02〜3.0 質量%、Ni:0.05〜3.0 質量%、Mo:0.05〜1.5 質量%、Cu:0.05〜3.0 質量%、B:0.0005〜0.015 質量%、Mg: 0.001〜0.2 質量%、Nb: 0.005〜0.5 質量%またはV: 0.005〜0.5 質量%を含有し、残部がFeおよび不可避的不純物であり、かつ下記の (1)式で算出されるF値が6以下であることを特徴とする炭酸ガスシールドアーク溶接用鋼ワイヤの鋼素線。
F=10000×[REM ]×[S] ・・・ (1)
[REM ]:鋼素線の希土類元素含有量(質量%)
[S] :鋼素線のS含有量(質量%)
Steel wire for welding carbon steel wire used for positive carbon dioxide shielded arc welding, C: 0.20 mass% or less, Si: 2.5 mass% or less, Mn: 0.25 to 3.5 mass%, O: 0.0200 mass% Hereinafter, Ca: 0.0050 mass% or less, rare earth element: 0.025 to 0.050 mass%, P: 0.05 mass% or less, S: 0.020 mass% or less, and Al: 0.02 to 3.00 mass%, Ti: 0.02 as necessary -0.50 mass%, Zr: 0.02-0.50 mass%, Cr: 0.02-3.0 mass%, Ni: 0.05-3.0 mass%, Mo: 0.05-1.5 mass%, Cu: 0.05-3.0 mass%, B: 0.0005-0.015 Contains mass%, Mg: 0.001 to 0.2 mass%, Nb: 0.005 to 0.5 mass% or V: 0.005 to 0.5 mass%, the balance being Fe and inevitable impurities, and calculated by the following formula (1) A steel wire of a steel wire for carbon dioxide shielded arc welding, wherein the F value is 6 or less.
F = 10000 × [REM] × [S] (1)
[REM]: Rare earth element content of steel wire (mass%)
[S]: S content of steel wire (mass%)
JP2003281580A 2003-07-29 2003-07-29 Carbon steel wire for carbon dioxide shielded arc welding Expired - Lifetime JP3941756B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003281580A JP3941756B2 (en) 2003-07-29 2003-07-29 Carbon steel wire for carbon dioxide shielded arc welding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003281580A JP3941756B2 (en) 2003-07-29 2003-07-29 Carbon steel wire for carbon dioxide shielded arc welding

Publications (2)

Publication Number Publication Date
JP2005046879A JP2005046879A (en) 2005-02-24
JP3941756B2 true JP3941756B2 (en) 2007-07-04

Family

ID=34267037

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003281580A Expired - Lifetime JP3941756B2 (en) 2003-07-29 2003-07-29 Carbon steel wire for carbon dioxide shielded arc welding

Country Status (1)

Country Link
JP (1) JP3941756B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4614226B2 (en) * 2005-04-07 2011-01-19 株式会社神戸製鋼所 Solid wire for gas shielded arc welding
CN107675069B (en) * 2017-09-30 2019-04-09 北京科技大学 Using CO2+O2The method that potassium steel in manganese smelting is protected in decarburization is realized in mixed gas blowing
WO2023149239A1 (en) * 2022-02-04 2023-08-10 Jfeスチール株式会社 Straight polarity mag-welding wire and straight polarity mag-welding method using same

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5910493A (en) * 1982-07-09 1984-01-19 Kawasaki Steel Corp Wire for pure argon shielded gas welding of austenitic stainless steel for cryogenic temperature service
JPH07195193A (en) * 1993-12-29 1995-08-01 Kobe Steel Ltd Solid wire for thin sheet of high tension steel
JP2801147B2 (en) * 1994-07-08 1998-09-21 株式会社神戸製鋼所 Welding method
JP3433891B2 (en) * 1997-07-09 2003-08-04 日鐵住金溶接工業株式会社 Gas shielded arc welding wire for P-added sheet steel and MAG welding method
JP3436494B2 (en) * 1998-11-06 2003-08-11 株式会社神戸製鋼所 Solid wire for gas shielded arc welding
JP2002239725A (en) * 2001-02-13 2002-08-28 Kawasaki Steel Corp Gas-shielded arc welding for steel sheet
JP5057615B2 (en) * 2001-06-19 2012-10-24 Jfeスチール株式会社 Manufacturing method of welded joint

Also Published As

Publication number Publication date
JP2005046879A (en) 2005-02-24

Similar Documents

Publication Publication Date Title
US20040140303A1 (en) Steel wire for carbon dioxide shielded arc welding and welding process using the same
JP5472244B2 (en) Narrow groove butt welding method for thick steel plates
JP2007118068A (en) Narrow groove butt welding method for thick steel plate
JP4930048B2 (en) Plasma arc hybrid welding method to improve joint fatigue strength of lap fillet welded joint
JP4830308B2 (en) Multi-layer carbon dioxide shielded arc welding method for thick steel plates
JP3941528B2 (en) Carbon dioxide shielded arc welding wire
JP3945396B2 (en) Steel wire for carbon dioxide shielded arc welding and welding method using the same
JP3951593B2 (en) MAG welding steel wire and MAG welding method using the same
JP4725700B2 (en) Steel wire for carbon dioxide shielded arc welding and welding method using the same
JP3941756B2 (en) Carbon steel wire for carbon dioxide shielded arc welding
JP4738824B2 (en) Multi-electrode gas shielded arc welding method
JP2007118069A (en) Gas-shielded arc welding method
JP4529482B2 (en) Fillet welding method
JP3906827B2 (en) Steel wire for carbon dioxide shielded arc welding and welding method using the same
JP3969323B2 (en) Steel wire for carbon dioxide shielded arc welding and welding method using the same
JP2005219062A (en) Yag-laser and arc hybrid welding method
JP3941755B2 (en) Steel wire for carbon dioxide shielded arc welding and welding method using the same
JP5051966B2 (en) Sideways carbon dioxide shielded arc welding method
JP4655475B2 (en) Steel wire for carbon dioxide shielded arc welding
JP3969322B2 (en) Steel wire for carbon dioxide shielded arc welding and welding method using the same
JP4639599B2 (en) Carbon dioxide shielded arc welding method
JP4639598B2 (en) Electrogas arc welding method
JP2005230868A (en) High speed rotary arc welding method
JP4606751B2 (en) Plasma arc hybrid welding method
KR100501984B1 (en) Steel wire for mag welding in dc-electrode and mag welding method using the same

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051013

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060725

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060925

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061031

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061226

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070206

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070313

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070326

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3941756

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100413

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110413

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110413

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120413

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130413

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130413

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140413

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term