JP4614226B2 - Solid wire for gas shielded arc welding - Google Patents

Solid wire for gas shielded arc welding Download PDF

Info

Publication number
JP4614226B2
JP4614226B2 JP2005110808A JP2005110808A JP4614226B2 JP 4614226 B2 JP4614226 B2 JP 4614226B2 JP 2005110808 A JP2005110808 A JP 2005110808A JP 2005110808 A JP2005110808 A JP 2005110808A JP 4614226 B2 JP4614226 B2 JP 4614226B2
Authority
JP
Japan
Prior art keywords
welding
heat input
toughness
amount
wire
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005110808A
Other languages
Japanese (ja)
Other versions
JP2006289395A (en
Inventor
俊夫 村上
等 畑野
宏 新舘
利彦 中野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2005110808A priority Critical patent/JP4614226B2/en
Priority to CNB200610073240XA priority patent/CN100436032C/en
Priority to KR1020060031501A priority patent/KR100723138B1/en
Publication of JP2006289395A publication Critical patent/JP2006289395A/en
Application granted granted Critical
Publication of JP4614226B2 publication Critical patent/JP4614226B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/40Making wire or rods for soldering or welding
    • B23K35/404Coated rods; Coated electrodes
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/004Very low carbon steels, i.e. having a carbon content of less than 0,01%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/08Ferrous alloys, e.g. steel alloys containing nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/16Ferrous alloys, e.g. steel alloys containing copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium

Description

本発明は、大入熱、高パス間温度での溶接性に優れ、しかも低入熱時の耐低温割れ性にも優れたガスシールドアーク溶接用ソリッドワイヤに関する。   The present invention relates to a solid wire for gas shielded arc welding which has excellent weldability at high heat input and high interpass temperature and excellent low temperature cracking resistance at low heat input.

炭酸ガス等をシールドガスとして用いるガスシールドアーク溶接法は、溶接能率が高く、全姿勢での溶接が可能であるため、建築、橋梁、造船分野などの鉄骨の製作、建造等において多用されている。近年、作業能率を改善するため、大入熱及び高いパス間温度で溶接することが求められているが、従来の溶接用ワイヤを用いた溶接では、溶着金属(deposited metal)の強度、靭性が得られず、所望の機械的特性が得られなかった。   The gas shielded arc welding method using carbon dioxide gas as the shielding gas has high welding efficiency and can be welded in all positions, so it is widely used in the construction and construction of steel frames in the fields of construction, bridges, shipbuilding, etc. . In recent years, in order to improve work efficiency, welding with high heat input and high interpass temperature is required, but welding with a conventional welding wire has the strength and toughness of the deposited metal. The desired mechanical properties could not be obtained.

そこで、このような大入熱及び高いパス間温度でも溶接可能なワイヤが種々提案されている。例えば、特開平10−230387号公報(特許文献1)には、重量%でC:0.02〜0.10%、Si:0.65〜1.10%、Mn:1.75−2.50%、Ti:0.16−0.45%、B:0.003−0.010%、S:0.020%以下を含み、残部Fe及び不可避的不純物からなり、B量とTi量、B量とS量とを所定の関係の下に規制したワイヤが記載されている。また、特開平11−90678号公報(特許文献2)や特開平11−239892号公報(特許文献3)にも、Ti、B、N、Al及び/又はZrを所定量添加したワイヤや、さらにC、Si、Mn、P、S、Mo、V及び/又はNb、Oを所定量添加し、あるいは添加量の上限を規制したワイヤが記載されている。   Therefore, various wires that can be welded even with such high heat input and high interpass temperature have been proposed. For example, in Japanese Patent Laid-Open No. 10-230387 (Patent Document 1), C: 0.02 to 0.10%, Si: 0.65 to 1.10%, Mn: 1.75-2. 50%, Ti: 0.16-0.45%, B: 0.003-0.010%, S: 0.020% or less, consisting of Fe and unavoidable impurities, B amount and Ti amount, A wire in which the B amount and the S amount are regulated under a predetermined relationship is described. Further, Japanese Patent Laid-Open No. 11-90678 (Patent Document 2) and Japanese Patent Laid-Open No. 11-239892 (Patent Document 3) also describe a wire added with a predetermined amount of Ti, B, N, Al and / or Zr, A wire is described in which a predetermined amount of C, Si, Mn, P, S, Mo, V and / or Nb, O is added, or the upper limit of the amount added is restricted.

前記ワイヤにより、大入熱溶接に対応できるようになったものの、パス間温度が500℃を超える溶接条件では十分な特性が得られていなかった。一方、近年、500℃超のパス間温度でも溶接可能なワイヤが、特開2004−98143号公報(特許文献4)に提案されている。このワイヤは、C、Si、Mn、Mo、Ti、B、V及び/又はNbを所定量が含み、さらに大入熱、高パス間温度の溶接条件下で溶接金属の靭性が確保されるように、前記成分の添加量をPtsというパラメータによって規制するとともに、Mn、Mo、Si、Tiの関係をVcqというパラメータによって規制したものである。
また、大入熱溶接性を確保すると共に組み立て溶接、横向き溶接のような低入熱溶接における溶接性も改良したワイヤが特開2004−202572号公報(特許文献5)に提案されている。
特開平10−230387号公報 特開平11−90678号公報 特開平11−239892号公報 特開2004−98143号公報 特開2004−202572号公報
Although the wire can cope with high heat input welding, sufficient characteristics have not been obtained under welding conditions in which the interpass temperature exceeds 500 ° C. On the other hand, in recent years, a wire that can be welded even at a temperature between passes exceeding 500 ° C. has been proposed in Japanese Patent Application Laid-Open No. 2004-98143 (Patent Document 4). This wire contains a predetermined amount of C, Si, Mn, Mo, Ti, B, V and / or Nb so that the toughness of the weld metal is ensured under welding conditions of high heat input and high interpass temperature. In addition, the amount of the component added is regulated by a parameter called Pts, and the relationship between Mn, Mo, Si, and Ti is regulated by a parameter called Vcq.
Japanese Patent Laid-Open No. 2004-202572 (Patent Document 5) proposes a wire that secures high heat input weldability and also improves weldability in low heat input welding such as assembly welding and lateral welding.
JP-A-10-230387 Japanese Patent Laid-Open No. 11-90678 Japanese Patent Laid-Open No. 11-239892 JP 2004-98143 A JP 2004-202572 A

上記特許文献4に記載のワイヤにより大入熱溶接特性が改善され、また特許文献5のワイヤではさらに低入力溶接特性もある程度改善されたものの、低入熱溶接時の耐低温割れ性が十分ではなく、耐低温割れ性の向上が望まれている。
本発明はかかる問題に鑑みなされもので、大入熱、高パス間温度の溶接条件において溶着金属が強度、靭性に優れ、しかも低入熱溶接に対して耐低温割れ性に優れたガスシールドアーク溶接用ワイヤを提供することを目的とする。
Although the high heat input welding characteristics are improved by the wire described in Patent Document 4 above, and the low input welding characteristics are further improved to some extent by the wire of Patent Document 5, the low temperature crack resistance at the time of low heat input welding is not sufficient. Therefore, improvement in cold cracking resistance is desired.
The present invention has been made in view of such a problem, and a gas shielded arc in which a weld metal is excellent in strength and toughness under welding conditions of high heat input and high pass temperature, and excellent in low temperature crack resistance against low heat input welding. An object is to provide a welding wire.

本発明のガスシールドアーク溶接用ソリッドワイヤは、mass%(以下、単に「%」と表示する。)で、
C:0〜0.011%、
Si:0.5〜1.0%、
Mn:1.8超〜2.5%、
Cu:0.1〜1.0%、
Mo:0.10〜0.50%、
Ti:0.1〜0.3%、
B:0.0010〜0.0050%、
N:0.0040〜0.0150%
を含み、かつ下記PMPが10%以上とされ、残部Fe及び不可避的不純物からなるものである。
PMP=4[Mn]+([Cu]+[Ni]+[Cr])+6000([Mo]+[V]+[Nb]+[Zr]+[Ta]+[Hf]+[W])*[B]
但し、[元素名]は当該元素の含有%を示す。
The solid wire for gas shielded arc welding of the present invention is mass% (hereinafter simply referred to as “%”).
C: 0 to 0.011%,
Si: 0.5 to 1.0%
Mn: more than 1.8 to 2.5%,
Cu: 0.1 to 1.0%
Mo: 0.10 to 0.50%,
Ti: 0.1 to 0.3%,
B: 0.0010 to 0.0050%,
N: 0.0040 to 0.0150%
And the following PMP is 10% or more, and the balance is Fe and inevitable impurities.
P MP = 4 [Mn] + ([Cu] + [Ni] + [Cr]) + 6000 ([Mo] + [V] + [Nb] + [Zr] + [Ta] + [Hf] + [W ]) * [B]
However, [element name] indicates the content percentage of the element.

本発明のワイヤの組成は、大入熱、500℃超のパス間温度の溶接条件下での引張強度及び靭性を確保しつつ、優れた耐低温割れ性を発現するように設計されたものである。すなわち、主としてC量を可及的に抑制すると共にSiを適量添加して溶着金属中のC量を低減して耐低温割れ性を改善し、またC量の低下を補償して大入熱溶接時の強度、靭性を確保すべくフェライト生成抑制元素の添加量をPMPという指標を導入して適正化し、さらにNを積極的に添加して溶着金属の組織を微細化することにより靭性を向上させ、大入熱溶接特性、低入熱溶接時の耐低温割れ性を向上させたものである。 The composition of the wire of the present invention is designed to exhibit excellent cold cracking resistance while ensuring tensile strength and toughness under welding conditions with high heat input and interpass temperature exceeding 500 ° C. is there. That is, mainly suppress the amount of C as much as possible and add an appropriate amount of Si to reduce the amount of C in the deposited metal to improve the cold cracking resistance, and compensate for the decrease in the amount of C to provide high heat input welding. intensity when, improve the toughness by the amount of ferrite suppression element to ensure the toughness optimizing by introducing an indication that P MP, further refining the deposited metal tissue actively adding N The high heat input welding characteristics and the low temperature cracking resistance during low heat input welding are improved.

前記ワイヤにおいて、Feの一部に代えて、(1) Cr、Niの1種もしくは2種を合計で0.1〜2.0%、(2) V,Nb,Zr,Ta,Hf,Wの1種もしくは2種以上を合計で0.001〜0.1%、(3) Al:0.001〜0.1%、(4) REM:0.001〜0.2%のいずれかのグループより選択された元素を単独で、あるいは複合添加することができる。これによって、溶着金属の機械的特性をより向上させることがきる。   In the wire, instead of a part of Fe, (1) one or two of Cr and Ni in total 0.1 to 2.0%, (2) V, Nb, Zr, Ta, Hf, W 1 or 2 or more in total of 0.001 to 0.1%, (3) Al: 0.001 to 0.1%, (4) REM: 0.001 to 0.2% An element selected from the group can be added alone or in combination. As a result, the mechanical properties of the weld metal can be further improved.

本発明のガスシールドアーク溶接用ソリッドワイヤによれば、大入熱、高パス間温度での溶接において溶着金属の強度、靭性に優れ、さらに低入熱溶接においても靭性に優れた溶着金属が得られるため、低入熱溶接時における耐低温割れ性にも優れる。   According to the solid wire for gas shielded arc welding of the present invention, it is possible to obtain a weld metal having excellent weld metal strength and toughness in welding with high heat input and high-pass temperature, and excellent toughness in low heat input welding. Therefore, it also has excellent cold cracking resistance during low heat input welding.

本発明のガスシールドアーク溶接用ソリッドワイヤは、C:0〜0.011%、Si:0.5〜1.0%、Mn:1.8超〜2.5%、Cu:0.1〜1.0%、Mo:0.10〜0.50%、Ti:0.1〜0.3%、B:0.001〜0.005%、N:0.0040〜0.0150%を含み、かつ下記PMPが10%以上とされ、残部Fe及び不可避的不純物からなるものである。PMPの式中、[元素名]は当該元素の含有mass%を示す。以下、成分限定理由について説明する。
PMP=4[Mn]+([Cu]+[Ni]+[Cr])+6000([Mo]+[V]+[Nb]+[Zr]+[Ta]+[Hf]+[W])*[B]
The solid wire for gas shielded arc welding of the present invention includes C: 0 to 0.011%, Si: 0.5 to 1.0%, Mn: more than 1.8 to 2.5%, Cu: 0.1 to 0.1% 1.0%, Mo: 0.10 to 0.50%, Ti: 0.1 to 0.3%, B: 0.001 to 0.005%, N: 0.0040 to 0.0150% In addition, the following PMP is 10% or more, and the balance is Fe and inevitable impurities. In the PMP formula, [element name] indicates the mass% of the element. Hereinafter, the reason for component limitation will be described.
P MP = 4 [Mn] + ([Cu] + [Ni] + [Cr]) + 6000 ([Mo] + [V] + [Nb] + [Zr] + [Ta] + [Hf] + [W ]) * [B]

C:0〜0.011%
Cは溶着金属の強度を向上させる作用を有するが、優れた耐低温割れ性を確保するには低い方がよく、本発明では無添加でも差し支えない。もっとも、C濃度を過度に低減させるには、製造コスト高を招来するので、0.001%程度以上とすればよい。一方、0.011%を超えると、強度が過大になり、溶着金属の靭性が劣化し、特に耐低温割れ性の劣化が著しくなる。このため、C量は0.011%以下、好ましくは0.010%以下とする。
C: 0 to 0.011%
C has the effect of improving the strength of the deposited metal, but is preferably lower in order to ensure excellent cold cracking resistance. In the present invention, C may be added without any problem. However, in order to reduce the C concentration excessively, the manufacturing cost is increased, so that it may be set to about 0.001% or more. On the other hand, if it exceeds 0.011%, the strength becomes excessive, the toughness of the deposited metal is deteriorated, and particularly the resistance to cold cracking is remarkably deteriorated. Therefore, the C content is 0.011% or less, preferably 0.010% or less.

Si:0.5〜1.0%
Siは脱酸元素であり、溶着金属中の溶存酸素量を低下させる。また、Si量を上記範囲にコントロールすることで、雰囲気のCO2 の還元を抑制して溶着金属中のC量を低下させ、耐低温割れ性を改善する効果がある。0.5%未満では溶存酸素量の低減が十分でなく、溶着金属の靭性が劣化する。このため、Si量の下限を0.5%とし、好ましくは0.6%とするのがよい。一方、過多に添加すると、固溶強化により強度が過大になり、溶着金属の靭性、耐低温割れ性が劣化するようになる。このため、その上限を1.0%とし、好ましくは0.9%とするのがよい。
Si: 0.5 to 1.0%
Si is a deoxidizing element and reduces the amount of dissolved oxygen in the deposited metal. Moreover, by controlling the amount of Si within the above range, there is an effect of suppressing the reduction of CO 2 in the atmosphere and reducing the amount of C in the deposited metal, thereby improving the cold cracking resistance. If it is less than 0.5%, the amount of dissolved oxygen is not sufficiently reduced, and the toughness of the deposited metal deteriorates. For this reason, the lower limit of the Si content is 0.5%, preferably 0.6%. On the other hand, if added excessively, the strength becomes excessive due to solid solution strengthening, and the toughness and cold cracking resistance of the deposited metal deteriorate. For this reason, the upper limit is made 1.0%, preferably 0.9%.

Mn:1.8超〜2.5%
Mnは、脱酸元素として作用すると共に、粒界フェライトの生成を抑制するため、強度、靭性を改善する効果がある。Mn量が過少になると大入熱溶接時の機械的特性が劣化するので、Mn量を1.8%超とし、好ましくは1.9%以上とするのがよい。一方、過多になると低入熱溶接時の強度が過大となり、耐低温割れ性が劣化する。このため、その上限を2.5%とし、好ましくは2.4%とするのがよい。
Mn: more than 1.8 to 2.5%
Mn acts as a deoxidizing element and suppresses the formation of grain boundary ferrite, and therefore has the effect of improving strength and toughness. If the amount of Mn becomes too small, the mechanical properties during high heat input welding deteriorate, so the amount of Mn should be more than 1.8%, preferably 1.9% or more. On the other hand, if it is excessive, the strength at the time of low heat input welding becomes excessive, and the cold cracking resistance deteriorates. Therefore, the upper limit is set to 2.5%, preferably 2.4%.

Cu:0.1〜1.0%(導電性めっき皮膜として付与される量を含む。)
Cuは溶着金属の靭性を改善する作用があり、また心線の導電性めっき皮膜として不可避的
に含有される。0.1%未満では導電性を確保することができず、溶接作業性が劣化する。一方、1.0%を超えるとCuが微細に析出し、強度、靭性バランスが劣化するようになる。このため、Cu量の下限を0.1%、好ましくは0.15%とし、その上限を1.0%、好ましくは0.8%とする。
Cu: 0.1 to 1.0% (including an amount given as a conductive plating film)
Cu has the effect of improving the toughness of the deposited metal and is unavoidably contained as a conductive plating film for the core wire. If it is less than 0.1%, the conductivity cannot be ensured, and the welding workability deteriorates. On the other hand, if it exceeds 1.0%, Cu precipitates finely, and the strength and toughness balance deteriorates. For this reason, the lower limit of the Cu amount is 0.1%, preferably 0.15%, and the upper limit is 1.0%, preferably 0.8%.

Mo:0.10〜0.50%
MoはBと複合して添加することで、粒界フェライトの生成を抑制し、大入熱溶接時の強度靭性バランスを改善する作用を有する。0.10%未満ではかかる作用が過小であり、一方0.50%を超えると、強度が高くなり過ぎて耐低温割れ性が劣化する。このため、Mo量の下限を0.10%、好ましくは0.15%とし、その上限を0.50%、好ましくは0.42%、より好ましくは0.40%とする。
Mo: 0.10 to 0.50%
Mo is added in combination with B, thereby suppressing the formation of grain boundary ferrite and improving the strength-toughness balance during high heat input welding. If it is less than 0.10%, such an action is too small. On the other hand, if it exceeds 0.50%, the strength becomes too high and the cold cracking resistance deteriorates. For this reason, the lower limit of the Mo amount is set to 0.10%, preferably 0.15%, and the upper limit is set to 0.50%, preferably 0.42%, more preferably 0.40%.

Ti:0.1〜0.3%
Tiは酸化物を形成し、これが粒内変態の核として振舞うので、組織の微細化、靭性の改善作用を有する。0.1%未満ではかかる作用が過小であり、0.3%を超えるとTi炭化物が形成されるようになり、溶着金属の靭性が劣化するようになる。このため、Ti量の下限を0.1%、好ましくは0.15%とし、その上限を0.3%、好ましくは0.25%とする。
Ti: 0.1 to 0.3%
Ti forms an oxide, which acts as a nucleus of intragranular transformation, and thus has an effect of refining the structure and improving toughness. If it is less than 0.1%, this action is too small. If it exceeds 0.3%, Ti carbide is formed, and the toughness of the deposited metal is deteriorated. For this reason, the lower limit of the Ti amount is 0.1%, preferably 0.15%, and the upper limit is 0.3%, preferably 0.25%.

B:0.0010〜0.0050%
Bは粒界フェライトの生成を抑制し、これにより強度靭性バランスを改善する作用を有する。0.0010%未満ではかかる作用が過小であり、一方0.0050%を超えると低入熱溶接時の溶着金属の強度が過大となり、耐低温割れ性が劣化するようになる。このため、B量の下限を0.0010%、好ましくは0.0015%とし、その上限を0.0050%、好ましくは0.0040%とする。
B: 0.0010 to 0.0050%
B has the effect of suppressing the formation of grain boundary ferrite, thereby improving the balance of strength and toughness. If it is less than 0.0010%, such an action is too small. On the other hand, if it exceeds 0.0050%, the strength of the deposited metal at the time of low heat input welding becomes excessive, and the cold cracking resistance deteriorates. For this reason, the lower limit of the B amount is 0.0010%, preferably 0.0015%, and the upper limit is 0.0050%, preferably 0.0040%.

N:0.0040〜0.0150%
NはTiと反応してTiNを形成し、γ粒径を微細化することにより、靭性を改善する作用を有する。0.0040%未満では、十分な量のTiNが形成されないため、かかる作用が過小であり、一方0.0150%を超えると固溶Nが存在するようになるため、却って靭性が劣化するようになる。このため、N量の下限を0.0040%、好ましくは0.0050%とし、一方その上限を0.0150%、好ましくは0.0120%とする。
N: 0.0040 to 0.0150%
N reacts with Ti to form TiN, and has the effect of improving toughness by reducing the γ grain size. If it is less than 0.0040%, a sufficient amount of TiN is not formed, so this action is too small. On the other hand, if it exceeds 0.0150%, solid solution N exists, so that the toughness deteriorates instead. Become. For this reason, the lower limit of the N amount is 0.0040%, preferably 0.0050%, while the upper limit is 0.0150%, preferably 0.0120%.

MP:10%以上
MPは、大入熱溶接時の溶着金属の強度、靭性に及ぼすフェライト生成抑制元素の添加量の影響を定量的に評価した指標であり、この値が10%未満では、極低C量の下では所期の高強度、高靭性を確保することができないようになる。このため、フェライト抑制元素の添加量をPMPで10%以上とする。
PMP : 10% or more PMP is an index that quantitatively evaluates the effect of the amount of ferrite formation inhibitor added on the strength and toughness of the weld metal during high heat input welding. If this value is less than 10% Under the extremely low C content, the desired high strength and high toughness cannot be ensured. For this reason, the addition amount of a ferrite suppression element shall be 10% or more by PMP .

本発明のワイヤは、典型的には上記基本成分の他、残部Feで形成されるが、Feの一部に代えて、(1) Cr、Niの1種もしくは2種を合計で0.1〜2.0%、(2) V,Nb,Zr,Ta,Hf,Wの1種もしくは2種以上を合計で0.001〜0.1%、(3) Al:0.001〜0.1%、(4) REM:0.001〜0.2%のいずれかのグループより選択された元素を単独で、あるいは複合添加することができる。以下、これらの元素の添加理由について説明する。   The wire of the present invention is typically formed by the balance Fe in addition to the basic components described above, but instead of a part of Fe, (1) one or two of Cr and Ni are combined in a total amount of 0.1. -2.0%, (2) one or more of V, Nb, Zr, Ta, Hf, W in total of 0.001-0.1%, (3) Al: 0.001-0. 1%, (4) REM: An element selected from any group of 0.001 to 0.2% can be added alone or in combination. Hereinafter, the reason for adding these elements will be described.

Cr、Ni:合計で0.01〜2.0%
これらの元素は粒界フェライトの生成を抑制する作用及び組織微細化作用を有し、強度靭性バランスを改善する。0.01%未満ではかかる作用効果が過小となり、一方2.0%を超えると大入熱溶接の際の溶着金属中にMA(Martensite-Austenite Constituent:マルテンサイトおよびオーステナイトの混合物)が形成されるようになり、靭性が劣化する。このため、1種又は2種の合計量で下限を0.01%とし、上限を2.0%とする。
Cr, Ni: 0.01 to 2.0% in total
These elements have the effect of suppressing the formation of grain boundary ferrite and the effect of refining the structure, and improve the strength toughness balance. If it is less than 0.01%, such an effect is too small. On the other hand, if it exceeds 2.0%, MA (Martensite-Austenite Constituent) is formed in the weld metal during high heat input welding. And toughness deteriorates. For this reason, the lower limit is 0.01% and the upper limit is 2.0% with the total amount of one or two kinds.

V,Nb,Zr,Ta,Hf,W:合計で0.001〜0.1%
これらの元素は、Mo,Bと共に複合添加することにより、粒界フェライトの生成を抑制する効果を高め、強度・靭性バランスを改善する。しかし、過多に添加すると、強度が過大となり、却って強度靭性バランスが劣化するようになる。このため、これらの元素の1種もしくは2種以上の合計で下限を0.001%、上限を0.1%とする。
V, Nb, Zr, Ta, Hf, W: 0.001 to 0.1% in total
By adding these elements together with Mo and B, the effect of suppressing the formation of grain boundary ferrite is enhanced, and the balance between strength and toughness is improved. However, if added excessively, the strength becomes excessive and the strength-toughness balance deteriorates on the contrary. Therefore, the lower limit is set to 0.001% and the upper limit is set to 0.1% in total of one or more of these elements.

Al:0.001〜0.1%
Alは固溶NをAlNとして固定し、これにより母材靭性を改善する作用を有する。0.001%未満ではかかる作用が過少であり、一方0.1%を超えて過多に添加すると固溶強化が過大となり、靭性が劣化するようになる。このため、Al量の下限を0.001%とし、その上限を0.1%、好ましくは0.05%とする。
Al: 0.001 to 0.1%
Al fixes solute N as AlN, thereby improving the base material toughness. If it is less than 0.001%, such an action is too small. On the other hand, if it exceeds 0.1%, the solid solution strengthening becomes excessive and the toughness deteriorates. For this reason, the lower limit of the Al amount is 0.001%, and the upper limit is 0.1%, preferably 0.05%.

REM:0.001〜0.2%
REMは介在物を微細化し、これにより溶着金属組織を微細化することで強度靭性を改善する作用を有する。一方、過多に添加するとこれらの効果が失われて却って強度靭性を劣化させるようになる。このため本発明では、REM量の下限を0.001%とし、その上限を0.2%とする。
REM: 0.001 to 0.2%
REM has the effect | action which improves strength toughness by refine | miniaturizing an inclusion and refining a weld metal structure by this. On the other hand, if added excessively, these effects are lost and the strength toughness is deteriorated. Therefore, in the present invention, the lower limit of the REM amount is 0.001% and the upper limit is 0.2%.

本発明の溶接ワイヤを製造するに際し、特別な製造条件は必要でなく、常法により製造することができる。すなわち、上記成分の鋼を溶製し、鋳塊を得る。この場合、Cu添加量については、伸線後に施される銅めっきによって付与される量(ワイヤ線径により異なるが、通常、ワイヤ質量に対して0.1〜0.3%程度)を考慮して、鋼成分を決定する。鋳塊は必要に応じて熱間鍛造等が施された後、熱間圧延され、さらに冷間伸線が施されて素線に形成される。素線は、必要に応じて500〜900℃程度の温度で焼鈍され、酸洗された後、銅めっきが施され、さらに必要に応じて仕上伸線が施されて目標線径とされる。その後、必要に応じ潤滑剤が付与され、溶接用ワイヤとされる。
以下、実施例を挙げて本発明を具体的に説明するが、本発明はかかる実施例により限定的に解釈されるものではない。
When producing the welding wire of the present invention, no special production conditions are required, and it can be produced by a conventional method. That is, the steel having the above components is melted to obtain an ingot. In this case, regarding the amount of Cu added, the amount given by copper plating applied after wire drawing (depending on the wire diameter, but usually about 0.1 to 0.3% with respect to the wire mass) is taken into consideration. To determine the steel composition. The ingot is subjected to hot forging or the like as necessary, then hot rolled, and further cold drawn to form a strand. The element wire is annealed at a temperature of about 500 to 900 ° C. if necessary, pickled, then copper-plated, and further subjected to finish drawing as necessary to obtain a target wire diameter. Thereafter, a lubricant is applied as necessary to obtain a welding wire.
EXAMPLES Hereinafter, although an Example is given and this invention is demonstrated concretely, this invention is not interpreted limitedly by this Example.

目標のワイヤ組成(ただし、Cuを含まない。)となるように所定成分の鋼150kgをVIF(真空誘導炉)にて真空下で溶製し、その鋳塊を155mm角に熱間鍛造した後、1000℃に加熱し、熱間圧延で5.5mmφに圧延し、伸線して1.4mm%の素線を得た。さらに、この素線を酸洗した後、銅めっきを施した。銅めっきは、成分がCuおよび不可避的不純物からなり、ワイヤ重量に対してCu量が0.2%程度となるようにめっき量を調整した。このようにして製造された溶接ワイヤの組成を表1に示す。   After 150 kg of steel with a predetermined component was melted under vacuum in a VIF (vacuum induction furnace) so as to achieve the target wire composition (but not including Cu), the ingot was hot forged to 155 mm square , Heated to 1000 ° C., rolled to 5.5 mmφ by hot rolling, and drawn to obtain a 1.4 mm% strand. Furthermore, after pickling this strand, copper plating was performed. The copper plating was composed of Cu and inevitable impurities, and the plating amount was adjusted so that the Cu amount was about 0.2% with respect to the wire weight. The composition of the welding wire thus produced is shown in Table 1.

上記のようにして製造された溶接ワイヤを用いて下記溶接条件にて溶接試験を行い、大入熱溶接時の溶着金属の強度、靭性を調べた。
溶接電流:420A
溶接電圧:43V
ワイヤ送り速度:28cm/min
入熱量:38.7kJ/cm
予熱:なし
パス間管理条件:連続、最終パス間温度500〜550℃
母材鋼板:SM490、形状22mm厚×100mm幅×200mm長
開先形状:35°レ型開先、ギャップ7mm
シールドガス:CO2 、流量25L/min
A welding test was performed using the welding wire produced as described above under the following welding conditions, and the strength and toughness of the deposited metal during high heat input welding were examined.
Welding current: 420A
Welding voltage: 43V
Wire feed speed: 28cm / min
Heat input: 38.7 kJ / cm
Preheating: None Management conditions between passes: Continuous, temperature between final passes 500-550 ° C
Base material steel plate: SM490, shape 22 mm thickness x 100 mm width x 200 mm long groove shape: 35 ° lave groove, gap 7 mm
Shield gas: CO 2 , flow rate 25L / min

溶接後、溶着金属から試験片を採取し、JISZ3111に従って引張試験、衝撃試験を行い、引張強さ(TS)及び衝撃値(vE0℃)を測定した。TS:540MPa以上、vE0℃:80J以上であれば大入熱溶接時の強度強靭バランスは良好であり、合格レベルと評価することができる。前記測定結果を表2に示す。   After welding, a test piece was collected from the weld metal, and subjected to a tensile test and an impact test according to JISZ3111, and a tensile strength (TS) and an impact value (vE0 ° C.) were measured. If TS: 540 MPa or more and vE0 ° C .: 80 J or more, the strength-toughness balance during high heat input welding is good and can be evaluated as a pass level. The measurement results are shown in Table 2.

次に、下記の溶接条件にて拘束隅肉溶接試験を行い、小入熱溶接時の耐低温割れ性を調べた。
溶接電流:200A
溶接電圧:26V
ワイヤ送り速度:50cm/min
入熱量:6.24kJ/cm
予熱:なし
母材鋼板:SM490
母材試験体の構造:図1
試験温度:0℃
シールドガス:CO2 、流量25L/min
Next, a constrained fillet welding test was performed under the following welding conditions, and the low temperature crack resistance during small heat input welding was investigated.
Welding current: 200A
Welding voltage: 26V
Wire feed speed: 50cm / min
Heat input: 6.24kJ / cm
Preheating: None Base material steel plate: SM490
Base material structure: Fig. 1
Test temperature: 0 ° C
Shield gas: CO 2 , flow rate 25L / min

前記試験体は、図1に示すように、基板1の幅方向中央に立板2が立設され、これに三角形の拘束板4を接合し、かつ基板1の下面に方形の拘束板3を3枚接合したもので、これらの接合は拘束隅肉脚長6mm以上で溶接されたものである(社団法人日本溶接協会発行、「溶接の研究」、No. 40(2002)p203)。基板1と立板2とは、図のように、拘束板3の真上を避けて6カ所、上記溶接ワイヤを用いて溶接を行い、この溶接ビード6について低温割れ性を調べた。低温割れ性は、溶接後、24時間経過した後、ビード表面をカラーチェクして割れの有無を目視観察した。観察結果を表2に併せて示す。表2において、評価欄の○は合格基準を満足していることを、×は合格基準を満たさないことを示す。   As shown in FIG. 1, the test body has a standing plate 2 erected at the center in the width direction of the substrate 1, a triangular restraining plate 4 is joined thereto, and a rectangular restraining plate 3 is attached to the lower surface of the substrate 1. Three pieces were joined, and these joints were welded with a constrained fillet leg length of 6 mm or more (published by the Japan Welding Association, “Research on welding”, No. 40 (2002) p203). As shown in the figure, the substrate 1 and the standing plate 2 were welded using the above-described welding wires at six locations avoiding the position directly above the restraint plate 3, and the cold beadability of this weld bead 6 was examined. The low temperature cracking property was visually checked for the presence or absence of cracks by color-checking the bead surface after 24 hours had elapsed after welding. The observation results are also shown in Table 2. In Table 2, ○ in the evaluation column indicates that the acceptance criteria are satisfied, and x indicates that the acceptance criteria are not satisfied.

表2より、発明例に係る試料No. 1、7、8、15、17〜26は、大入熱溶接時の機械的特性及び低入熱溶接時の耐低温割れ性に優れている。
一方、比較例については、試料No. 2はC量が高過ぎるため、大入熱溶接時の強度が高くなり過ぎ、溶着金属の衝撃特性が劣化しており、また耐低温割れ性も劣化している。また、Siに関して、Si量が過少なNo. 3では脱酸が不足し、固溶酸素が残存するため靭性が劣化しており、一方Si量が過多のNo. 4では固溶強化により強度が高くなり過ぎ、靭性が18Jと著しく劣化した。また、Mnに関して、No. 5はMn量が低過ぎるため、粒界フェライトの形成を抑制できず、大入熱溶接時の靭性が劣化し、一方Mn量が過多のNo. 6では低入熱溶接時の強度が過大となり、耐低温割れ性が悪化した。また、Cuに関して、試料No. 9はCu量が高過ぎるため、Cuの析出により強度が向上したものの、靭性が劣化した。また、Moに関して、Moが過少なNo. 10では、粒界フェライトの形成を抑制できず、大入熱溶接特性が低下し、一方Moが過多のNo. 11では、低入熱溶接時の強度が上がり過ぎて耐低温割れ性が確保できなかった。また、Tiに関して、Ti量が0.54%と過多なNo. 12では、溶着金属中にTi炭化物が形成され、靭性の劣化が著しい。また、Bについて、B量が過少なNo. 13では、粒界フェライトの形成を抑制できず、大入熱溶接時の靭性を確保することができず、一方B量が過多のNo. 14では、低入熱溶接時の強度が高くなり過ぎるため、耐低温割れ性が確保されなかった。また、No. 16は、個々の合金成分は本発明範囲内にあるものの、フェライト抑制元素量を総合評価するとPMPが8.6と過少なため、十分な大入熱溶接特性が得られていない。また、No. 27は、C量が高く、N量が低いため溶着金属の靭性が低下し、耐低温割れ性が確保されなかった。
From Table 2, Sample Nos. 1, 7, 8, 15, 17 to 26 according to the invention examples are excellent in mechanical characteristics during high heat input welding and cold crack resistance during low heat input welding.
On the other hand, as for the comparative example, since sample No. 2 has too high C content, the strength at the time of high heat input welding becomes too high, the impact characteristics of the deposited metal are deteriorated, and the cold crack resistance is also deteriorated. ing. In addition, with respect to Si, in No. 3 with a small amount of Si, deoxidation is insufficient, and solid solution oxygen remains, so that toughness is deteriorated. On the other hand, in No. 4 with a large amount of Si, strength is increased by solid solution strengthening. It became too high and the toughness deteriorated significantly to 18J. Regarding Mn, No. 5 has too low Mn content, so it cannot suppress the formation of intergranular ferrite and deteriorates toughness during high heat input welding, while No. 6 with excessive Mn content has low heat input. The strength at the time of welding became excessive, and the cold cracking resistance deteriorated. Regarding Cu, sample No. 9 had an excessively high amount of Cu, so the toughness deteriorated although the strength was improved by precipitation of Cu. In addition, regarding No. 10 where Mo is too small, formation of intergranular ferrite cannot be suppressed and large heat input welding characteristics are deteriorated. On the other hand, when No. 11 is too much Mo, strength during low heat input welding is reduced. As a result, the resistance to cold cracking could not be secured. Further, with regard to Ti, when the Ti content is excessively 0.54%, Ti carbide is formed in the weld metal, and the toughness is significantly deteriorated. In addition, with regard to B, with No. 13 having a small B amount, formation of grain boundary ferrite cannot be suppressed, and toughness during high heat input welding cannot be ensured. On the other hand, with No. 14 having an excessive B amount, Since the strength at the time of low heat input welding becomes too high, the low temperature crack resistance was not ensured. Also, No. 16, the individual alloying elements although within the scope of the present invention, since P MP 8.6 and too small when comprehensively evaluating the ferrite suppression element content, have sufficient high heat input welding characteristics are obtained Absent. In No. 27, the C content was high and the N content was low, so the toughness of the deposited metal was lowered, and the low temperature crack resistance was not ensured.

Figure 0004614226
Figure 0004614226

Figure 0004614226
Figure 0004614226

拘束隅肉溶接試験で用いた母材試験体構造を示す斜視図である。It is a perspective view which shows the base material test body structure used in the restraint fillet welding test.

Claims (5)

mass%で、
C:0〜0.011%、
Si:0.5〜1.0%、
Mn:1.8超〜2.5%、
Cu:0.1〜1.0%、
Mo:0.10〜0.50%、
Ti:0.1〜0.3%、
B:0.0010〜0.0050%、
N:0.0040〜0.0150%
を含み、かつ下記PMPが10%以上とされ、残部Fe及び不可避的不純物からなる、大入熱特性及び耐低温割れ性に優れたガスシールドアーク溶接用ソリッドワイヤ。
PMP=4[Mn]+([Cu]+[Ni]+[Cr])+6000([Mo]+[V]+[Nb]+[Zr]+[Ta]+[Hf]+[W])*[B]
但し、[元素名]は当該元素の含有mass%を示す。
mass%
C: 0 to 0.011%,
Si: 0.5 to 1.0%
Mn: more than 1.8 to 2.5%,
Cu: 0.1 to 1.0%
Mo: 0.10 to 0.50%,
Ti: 0.1 to 0.3%,
B: 0.0010 to 0.0050%,
N: 0.0040 to 0.0150%
It includes, and following P MP is 10% or more, the balance being Fe and unavoidable impurities, solid wire for excellent gas shielded arc welding in high heat input characteristics and low temperature cracking resistance.
P MP = 4 [Mn] + ([Cu] + [Ni] + [Cr]) + 6000 ([Mo] + [V] + [Nb] + [Zr] + [Ta] + [Hf] + [W ]) * [B]
However, [element name] indicates mass% of the element.
さらに、Feの一部に代えて、Cr、Niの1種もしくは2種を合計で0.1〜2.0%含む、請求項1に記載したガスシールドアーク溶接用ソリッドワイヤ。   The solid wire for gas shielded arc welding according to claim 1, further comprising 0.1 to 2.0% of one or two of Cr and Ni instead of a part of Fe. さらに、Feの一部に代えて、V,Nb,Zr,Ta,Hf,Wの1種もしくは2種以上を合計で0.001〜0.1%含む、請求項1又は2に記載したガスシールドアーク溶接用ソリッドワイヤ。   Furthermore, it replaces with a part of Fe, The gas of Claim 1 or 2 which contains 1 type or 2 types or more of V, Nb, Zr, Ta, Hf, W in total 0.001-0.1% Solid wire for shielded arc welding. さらに、Feの一部に代えて、Alを0.001〜0.1%含む、請求項1から3のいずれか1項に記載したガスシールドアーク溶接用ソリッドワイヤ。   The solid wire for gas shielded arc welding according to any one of claims 1 to 3, further comprising 0.001 to 0.1% of Al instead of a part of Fe. さらに、Feの一部に代えて、REMを0.001〜0.2%を含む、請求項1から4のいずれか1項に記載したガスシールドアーク溶接用ソリッドワイヤ。
Furthermore, it replaces with a part of Fe, The solid wire for gas shielded arc welding of any one of Claim 1 to 4 containing REM 0.001-0.2%.
JP2005110808A 2005-04-07 2005-04-07 Solid wire for gas shielded arc welding Expired - Fee Related JP4614226B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2005110808A JP4614226B2 (en) 2005-04-07 2005-04-07 Solid wire for gas shielded arc welding
CNB200610073240XA CN100436032C (en) 2005-04-07 2006-04-05 Solid-core welding wire for gas shielded welding
KR1020060031501A KR100723138B1 (en) 2005-04-07 2006-04-06 Solid wire for gas shield arc welding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005110808A JP4614226B2 (en) 2005-04-07 2005-04-07 Solid wire for gas shielded arc welding

Publications (2)

Publication Number Publication Date
JP2006289395A JP2006289395A (en) 2006-10-26
JP4614226B2 true JP4614226B2 (en) 2011-01-19

Family

ID=37062668

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005110808A Expired - Fee Related JP4614226B2 (en) 2005-04-07 2005-04-07 Solid wire for gas shielded arc welding

Country Status (3)

Country Link
JP (1) JP4614226B2 (en)
KR (1) KR100723138B1 (en)
CN (1) CN100436032C (en)

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101176955B (en) * 2006-11-10 2011-08-31 航天材料及工艺研究所 Soldering wire for high-strength aluminum copper alloy
CN101808774B (en) * 2007-10-05 2013-01-16 株式会社神户制钢所 Welding solid wire
CN101456102B (en) * 2009-01-05 2011-05-04 西安理工大学 Alpha titanium alloy manual tungsten-electrode argon-shielded tungsten arc welding refined grain type welding wire and preparation method thereof
CN102233494B (en) * 2010-04-27 2012-12-05 昆山京群焊材科技有限公司 Stainless steel band electrode electroslag surfacing welding strip and welding flux
CN101862924A (en) * 2010-06-30 2010-10-20 郑州机械研究所 Gas shield welding wire material for supercritical steel
CN101983827B (en) * 2010-10-19 2013-07-10 成都新大洋焊接材料有限责任公司 Alloy creep resistant heat resistant steel submerged arc welding stick
CN102069318A (en) * 2010-12-14 2011-05-25 江苏大学 Cavitation-resistant stainless steel soldering wire and welding method thereof
CN102319967A (en) * 2011-09-02 2012-01-18 天津大桥焊丝有限公司 Gas-shielded welding solid welding wire for low-carbon high-strength structural steel
TW201318757A (en) * 2011-11-01 2013-05-16 Sorex Welding Co Ltd Stainless steel strip electrode electroslag overlay welding material
CN102554506A (en) * 2012-01-28 2012-07-11 孟庆连 Brazing filler metal for hot-rolling brazing
CN103692107A (en) * 2013-12-30 2014-04-02 钢铁研究总院 Anti-corrosion submerged-arc welding wire for tanker construction
CN104801885A (en) * 2015-04-24 2015-07-29 柳州金茂机械有限公司 Preparation process for welding wire of welding process
CN107414342A (en) * 2017-07-31 2017-12-01 安徽华众焊业有限公司 A kind of copper aluminium flux-cored wire
CN107553001B (en) * 2017-09-01 2021-03-26 武汉铁锚焊接材料股份有限公司 Submerged arc welding wire for nuclear power component electric arc additive manufacturing
WO2019186701A1 (en) 2018-03-27 2019-10-03 日本製鉄株式会社 Ni-BASED ALLOY WIRE FOR SUBMERGED ARC WELDING, AND METHOD OF PRODUCING WELDED JOINT
WO2019186686A1 (en) * 2018-03-27 2019-10-03 日本製鉄株式会社 Ni-BASED ALLOY CORE FOR COATED ARC WELDING ROD, COATED ARC WELDING ROD, AND METHOD FOR MANUFACTURING COATED ARC WELDING ROD
CN111618478B (en) * 2019-02-28 2022-11-15 宝山钢铁股份有限公司 Low-manganese gas shielded welding wire suitable for ultralow heat input automatic welding and welding method thereof
JP6771638B1 (en) * 2019-11-07 2020-10-21 株式会社神戸製鋼所 Gas shield arc welding wire
CN111975244B (en) * 2020-09-02 2021-07-27 燕山大学 Coating-free weather-resistant steel bridge CO with 650 MPa-grade tensile strength2Gas shielded welding wire and wire rod
CN113787278B (en) * 2021-09-01 2023-03-24 武汉轻工大学 Mixed gas shielded welding process for nitrogen-titanium composite reinforced high-strength steel
CN117260066B (en) * 2023-11-23 2024-01-16 河北钨泰固机械设备有限公司 Submerged arc welding wire and preparation method thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002079395A (en) * 2000-07-05 2002-03-19 Kawasaki Steel Corp Wire for gas shielded arc welding
JP2002103082A (en) * 2000-09-25 2002-04-09 Kawasaki Steel Corp Wire for gas shielded arc welding
JP2004188428A (en) * 2002-12-09 2004-07-08 Jfe Steel Kk Steel wire for carbon dioxide gas-shielded arc welding, and welding method using the same
JP2004195543A (en) * 2002-12-20 2004-07-15 Jfe Steel Kk Steel wire for gas shielded arc welding
JP2004202572A (en) * 2002-11-08 2004-07-22 Jfe Steel Kk Welding wire for gas shielded arc welding
JP2005046879A (en) * 2003-07-29 2005-02-24 Jfe Steel Kk Steel strand to form steel wire for carbon dioxide gas-shielded arc welding

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3251424B2 (en) * 1994-04-25 2002-01-28 株式会社神戸製鋼所 Welding wire for high strength Cr-Mo steel
JPH09202920A (en) * 1996-01-23 1997-08-05 Nippon Steel Corp Production of high strength steel plate excellent in toughness in large heat input weld heat-affected zone
JP3199656B2 (en) * 1997-02-19 2001-08-20 株式会社神戸製鋼所 Gas shielded arc welding wire
JP3545193B2 (en) * 1998-02-25 2004-07-21 日鐵住金溶接工業株式会社 Solid wire for carbon dioxide shielded arc welding and welding method thereof
JP3747237B2 (en) * 2000-05-01 2006-02-22 株式会社神戸製鋼所 Flux-cored wire for gas shielded arc welding for heat-resistant steel

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002079395A (en) * 2000-07-05 2002-03-19 Kawasaki Steel Corp Wire for gas shielded arc welding
JP2002103082A (en) * 2000-09-25 2002-04-09 Kawasaki Steel Corp Wire for gas shielded arc welding
JP2004202572A (en) * 2002-11-08 2004-07-22 Jfe Steel Kk Welding wire for gas shielded arc welding
JP2004188428A (en) * 2002-12-09 2004-07-08 Jfe Steel Kk Steel wire for carbon dioxide gas-shielded arc welding, and welding method using the same
JP2004195543A (en) * 2002-12-20 2004-07-15 Jfe Steel Kk Steel wire for gas shielded arc welding
JP2005046879A (en) * 2003-07-29 2005-02-24 Jfe Steel Kk Steel strand to form steel wire for carbon dioxide gas-shielded arc welding

Also Published As

Publication number Publication date
CN1843683A (en) 2006-10-11
KR100723138B1 (en) 2007-05-30
KR20060107380A (en) 2006-10-13
CN100436032C (en) 2008-11-26
JP2006289395A (en) 2006-10-26

Similar Documents

Publication Publication Date Title
JP4614226B2 (en) Solid wire for gas shielded arc welding
JP5050863B2 (en) Ferritic stainless steel sheet for water heaters
JP5314473B2 (en) Weld metal with excellent strength and toughness after welding and after stress relief annealing, and welded structure joined by the weld metal
WO2010090041A1 (en) Ferrite stainless steel with low black spot generation
KR20130127943A (en) Ni-base alloy weld metal, strip electrode, and welding method
JP5387192B2 (en) Flux-cored wire for gas shield welding
JP6978615B2 (en) Welding material for TIG welding
WO2013136736A1 (en) Ferritic stainless steel
WO2014119189A1 (en) Coated electrode
JP6432716B1 (en) Fillet welded joint and manufacturing method thereof
JP4427416B2 (en) Large heat input submerged arc welding method with excellent weld metal toughness.
JP5449110B2 (en) Solid wire for Ar-CO2 mixed gas shielded arc welding
WO2022030200A1 (en) Solid wire for gas metal arc welding use
JP4625415B2 (en) Solid wire for gas shielded arc welding
JP4441372B2 (en) High strength and high toughness gas shielded arc welding wire
CN112621016A (en) Welding material, welding metal, and electroslag welding method
JP3894703B2 (en) Gas shielded arc welding wire
JP5920542B2 (en) Welded joint
JP5955166B2 (en) Ferritic stainless steel welding wire with excellent weldability, high heat resistance and high corrosion resistance
JP4469226B2 (en) Solid wire for gas shielded arc welding for underlay welding.
JP2018144060A (en) Filler metal for tig welding
JP5884183B2 (en) Structural stainless steel sheet
JP2022089304A (en) Welded joint of austenitic stainless steel, welded structure, and mother steel, and method for producing welded joint of austenitic stainless steel
JP2006198623A (en) Solid wire for gas shield arc welding
JP3862213B2 (en) Welding wire for gas shielded arc welding

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070928

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100624

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101013

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101013

R150 Certificate of patent or registration of utility model

Ref document number: 4614226

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131029

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees