JP4625415B2 - Solid wire for gas shielded arc welding - Google Patents

Solid wire for gas shielded arc welding Download PDF

Info

Publication number
JP4625415B2
JP4625415B2 JP2006077030A JP2006077030A JP4625415B2 JP 4625415 B2 JP4625415 B2 JP 4625415B2 JP 2006077030 A JP2006077030 A JP 2006077030A JP 2006077030 A JP2006077030 A JP 2006077030A JP 4625415 B2 JP4625415 B2 JP 4625415B2
Authority
JP
Japan
Prior art keywords
content
weld metal
toughness
welding
wire
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006077030A
Other languages
Japanese (ja)
Other versions
JP2007253163A (en
Inventor
茂 大北
浩一 磯部
修 高木
勇 木本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2006077030A priority Critical patent/JP4625415B2/en
Publication of JP2007253163A publication Critical patent/JP2007253163A/en
Application granted granted Critical
Publication of JP4625415B2 publication Critical patent/JP4625415B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Nonmetallic Welding Materials (AREA)
  • Arc Welding In General (AREA)

Description

本発明は、主として引張強さが490〜780N/mm級の高張力鋼をガスシールドアーク溶接する際に使用するガスシールドアーク溶接用ソリッドワイヤに関し、特に、ガスシールドアーク溶接により、高電流・高入熱・高パス間温度の条件で多層盛溶接しても、溶接金属の靱性及び強度を安定して確保することができ、溶接作業性が良好なガスシールドアーク溶接用ソリッドワイヤに関する。 The present invention relates to a solid wire for gas shielded arc welding mainly used for gas shielded arc welding of high strength steel having a tensile strength of 490 to 780 N / mm 2 grade. The present invention relates to a solid wire for gas shielded arc welding that can stably ensure the toughness and strength of a weld metal even if multilayer welding is performed under conditions of high heat input and high-pass temperature, and has good welding workability.

一般にガスシールドアーク溶接は、高能率な溶接施工方法として各産業分野において多用されている。近年、ガスシールドアーク溶接の更なる高能率化を目的として、溶接1パス当りの高電流化及び高入熱化、並びに各溶接パス間時間の短縮化による連続溶接等が要求されている。このような高電流、高入熱、及び溶接パス間時間の短縮による高パス間温度が上昇する溶接条件では、特に、溶接金属の靭性の低下が生じるため、溶接金属の引張強度等の特性を維持しつつ、靭性を改善することが従来からの技術的課題であった。   In general, gas shielded arc welding is frequently used in various industrial fields as a highly efficient welding method. In recent years, for the purpose of further improving the efficiency of gas shielded arc welding, continuous welding by increasing the current and heat input per welding pass and shortening the time between each welding pass has been required. Under such high current, high heat input, and welding conditions in which the temperature between the high passes increases due to the shortening of the time between weld passes, the toughness of the weld metal is reduced. It has been a conventional technical problem to improve toughness while maintaining it.

そこで、従来、高電流、高入熱、及び溶接パス間温度が高い条件でガスシールドアーク溶接する際に、溶接金属の強度及び靭性を良好に維持するための溶接ワイヤとしてTi−B系溶接ワイヤが検討され、いくつかの提案がされている(例えば、特許文献1〜5参照。)。   Therefore, conventionally, a Ti-B welding wire is used as a welding wire for maintaining good strength and toughness of the weld metal when performing gas shielded arc welding under conditions of high current, high heat input, and high temperature between welding passes. Have been studied and some proposals have been made (for example, see Patent Documents 1 to 5).

例えば、特許文献1には、溶接電流が600A以上、溶接入熱が20〜60kJ/cmの条件でガスシールドアーク溶接したときの低温靭性向上を目的として、C、Si、Mn、Ti及びBの含有量を規定すると共に、Ti及びBの含有量に基づき決定されるパラメータPa(=Ti×B×10)を1〜25に限定した高能率ガスシールドアーク溶接用ワイヤが提案されている。 For example, Patent Document 1 discloses that C, Si, Mn, Ti, and B are used for the purpose of improving low temperature toughness when gas shield arc welding is performed under conditions where the welding current is 600 A or more and the welding heat input is 20 to 60 kJ / cm. A high-efficiency gas shielded arc welding wire has been proposed in which the content is specified and the parameter Pa (= Ti × B × 10 4 ) determined based on the Ti and B content is limited to 1 to 25.

また、特許文献2には、588N級(60kgf級)鋼以上の高張力鋼を、シールドガスにAr−CO等の混合ガスを使用してガスシールドアーク溶接により溶接した後の熱処理(PWHT)時に生じる低温靱性の低下を抑制するために、C、Si、Mn、Ti及びBの含有量を規定し、更に、強度及び靭性を改善するために、Ni、Cr及びMoのいずれか1種以上の元素を低量含有させた低温靱性に優れたTi−B系高張力鋼溶ワイヤが提案されている。更に、特許文献3には、C、Si、Mn、B、O、S及びNの含有量を規定すると共に、低温靭性を改善するためにTi及び/又はMoを含有量させた溶接用鋼ワイヤが提案されている。 Patent Document 2 discloses a heat treatment (PWHT) after welding high-tensile steel of 588 N class (60 kgf class) steel or higher by gas shielded arc welding using a mixed gas such as Ar—CO 2 as a shielding gas. The content of C, Si, Mn, Ti and B is specified in order to suppress a decrease in low temperature toughness that sometimes occurs, and in order to further improve the strength and toughness, any one or more of Ni, Cr and Mo A Ti-B high strength steel melt wire excellent in low temperature toughness containing a low amount of these elements has been proposed. Furthermore, in Patent Document 3, the content of C, Si, Mn, B, O, S, and N is specified, and a welding steel wire containing Ti and / or Mo in order to improve low-temperature toughness. Has been proposed.

一方、特許文献4には、C、Si、Mn、Ti、Mo、O、S、P及びNの含有量を規定し、更に、B、Al及びNのうちの1種以上の元素を含有させたガスシールドアーク溶接用低合金鋼ワイヤが開示されている。また、特許文献5には、軟鋼又は490N/mm級高張力鋼の高入熱・高パス間温度の条件で溶接する炭酸ガス溶接用ワイヤとして、C、Si、Mn、Ti、B及びSの含有量を規定し、更にTi及びBの含有量の関係からなるパラメータPBT(=[B]×10/[Ti])、及びTi及びBの含有量の関係からなるPBS(=[B]×[S]×10)を規制すると共に、不可避成分のうち、靭性を低下させるAl、Cr、Mo、Cu及びPの含有量を制限したガスシールドアーク溶接用ワイヤが提案されている。このように、従来、ガスシールドアーク溶接における高入熱溶接条件での溶接金属の靱性の向上を目的として、種々の溶接ワイヤが開発され、提案されている。 On the other hand, Patent Document 4 defines the contents of C, Si, Mn, Ti, Mo, O, S, P and N, and further contains one or more elements of B, Al and N. A low alloy steel wire for gas shielded arc welding is disclosed. Further, Patent Document 5 discloses C, Si, Mn, Ti, B and S as carbon dioxide welding wires for welding under conditions of high heat input and high pass temperature of mild steel or 490 N / mm grade 2 high strength steel. The parameter P BT (= [B] × 10 3 / [Ti]) consisting of the relationship between the Ti and B contents, and the P BS consisting of the relationship between the Ti and B contents (= [B] × [S] × 10 5 ) and a wire for gas shielded arc welding in which the contents of Al, Cr, Mo, Cu, and P, which reduce toughness among inevitable components, are limited. Yes. Thus, conventionally, various welding wires have been developed and proposed for the purpose of improving the toughness of weld metal under high heat input welding conditions in gas shielded arc welding.

特開昭54−40250号公報JP 54-40250 A 特開昭63−157795号公報JP-A 63-157795 特開昭55−149797号公報JP 55-149797 特公平4−20720号公報Japanese Patent Publication No. 4-20720 特開平10−230387号公報JP-A-10-230387

しかしながら、前述した特許文献1〜5に記載の溶接用ワイヤ等の従来の溶接用ワイヤには、溶接条件によって十分に安定して効果が得られないという問題点がある。特に、ガスシールドアーク溶接によって高電流・高入熱・高パス間温度の条件で多層盛溶接を行う場合には、従来の溶接ワイヤでは、溶接金属の強度及び靭性を安定して十分に向上することは困難である。   However, the conventional welding wires such as the welding wires described in Patent Documents 1 to 5 described above have a problem that the effect cannot be obtained sufficiently stably depending on the welding conditions. In particular, when multi-pass welding is performed under conditions of high current, high heat input, and high pass temperature by gas shielded arc welding, the strength and toughness of the weld metal can be stably and sufficiently improved with conventional welding wires. It is difficult.

本発明は、上記問題点に鑑みてなされたものであって、引張強さが490〜780N/mm級の高張力鋼をガスシールドアーク溶接する際に、高電流・高入熱・高パス間温度の溶接条件で高能率に行っても、靱性及び強度が優れた溶接金属を安定して確保することができ、かつ溶接作業性も良好なガスシールドアーク溶接用ソリッドワイヤを提供することを目的とする。 The present invention has been made in view of the above problems, and has a high current, a high heat input, a high pass when gas-shielded arc welding is performed on a high strength steel having a tensile strength of 490 to 780 N / mm 2 grade. To provide a solid wire for gas shielded arc welding that can stably secure a weld metal with excellent toughness and strength, and that has good welding workability even when performing at high efficiency under welding conditions at intermediate temperatures. Objective.

本発明に係るガスシールドアーク溶接用ソリッドワイヤは、質量%で、C:0.02〜0.14%、Si:0.4〜1.5%、Mn:1.0〜2.5%、Ti:0.05〜0.4%、Mg:0.0003〜0.010%及びB:0.0005〜0.010%を含有すると共に、Al及びZrからなる群から選択された1種又は2種以上の元素を合計で0.005〜0.050%含有し、N:0.005%以下に制限し、残部がFe及び不可避的不純物からなり、Si及びMnの総含有量が1.5〜3.5%であり、かつMn含有量(%)とSi含有量(%)との比(Mn/Si)が0.85以上であることを特徴とする。   The solid wire for gas shielded arc welding according to the present invention is, in mass%, C: 0.02 to 0.14%, Si: 0.4 to 1.5%, Mn: 1.0 to 2.5%, Ti: 0.05-0.4%, Mg: 0.0003-0.010% and B: 0.0005-0.010%, and one or more selected from the group consisting of Al and Zr The total content of two or more elements is 0.005 to 0.050%, N is limited to 0.005% or less, the balance is Fe and inevitable impurities, and the total content of Si and Mn is 1. It is 5 to 3.5%, and the ratio (Mn / Si) of Mn content (%) and Si content (%) is 0.85 or more.

このガスシールドアーク溶接用ソリッドワイヤは、更に、質量%で、Cu:0.3〜1.5%、Ni:0.3〜3.0%、Cr:0.1〜1.5%及びMo:0.1〜1.5%からなる群から選択された1種又は2種以上の元素を合計で5.0%以下含有していてもよい。   This solid wire for gas shielded arc welding is further, in mass%, Cu: 0.3-1.5%, Ni: 0.3-3.0%, Cr: 0.1-1.5% and Mo : One or two or more elements selected from the group consisting of 0.1 to 1.5% may be contained in total of 5.0% or less.

本発明によれば、高電流・高入熱・高パス間温度の溶接条件でガスシールドアーク溶接する際に、良好な作業性が得られると共に、引張強度及び安定した靱性に優れた溶接金属を確保できるため、溶接の高能率化及び溶接部の品質向上が図れる。   According to the present invention, when performing gas shielded arc welding under welding conditions of high current, high heat input, and high pass temperature, it is possible to obtain a weld metal having excellent workability and excellent tensile strength and stable toughness. Therefore, it is possible to improve the efficiency of welding and improve the quality of the welded portion.

以下、本発明を実施するための最良の形態について、詳細に説明する。高電流・高入熱・高パス間温度の溶接条件でガスシールドアーク溶接する際に、溶接金属の品質を維持する上で最も重要な課題は、溶接金属組織の粗大化による靱性の低下を抑制することである。そこで、本発明のガスシールドアーク溶接用ソリッドワイヤにおいては、このような溶接条件での溶接金属組織の粗大化を抑制し、0℃でのシャルピー吸収エネルギーで70J以上の靭性を確保するため、Ti及びMgの含有量、Si及びMnの総含有量、並びにMn含有量とSi含有量との比を規定することにより、溶接金属中の脱酸を十分に行なうと共に、粗大フェライトの生成を抑制し、かつ結晶粒内にTiの微細酸化物を核として微細なアシキュラーフェライトを生成させることを、第1の技術思想としている。   Hereinafter, the best mode for carrying out the present invention will be described in detail. When gas shielded arc welding is performed under welding conditions of high current, high heat input, and high pass temperature, the most important issue in maintaining the quality of the weld metal is to suppress the deterioration of toughness due to coarsening of the weld metal structure. It is to be. Therefore, in the solid wire for gas shielded arc welding according to the present invention, the coarsening of the weld metal structure under such welding conditions is suppressed, and a toughness of 70 J or more is secured with Charpy absorbed energy at 0 ° C. And by regulating the content of Mg, the total content of Si and Mn, and the ratio of the Mn content to the Si content, the weld metal is sufficiently deoxidized and the formation of coarse ferrite is suppressed. In addition, the first technical idea is to generate fine acicular ferrite with a fine oxide of Ti as a nucleus in the crystal grains.

特に、本発明のガスシールドアーク溶接用ソリッドワイヤは、Mgを所定量含有している点に特徴がある。Mgは、融点が低く溶接時に気化しやすいため、溶接金属中に殆ど残留せず、溶接金属の特性に影響を与えないことから、ガスシールド性及びアークの安定剤として手溶接棒の被覆材、フラックス入りワイヤ中の充填材及びサブマージアーク溶接用のボンド型フラックスに添加されている。   In particular, the solid wire for gas shielded arc welding of the present invention is characterized in that it contains a predetermined amount of Mg. Since Mg has a low melting point and is easy to vaporize during welding, it hardly remains in the weld metal and does not affect the properties of the weld metal. It is added to the filler in the flux cored wire and the bond type flux for submerged arc welding.

その一方で、Mgをソリッドワイヤ中に添加すると、鋼材の線伸加工性が低下するため、従来、ソリッドワイヤ中にMgを含有させることはなかった。しかしながら、本発明者は、鋭意実験検討を行った結果、ワイヤ中に含まれるTi、Si及びMnによって溶接金属の脱酸及び組成制御を行う条件下では、溶接金属中に残存する微量のMgが高温で微細酸化物を形成し、更には、この微細酸化物が核となりAl、Ti及びSi等を含む微細な複合酸化物が形成され、溶接金属の結晶粒内に微細なアシキュラーフェライトが生成し、ミクロ組織の微細化が促進されることを確認した。また、本発明者は、上述したMgによる微細酸化物の形成促進により、Bの酸化による消耗を抑制し、Bによる焼入れ性向上及び結晶粒界での靭性に有害な粗大フェライトの抑制等の効果が向上することも確認した。   On the other hand, when Mg is added to the solid wire, the wire drawing workability of the steel material is lowered, so conventionally Mg has not been included in the solid wire. However, as a result of earnest experiments, the present inventor has found that a trace amount of Mg remaining in the weld metal is not obtained under the conditions of deoxidation and composition control of the weld metal by Ti, Si and Mn contained in the wire. A fine oxide is formed at high temperature, and this fine oxide serves as a nucleus to form a fine composite oxide containing Al, Ti, Si, etc., and fine acicular ferrite is formed in the crystal grains of the weld metal. It was confirmed that the refinement of the microstructure was promoted. Further, the present inventor suppresses the consumption due to oxidation of B by promoting the formation of fine oxides by Mg as described above, and improves the hardenability by B and the effects of suppressing coarse ferrite harmful to the toughness at the grain boundaries. Has also been confirmed to improve.

また、上述した高電流・高入熱・高パス間温度の条件でガスシールドアーク溶接する際には、加熱により溶接時の溶融プールが大きくなるため、ガスシールド性が不完全となり、大気中の窒素が溶融金属中に侵入し、溶接金属の靱性を低下させる原因となる。この溶接金属中のNの固定には、金属中において拡散係数の大きいBが最もその優れた効果を示すが、上述の如く、Mg、Ti、Al及びZrの自己酸化によりBの酸化消耗を防止することができ、Nの固定に有効なBの含有量を確保できる。   In addition, when gas shielded arc welding is performed under the conditions of high current, high heat input, and high pass temperature described above, the molten pool at the time of welding becomes large due to heating. Nitrogen penetrates into the molten metal and causes a reduction in the toughness of the weld metal. For fixing N in this weld metal, B, which has a large diffusion coefficient in the metal, exhibits the most excellent effect. As described above, self-oxidation of Mg, Ti, Al and Zr prevents oxidation of B. The content of B effective for fixing N can be ensured.

本発明のガスシールドアーク溶接用ソリッドワイヤは、このような溶接金属中の窒素侵入による靱性低下を抑制するため、Tiと同様に、窒素固定作用があるAl及び/又はZrの含有量を規定して、溶接金属中の窒素を窒化物として固定することによって、上述した溶接条件においても、溶接金属中の固溶N量を十分に低減することができ、靭性を向上させることができることを、第2の技術思想としている。   The solid wire for gas shielded arc welding of the present invention regulates the content of Al and / or Zr having a nitrogen fixing action in the same manner as Ti in order to suppress toughness deterioration due to nitrogen penetration into the weld metal. By fixing nitrogen in the weld metal as a nitride, the amount of solute N in the weld metal can be sufficiently reduced even under the above-described welding conditions, and toughness can be improved. This is the second technical idea.

更に、本発明のガスシールドアーク溶接用ソリッドワイヤにおいては、溶接金属の安定した強度及び靱性を確保するという観点から、更に、焼入性元素として、Cu、Ni、Cr及びMoを適量含有させこともできる。これにより、上述した溶接条件で490〜780N/mm級鋼を溶接した場合において、溶接金属の引張強さを維持しつつ、良好な靭性をより安定して確保することができる。 Furthermore, in the solid wire for gas shielded arc welding according to the present invention, from the viewpoint of ensuring stable strength and toughness of the weld metal, an appropriate amount of Cu, Ni, Cr and Mo should be contained as a hardenable element. You can also. Thereby, when welding 490-780 N / mm 2 grade steel on the welding conditions mentioned above, favorable toughness can be ensured more stably, maintaining the tensile strength of a weld metal.

本発明のガスシールドアーク溶接用ソリッドワイヤは、上記知見及び技術思想によりなされたものであり、490〜780N/mm級鋼を高電流・高入熱・高パス間温度の溶接条件でガスシールドアーク溶接する際に、引張強さが4490〜780N/mmで、かつ、0℃でのシャルピー吸収エネルギーが70J以上の良好な靭性を有する溶接金属を得ることができる。 The solid wire for gas shielded arc welding of the present invention has been made based on the above knowledge and technical idea, and gas shielded from 490 to 780 N / mm grade 2 steel under welding conditions of high current, high heat input, and high pass temperature. When arc welding is performed, a weld metal having good toughness having a tensile strength of 4490 to 780 N / mm 2 and a Charpy absorbed energy at 0 ° C. of 70 J or more can be obtained.

以下、本発明のガスシールドアーク溶接用ソリッドワイヤの成分組成及び各成分元素の限定理由について詳細に説明する。なお、以下の説明において、「%」は特に説明がない限り、「質量%」を意味するものとする。   Hereinafter, the component composition of the solid wire for gas shielded arc welding of the present invention and the reasons for limitation of each component element will be described in detail. In the following description, “%” means “mass%” unless otherwise specified.

(C:0.02〜0.14%)
Cは、固溶強化により溶接金属の強度を向上するために必要な元素であるが、ワイヤ中のC含有量が0.02%未満の場合、この効果が得られない。一方、C含有量が0.14%を超えると、高電流・高入熱・高パス間温度の多層盛アーク溶接では、溶接金属の靱性が損なわれる。特に、490〜780N/mm級鋼等の高張力鋼を溶接する場合、C含有量が0.14%を超えると、第2相として高炭素マルテンサイト等の靭性に有害な相が形成されたり、仮付け等の低入熱溶接部においてマルテンサイトが硬化したりする傾向が強くなる。よって、C含有量は0.02〜0.14%とする。
(C: 0.02-0.14%)
C is an element necessary for improving the strength of the weld metal by solid solution strengthening, but this effect cannot be obtained when the C content in the wire is less than 0.02%. On the other hand, if the C content exceeds 0.14%, the toughness of the weld metal is impaired in multi-layer arc welding with high current, high heat input, and high interpass temperature. In particular, when welding high-tensile steel such as 490 to 780 N / mm grade 2 steel, if the C content exceeds 0.14%, a phase harmful to toughness such as high carbon martensite is formed as the second phase. Or the tendency of martensite to harden in a low heat input weld such as tacking becomes strong. Therefore, the C content is 0.02 to 0.14%.

(Si:0.4〜1.5%)
Siは、主要な脱酸剤であり、溶接金属の酸素量を低下させ、靱性を向上するために必要な元素である。特に、高溶接電流域ではSiの消耗が大きいため、通常よりも高めの添加を必要する。具体的には、Si含有量が0.4%未満の場合、脱酸不足となり、健全な溶接金属を得ることができないため、靱性が低下すると共に強度が低下する。一方、Si含有量が1.5%を超えると、溶接金属の強度が高くなると共に、溶接金属に粗大フェライトが生成し、溶接金属のミクロ組織が粗大フェライトとなり、靭性が低下する。また、Siを過度に含有すると、アークが不安定となり、スパッタ発生量が増加して溶接作業性が劣化する。よって、Si含有量は0.4〜1.5%とする。
(Si: 0.4-1.5%)
Si is a main deoxidizer and is an element necessary for reducing the oxygen content of weld metal and improving toughness. In particular, since the consumption of Si is large in a high welding current region, a higher addition than usual is required. Specifically, when the Si content is less than 0.4%, deoxidation is insufficient, and a sound weld metal cannot be obtained, so that toughness is reduced and strength is reduced. On the other hand, when the Si content exceeds 1.5%, the strength of the weld metal is increased, coarse ferrite is generated in the weld metal, the microstructure of the weld metal is coarse ferrite, and the toughness is lowered. Moreover, when Si is contained excessively, the arc becomes unstable, the amount of spatter generated increases, and welding workability deteriorates. Therefore, the Si content is set to 0.4 to 1.5%.

(Mn:1.0〜2.5%)
Mnは、Siと同様に主要な脱酸剤であると共に、溶接金属の強度を確保し、更に、オーステナイトの生成を安定化させて溶接金属の靱性向上を図る作用効果を有する元素である。また、Mnは、アークを安定化させて、スパッタ発生量を低減し、溶接作業性を良好にする作用もある。しかしながら、Mnは、Siと同様に、高溶接電流条件での酸化消耗を考慮する必要がある。具体的には、Mn含有量が1.0%未満の場合、溶接金属の強度及び靱性を十分に確保できなくなる。一方、Mn含有量が2.5%を超えると、溶接金属の強度が高くなり、高入熱・高パス間温度での多層盛溶接時に、溶接金属が焼き戻し脆化して靱性が低下する。よって、Mn含有量は1.0〜2.5%とする。
(Mn: 1.0-2.5%)
Mn is a major deoxidizer like Si, and is an element that has the effect of ensuring the strength of the weld metal and further stabilizing the formation of austenite to improve the toughness of the weld metal. Mn also has the effect of stabilizing the arc, reducing the amount of spatter generated, and improving the welding workability. However, Mn, like Si, needs to consider oxidation consumption under high welding current conditions. Specifically, if the Mn content is less than 1.0%, the strength and toughness of the weld metal cannot be sufficiently secured. On the other hand, if the Mn content exceeds 2.5%, the strength of the weld metal is increased, and the weld metal is tempered and embrittled during multi-layer welding at a high heat input / high pass temperature, resulting in a decrease in toughness. Therefore, the Mn content is 1.0 to 2.5%.

(Si+Mn:1.5〜3.5%)
上述したように、高電流・高入熱・高パス間温度条件でのアーク溶接では、Si及びMnの酸化消耗が大きいため、これらの総含有量が1.5%未満の場合、脱酸不足になり、溶接金属の強度及び靱性が低下する。また、溶接時のアーク状態も不安定になるため、スパッタ発生量が増大し、溶接作業性が劣化する。一方、Si及びMnの総含有量が3.5%を超えると、溶接金属部に硬化相が生成し、強度が高くなりすぎて靱性が低下する。よって、Si及びMnの総含有量は1.5〜3.5%とする。
(Si + Mn: 1.5-3.5%)
As described above, in arc welding under high current, high heat input, and high pass temperature conditions, the oxidation consumption of Si and Mn is large, so if these total contents are less than 1.5%, deoxidation is insufficient. And the strength and toughness of the weld metal are reduced. Moreover, since the arc state during welding becomes unstable, the amount of spatter generated increases and the welding workability deteriorates. On the other hand, if the total content of Si and Mn exceeds 3.5%, a hardened phase is generated in the weld metal part, the strength becomes too high, and the toughness decreases. Therefore, the total content of Si and Mn is 1.5 to 3.5%.

(Mn/Si:0.85以上)
Mn含有量(%)とSi含有量(%)との比が0.85未満の場合、オーステナイト形成元素であるMnの含有量に比べて、フェライト形成元素であるSiの含有量が過剰となるため、溶接金属のミクロ組織中に粗大フェライトが生成して、強度不足になると共に靱性も低下する。従って、溶接金属の良好な強度及び靭性を確保するために、Mn含有量とSi含有量との比(Mn/Si)は0.85以上とする。
(Mn / Si: 0.85 or more)
When the ratio of the Mn content (%) to the Si content (%) is less than 0.85, the content of Si as a ferrite forming element is excessive as compared with the content of Mn as an austenite forming element. For this reason, coarse ferrite is generated in the microstructure of the weld metal, resulting in insufficient strength and toughness. Therefore, in order to ensure good strength and toughness of the weld metal, the ratio of Mn content to Si content (Mn / Si) is 0.85 or more.

(Ti:0.05〜0.4%)
Tiは、脱酸剤であり、溶接金属中にTiの微細酸化物を生成し、これを核として結晶粒内に微細なアシキュラーフェライトを生成させることにより、溶接金属の靱性を向上させるために重要な元素である。高電流・高入熱・高パス間温度の多層盛アーク溶接において、溶接金属中のTi微細酸化物の生成、及び微細なアシキュラーフェライトの生成の促進のためには、上述したMn及びSi等のTi以外の脱酸元素によって溶接金属の酸素含有量を低く制御すると共に、Tiを0.05%以上含有する必要がある。一方、Ti含有量が0.4%を超えた場合には、溶接金属中に固溶Tiが残存して溶接金属の硬化が著しくなり、靱性が著しく低下する。よって、Ti含有量は0.05〜0.4%とする。
(Ti: 0.05-0.4%)
Ti is a deoxidizer, and it produces a fine oxide of Ti in the weld metal, and uses this as a nucleus to produce fine acicular ferrite in the crystal grains, thereby improving the toughness of the weld metal. It is an important element. In multi-layered arc welding with high current, high heat input, and high pass temperature, in order to promote the formation of fine Ti oxide in weld metal and fine acicular ferrite, Mn, Si, etc. It is necessary to control the oxygen content of the weld metal to be low by a deoxidizing element other than Ti, and to contain 0.05% or more Ti. On the other hand, when the Ti content exceeds 0.4%, solid solution Ti remains in the weld metal, the weld metal is significantly hardened, and the toughness is significantly reduced. Therefore, the Ti content is set to 0.05 to 0.4%.

(Mg:0.0003〜0.010%)
Mgは、上述したSi、Mn及びTiと同様に、脱酸作用を有する元素であり、脱酸元素の中でも特に強い脱酸剤として作用する。このため、大きな溶融プールが生成され、酸素の溶け込みが多くなる高電流・高入熱・高パス間温度の多層盛ガスシールドアーク溶接時でも、溶接金属を十分に脱酸し、靱性を良好にする効果がある。また、Mgは低融点であるため、溶接金属中に殆ど残留しないが、ワイヤ中に含まれるTi、Si及びMnによって溶接金属を脱酸すると共に組成を制御している条件下では、溶接金属中に微量のMgが残存していると、そのMgが高温で微細酸化物を形成し、この微細酸化物を核としてAl、Ti及びSi等を含む微細な複合酸化物を形成する。これにより、溶接金属の結晶粒内に微細なアシキュラーフェライトが生成し、ミクロ組織の微細化が促進される。また、Mgによる微細酸化物の形成促進により、酸化によるBの消耗を抑制するため、Bによる焼入れ性向上、及び結晶粒界での靭性に有害な粗大フェライトの抑制等の効果が向上する。しかしながら、Mg含有量が0.0003%未満の場合、これらの効果が十分に得られない。一方、Mg含有量が0.010%を超えると、溶接時のアーク安定性が低下する。よって、Mg含有量は0.0003〜0.010%とする。
(Mg: 0.0003 to 0.010%)
Mg is an element having a deoxidizing action, like Si, Mn and Ti described above, and acts as a particularly strong deoxidizing agent among the deoxidizing elements. For this reason, a large molten pool is generated and oxygen penetration is increased, so even during multi-layer gas shielded arc welding with high current, high heat input, and high pass temperature, the weld metal is sufficiently deoxidized and toughness is improved. There is an effect to. In addition, Mg has a low melting point, so it hardly remains in the weld metal. However, under conditions where the weld metal is deoxidized and the composition is controlled by Ti, Si and Mn contained in the wire, If a very small amount of Mg remains, the Mg forms a fine oxide at a high temperature, and a fine composite oxide containing Al, Ti, Si and the like is formed using the fine oxide as a nucleus. Thereby, fine acicular ferrite is generated in the crystal grains of the weld metal, and the refinement of the microstructure is promoted. Further, since the consumption of B due to oxidation is suppressed by promoting the formation of fine oxides by Mg, the effects of improving hardenability by B and suppressing coarse ferrite harmful to toughness at grain boundaries are improved. However, when the Mg content is less than 0.0003%, these effects cannot be obtained sufficiently. On the other hand, if the Mg content exceeds 0.010%, the arc stability during welding decreases. Therefore, the Mg content is set to 0.0003 to 0.010%.

(Al,Zr:1種又は2種を合計で0.005〜0.050%)
高電流・高入熱・高パス間温度の溶接条件における多層盛ガスシールドアーク溶接においては、溶融プールが大きくなり、また、十分なシールド性が得られなくなるため、溶接金属に大気中のNが侵入しやすくなり、溶接金属の靱性を劣化させる。Al及びZrはいずれも、溶接金属中においてNと結合して窒化物を形成し、溶接金属中の固溶Nに起因する靱性低下を抑制する効果がある。また、Al及びZrはいずれも酸素との親和力が強い脱酸元素であり、溶接金属中の酸素量を低減させる作用もある。更に、Al及びZrが溶接金属中に含有されていると、脱窒及び脱酸の作用により、溶接金属中のN及び酸素が低減されると共に、酸化又は窒化によりBが消耗することが抑制されるため、Bによる焼入れ性向上及び結晶粒界での靭性に有害な粗大フェライトの抑制等の効果が向上する。これらの効果は、Al及びZrのうちの1種又は2種の元素を、合計で0.005%以上含有している場合に顕著となる。一方、Al及びZrのうちの1種又は2種の元素を、合計で0.050%を超えて含有していると、溶接金属が硬化して靱性が低下する。このような理由から、Al及び/又はZrは、合計で0.005〜0.050%とする。
(Al, Zr: 1 type or 2 types in total 0.005 to 0.050%)
In multi-layer gas shielded arc welding under the welding conditions of high current, high heat input, and high pass temperature, the molten pool becomes large and sufficient shielding properties cannot be obtained. It easily penetrates and deteriorates the toughness of the weld metal. Both Al and Zr have the effect of binding to N in the weld metal to form nitrides and suppressing toughness degradation due to solute N in the weld metal. Moreover, both Al and Zr are deoxidizing elements having a strong affinity for oxygen, and also have the effect of reducing the amount of oxygen in the weld metal. Furthermore, when Al and Zr are contained in the weld metal, N and oxygen in the weld metal are reduced by the action of denitrification and deoxidation, and B consumption due to oxidation or nitridation is suppressed. Therefore, effects such as improvement of hardenability by B and suppression of coarse ferrite harmful to toughness at grain boundaries are improved. These effects become remarkable when one or two elements of Al and Zr are contained in total of 0.005% or more. On the other hand, if one or two elements of Al and Zr are contained in total exceeding 0.050%, the weld metal is hardened and the toughness is lowered. For these reasons, Al and / or Zr is made 0.005 to 0.050% in total.

(N:0.005%以下)
Nは、不可避的不純物である。溶接金属の靱性を安定して向上させるには、溶接金属中の固溶Nを低下させることが必須となる。具体的には、N含有量が0.005%を超えると、溶接金属の靭性が低下する。よって、N含有量は0.005%以下に規制する。
(N: 0.005% or less)
N is an unavoidable impurity. In order to stably improve the toughness of the weld metal, it is essential to reduce the solid solution N in the weld metal. Specifically, when the N content exceeds 0.005%, the toughness of the weld metal decreases. Therefore, the N content is restricted to 0.005% or less.

(B:0.0005〜0.010%)
Bは、Tiとの複合添加により、溶接金属組織を微細化して、溶接金属の靱性向上に寄与する元素である。また、Bは、490〜780N/mm級の高張力鋼を高電流・高入熱・高パス間温度の条件で多層盛ガスシールドアーク溶接する際に、溶接金属の焼入れ性を向上し、結晶粒界での靭性に有害な粗大フェライトの生成を抑制する効果がある。しかしながら、B含有量が0.0005%未満の場合、このような効果が十分に得られない。一方、溶接金属中のB含有量が過度に高くなると、具体的には、B含有量が0.010%を超えると、溶接金属が硬化し靭性の低下を招き、更には、溶接高温割れの原因となる。よって、B含有量は0.0005〜0.010%とする。なお、強度が比較的低い490〜540N/mm級の高張力鋼を溶接する場合は、溶接金属の焼入れ性が低くなることがあり、結晶粒界に粗大フェライトが生成しやすくなるため、B含有量を0.002%以上とすることが好ましい。また、Bによる溶接金属の硬化を抑制するためには、B含有量を0.005%以下とするのが好ましい。
(B: 0.0005 to 0.010%)
B is an element that contributes to improving the toughness of the weld metal by refining the weld metal structure by complex addition with Ti. In addition, B improves the hardenability of the weld metal when multi-layer gas shielded arc welding is performed on high-strength steel of 490 to 780 N / mm class 2 under conditions of high current, high heat input, and high pass temperature, It has the effect of suppressing the formation of coarse ferrite that is detrimental to toughness at grain boundaries. However, when the B content is less than 0.0005%, such an effect cannot be sufficiently obtained. On the other hand, when the B content in the weld metal is excessively high, specifically, when the B content exceeds 0.010%, the weld metal is hardened to cause a decrease in toughness. Cause. Therefore, the B content is set to 0.0005 to 0.010%. In addition, when welding 490 to 540 N / mm grade 2 high strength steel with relatively low strength, the hardenability of the weld metal may be lowered, and coarse ferrite is likely to be generated at the grain boundaries. The content is preferably 0.002% or more. Moreover, in order to suppress hardening of the weld metal by B, it is preferable to make B content 0.005% or less.

また、本発明のガスシールドアーク溶接用ソリッドワイヤにおいては、上記各成分に加えて、Cu、Ni、Cr及びMoからなる群から選択された1種又は2種以上の元素を含有していてもよい。   The solid wire for gas shielded arc welding of the present invention may contain one or more elements selected from the group consisting of Cu, Ni, Cr and Mo in addition to the above components. Good.

(Cu:0.3〜1.5%)
Cuは、変態温度を低下させて組織を微細化し、強度向上に有効な元素であり、特に、高強度鋼の溶接を行う場合、並びに極端な高電流・高入熱・高パス間温度の条件で溶接する場合における靱性向上にも有効に作用する。しかしながら、Cu含有量が0.3%未満では、これらの効果が十分に得られない。一方、Cu含有量が1.5%を超えると、Cr及びMoと同様に析出脆化が生じたり、溶接金属高温割れが発生したりする。よって、Cuを添加する場合は、その含有量を0.3〜1.5%とする。なお、防錆のため、ワイヤ全質量に対して約0.2〜0.3%の範囲でワイヤ表面にCuめっきが施されている場合があるが、その場合、このCuめっき量も本発明におけるCu含有量に含まれる。
(Cu: 0.3-1.5%)
Cu is an element effective for improving the strength by reducing the transformation temperature and making the structure finer, especially when welding high-strength steel, as well as extreme high current, high heat input, and high interpass temperature conditions. It also works effectively to improve toughness when welding with. However, when the Cu content is less than 0.3%, these effects cannot be obtained sufficiently. On the other hand, if the Cu content exceeds 1.5%, precipitation embrittlement occurs as in the case of Cr and Mo, and weld metal hot cracking occurs. Therefore, when adding Cu, the content is made 0.3 to 1.5%. For rust prevention, Cu plating may be applied to the surface of the wire in a range of about 0.2 to 0.3% with respect to the total mass of the wire. It is contained in Cu content in.

(Ni:0.3〜3.0%)
Niは、変態温度を低下させて組織を微細化すると共に、溶接金属中に固溶して靭性を低下させることなく強度を高める元素であり、高強度の溶接金属を得るために、一般に使用されている元素である。しかしながら、Ni含有量が0.3%未満の場合、高強度鋼の溶接又は高入熱・高パス間温度の溶接時に、強度及び靭性の低下を防止する効果が十分に得られない。一方、Ni含有量が3%を超えると、溶接金属の凝固偏析部において凝固温度が下がり、溶接高温割れが発生する。よって、Niを添加する場合は、その含有量を0.3〜3.0%とする。
(Ni: 0.3-3.0%)
Ni is an element that lowers the transformation temperature to refine the structure and increases the strength without dissolving in the weld metal and lowering the toughness, and is generally used to obtain a high-strength weld metal. Element. However, when the Ni content is less than 0.3%, the effect of preventing the strength and toughness from being lowered cannot be sufficiently obtained during welding of high-strength steel or welding at high heat input / high pass temperature. On the other hand, if the Ni content exceeds 3%, the solidification temperature decreases at the solidification segregation part of the weld metal, and welding hot cracks occur. Therefore, when adding Ni, the content is made 0.3 to 3.0%.

(Cr:0.1〜1.5%)
Crは、Cuと同様に、変態温度を低下させることにより、組織を微細化し、強度を向上させる効果がある。特に、高強度鋼の溶接を行う場合、及び極端な高電流・高入熱・高パス間温度の条件で溶接する場合における靱性向上に有効に作用する。しかしながら、Cr含有量が0.1%未満の場合、これらの効果が十分に得られない。一方、単独でCrを添加し、その含有量が1.5%を超えると、溶接金属の硬化が著しくなり、靱性に対する悪影響が生じる。よって、Crを添加する場合は、その含有量を0.1〜1.5%とする。
(Cr: 0.1-1.5%)
Similar to Cu, Cr has the effect of reducing the transformation temperature to refine the structure and improve the strength. In particular, it effectively works to improve toughness when welding high-strength steel and when welding under conditions of extreme high current, high heat input, and high pass temperature. However, when the Cr content is less than 0.1%, these effects cannot be obtained sufficiently. On the other hand, when Cr is added alone and the content thereof exceeds 1.5%, the weld metal is hardened, resulting in an adverse effect on toughness. Therefore, when adding Cr, the content is made 0.1 to 1.5%.

(Mo:0.1〜1.5%)
Moは、Cu及びCrと同様に、変態温度を低下させ、組織を微細化することにより、靱性を向上させるのに有効な元素である。特に、高強度鋼の溶接を行う場合、及び極端な高電流・高入熱・高パス間温度の条件で溶接する場合に、軟化抵抗を有し、靱性向上にも有効に作用する。しかしながら、Mo含有量が0.1%未満の場合、その効果が十分に得られない。一方、単独でMoを添加し、その含有量が1.5%を超えると、溶接金属の硬化が著しくなり、靱性に対する悪影響が生じる。よって、Moを添加する場合は、その含有量を0.1〜1.5%とする。
(Mo: 0.1-1.5%)
Mo, like Cu and Cr, is an element effective in improving toughness by lowering the transformation temperature and refining the structure. In particular, when welding high-strength steel, and when welding under conditions of extreme high current, high heat input, and high pass temperature, it has softening resistance and effectively acts to improve toughness. However, when the Mo content is less than 0.1%, the effect cannot be sufficiently obtained. On the other hand, when Mo is added alone and the content exceeds 1.5%, the weld metal is hardened, resulting in an adverse effect on toughness. Therefore, when adding Mo, the content is made 0.1 to 1.5%.

(Cu,Ni,Cr,Mo:1種又は2種以上を合計で5.0%以下)
Cu、Ni、Cr及びMoからなる群から選択された1種又は2種以上の元素の含有量が合計で5.0%を超えると、溶接金属の硬化が著しく、靭性低下が大きくなる。このため、Cu、Ni、Cr及び/又はMoを添加する場合は、各元素の含有量を上述の範囲にすると共に、これらの元素の総含有量を5.0%以下に規制する。
(Cu, Ni, Cr, Mo: 1 type or 2 types or more in total of 5.0% or less)
When the content of one or more elements selected from the group consisting of Cu, Ni, Cr and Mo exceeds 5.0% in total, the weld metal is markedly hardened and the toughness is greatly reduced. For this reason, when adding Cu, Ni, Cr and / or Mo, while making content of each element into the above-mentioned range, the total content of these elements is regulated to 5.0% or less.

更に、本発明のガスシールドアーク溶接用ソリッドワイヤにおける上記以外の成分、即ち、残部は、Fe及び不可避的不純物である。この不可避的不純物のうち、Pは、溶接金属の靭性を低下させるため、その含有量を0.015%以下とすることが好ましい。また、Sは、溶接部のスラグ剥離性を改善する作用があるものの、溶接金属の靭性を低下させるため、その含有量を0.020%以下とすることが好ましい。   Furthermore, the components other than those described above in the solid wire for gas shielded arc welding of the present invention, that is, the balance, are Fe and inevitable impurities. Among these inevitable impurities, P is preferable to have a content of 0.015% or less in order to reduce the toughness of the weld metal. Moreover, although S has the effect | action which improves the slag peelability of a welding part, in order to reduce the toughness of a weld metal, it is preferable to make the content into 0.020% or less.

なお、本発明のガスシールドアーク溶接用ソリッドワイヤにおいては、本発明の目的とする溶接金属の特性を阻害しない範囲であれば、ワイヤ中に前述した成分以外の金属成分を含有することは許容される。例えば、溶接金属の強度及び靱性を調整する目的で、V及びNbを夫々0.005%以下の範囲で添加することもできる。   In addition, in the solid wire for gas shielded arc welding of the present invention, it is allowed that the wire contains a metal component other than the components described above, as long as the characteristics of the weld metal targeted by the present invention are not impaired. The For example, for the purpose of adjusting the strength and toughness of the weld metal, V and Nb can be added in the range of 0.005% or less, respectively.

以下、本発明の実施例により、本発明の効果を詳細に説明する。本実施例においては、先ず、各表1〜表3に示す組成になるように、各種原料鋼を真空溶解し、鍛造した後、圧延及び伸線し、1.4mm径の20kg巻のスプール巻ワイヤを作製した。なお、下記表1〜3に示すワイヤ組成における残部は、Fe及び不可避的不純物である。また、下記表1〜3における下線は、本発明の範囲外であることを示す。   Hereinafter, the effects of the present invention will be described in detail by way of examples of the present invention. In this example, first, various raw steels were vacuum-melted and forged so as to have the compositions shown in Tables 1 to 3, and then rolled and drawn, and a 1.4 mm diameter 20 kg spool was wound. A wire was made. In addition, the remainder in the wire composition shown to the following Tables 1-3 is Fe and an unavoidable impurity. Moreover, the underline in the following Tables 1-3 shows that it is outside the scope of the present invention.

Figure 0004625415
Figure 0004625415

Figure 0004625415
Figure 0004625415

Figure 0004625415
Figure 0004625415

次に、上記表1〜表3に示す実施例及び比較例の各ワイヤを使用して、下記表4に示す条件で、板厚が25mmの490N/mm級の鋼板をガスシールドアーク溶接して、溶着金属試験(開先形状、試験片採取位置はJIS Z3111に準拠)を行った。 Next, using the wires of the examples and comparative examples shown in Tables 1 to 3 above, gas shield arc welding was performed on a 490 N / mm 2 grade steel plate with a plate thickness of 25 mm under the conditions shown in Table 4 below. Then, a weld metal test (groove shape and specimen collection position conforming to JIS Z3111) was performed.

Figure 0004625415
Figure 0004625415

また、溶接金属の強度及び靭性の評価として、上記表4に示す条件で板厚が25mmの490N/mm級の鋼板をガスシールドアーク溶接した継手の溶接金属から切り出した試験片を使用して、引張り試験及び0℃でのシャルピー衝撃試験を行った。その結果、引張強さが490N/mm以上であり、かつ0℃でのシャルピー衝撃試験の各5回繰り返し吸収エネルギーの最小値が70J以上であった場合を合格(良好)とした。 In addition, as an evaluation of the strength and toughness of the weld metal, a test piece cut out from a weld metal of a joint obtained by gas shield arc welding of a 490 N / mm grade 2 steel plate having a thickness of 25 mm under the conditions shown in Table 4 above was used. A tensile test and a Charpy impact test at 0 ° C. were performed. As a result, the case where the tensile strength was 490 N / mm 2 or more and the minimum value of the absorbed energy was repeated 70 times or more in each Charpy impact test at 0 ° C. was determined to be acceptable (good).

更に、溶接作業性は、スパッタ発生量及びアーク安定性から評価した。具体的には、溶接時のスパッタ発生量は、溶着金属試験とは別に銅製の捕集箱を使用したビードオンプレート溶接を行い、上記表4に示す条件で3回溶接(1回の溶接時間1.5分)したときに捕集したスパッタ量を1分間の発生量に換算して評価した。また、アーク安定性は、スパッタ発生量が2g/分以下の場合に、アークが安定し、良好であるとした。以上の評価結果を、下記表5及び表6にまとめて示す。   Further, the welding workability was evaluated from the amount of spatter generated and the arc stability. Specifically, the amount of spatter generated during welding was bead-on-plate welding using a copper collection box separately from the weld metal test, and was welded three times under the conditions shown in Table 4 above (one welding time) 1.5 minutes), the amount of spatter collected when converted to 1 minute was evaluated in terms of the amount generated for 1 minute. Further, the arc stability was determined to be good when the spatter generation amount was 2 g / min or less and the arc was stable. The above evaluation results are summarized in Table 5 and Table 6 below.

Figure 0004625415
Figure 0004625415

Figure 0004625415
Figure 0004625415

上記表1、表2及び表5に示すNo.W1〜No.W37は本発明の範囲内である実施例のワイヤであり、上記表3及び表6に示すNo.Z1〜No.Z19は本発明の範囲から外れる比較例のワイヤである。上記表5に示すように、実施例No.W1〜No.W37のワイヤは、ワイヤ組成が適正であるため、溶接金属の強度及び吸収エネルギー共に良好であり、更に、溶接時のスパッタ発生量も少なく、アークが安定し、満足な結果が得られた。   No. shown in Table 1, Table 2 and Table 5 above. W1-No. W37 is a wire of an example within the scope of the present invention, and No. W shown in Tables 3 and 6 above. Z1-No. Z19 is a comparative wire outside the scope of the present invention. As shown in Table 5 above, Example No. W1-No. Since the wire composition of W37 is appropriate, the strength and absorbed energy of the weld metal are good, the amount of spatter generated during welding is small, the arc is stable, and satisfactory results are obtained.

一方、上記表6に示すように、No.Z1及びNo.Z2のワイヤは、C含有量が本発明の範囲から外れている比較例である。比較例No.Z1のワイヤは、C含有量が本発明の範囲を超えているためシャルピー吸収エネルギーが低かった。比較例No.Z2のワイヤは、C含有量が本発明の範囲に満たないため溶接金属の引張強さが不足していた。また、No.Z3及びNo.Z4のワイヤは、Si含有量が本発明の範囲から外れている比較例である。比較例No.Z3のワイヤは、Si含有量が本発明の範囲を超えているため吸収エネルギーが低かった。比較例No.Z4のワイヤは、Si含有量が本発明の範囲に満たないため、スパッタ量が多く、更に脱酸不足で欠陥が発生した。   On the other hand, as shown in Table 6 above, Z1 and No. The Z2 wire is a comparative example in which the C content is outside the scope of the present invention. Comparative Example No. The Z1 wire has low Charpy absorbed energy because the C content exceeds the range of the present invention. Comparative Example No. Since the Z content of the wire of Z2 is less than the range of the present invention, the tensile strength of the weld metal was insufficient. No. Z3 and No. The Z4 wire is a comparative example in which the Si content is outside the scope of the present invention. Comparative Example No. The Z3 wire had a low absorbed energy because the Si content exceeded the range of the present invention. Comparative Example No. Since the Z content of the Z4 wire was less than the range of the present invention, the amount of spatter was large, and defects were generated due to insufficient deoxidation.

No.Z5及びNo.Z6のワイヤは、Mn含有量が本発明の範囲から外れている比較例である。比較例No.Z5のワイヤは、Mn含有量が本発明の範囲を超えているため、靭性が低下した。比較例No.Z6のワイヤは、Mn含有量が本発明の範囲に満たないため焼入れ性不足となり、強度及び靭性が低下した。また、No.Z7及びNo.Z8のワイヤは、Al及びZrの総含有量が本発明の範囲から外れている比較例であり、これらのワイヤはいずれも、溶接金属組織の微細化が不十分であり、靭性が不足していた。更に、No.Z9及びNo.Z10のワイヤは、Mn含有量とSi含有量との比(Mn/Si)0.85未満の比較例であり、これらのワイヤは、溶接金属組織が粗大化し、靭性が低下した。更にまた、No.Z11及びNo.Z12のワイヤは、Ti含有量が本発明の範囲から外れている比較例である。比較例No.Z11のワイヤは、Ti含有量が本発明の範囲を超えているため、溶接金属が硬化して靭性が低下した。比較例No.Z12のワイヤは、Ti含有量が本発明の範囲に満たないため、ミクロ組織が粗くなり、靭性低下した。   No. Z5 and No. The wire of Z6 is a comparative example in which the Mn content is out of the scope of the present invention. Comparative Example No. Since the Mn content of the Z5 wire exceeded the range of the present invention, the toughness was lowered. Comparative Example No. The wire of Z6 was insufficient in hardenability because the Mn content was less than the range of the present invention, and the strength and toughness were lowered. No. Z7 and No. The Z8 wire is a comparative example in which the total content of Al and Zr is out of the scope of the present invention. All of these wires are insufficient in refinement of the weld metal structure and lack in toughness. It was. Furthermore, no. Z9 and No. The wire of Z10 is a comparative example in which the ratio of Mn content to Si content (Mn / Si) is less than 0.85, and these wires have a coarse weld metal structure and reduced toughness. Furthermore, no. Z11 and No. The Z12 wire is a comparative example in which the Ti content is outside the scope of the present invention. Comparative Example No. Since the Ti content of the Z11 wire exceeded the range of the present invention, the weld metal was hardened and the toughness was lowered. Comparative Example No. Since the Z content of the wire of Z12 is less than the range of the present invention, the microstructure becomes rough and the toughness decreases.

No.Z13及びNo.Z14のワイヤは、Mg含有量が本発明の範囲から外れている比較例である。No.Z13のワイヤは、Mg含有量が本発明の範囲を超えているため、スパッタ量が多くなってアークが乱れ、結果的に靭性も劣化した。No.Z14のワイヤは、Mg含有量が本発明の範囲に満たないため、焼入れ性が不足し、その結果靭性が不足していた。また、比較例No.Z15のワイヤは、N含有量が本発明の範囲を超えているため、靭性が不足していた。更に、No.Z16及びNo.Z17のワイヤは、Si及びMnの総含有量が本発明の範囲から外れている比較例である。比較例No.Z16のワイヤは、Si及びMnの総含有量が本発明の範囲に満たないため、焼入れ性が不足し、その結果靭性が足らなかった。比較例No.Z17のワイヤは、Si及びMnの総含有量が本発明の範囲を超えているため、靭性が低下した。No.Z18及びNo.Z19のワイヤは、B含有量が本発明の範囲から外れている比較例である。比較例No.Z18のワイヤは、B含有量が本発明の範囲に満たないため、粒界フェライトが多く生成して靭性が不足した。比較例No.Z19のワイヤは、B含有量が本発明の範囲を超えているため、強度は満たしていたが、溶接金属に高温割れが発生し、更に靭性が大きくばらついていたため、結果として最低値は満たさなかった。   No. Z13 and No. The Z14 wire is a comparative example in which the Mg content is outside the scope of the present invention. No. Since the Z13 wire has an Mg content exceeding the range of the present invention, the amount of spatter increases, the arc is disturbed, and as a result, the toughness also deteriorates. No. Since the Z14 wire had an Mg content less than the range of the present invention, the hardenability was insufficient, and as a result, the toughness was insufficient. Comparative Example No. The Z15 wire was insufficient in toughness because the N content exceeded the range of the present invention. Furthermore, no. Z16 and No. The Z17 wire is a comparative example in which the total content of Si and Mn is out of the scope of the present invention. Comparative Example No. Since the total content of Si and Mn was less than the range of the present invention, the Z16 wire was insufficient in hardenability and as a result, lacked toughness. Comparative Example No. Since the total content of Si and Mn exceeded the range of the present invention, the toughness of the Z17 wire was lowered. No. Z18 and No. The wire of Z19 is a comparative example in which the B content is out of the scope of the present invention. Comparative Example No. Since the Z content of the Z18 wire was less than the range of the present invention, a large amount of grain boundary ferrite was generated and the toughness was insufficient. Comparative Example No. Since the Z content of the wire of Z19 exceeded the range of the present invention, the strength was satisfied, but the weld metal was cracked at high temperature, and the toughness was greatly varied. As a result, the minimum value was not satisfied. It was.

Claims (2)

質量%で、
C:0.02〜0.14%、
Si:0.4〜1.5%、
Mn:1.0〜2.5%、
Ti:0.05〜0.4%、
Mg:0.0003〜0.010%及び
B:0.0005〜0.010%を含有し、
更に、Al及びZrからなる群から選択された1種又は2種以上の元素を合計で0.005〜0.050%含有すると共に、
N:0.005%以下に制限し、
残部がFe及び不可避的不純物からなり、
Si及びMnの総含有量が1.5〜3.5%であり、
かつMn含有量(%)とSi含有量(%)との比(Mn/Si)が0.85以上であることを特徴とするガスシールドアーク溶接用ソリッドワイヤ。
% By mass
C: 0.02-0.14%,
Si: 0.4 to 1.5%,
Mn: 1.0 to 2.5%
Ti: 0.05 to 0.4%,
Mg: 0.0003-0.010% and B: 0.0005-0.010%,
Furthermore, while containing 0.005 to 0.050% in total of one or more elements selected from the group consisting of Al and Zr,
N: limited to 0.005% or less,
The balance consists of Fe and inevitable impurities,
The total content of Si and Mn is 1.5-3.5%,
And the ratio (Mn / Si) of Mn content (%) and Si content (%) is 0.85 or more, The solid wire for gas shielded arc welding characterized by the above-mentioned.
更に、質量%で、Cu:0.3〜1.5%、Ni:0.3〜3.0%、Cr:0.1〜1.5%及びMo:0.1〜1.5%からなる群から選択された1種又は2種以上の元素を合計で5.0%以下含有することを特徴とする請求項1に記載のガスシールドアーク溶接用ソリッドワイヤ。   Furthermore, in mass%, Cu: 0.3-1.5%, Ni: 0.3-3.0%, Cr: 0.1-1.5% and Mo: 0.1-1.5% 2. The solid wire for gas shielded arc welding according to claim 1, comprising one or more elements selected from the group consisting of 5.0% or less in total.
JP2006077030A 2006-03-20 2006-03-20 Solid wire for gas shielded arc welding Expired - Fee Related JP4625415B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006077030A JP4625415B2 (en) 2006-03-20 2006-03-20 Solid wire for gas shielded arc welding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006077030A JP4625415B2 (en) 2006-03-20 2006-03-20 Solid wire for gas shielded arc welding

Publications (2)

Publication Number Publication Date
JP2007253163A JP2007253163A (en) 2007-10-04
JP4625415B2 true JP4625415B2 (en) 2011-02-02

Family

ID=38627919

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006077030A Expired - Fee Related JP4625415B2 (en) 2006-03-20 2006-03-20 Solid wire for gas shielded arc welding

Country Status (1)

Country Link
JP (1) JP4625415B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103170762A (en) * 2013-01-23 2013-06-26 中广核工程有限公司 Solder wire special for nuclear power 20-control chrome steel

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5337665B2 (en) * 2008-10-21 2013-11-06 株式会社神戸製鋼所 Solid wire for MAG welding
JP5670305B2 (en) * 2011-12-14 2015-02-18 日鐵住金溶接工業株式会社 Solid wire for gas shielded arc welding of high strength steel sheet
JP7244393B2 (en) * 2019-09-17 2023-03-22 株式会社神戸製鋼所 Wire for gas-shielded arc welding
CN115365697B (en) * 2022-08-23 2024-05-14 中国船舶重工集团公司第七二五研究所 Gas shielded solid welding wire for polar region low-temperature steel and application thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006000868A (en) * 2004-06-15 2006-01-05 Nippon Steel Corp Solid wire for gas shielded arc welding for primary build-up welding

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09225680A (en) * 1996-02-22 1997-09-02 Nippon Steel Corp Welding wire for ferritic stainless steel
JPH1190678A (en) * 1997-09-25 1999-04-06 Nippon Steel Weld Prod & Eng Co Ltd Solid wire for carbon dioxide gas shielded arc welding
JP3545193B2 (en) * 1998-02-25 2004-07-21 日鐵住金溶接工業株式会社 Solid wire for carbon dioxide shielded arc welding and welding method thereof

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006000868A (en) * 2004-06-15 2006-01-05 Nippon Steel Corp Solid wire for gas shielded arc welding for primary build-up welding

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103170762A (en) * 2013-01-23 2013-06-26 中广核工程有限公司 Solder wire special for nuclear power 20-control chrome steel
CN103170762B (en) * 2013-01-23 2015-06-17 中广核工程有限公司 Solder wire special for nuclear power 20-control chrome steel

Also Published As

Publication number Publication date
JP2007253163A (en) 2007-10-04

Similar Documents

Publication Publication Date Title
JP4614226B2 (en) Solid wire for gas shielded arc welding
JP4787062B2 (en) Weld metal with excellent toughness and SR cracking resistance
WO2018159719A1 (en) Fillet welded joint and manufacturing method thereof
WO2010110387A1 (en) Weld metal and weld structure having weld joints using the same
JP5696228B2 (en) Flux cored arc welding wire excellent in low temperature toughness and welding workability and welded joint using the same
WO2018203513A1 (en) Arc welding method and welding wire
JP2011020154A (en) Flux-cored wire for gas shielded welding
WO2014119189A1 (en) Coated electrode
JP5450260B2 (en) Weld metal with excellent hot crack resistance
JP4896691B2 (en) Solid wire for gas shielded arc welding
JP4625415B2 (en) Solid wire for gas shielded arc welding
JP4427416B2 (en) Large heat input submerged arc welding method with excellent weld metal toughness.
JP2011212691A (en) Flux-cored welding wire for small diameter multi-electrode submerged arc welding
JP4441372B2 (en) High strength and high toughness gas shielded arc welding wire
JP3894703B2 (en) Gas shielded arc welding wire
JP4469226B2 (en) Solid wire for gas shielded arc welding for underlay welding.
JP5493658B2 (en) A method for producing non-tempered thick high-strength steel with high heat input heat-affected zone toughness.
JP3842707B2 (en) Weld metal for low alloy heat resistant steel
JP2011206828A (en) Flux-cored welding wire for fine diameter wire multiple electrode submerged arc welding
JP4522042B2 (en) Steel with excellent high-pass temperature weldability and its welded joint
JP3886737B2 (en) Solid wire for carbon dioxide shielded arc welding
KR20140084655A (en) Flux cored arc welding wire and ultra high strength weld metal joint having excellent low temperature using the same
JP3194207B2 (en) Covered arc welding rod for high Cr ferritic heat resistant steel
JP4701619B2 (en) Large heat input electroslag welding method
JP7235185B1 (en) METAL CORE WIRE FOR SUBMERGED ARC WELDING AND SUBMERGED ARC WELDING METHOD USING THE SAME

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080306

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101013

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101026

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101105

R151 Written notification of patent or utility model registration

Ref document number: 4625415

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131112

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131112

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees