JP3894703B2 - Gas shielded arc welding wire - Google Patents

Gas shielded arc welding wire Download PDF

Info

Publication number
JP3894703B2
JP3894703B2 JP2000110198A JP2000110198A JP3894703B2 JP 3894703 B2 JP3894703 B2 JP 3894703B2 JP 2000110198 A JP2000110198 A JP 2000110198A JP 2000110198 A JP2000110198 A JP 2000110198A JP 3894703 B2 JP3894703 B2 JP 3894703B2
Authority
JP
Japan
Prior art keywords
toughness
strength
welding
weld metal
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000110198A
Other languages
Japanese (ja)
Other versions
JP2001001181A (en
Inventor
倫正 池田
功一 安田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2000110198A priority Critical patent/JP3894703B2/en
Publication of JP2001001181A publication Critical patent/JP2001001181A/en
Application granted granted Critical
Publication of JP3894703B2 publication Critical patent/JP3894703B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、ガスシールドアーク溶接用ワイヤに係り、とくに950MPa以上の引張強さを有する超高張力鋼板のガスシールドアーク溶接、さらに詳しくはMAG(マグ)溶接、に好適なワイヤに関する。
【0002】
【従来の技術】
高張力鋼の溶接には、被覆アーク溶接、サブマージアーク溶接、マグ(MAG)溶接、ティグ(TIG)溶接など各種の溶接方法が適用されている。各種溶接方法のなかで、引張強さが950MPa以上の超高張力鋼板を溶接する際には、低温割れの発生を防止する観点から、溶接金属中の水素量を低減できるマグ溶接、ティグ溶接が好適である。
【0003】
また、ティグ溶接によれば、溶接金属中の酸素量を極めて低くすることが可能であり、良好な靱性を有する溶接金属を得ることができる。しかし、溶接施工効率の面からはティグ溶接にくらべマグ溶接の方が優れており、溶接施工コストの軽減という観点からは、マグ溶接の適用が要望されている。
高張力鋼の溶接においては、強度が高くなればなるほど溶接部に低温割れが発生しやすくなり、また溶接部の靱性も低下する傾向となる。そのため、高張力鋼用溶接材料には、高い強度を有し、かつ良好な耐低温割れ感受性と高い靱性を有することが要求されている。
【0004】
このようなことから、強度、靱性、耐低温割れ性の向上を目的として、種々の高張力鋼用溶接材料が開発されている。高張力鋼用マグ溶接材料では、C、Si、Mn、Ni、Cr、Moを基本成分として、さらに、V、Ti、Nb、Nなどの合金元素を単独または複合して添加し、所望の溶接部強度を確保しているのが一般的である。これは、合金元素の多量添加は靱性を劣化させるため、基本成分の多量添加を避け、少量の添加で強度増加が期待できる元素を添加して、高い強度と良好な靱性を確保しようとするものである。
【0005】
例えば、特公昭63-32558号公報には、TiとNbの複合添加による析出強化および組織強化を利用した高強度と高靱性を有する超高張力鋼用マグ溶接材料が提案されている。また、特開昭61-135499 号公報には、Niを3.51%以上添加し、さらにVを添加して、Vによる析出強化とNiによる靱性改善により、高強度と良好な靱性を得る超高張力鋼用マグ溶接材料が提案されている。
【0006】
また、特開平7-276080号公報には、C、Si、Mn、Ni、Cr、Moを基本組成として、TiとVを複合添加し、さらにNを適量添加して、TiとVによる析出強化とNによる靱性改善により、高強度と良好な靱性を得る超高張力鋼用マグ溶接材料が提案されている。
【0007】
【発明が解決しようとする課題】
しかしながら、特公昭63-32558号公報、特開平7-276080号公報に記載された技術におけるように、溶接材料(ワイヤ)にTiとNbあるいはTiとV、Nを多量に添加すると、溶接金属を高強度化できるが、溶接金属の靱性が劣化する場合があり、安定して高強度と良好な靱性を有する溶接金属を得ることができないという問題があった。また、特開昭61-135499 号公報に記載された技術では、高価なNi、Vを多量に添加する必要があり、製造コストが上昇し経済的に問題を残していた。
【0008】
本発明は、上記した従来技術の問題を有利に解決し、引張強さ:950MPa以上の超高張力鋼板をマグ溶接により溶接継手を作製する際に、高強度と高靱性を有する溶接金属を形成することができる、超高張力鋼のマグ溶接用ワイヤを提供することを目的とする。
【0009】
【課題を解決するための手段】
本発明者らは、上記した課題を達成するために、まず溶接用ワイヤの基本組成について鋭意検討した。その結果、超高張力鋼の溶接において、高靱性の溶接金属を得るためには、溶接用ワイヤの基本組成としてNiを2.90〜3.50%含有することが好ましいという知見を得た。超高張力鋼の溶接においては、この範囲を外れると良好な靱性を有する溶接金属を得ることができない。
【0010】
さらに、本発明者らは、溶接用ワイヤの基本組成としてNiを2.90〜3.50%含有させたうえで、溶接金属の良好な靱性を確保しつつ、溶接金属の強度をさらに増加させる手段について検討した。本発明者らは、強度増加元素として、少量添加で強度の増加が得られるTiに注目した。しかし、Tiのみの添加では、強度の増加は得られるが、やはり強度の増加に伴い靱性の劣化が見られた。そこで、本発明者らは、従来、靱性を劣化させると考えられ添加量が制限されていたAlに注目し、溶接金属の靱性確保に有効なAl含有量が存在することを見いだした。溶接用ワイヤに、Tiと、さらに適正量のAlを添加することにより、高強度でかつ高靱性の溶接金属を形成できるという知見を得た。さらに加えて、溶接用ワイヤ中の不純物としてV、Nb、N、O量を低減することにより、さらに靱性が向上することを見いだした。
【0011】
本発明は、上記した知見に基づき、さらに検討し完成されたものである。
すなわち、本発明は、質量%で、C:0.020 〜0.060 %、Si:0.20〜0.50%、Mn:1.50〜2.50%、Ni:2.90〜3.50%、Cr:0.7 〜1.5 %、Mo:0.30〜1.00%、Ti:0.010 〜0.050 %、Al:0.020 〜0.080 %を含み、不純物としてのP、S、N、O、V、Nbを、P:0.007 %以下、S:0.007 %以下、N:0.007 %以下、O:0.007 %以下、V:0.005 %以下、Nb:0.003 %以下に低減し、残部Feおよび不可避的不純物からなることを特徴とする超高張力鋼マグ溶接用ワイヤである。
【0012】
【発明の実施の形態】
本発明溶接用ワイヤの組成限定理由について説明する。なお、質量%は、以下、単に%と記す。
C:0.020 〜0.060 %
Cは、溶接金属の強度を増加させる元素であるが、0.020 %未満では所望の強度を得ることができない。一方、0.060 %を超える含有は、靱性が低下するとともに低温割れ感受性が増大する。このため、Cは0.020 〜 0.060%の範囲に限定した。
【0013】
Si:0.20〜0.50%
Siは、溶接金属の脱酸のために不可欠の元素であり、また溶接金属の強度を増加させる元素であり、本発明では0.20%以上の含有を必要とする。Si含有量が0.20%未満では、ピンホール、ブローホールが発生するうえ、靱性が劣化する。一方、0.50%を超える含有は、靱性が劣化する。このため、Siは0.20〜0.50%の範囲に限定した。
【0014】
Mn:1.50〜2.50%
Mnは、溶接金属の強度および靱性を増加させる元素であり、本発明では1.50%以上の含有を必要とする。しかし、2.50%を超える含有は、靱性が低下するとともに低温割れ感受性が増大する。このため、Mnは1.50〜2.50%の範囲に限定した。
【0015】
Ni:2.90〜3.50%
Niは、溶接金属の靱性を向上させる元素であり、本発明では2.90%以上の含有を必要とする。Ni含有量が2.90%未満では、所望の靱性を確保できない。一方、Niを3.50%超えて含有すると、本発明におけるような950MPa以上の引張強さを有する溶接金属では靱性はかえって低下する。このため、Niは2.90〜3.50%の範囲に限定した。
【0016】
Cr:0.7 〜1.5 %
Crは、溶接金属の強度を増加させる有効な元素であり、本発明では0.7 %以上の含有を必要とする。一方、1.5 %を超える含有は、靱性が低下するとともに低温割れ感受性が増大する。このため、Crは0.7 〜1.5 %の範囲に限定した。
Mo:0.30〜1.00%
Moは、溶接金属の強度を増加させる有効な元素であり、本発明では0.30%以上の含有を必要とする。一方、1.00%を超える含有は、靱性が低下するとともに低温割れ感受性が増大する。このため、Moは0.30〜1.00%の範囲に限定した。
【0017】
Ti:0.010 〜0.050 %
Tiは、析出強化により溶接金属の強度を増加させる元素であり、本発明では0.010 %以上の含有を必要とする。一方、0.050 %を超えて含有すると、強度は増加するが靱性が劣化する。このため、Tiは0.010 〜0.050 %の範囲に限定した。
Al:0.020 〜0.080 %
Alは、溶接金属の脱酸剤として作用するとともに、Tiと複合添加することにより強度が増加した溶接金属の靱性を、所望のレベルに確保する作用を有している。このような作用は0.020 %以上の含有で認められるが、0.080 %を超える含有は靱性を著しく劣化させる。このため、Alは0.020 〜0.080 %の範囲に限定した。
【0018】
また、本発明では、不純物としてのP、S、N、O、V、Nbを下記のように低減する。
P:0.007 %以下
Pは、溶接金属の靱性を低下させる元素であり、本発明ではできるだけ低減する。P含有量が0.007 %を超えると、靱性の劣化が著しくなる。このため、Pは0.007 %以下に限定する。
【0019】
S:0.007 %以下
Sは、溶接金属の靱性を低下させ、また高温割れの原因にもなる元素であり、できるだけ低減する。S含有量が0.007 %を超えると、靱性の劣化が著しくなる。このため、Sは0.007 %以下に限定する。
N:0.007 %以下
Nは、少量の添加で溶接金属の強度を増加させる元素であるが、同時に靱性を劣化させる。このため、Nは0.007 %以下に限定する。
【0020】
V:0.005 %以下
Vは、少量の添加で溶接金属の強度を増加させる元素であるが、同時に靱性を劣化させる。このため、Vは0.005 %以下に限定する。
Nb:0.003 %以下
Nbは、少量の添加で溶接金属の強度を増加させる元素であるが、同時に靱性を劣化させる。このため、Nbは0.003 %以下に限定する。
【0021】
O:0.007 %以下
Oは、高強度の溶接金属では靱性を劣化させる元素であり、できるだけ低減する。O含有量が0.007 %を超えると、溶接金属の靱性が著しく劣化する。このため、Oは0.007 %以下に限定する。
本発明の溶接用ワイヤの製造方法について説明する。
【0022】
上記した組成の溶鋼を通常公知の溶製方法で溶製し、造塊法あるいは連続鋳造法により鋳造し、圧延素材とする。これら圧延素材を、熱間圧延、冷間圧延により所定の寸法のワイヤとする。熱間圧延条件、冷間圧延条件についてはとくに限定する必要はない。
上記した組成で所定寸法のワイヤは、さらに防錆のため表面にCuめっきを施すのが好ましい。Cuめっきのめっき厚は0.2 〜1.0 μm とするのが好ましい。0.2 μm 未満では、防錆効果が少なく、一方1.0 μm を超えるとワイヤ送給性が劣化する。
【0023】
本発明の溶接用ワイヤは、超高張力鋼板のマグ溶接用として利用できる。シールドガスとしては、Arガスを主体としてCO2 などを混合した混合ガスを用い、作業性を考慮する場合はさらにHeを混合した、Ar−He−CO2 からなる混合ガスを用いる。
【0024】
【実施例】
表1に示す組成の鋼板(板厚50mm)に熱処理(焼入れ−焼戻し)を施し、引張強さ950 MPa 以上の超高張力鋼板とした。この鋼板を、図1に示す開先形状に加工したのち、表2に示す組成の溶接用ワイヤ(1.2mm φ)を用いて、多層溶接を行い、溶接継手を作製した。溶接法は、Ar−CO2 混合ガスおよびAr−He−CO2 混合ガスをシールドガスとするマグ溶接法とした。溶接条件を表3に示す。
【0025】
【表1】

Figure 0003894703
【0026】
【表2】
Figure 0003894703
【0027】
【表3】
Figure 0003894703
【0028】
【表4】
Figure 0003894703
【0029】
これらの溶接継手から試験片を採取し、引張試験、衝撃試験を実施し、引張特性、衝撃特性を調査した。
(1)引張試験
溶接継手部から、JIS Z 3121に規定されるJIS 1号引張試験片(全厚の溶接継手引張試験片)を採取し、これら溶接継手部引張試験片による引張試験を実施し、引張強度を求めた。
(2)衝撃試験
溶接継手部の溶接金属中央部で、板厚1/4 の位置から、JIS Z 3111に規定するシャルピー衝撃試験片(JIS 4号衝撃試験片)を採取し、-20 ℃におけるシャルピー衝撃試験の吸収エネルギー(vE-20 )を求めた。
【0030】
これらの結果を表4に示す。なお、引張特性の評価は、950MPa以上の継手引張強度を示したものを○、それ以外を×とした。靱性の評価は、-20 ℃におけるシャルピー吸収エネルギー(vE-20 )が95J以上の靱性を示したものを○、それ以外を×とした。
【0031】
【表5】
Figure 0003894703
【0032】
【表6】
Figure 0003894703
【0033】
【表7】
Figure 0003894703
【0034】
表4から、本発明例は、いずれも継手部引張強度が950MPa以上を示し、溶接金属のvE-20 が95J以上を示し、強度、靱性とも良好である。これに対し、本発明の範囲を外れる比較例は、継手部引張強度あるいはvE-20 のいずれかが上記値を満足せず、強度、靱性のいずれかが低下している。
【0035】
【発明の効果】
以上のように、本発明によれば、溶接金属の靱性劣化もなく、所望の継手部引張強さを有する、引張強さ:950MPa以上の超高張力鋼板のマグ溶接継手を容易に作製することができ、産業上格段の効果を奏する。
【図面の簡単な説明】
【図1】溶接継手部の開先形状を示す説明図である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a wire for gas shielded arc welding, and more particularly to a wire suitable for gas shielded arc welding of an ultra high strength steel plate having a tensile strength of 950 MPa or more, more specifically, MAG (mag) welding.
[0002]
[Prior art]
Various welding methods such as covered arc welding, submerged arc welding, MAG (MAG) welding, and TIG (TIG) welding are applied to the welding of high-strength steel. Among various welding methods, when welding ultra-high strength steel sheets with a tensile strength of 950 MPa or more, MAG welding and TIG welding that can reduce the amount of hydrogen in the weld metal are used from the viewpoint of preventing the occurrence of cold cracking. Is preferred.
[0003]
Further, according to TIG welding, the amount of oxygen in the weld metal can be made extremely low, and a weld metal having good toughness can be obtained. However, mag welding is superior to TIG welding in terms of welding construction efficiency, and application of mag welding is desired from the viewpoint of reducing welding construction costs.
In the welding of high-tensile steel, the higher the strength, the easier it is for cold cracks to occur in the welded part, and the toughness of the welded part tends to decrease. Therefore, high-strength steel welding materials are required to have high strength, good cold cracking resistance and high toughness.
[0004]
For this reason, various high-strength steel welding materials have been developed for the purpose of improving strength, toughness, and low-temperature cracking resistance. In high-strength steel mag welding materials, C, Si, Mn, Ni, Cr, and Mo are added as basic components, and alloy elements such as V, Ti, Nb, and N are added alone or in combination to achieve desired welding. Generally, the strength of the part is ensured. This is because the addition of a large amount of alloying elements deteriorates the toughness, so avoid adding a large amount of basic components and adding an element that can be expected to increase the strength with a small amount of addition to ensure high strength and good toughness. It is.
[0005]
For example, Japanese Patent Publication No. 63-32558 proposes a mag welding material for ultra-high strength steel having high strength and high toughness utilizing precipitation strengthening and structure strengthening by combined addition of Ti and Nb. In JP-A-61-135499, Ni is added at 3.51% or more, and V is further added to obtain high strength and good toughness by precipitation strengthening by V and improvement of toughness by Ni. Mag welding materials for steel have been proposed.
[0006]
JP-A-7-276080 discloses that C, Si, Mn, Ni, Cr and Mo are used as a basic composition, Ti and V are added in combination, and an appropriate amount of N is added to enhance precipitation by Ti and V. A MAG welding material for ultra-high-strength steel that obtains high strength and good toughness by improving toughness with N and N has been proposed.
[0007]
[Problems to be solved by the invention]
However, as in the techniques described in Japanese Patent Publication No. 63-32558 and Japanese Patent Application Laid-Open No. 7-276080, when a large amount of Ti and Nb or Ti and V and N is added to the welding material (wire), the weld metal is reduced. Although the strength can be increased, the toughness of the weld metal may deteriorate, and there is a problem that a weld metal having a high strength and good toughness cannot be obtained stably. In the technique described in Japanese Patent Laid-Open No. 61-135499, it is necessary to add a large amount of expensive Ni and V, resulting in an increase in manufacturing cost and an economical problem.
[0008]
The present invention advantageously solves the problems of the prior art described above, tensile strength: 950 MPa or more ultra-high-tensile steel plate in making the welded joint by Ma grayed welding, a weld metal having high strength and high toughness It is an object of the present invention to provide a wire for mag welding of ultra high strength steel that can be formed.
[0009]
[Means for Solving the Problems]
In order to achieve the above-described problems, the present inventors have intensively studied the basic composition of the welding wire. As a result, in the welding of ultra high strength steel, in order to obtain a weld metal with high toughness, it was found that it is preferable to contain 2.90 to 3.50% of Ni as the basic composition of the welding wire. In the welding of ultra high strength steel, a weld metal having good toughness cannot be obtained if it is out of this range.
[0010]
Furthermore, the present inventors examined means for further increasing the strength of the weld metal while ensuring good toughness of the weld metal after containing 2.90 to 3.50% of Ni as the basic composition of the welding wire. . The inventors of the present invention focused on Ti, which can increase the strength when added in a small amount, as a strength increasing element. However, the addition of Ti alone can increase the strength, but the toughness deteriorates with increasing strength. Therefore, the present inventors have focused on Al, which has been considered to deteriorate toughness and its addition amount is limited, and found that there is an Al content effective for securing the toughness of the weld metal. We have obtained the knowledge that high strength and high toughness weld metal can be formed by adding Ti and an appropriate amount of Al to the welding wire. In addition, it has been found that toughness is further improved by reducing the amounts of V, Nb, N, and O as impurities in the welding wire.
[0011]
The present invention has been further studied and completed based on the above findings.
That is, the present invention is, in mass%, C: 0.020 to 0.060%, Si: 0.20 to 0.50%, Mn: 1.50 to 2.50%, Ni: 2.90 to 3.50%, Cr: 0.7 to 1.5%, Mo: 0.30 to 1.00 %, Ti: 0.010 to 0.050%, Al: 0.020 to 0.080%, P, S, N, O, V, and Nb as impurities are P: 0.007% or less, S: 0.007% or less, N: 0.007% Hereinafter, it is reduced to O: 0.007% or less, V: 0.005% or less, Nb: 0.003% or less, and consists of the balance Fe and unavoidable impurities, and is a wire for super high strength steel mag welding.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
The reason for limiting the composition of the welding wire of the present invention will be described. Hereinafter, the mass% is simply referred to as%.
C: 0.020 to 0.060%
C is an element that increases the strength of the weld metal, but if it is less than 0.020%, the desired strength cannot be obtained. On the other hand, if the content exceeds 0.060%, toughness decreases and cold cracking susceptibility increases. For this reason, C was limited to the range of 0.020 to 0.060%.
[0013]
Si: 0.20 to 0.50%
Si is an indispensable element for deoxidation of the weld metal, and is an element that increases the strength of the weld metal. In the present invention, it is necessary to contain 0.20% or more. If the Si content is less than 0.20%, pinholes and blowholes are generated and toughness deteriorates. On the other hand, if it exceeds 0.50%, the toughness deteriorates. For this reason, Si was limited to the range of 0.20 to 0.50%.
[0014]
Mn: 1.50-2.50%
Mn is an element that increases the strength and toughness of the weld metal. In the present invention, Mn is required to be contained in an amount of 1.50% or more. However, if it exceeds 2.50%, the toughness decreases and the cold cracking susceptibility increases. For this reason, Mn was limited to 1.50 to 2.50%.
[0015]
Ni: 2.90 to 3.50%
Ni is an element that improves the toughness of the weld metal. In the present invention, it is necessary to contain 2.90% or more. If the Ni content is less than 2.90%, the desired toughness cannot be ensured. On the other hand, if Ni is contained in excess of 3.50%, the toughness of the weld metal having a tensile strength of 950 MPa or more as in the present invention is lowered. For this reason, Ni was limited to the range of 2.90 to 3.50%.
[0016]
Cr: 0.7 to 1.5%
Cr is an effective element for increasing the strength of the weld metal, and the content of 0.7% or more is required in the present invention. On the other hand, if it exceeds 1.5%, the toughness decreases and the cold cracking susceptibility increases. For this reason, Cr was limited to the range of 0.7 to 1.5%.
Mo: 0.30 to 1.00%
Mo is an effective element that increases the strength of the weld metal. In the present invention, it is necessary to contain 0.30% or more. On the other hand, if the content exceeds 1.00%, the toughness decreases and the cold cracking susceptibility increases. For this reason, Mo was limited to the range of 0.30 to 1.00%.
[0017]
Ti: 0.010 to 0.050%
Ti is an element that increases the strength of the weld metal by precipitation strengthening. In the present invention, Ti is required to be contained in an amount of 0.010% or more. On the other hand, if the content exceeds 0.050%, the strength increases but the toughness deteriorates. For this reason, Ti was limited to the range of 0.010 to 0.050%.
Al: 0.020 to 0.080%
Al acts as a deoxidizer for the weld metal and has the effect of ensuring the toughness of the weld metal whose strength has been increased by complex addition with Ti at a desired level. Such an effect is observed at a content of 0.020% or more, but a content exceeding 0.080% significantly deteriorates toughness. For this reason, Al was limited to the range of 0.020 to 0.080%.
[0018]
In the present invention, impurities P, S, N, O, V, and Nb are reduced as follows.
P: 0.007% or less P is an element that lowers the toughness of the weld metal and is reduced as much as possible in the present invention. When the P content exceeds 0.007%, the toughness is significantly deteriorated. For this reason, P is limited to 0.007% or less.
[0019]
S: 0.007% or less S is an element that lowers the toughness of the weld metal and also causes hot cracking, and is reduced as much as possible. When the S content exceeds 0.007%, the toughness deteriorates significantly. For this reason, S is limited to 0.007% or less.
N: 0.007% or less N is an element that increases the strength of the weld metal when added in a small amount, but at the same time deteriorates toughness. For this reason, N is limited to 0.007% or less.
[0020]
V: 0.005% or less V is an element that increases the strength of the weld metal when added in a small amount, but at the same time deteriorates toughness. For this reason, V is limited to 0.005% or less.
Nb: 0.003% or less
Nb is an element that increases the strength of the weld metal when added in a small amount, but at the same time deteriorates toughness. For this reason, Nb is limited to 0.003% or less.
[0021]
O: 0.007% or less O is an element that deteriorates toughness in a high-strength weld metal and is reduced as much as possible. If the O content exceeds 0.007%, the toughness of the weld metal is significantly deteriorated. For this reason, O is limited to 0.007% or less.
The manufacturing method of the welding wire of this invention is demonstrated.
[0022]
The molten steel having the above composition is melted by a generally known melting method, and cast by an ingot-making method or a continuous casting method to obtain a rolled material. These rolled materials are made into wires of predetermined dimensions by hot rolling and cold rolling. It is not necessary to specifically limit the hot rolling conditions and the cold rolling conditions.
It is preferable to apply Cu plating to the surface of the wire having the above-described composition and having a predetermined dimension for rust prevention. The plating thickness of the Cu plating is preferably 0.2 to 1.0 μm. If the thickness is less than 0.2 μm, the rust prevention effect is small.
[0023]
Welding wire of the present invention, Ru can take advantage by the use Ma grayed welding ultra high-tensile steel plate. The shielding gas, have use a mixed gas of such CO 2 mainly of Ar gas, if considering the workability was further mixed with He, Ru using a mixed gas consisting of Ar-the He-CO 2.
[0024]
【Example】
Heat treatment (quenching-tempering) was performed on a steel plate having a composition shown in Table 1 (plate thickness 50 mm) to obtain an ultra-high strength steel plate having a tensile strength of 950 MPa or more. After processing this steel plate into the groove shape shown in FIG. 1, multilayer welding was performed using a welding wire (1.2 mmφ) having the composition shown in Table 2 to produce a welded joint. The welding method was a mag welding method using Ar—CO 2 mixed gas and Ar—He—CO 2 mixed gas as a shielding gas. Table 3 shows the welding conditions.
[0025]
[Table 1]
Figure 0003894703
[0026]
[Table 2]
Figure 0003894703
[0027]
[Table 3]
Figure 0003894703
[0028]
[Table 4]
Figure 0003894703
[0029]
Test specimens were collected from these welded joints, subjected to tensile tests and impact tests, and examined for tensile characteristics and impact characteristics.
(1) Tensile test JIS No. 1 tensile test piece (full thickness welded joint tensile test piece) specified in JIS Z 3121 is taken from the welded joint part, and a tensile test using these welded joint part tensile test pieces is performed. The tensile strength was determined.
(2) Impact test At the center of the weld metal of the welded joint, a Charpy impact test piece (JIS No. 4 impact test piece) specified in JIS Z 3111 was collected from the position of the thickness 1/4, and at -20 ° C The absorbed energy (vE -20 ) of the Charpy impact test was determined.
[0030]
These results are shown in Table 4. In addition, the evaluation of the tensile properties was evaluated as “◯” when the joint tensile strength was 950 MPa or more, and “X” when it was not. In the evaluation of toughness, the case where the Charpy absorbed energy (vE -20 ) at −20 ° C. showed a toughness of 95 J or more was evaluated as “◯”, and the other cases were evaluated as “X”.
[0031]
[Table 5]
Figure 0003894703
[0032]
[Table 6]
Figure 0003894703
[0033]
[Table 7]
Figure 0003894703
[0034]
From Table 4, all the examples of the present invention show a joint part tensile strength of 950 MPa or more, a weld metal vE- 20 of 95 J or more, and have good strength and toughness. On the other hand, in the comparative example outside the scope of the present invention, either the joint tensile strength or vE- 20 does not satisfy the above value, and either the strength or toughness is lowered.
[0035]
【The invention's effect】
As described above, according to the present invention, it is possible to easily produce a MAG welded joint of an ultra-high strength steel plate having a desired joint tensile strength and a tensile strength of 950 MPa or more without deterioration of the toughness of the weld metal. Can be achieved, and it has a remarkable industrial effect.
[Brief description of the drawings]
FIG. 1 is an explanatory view showing a groove shape of a welded joint.

Claims (1)

質量%で、
C:0.020 〜0.060 %、 Si:0.20〜0.50%、
Mn:1.50〜2.50%、 Ni:2.90〜3.50%、
Cr:0.7 〜1.5 %、 Mo:0.30〜1.00%、
Ti:0.010 〜0.050 %、 Al:0.020 〜0.080 %
を含み、不純物としてのP、S、N、O、V、Nbを、
P:0.007 %以下、 S:0.007 %以下、
N:0.007 %以下、 O:0.007 %以下、
V:0.005 %以下、 Nb:0.003 %以下
に低減し、残部Feおよび不可避的不純物からなることを特徴とする超高張力鋼マグ溶接用ワイヤ。
% By mass
C: 0.020 to 0.060%, Si: 0.20 to 0.50%,
Mn: 1.50-2.50%, Ni: 2.90-3.50%,
Cr: 0.7-1.5%, Mo: 0.30-1.00%,
Ti: 0.010 to 0.050%, Al: 0.020 to 0.080%
P, S, N, O, V, Nb as impurities,
P: 0.007% or less, S: 0.007% or less,
N: 0.007% or less, O: 0.007% or less,
V: 0.005% or less, Nb: 0.003% or less, ultra high strength steel mag welding wire characterized by consisting of balance Fe and inevitable impurities.
JP2000110198A 1999-04-15 2000-04-12 Gas shielded arc welding wire Expired - Fee Related JP3894703B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000110198A JP3894703B2 (en) 1999-04-15 2000-04-12 Gas shielded arc welding wire

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP10763899 1999-04-15
JP11-107638 1999-04-15
JP2000110198A JP3894703B2 (en) 1999-04-15 2000-04-12 Gas shielded arc welding wire

Publications (2)

Publication Number Publication Date
JP2001001181A JP2001001181A (en) 2001-01-09
JP3894703B2 true JP3894703B2 (en) 2007-03-22

Family

ID=26447665

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000110198A Expired - Fee Related JP3894703B2 (en) 1999-04-15 2000-04-12 Gas shielded arc welding wire

Country Status (1)

Country Link
JP (1) JP3894703B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103084752A (en) * 2013-01-23 2013-05-08 宝山钢铁股份有限公司 High-strength high-tenacity submerged-arc welding wire for X100 pipeline steel
CN112752862A (en) * 2018-09-28 2021-05-04 Posco公司 High-strength cold-rolled steel sheet having high hole expansibility, high-strength hot-dip galvanized steel sheet, and methods for producing these

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4800081B2 (en) * 2006-03-27 2011-10-26 日鐵住金溶接工業株式会社 Solid wire for welding high strength steel and gas shielded arc welding method for high strength steel
CN104271310B (en) 2012-05-08 2016-04-27 新日铁住金株式会社 Ultra-high tensile steel welding flux-cored wire
JP6255284B2 (en) 2014-03-10 2017-12-27 株式会社神戸製鋼所 Solid wire for gas metal arc welding
CN105234587B (en) * 2015-11-20 2017-06-20 山东钢铁股份有限公司 A kind of 1500MPa grades of super-high strength steel gas shielded arc welding coppering-free solid solder wire
CN108705223A (en) * 2018-05-16 2018-10-26 武汉钢铁有限公司 A kind of tensile strength is 810MPa grades of high-ductility corrosion Lincoln weld welding wires
CN110625289A (en) * 2019-08-07 2019-12-31 中国第一重型机械集团大连加氢反应器制造有限公司 Tungsten electrode argon arc welding wire for welding Mn-Mo-Ni steel of nuclear island main equipment
CN112792479B (en) * 2021-04-07 2022-10-18 四川西冶新材料股份有限公司 High-strength high-toughness gas shielded welding solid welding wire for X90 pipeline steel and preparation method thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103084752A (en) * 2013-01-23 2013-05-08 宝山钢铁股份有限公司 High-strength high-tenacity submerged-arc welding wire for X100 pipeline steel
CN112752862A (en) * 2018-09-28 2021-05-04 Posco公司 High-strength cold-rolled steel sheet having high hole expansibility, high-strength hot-dip galvanized steel sheet, and methods for producing these
CN112752862B (en) * 2018-09-28 2022-05-06 Posco公司 High-strength cold-rolled steel sheet having high hole expansibility, high-strength hot-dip galvanized steel sheet, and methods for producing these

Also Published As

Publication number Publication date
JP2001001181A (en) 2001-01-09

Similar Documents

Publication Publication Date Title
JP4614226B2 (en) Solid wire for gas shielded arc welding
JP5050863B2 (en) Ferritic stainless steel sheet for water heaters
JP5387192B2 (en) Flux-cored wire for gas shield welding
JP2011005531A (en) Flux-cored welding wire for high-tensile steel and method for manufacturing the same
WO2018203513A1 (en) Arc welding method and welding wire
JP2001001148A (en) GAS SHIELD ARC WELDING OF THICK HIGH TENSILE STRENGTH STEEL PLATE OF AT LEAST 900 MPa CLASS
JP3850764B2 (en) Welding wire for high Cr ferritic heat resistant steel
JP3894703B2 (en) Gas shielded arc welding wire
JP3871655B2 (en) Double-sided single layer submerged arc welding wire for high strength steel
JP4625415B2 (en) Solid wire for gas shielded arc welding
JP3551136B2 (en) Gas shielded arc welding wire
JP2857318B2 (en) Welding wire for high tensile steel
JP3860438B2 (en) Iron-based consumable welding materials and welded joints with excellent fatigue strength at welded joints
JP6829111B2 (en) Filling material for TIG welding
JP3551140B2 (en) Gas shielded arc welding wire
JP6961518B2 (en) Ferrite / austenite two-phase stainless steel plate for tank band and tank band and spot welding method using this
JP2004091860A (en) Weld metal for low-alloy heat-resisting steel
JPS6048584B2 (en) Ultra-low carbon/nitrogen ferrite stainless steel with excellent weld toughness and workability
JP3481547B2 (en) Solid wire for gas shielded arc welding
JP3734742B2 (en) Welded joint with excellent toughness
JP4040824B2 (en) Weld metal
JP3265591B2 (en) High-strength ERW steel pipe for automobiles with excellent weld toughness
JP2002080943A (en) Ferritic stainless steel having excellent secondary processing brittleness resistance and high temperature fatigue characteristic in weld zone
JP3933020B2 (en) Stainless steel with excellent fatigue characteristics and toughness of fillet welded joints when forming fillet welded joints
JP3194207B2 (en) Covered arc welding rod for high Cr ferritic heat resistant steel

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20031226

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040323

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061212

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees