JP3933020B2 - Stainless steel with excellent fatigue characteristics and toughness of fillet welded joints when forming fillet welded joints - Google Patents

Stainless steel with excellent fatigue characteristics and toughness of fillet welded joints when forming fillet welded joints Download PDF

Info

Publication number
JP3933020B2
JP3933020B2 JP2002275617A JP2002275617A JP3933020B2 JP 3933020 B2 JP3933020 B2 JP 3933020B2 JP 2002275617 A JP2002275617 A JP 2002275617A JP 2002275617 A JP2002275617 A JP 2002275617A JP 3933020 B2 JP3933020 B2 JP 3933020B2
Authority
JP
Japan
Prior art keywords
mass
less
fillet welded
toughness
welded joints
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002275617A
Other languages
Japanese (ja)
Other versions
JP2003183784A (en
Inventor
淳一郎 平澤
伸隆 黒澤
工 宇城
修 古君
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2002275617A priority Critical patent/JP3933020B2/en
Publication of JP2003183784A publication Critical patent/JP2003183784A/en
Application granted granted Critical
Publication of JP3933020B2 publication Critical patent/JP3933020B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Butt Welding And Welding Of Specific Article (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、構造用ステンレス鋼に施したすみ肉溶接継手における、疲労強度および靱性を顕著に改善する技術に関するものである。
【0002】
【従来の技術】
例えば、鉄道車両や自動車などの車両を構成する部品は、すみ肉溶接継手を介して取付けられ、また、この種車両は振動を伴う環境下で使用されることが不可避であるために、すみ肉溶接継手は繰り返し曲げ応力を受け易くなる結果、すみ肉溶接継手に疲労破壊が生じることが多い。
【0003】
このすみ肉溶接継手は、主にガスシールドアーク溶接で形成される。そして、すみ肉溶接継手の疲労破壊は、応力集中部となる溶接止端部の形状が原因で起こる場合が多く、その対策には、溶接止端部の形状改善による応力集中の低減が有効であることが知られている。例えば、特許文献1には、高張力鋼板の溶接において、溶接ワイヤおよび溶接方法を改良し、溶接止端部の曲率半径を大きくすることにより、すみ肉溶接継手の疲労特性を向上させる方法が提案されている。
【0004】
【特許文献1】
特開平8−25080号公報
【0005】
【発明が解決しようとする課題】
しかしながら、特許文献1に記載された方法は、高張力鋼板の溶接に関するものであり、溶接性の点からY308やY309などのオーステナイト系ステンレス鋼製ワイヤを用いるステンレス鋼の溶接には使用できない。すなわち、ステンレス鋼における、すみ肉溶接継手の疲労特性および靭性を改善する技術については、未だ有効な策が無いのが現状である。
【0006】
そこで、この発明の目的は、すみ肉溶接継手の形成手法を変更することなしに、すみ肉溶接継手を施すステンレス鋼自体の鋼成分を適正化することにより、すみ肉溶接継手の疲労特性および靭性を顕著に改善することが可能になる、ステンレス鋼を提供することにある。
【0007】
【課題を解決するための手段】
発明者らは、上記の目的を達成すべく、ステンレス鋼の成分について、すみ肉継手の疲労特性に及ぼす影響を詳細に調査した結果、まずCr、Si、Mn、Ni、CおよびNなどの含有量を制御して、溶接熱影響部に50体積%以上のマルテンサイト組織を確保し、さらにN、TiおよびAlを適正範囲に制御して、溶接熱影響部の粒径を微細にすることが、溶接部の強度および靭性を向上し、かつ溶接止端部の形状を改善し、すみ肉溶接継手の疲労特性を顕著に向上するのに有効であることを、新たに見出した。
【0008】
なお、溶接される鋼(母材)の成分を適正範囲に制御することにより溶接止端部の形状が改善される理由は、未だ明確になっていないが、N含有量および窒化物を形成しやすいTiおよびAlの含有量を制御することにより、低温から高温までの広い温度範囲で安定なTiNが形成され、溶接溶融部の高温物性(溶接金属と母材との濡れ性や粘性など)が変化するためであろうことが推定される。
【0009】
この発明は、上記の知見に基づいて完成したものであり、その要旨構成は次の通りである。
(i)C:0.03質量%未満、Si:1.0質量%以下、Mn:0.5質量%超え2.5質量%以下、Cr:11〜15質量%、Ni:0.6質量%超え3.0質量%未満、Mo:2質量%以下、Cu:2質量%以下、Al:0.05質量%以下、N:0.012質量%超え0.050質量%以下およびTi:0.005〜0.100質量%を、下記式(1)および(2)を満足する範囲にて含有し、かつP:0.04質量%以下およびS:0.01質量%以下に抑制し、残部 Feおよび不可避的不純物の成分組成になることを特徴とする、すみ肉溶接継手を形成した際の該すみ肉溶接継手の疲労特性および靱性に優れたステンレス鋼。

[Cr]+0.4×[Si]+0.3×[Mo]−0.4×[Mn]−0.7×[Ni]−0.6×[Cu]
−35× C]−10×[N]≦12.0 ----(1)
[N]≧(14/48)×[Ti]+(14/27)×[Al] ----(2)
ここで、[Cr]、[Si]、[Mo]、[Mn]、[Ni]、[Cu]、[C]、[N]、[Ti]および[Al]は、それぞれCr、Si、Mo、Mn、Ni、Cu、C、N、TiおよびAlの含有量(質量%)
【0010】
(ii)上記(i)において、成分組成がさらにCo:0.3質量%以下、Nb:0.2質量%以下、V:0.2質量%以下、Zr:0.2質量%以下およびTa:0.2質量%以下の1種または2種以上を含有することを特徴とする、すみ肉溶接継手を形成した際の該すみ肉溶接継手の疲労特性および靱性に優れたステンレス鋼。
【0011】
(iii)上記(i)または(ii)において、成分組成がさらにB:0.005質量%以下およびCa:0.005質量%以下の1種または2種を含有することを特徴とする、すみ肉溶接継手を形成した際の該すみ肉溶接継手の疲労特性および靱性に優れたステンレス鋼。
【0012】
(iv)上記(i)ないしは(iii)のいずれかにおいて、成分組成がさらにW:0.1質量%以下およびMg:0.01質量%以下の1種または2種を含有することを特徴とする、すみ肉溶接継手を形成した際の該すみ肉溶接継手の疲労特性および靱性に優れたステンレス鋼。
【0013】
【発明の実施の形態】
以下、この発明のステンレス鋼(以下、「本発明の鋼」という)について詳細に説明する。
C:0.03質量%未満
本発明の鋼において、Cは、溶接部の靭性を低下させ、また溶接割れ感受性を高める元素であり、特に含有量が0.03質量%以上になると、その悪影響が顕著となるため、0.03質量%未満に限定する。特に、溶接部の靭性の観点から、0.015質量%以下とすることが望ましい。
【0014】
Si:1.0質量%以下
Siは、脱酸剤として必要な元素であるとともに、鋼の強度を高める元素であり、好ましくは0.005質量%以上で含有させる。しかしながら、1.0質量%を超えると、鋼を顕著に脆化させ、溶接部の靭性をも低下させることから、1.0質量%以下に限定する。
【0015】
Mn:0.5質量%超え2.5質量%以下
Mnは、鋼の強度を高める元素であるとともに、高温域(およそ1000〜1100℃)でのオーステナイト相の生成を促進し、溶接熱影響部に微細なマルテンサイト組織を50体積%以上形成させることにより、構造用ステンレス鋼に要求される溶接部の靱性を向上させる。そのためには、0.5質量%を超えて含有させる。しかしながら、Mnを過剰に添加すると、鋼の靭性および耐食性を低下させることから、2.5質量%以下に限定する。耐食性を確保する観点からは、1.0質量%以下の範囲で添加することが望ましい。
【0016】
Cr:11〜15質量%
Crは、ステンレス鋼の特徴である耐食性の向上に有効な元素成分であり、十分な耐食性を得るためには11質量%以上が必要である。耐食性の観点からは、Crを12質量%以上、さらには13質量%を超えて添加することが好ましい。一方、Crは鋼の靭性を低下させ、特に15質量%を超えて含有すると、靭性の低下が著しくなるため、15質量%以下に限定する。靭性の観点から、Crは14質量%以下とすることが望ましい。
【0017】
Ni:0.6質量%超え3.0質量%未満
Niは、ステンレス鋼の特徴である耐食性を向上させ、また、高温域(およそ1000〜1100℃)でのオーステナイト相生成を促進し、溶接熱影響部に微細なマルテンサイト組織を形成させて、構造用ステンレス鋼に要求される溶接部の靱性を向上させるため、0.6質量%を超えて添加する。しかしながら、3.0質量%以上を添加しても効果が飽和し、素材コストの上昇をまねくだけであるため、3.0質量%未満に限定する。コストの上昇を抑えるためには、1.0〜2.0質量%とすることが望ましい。
【0018】
Mo:2質量%以下
Moは、耐食性の向上に有効な元素成分であり、この耐食性改善効果を得るためには、0.6質量%を超えて含有することが好ましい。一方、2質量%を超えて含有すると、上記効果が飽和するばかりでなく、鋼が硬化し曲げなどの加工性が低下するため、2質量%以下に限定する。
【0019】
Cu:2質量%以下
Cuは、Moと同様に耐食性の向上に有効な元素成分であり、この耐食性改善効果を得るためには、0.3質量以上で含有することが好ましい。一方、2質量%を超えて含有すると、効果が飽和するばかりでなく、鋼が硬化して曲げなどの加工性が低下するため、2質量%以下に限定する。
【0020】
N:0.012質量を超え0.050質量%以下
Nは、この発明において特に重要な添加元素である。すなわち、鋼中に固溶状態のNを確保することにより、すみ肉溶接継手の疲労強度が顕著に向上する。この疲労特性の観点からは、0.012質量を超えて添加させる。一方でNは、Cと同様に溶接部の靱性を低下させ、また溶接割れ感受性を高める元素であり、含有量が0.050質量%を超えると、その悪影響が顕著となることから、0.050質量%以下に限定する。特に、溶接割れ防止の観点から、上限は0.030質量%とすることが望ましい。
【0021】
Al:0.05質量%以下
Alは、製鋼上脱酸剤として必要であるが、過度の添加は、介在物の生成により耐食性および靭性が低下するため、0.05質量%以下に限定する。溶接部の靭性確保の観点からは、0.03質量%以下とすることが好ましい。なお、Alを脱酸剤として用いる場合は、0.01質量%を下限とすることが好ましい。
【0022】
Ti:0.005〜0.100質量%
Tiは、Nを強力に固定する元素であり、その窒化物は高温まで安定であるために、溶接熱影響部の結晶粒の粗大化を防止し、溶接部の靱性を改善するために有効な元素である。その効果は0.005質量%以上の添加により発揮されるため、0.005質量%以上に限定する。より好ましくは、0.015質量%以上で添加する。一方、0.100質量%を超えると、TiNの析出量が過剰になり、鋼中の固溶N量を確保することが困難になり、溶接部の疲労強度が低下するため、0.100質量%以下に限定する。
【0023】
また、本発明の鋼では、鋼中にAlおよびTiが存在すると、Nと結合し窒化物となり、上記した固溶状態のNが減少し、すみ肉溶接継手の疲労強度が低下する。そこで、固溶状態のNを確保するため、上記した式(2)、すなわち
[N]≧(14/48)×[Ti]+(14/27)×[Al]
を満たすように、N、TiおよびAlの添加量を調整することが必須である。
【0024】
さらに、本発明の鋼では、上記した式(1)、すなわち下式を満たすことを必須とする。
[Cr]+0.4×[Si]+0.3×[Mo]−0.4×[Mn]−0.7×[Ni]−0.6×[Cu]−35×[C]−10×[N]≦12.0
この式において、Cr、SiおよびMoは、いわゆるフェライト生成元素であり、溶接熱影響部に微細なマルテンサイト組織を存在させる、構造用ステンレス鋼において高温域(およそ1000〜1100℃)でのオーステナイト相を生じにくくする。一方、Mn、Ni、Cu、CおよびNはオーステナイト生成元素であり、高温域でのオーステナイト相を生じやすくする。すなわち、この不等式の左辺の値が大きいほど、高温でのオーステナイト相が生じにくくなることを意味する。
【0025】
そして、発明者らが詳細に調査した結果、溶接熱影響部の靭性を向上させるには、入熱による溶接熱影響部の結晶粒の粗大化を防止し、微細化することが重要であり、上式の左辺の値が12.0以下であれば、高温でのオーステナイト相から冷却される際のマルテンサイト相への変態により、溶接熱影響部に微細なマルテンサイト組織が50体積%以上生じるために、溶接熱影響部の靭性が顕著に向上する。一方、上式の左辺の値が12.0を超える場合には、フェライト単相あるいは高温で極少量のオーステナイト相しか生じないため、溶接熱影響部でフェライト粒が粗大化し、靭性が極度に低下する。
以上の知見により、上式の左辺の値を12.0以下に規制することとした。
【0026】
また、本発明の鋼では、PおよびSの量を抑制する必要がある。
P:0.04質量%以下
Pは、熱間加工性を低下させる元素であり、出来る限り低く抑えることが望ましいため、0.04質量%以下に限定する。熱間加工性の観点からは、含有量を0.02質量%以下にすることが望ましい。なお、あまりに低く抑制すると、製鋼工程における脱P処理にかかるコストの上昇を招くことになる。
【0027】
S:0.01質量%以下
Sは、Pと同様に、含有量が高いと熱間加工性を低下することになるため、0.01質量%以下に限定する。熱間加工性の観点からは、含有量を0.003質量%以下にすることが望ましい。なお、あまりに低く抑制すると、製鋼の脱S処理にかかるコストの上昇を招く
【0028】
この発明では、さらに次の元素を含有しても良い。
Co:0.3質量%以下、Nb:0.2質量%以下、V:0.2質量%以下、Zr:0.2質量%以下および Ta:0.2質量%以下の1種または2種以上
Co、Nb、V、ZrおよびTaは、鋼の強度を高くする元素であり、疲労特性の向上に寄与する。しかしながら、Coで0.3質量%を超えておよび、それ以外の元素で0.2質量%を超えて添加すると過度に硬化し、靭性が低下するため、Coで0.3質量%以下および、それ以外の元素で0.2質量%以下の添加が望ましい。なお、Co、Nb、V、ZrおよびTaは、微量の添加で有効であるから、特に下限を設ける必要はない。
【0029】
B:0.005質量%以下およびCa:0.005質量%以下の1種または2種
BおよびCaは、微量の添加で鋼の強度を高くする効果がある。しかしながら、0.005質量%を超えて添加しても効果が飽和するばかりでなく、耐食性を低下させるため、0.005質量%以下の添加が望ましい。なお、BおよびCaは、微量の添加で有効であるから、特に下限を設ける必要はない。
【0030】
W:0.1質量%以下およびMg:0.01質量%以下の1種または2種
WおよびMgは、鋼の強度を高くする効果があり、疲労特性の向上に有効な元素成分である。しかしながら、WおよびMgは、それぞれ0.1質量%および0.01質量%を超えて含有すると、靭性を低下させるため、それぞれ0.1質量%以下および0.01質量%以下の添加が望ましい。なお、WおよびMgは、微量の添加で有効であるから、特に下限を設ける必要はない。
【0031】
本発明の鋼は、上記成分以外 Feおよび不可避的不純物からなる。ここで Feおよび不可避的不純物からなるとは、残部にFe以外にアルカリ金属、アルカリ土類金属、希土類元素および遷移金属などが少量含有されることを意味する。これらの元素の少量の含有は、この発明の効果を何ら妨げるものではない。
【0032】
なお、本発明の鋼を製造する方法は、特に限定されず、ステンレス鋼の製造に一般的に採用されている方法をそのまま適用することができる。
例えば、製鋼は、前記必須成分および必要に応じて添加される成分に従う組成の下、転炉あるいは電気炉等で溶製し、VOD(Vacuun Oxygen Decarburization)あるいはAOD(Argon Oxygen Decarburization)により2次精錬を行う方法が好適である。次いで、溶製した溶鋼は、公知の鋳造方法にしたがって鋼素材とすることができるが、生産性および品質の観点から、連続鋳造法を適用するのが好ましい。連続鋳造して得られた鋼素材は、1000〜1250℃に加熱され、熱間圧延により所望の板厚の熱延板とされる。この熱延板は、必要に応じて、好ましくは600〜900℃のバッチ式焼鈍を施した後、酸洗等により脱スケ−ルされて製品となる。また、用途によっては、冷間圧延し、600〜900℃の連続焼鈍後に酸洗を施して、冷延焼鈍板とする、冷延薄板製品とすることも可能である。
【0033】
本発明の鋼を使用して、すみ肉溶接継手を形成する場合、その溶接方法は、MIG溶接、MAG溶接、TIG溶接等のガスシールドアーク溶接方法がすべて適用可能である。本発明の鋼は、CおよびNを低減し、溶接割れを防止しているため、溶接後の後熱処理が不要で、溶接ままでも構造材として十分使用可能であるが、強度の調整などのために、後熱処理を行っても良い。
【0034】
【実施例】
表1に示す化学成分を有する50kg鋼塊を高周波真空溶解炉で溶製し、通常の熱間圧延により厚さ3mmの熱延板とした。その後、アルゴン雰囲気中で、700℃×10時間保持の後徐冷による焼鈍を行った後、酸洗で脱スケ−ルし、供試材とした。
【0035】
かくして得られた供試材を用い、MIG溶接(Y308ワイヤ,電流:100A、電圧:15V、溶接速度:6mm/s、シールドガス:100%Arを20リットル/分)で重ねすみ肉(両側)溶接継手を作製した。作製した溶接継手の疲労特性を評価するため、JIS Z 2275に準拠した曲げ疲労試験を行った。試験片形状は図1に示すように、すみ肉溶接継手で最も特性の劣る溶接止端部Eに疲労負荷のかかるものとし、両振り繰り返し曲げにより、107疲労限(107回曲げを繰り返しても割れない曲げ応力の最大値)を測定した。
【0036】
また、溶接熱影響部の靭性を調べるために、MIG溶接(Y308ワイヤ,電流:150A、電圧:20V、溶接速度:7mm/s、シールドガス:100%Arを流量20リットル/分、ルートギャップ:1mm)により、突き合わせ溶接継手を作製し、作製した溶接継手の表裏両面を研削し、板厚を2.5mmに仕上げた後、図2に示すように、すみ肉溶接継手の表裏両面を研削し、板厚を2.5mmに仕上げた後、図2に示すように、すみ肉溶接継手で最も靱性の劣る溶接熱影響部にノッチ先端が在るようにノッチ加工し、JIS Z 2242に準拠したシャルピ−衝撃試験を行い、0℃におけるシャルピー衝撃値を測定した。なお、107疲労限は200MPa以上、0℃のシャルピー衝撃値は50J/cm2以上であれば、十分車両構造材として用いることができる。
以上の結果を表1に示す。
【0037】
【表1】

Figure 0003933020
【0038】
表1から明らかなごとく、本発明の鋼は、溶接継手の疲労強度、および溶接熱影響部の靭性にいずれも優れることが分かる。比較鋼はそのいずれかが、発明例に比べて劣っている。
【0039】
【発明の効果】
以上説明したように、本発明の鋼は、すみ肉溶接継手を形成した際の該すみ肉溶接継手の疲労特性および靱性に優れているため、製品使用中のすみ肉溶接部での疲労破壊を防止することが可能となるため、例えば鉄道や自動車などの車両構造部品に適した素材を提供できる。
【図面の簡単な説明】
【図1】 すみ肉溶接部疲労試験片の形状を示す図である。
【図2】 シャルピ−衝撃試験片の形状を示す図である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a technique for remarkably improving fatigue strength and toughness in a fillet welded joint applied to structural stainless steel.
[0002]
[Prior art]
For example, parts constituting vehicles such as railway vehicles and automobiles are attached via fillet welded joints, and this type of vehicle is inevitable to be used in an environment with vibration. As a result of welded joints becoming susceptible to repeated bending stresses, fatigue fracture often occurs in fillet welded joints.
[0003]
This fillet weld joint is mainly formed by gas shielded arc welding. Fatigue fracture of fillet welded joints often occurs due to the shape of the weld toe that becomes the stress concentration part, and reducing the stress concentration by improving the shape of the weld toe is an effective countermeasure. It is known that there is. For example, Patent Document 1 proposes a method for improving the fatigue characteristics of a fillet welded joint by improving the welding wire and welding method and increasing the radius of curvature of the weld toe in welding high-strength steel sheets. Has been.
[0004]
[Patent Document 1]
Japanese Patent Laid-Open No. 8-25080
[Problems to be solved by the invention]
However, the method described in Patent Document 1 relates to welding of high-strength steel sheets, and cannot be used for welding stainless steel using austenitic stainless steel wires such as Y308 and Y309 from the viewpoint of weldability. In other words, there is no effective measure for improving the fatigue characteristics and toughness of fillet welded joints in stainless steel.
[0006]
Accordingly, an object of the present invention is to optimize the fatigue properties and toughness of a fillet welded joint by optimizing the steel components of the stainless steel itself to which the fillet welded joint is applied without changing the method of forming the fillet welded joint. It is to provide a stainless steel that can significantly improve the above.
[0007]
[Means for Solving the Problems]
In order to achieve the above-mentioned object, the inventors have conducted detailed investigations on the influence of stainless steel components on the fatigue characteristics of fillet joints. As a result, first, the inclusion of Cr, Si, Mn, Ni, C, N, and the like By controlling the amount, it is possible to secure a martensite structure of 50% by volume or more in the weld heat affected zone, and further control N, Ti and Al to an appropriate range to make the particle size of the weld heat affected zone finer. The present inventors have newly found that it is effective for improving the strength and toughness of the welded portion, improving the shape of the weld toe, and significantly improving the fatigue characteristics of the fillet welded joint.
[0008]
The reason why the shape of the weld toe is improved by controlling the components of the steel (base metal) to be welded to an appropriate range is not yet clear, but N content and nitride are formed. By controlling the Ti and Al contents, which are easy to control, stable TiN is formed in a wide temperature range from low to high temperatures, and the high-temperature properties of weld welds (such as wettability and viscosity between the weld metal and the base metal) are improved. It is estimated that this will be due to change.
[0009]
This invention is completed based on said knowledge, The summary structure is as follows.
(I) C: less than 0.03% by mass, Si: 1.0% by mass or less, Mn: more than 0.5% by mass to 2.5% by mass, Cr: 11-15% by mass, Ni: more than 0.6% by mass and less than 3.0% by mass, Mo : 2 mass% or less, Cu: 2 mass% or less, Al: 0.05 mass% or less, N: 0.012 mass% to 0.050 mass% or less and Ti: 0.005 to 0.100 mass%, the following formulas (1) and (2) A fillet welded joint is formed, which is contained in a satisfactory range and is suppressed to P: 0.04% by mass or less and S: 0.01% by mass or less, with the balance being the component composition of Fe and inevitable impurities. Stainless steel excellent in fatigue characteristics and toughness of the fillet welded joint when deformed.
[Cr] + 0.4 × [Si] + 0.3 × [Mo] −0.4 × [Mn] −0.7 × [Ni] −0.6 × [Cu]
−35 × C] −10 × [N] ≦ 12.0 ---- (1)
[N] ≧ (14/48) × [Ti] + (14/27) × [Al] ---- (2)
Here, [Cr], [Si], [Mo], [Mn], [Ni], [Cu], [C], [N], [Ti] and [Al] are Cr, Si and Mo, respectively. , Mn, Ni, Cu, C, N, Ti and Al content (% by mass)
[0010]
(Ii) In the above (i), the component composition further includes Co: 0.3 mass% or less, Nb: 0.2 mass% or less, V: 0.2 mass% or less, Zr: 0.2 mass% or less, and Ta: 0.2 mass% or less Or a stainless steel excellent in fatigue characteristics and toughness of the fillet welded joint when the fillet welded joint is formed.
[0011]
(Iii) A fillet welded joint according to (i) or (ii) above, wherein the component composition further contains one or two of B: 0.005% by mass or less and Ca: 0.005% by mass or less. Stainless steel excellent in fatigue characteristics and toughness of the fillet welded joint when formed.
[0012]
(Iv) In any one of the above (i) or (iii), the component composition further contains one or two of W: 0.1% by mass or less and Mg: 0.01% by mass or less. Stainless steel excellent in fatigue characteristics and toughness of the fillet welded joint when a welded joint is formed.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the stainless steel of the present invention (hereinafter referred to as “the steel of the present invention”) will be described in detail.
C: Less than 0.03% by mass In the steel of the present invention, C is an element that lowers the toughness of the weld and increases the sensitivity to weld cracking, and particularly when the content is 0.03% by mass or more, the adverse effect becomes significant. Therefore, it is limited to less than 0.03% by mass. In particular, from the viewpoint of the toughness of the welded portion, it is desirable that the content be 0.015 mass% or less.
[0014]
Si: 1.0% by mass or less
Si is an element necessary as a deoxidizer and is an element that enhances the strength of steel, and is preferably contained in an amount of 0.005% by mass or more. However, if it exceeds 1.0% by mass, the steel is markedly embrittled and the toughness of the welded portion is also reduced, so it is limited to 1.0% by mass or less.
[0015]
Mn: More than 0.5% by mass and less than 2.5% by mass
Mn is an element that enhances the strength of steel, promotes the formation of austenite phase at high temperatures (approximately 1000-1100 ° C), and forms a fine martensite structure at 50 volume% or more in the heat affected zone. Thus, the toughness of the welded portion required for the structural stainless steel is improved. For that purpose, it contains exceeding 0.5 mass%. However, if Mn is added excessively, the toughness and corrosion resistance of the steel are reduced, so the amount is limited to 2.5% by mass or less. From the viewpoint of ensuring corrosion resistance, it is desirable to add in the range of 1.0 mass% or less.
[0016]
Cr: 11-15% by mass
Cr is an elemental component effective for improving the corrosion resistance that is a characteristic of stainless steel, and 11 mass% or more is necessary to obtain sufficient corrosion resistance. From the viewpoint of corrosion resistance, Cr is preferably added in an amount of 12% by mass or more, more preferably 13% by mass. On the other hand, Cr lowers the toughness of the steel, and if it exceeds 15 mass%, the toughness deteriorates remarkably, so it is limited to 15 mass% or less. From the viewpoint of toughness, the Cr content is desirably 14% by mass or less.
[0017]
Ni: More than 0.6% by mass and less than 3.0% by mass
Ni improves the corrosion resistance characteristic of stainless steel, promotes austenite phase formation at high temperatures (approximately 1000 to 1100 ° C), and forms a fine martensite structure in the heat affected zone. In order to improve the toughness of the weld zone required for stainless steel for steel, it is added in excess of 0.6% by mass. However, even if 3.0% by mass or more is added, the effect is saturated and only increases the material cost, so it is limited to less than 3.0% by mass. In order to suppress an increase in cost, it is desirable to set it as 1.0-2.0 mass%.
[0018]
Mo: 2% by mass or less
Mo is an elemental component effective for improving the corrosion resistance. In order to obtain this corrosion resistance improving effect, Mo is preferably contained in an amount exceeding 0.6% by mass. On the other hand, if the content exceeds 2% by mass, not only the above effects are saturated, but also the steel is hardened and workability such as bending is reduced, so the content is limited to 2% by mass or less.
[0019]
Cu: 2% by mass or less
Cu is an element component effective for improving the corrosion resistance like Mo, and in order to obtain this corrosion resistance improving effect, Cu is preferably contained in an amount of 0.3 mass or more. On the other hand, if the content exceeds 2% by mass, not only the effect is saturated, but also the workability such as bending is reduced due to hardening of the steel, so the content is limited to 2% by mass or less.
[0020]
N: more than 0.012 mass and 0.050 mass% or less N is an especially important additive element in the present invention. That is, by ensuring N in a solid solution state in steel, the fatigue strength of the fillet welded joint is significantly improved. From the viewpoint of this fatigue characteristic, it is added exceeding 0.012 mass. N, on the other hand, is an element that lowers the toughness of the welded portion and increases the weld cracking susceptibility in the same manner as C. When the content exceeds 0.050% by mass, the adverse effect becomes significant, so 0.050% by mass or less. Limited to. In particular, from the viewpoint of preventing weld cracking, the upper limit is preferably 0.030% by mass.
[0021]
Al: 0.05% by mass or less
Al is necessary as a deoxidizer for steelmaking, but excessive addition is limited to 0.05% by mass or less because corrosion resistance and toughness are reduced due to the formation of inclusions. From the viewpoint of ensuring the toughness of the welded portion, it is preferably 0.03% by mass or less. In addition, when using Al as a deoxidizer, it is preferable to make 0.01 mass% into a minimum.
[0022]
Ti: 0.005 to 0.100 mass%
Ti is an element that strongly fixes N, and its nitride is stable up to high temperature. Therefore, it is effective for preventing coarsening of crystal grains in the weld heat-affected zone and improving the toughness of the weld zone. It is an element. Since the effect is exhibited by addition of 0.005% by mass or more, it is limited to 0.005% by mass or more. More preferably, it is added at 0.015% by mass or more. On the other hand, if it exceeds 0.100% by mass, the amount of TiN deposited becomes excessive, making it difficult to ensure the amount of solute N in the steel and reducing the fatigue strength of the welded part, so it is limited to 0.100% by mass or less. To do.
[0023]
Further, in the steel of the present invention, when Al and Ti are present in the steel, they are combined with N to form a nitride, N in the solid solution state is reduced, and the fatigue strength of the fillet welded joint is lowered. Therefore, in order to secure N in a solid solution state, the above-described formula (2), that is, [N] ≧ (14/48) × [Ti] + (14/27) × [Al]
It is essential to adjust the addition amount of N, Ti and Al so as to satisfy the above.
[0024]
Furthermore, in the steel of the present invention, it is essential to satisfy the above formula (1), that is, the following formula.
[Cr] + 0.4 × [Si] + 0.3 × [Mo] −0.4 × [Mn] −0.7 × [Ni] −0.6 × [Cu] −35 × [C] −10 × [N] ≦ 12.0
In this formula, Cr, Si and Mo are so-called ferrite-forming elements, and an austenitic phase in a high-temperature region (approximately 1000 to 1100 ° C) in structural stainless steel in which a fine martensite structure is present in the heat affected zone of welding. Is less likely to occur. On the other hand, Mn, Ni, Cu, C, and N are austenite generating elements and easily generate an austenite phase in a high temperature range. In other words, the larger the value on the left side of this inequality, the less likely the austenite phase at high temperatures to occur.
[0025]
And, as a result of detailed investigations by the inventors, in order to improve the toughness of the weld heat affected zone, it is important to prevent coarsening of the crystal grain of the weld heat affected zone due to heat input and to make it finer, If the value on the left side of the above formula is 12.0 or less, the transformation from the austenite phase at high temperature to the martensite phase when cooled causes a fine martensite structure to occur in the weld heat affected zone of 50% by volume or more. The toughness of the weld heat affected zone is significantly improved. On the other hand, when the value on the left side of the above formula exceeds 12.0, only a single phase of ferrite or a very small amount of austenite phase is generated at high temperature, so that the ferrite grains become coarse in the heat affected zone and the toughness is extremely lowered.
Based on the above findings, the value on the left side of the above equation was restricted to 12.0 or less.
[0026]
Moreover, in the steel of the present invention, it is necessary to suppress the amounts of P and S.
P: 0.04% by mass or less P is an element that reduces hot workability, and is desirably kept as low as possible, so is limited to 0.04% by mass or less. From the viewpoint of hot workability, the content is preferably 0.02% by mass or less. In addition, if it suppresses too low, it will raise the cost concerning the de-P process in a steelmaking process.
[0027]
S: 0.01% by mass or less S, like P, is limited to 0.01% by mass or less because the hot workability deteriorates when the content is high. From the viewpoint of hot workability, the content is desirably 0.003 mass% or less. In addition, if it is suppressed too low, it causes an increase in the cost for the steelmaking S removal process. [0028]
In this invention, you may contain the following element further.
Co: 0.3% by mass or less, Nb: 0.2% by mass or less, V: 0.2% by mass or less, Zr: 0.2% by mass or less and Ta: 0.2% by mass or less
Co, Nb, V, Zr and Ta are elements that increase the strength of steel and contribute to the improvement of fatigue properties. However, if it exceeds 0.3 mass% with Co and more than 0.2 mass% with any other element, it hardens excessively and the toughness decreases, so it is less than 0.3 mass% with Co and 0.2 with other elements. Addition of less than mass% is desirable. Note that Co, Nb, V, Zr, and Ta are effective when added in a very small amount, and therefore it is not necessary to set a lower limit.
[0029]
One or two of B and 0.005% by mass or less of B and 0.005% by mass or less of B and Ca have an effect of increasing the strength of the steel by adding a small amount. However, the addition of more than 0.005% by mass not only saturates the effect but also reduces the corrosion resistance, so addition of 0.005% by mass or less is desirable. In addition, since B and Ca are effective when added in a very small amount, it is not necessary to set a lower limit.
[0030]
One or two of W: 0.1 mass% or less and Mg: 0.01 mass% or less have the effect of increasing the strength of the steel and are effective elemental components for improving fatigue properties. However, when W and Mg are contained in amounts exceeding 0.1% by mass and 0.01% by mass, respectively, addition of 0.1% by mass or less and 0.01% by mass or less is desirable because the toughness is lowered. In addition, since W and Mg are effective when added in a very small amount, it is not necessary to set a lower limit.
[0031]
The steel of the present invention comprises Fe and unavoidable impurities other than the above components. Here, the Fe and unavoidable impurities, alkali metal other than Fe to the remainder, alkaline earth metals, rare earth elements and transition metals is meant to be contained in small amounts. Inclusion of a small amount of these elements does not hinder the effects of the present invention.
[0032]
In addition, the method of manufacturing the steel of this invention is not specifically limited, The method generally employ | adopted for manufacture of stainless steel can be applied as it is.
For example, steelmaking is melted in a converter or electric furnace under the composition according to the essential components and components added as necessary, and then secondary refining by VOD (Vacuun Oxygen Decarburization) or AOD (Argon Oxygen Decarburization). The method of performing is preferable. Subsequently, the molten steel can be made into a steel material according to a known casting method, but it is preferable to apply a continuous casting method from the viewpoint of productivity and quality. The steel material obtained by continuous casting is heated to 1000 to 1250 ° C., and hot rolled into a desired thickness by hot rolling. The hot-rolled sheet is preferably subjected to batch-type annealing at 600 to 900 ° C., if necessary, and then descaled by pickling or the like to obtain a product. Further, depending on the use, it is possible to obtain a cold-rolled sheet product that is cold-rolled and pickled after continuous annealing at 600 to 900 ° C. to obtain a cold-rolled annealed sheet.
[0033]
When forming a fillet welded joint using the steel of the present invention, gas welding arc welding methods such as MIG welding, MAG welding, and TIG welding are all applicable. Since the steel of the present invention reduces C and N and prevents weld cracking, post-heat treatment after welding is unnecessary, and it can be used as a structural material as it is welded, but for strength adjustment, etc. In addition, post-heat treatment may be performed.
[0034]
【Example】
A 50 kg steel ingot having the chemical components shown in Table 1 was melted in a high-frequency vacuum melting furnace, and a hot rolled sheet having a thickness of 3 mm was obtained by ordinary hot rolling. Subsequently, after annealing at 700 ° C. for 10 hours in an argon atmosphere and annealing by slow cooling, the sample was descaled by pickling to obtain a test material.
[0035]
Using the test material thus obtained, the fillet was piled up by MIG welding (Y308 wire, current: 100A, voltage: 15V, welding speed: 6mm / s, shielding gas: 20% / min of 100% Ar) (both sides) A welded joint was produced. In order to evaluate the fatigue characteristics of the produced welded joint, a bending fatigue test based on JIS Z 2275 was performed. As shown in Fig. 1, the shape of the test piece is assumed to be a fatigue load on the weld toe E, which is the most inferior in fillet welded joints, and 10 7 fatigue limit (10 7 times bending is repeated by repeated swing bending) The maximum value of the bending stress that does not crack even when measured.
[0036]
In order to investigate the toughness of the heat affected zone, MIG welding (Y308 wire, current: 150A, voltage: 20V, welding speed: 7mm / s, shielding gas: 100% Ar, flow rate 20 liter / min, route gap: 1mm), butt welded joints were prepared, both front and back surfaces of the prepared welded joints were ground, and the plate thickness was finished to 2.5 mm. Then, as shown in FIG. After finishing the plate thickness to 2.5 mm, as shown in Fig. 2, notch processing is performed so that the weld heat affected zone with the poorest toughness in fillet welded joints has a notch tip, and Charpy conforming to JIS Z 2242 An impact test was performed and the Charpy impact value at 0 ° C. was measured. If the 10 7 fatigue limit is 200 MPa or more and the Charpy impact value at 0 ° C. is 50 J / cm 2 or more, it can be used as a sufficient vehicle structural material.
The results are shown in Table 1.
[0037]
[Table 1]
Figure 0003933020
[0038]
As is apparent from Table 1, the steel of the present invention is excellent in both the fatigue strength of the welded joint and the toughness of the weld heat affected zone. Any of the comparative steels is inferior to the inventive examples.
[0039]
【The invention's effect】
As described above, the steel of the present invention is excellent in fatigue characteristics and toughness of the fillet welded joint when the fillet welded joint is formed. Therefore, it is possible to provide a material suitable for vehicle structural parts such as railways and automobiles.
[Brief description of the drawings]
FIG. 1 is a diagram showing the shape of a fillet welded portion fatigue test piece.
FIG. 2 is a diagram showing the shape of a Charpy impact test piece.

Claims (4)

C:0.03質量%未満、
Si:1.0質量%以下、
Mn:0.5質量%超え2.5質量%以下、
Cr:11〜15質量%、
Ni:0.6質量%超え3.0質量%未満、
Mo:2質量%以下、
Cu:2質量%以下、
Al:0.05質量%以下、
N:0.012質量%超え0.050質量%以下および
Ti:0.005〜0.100質量%
を、下記式(1)および(2)を満足する範囲にて含有し、かつ
P:0.04質量%以下および
S:0.01質量%以下
に抑制し、残部 Feおよび不可避的不純物の成分組成になることを特徴とする、すみ肉溶接継手を形成した際の該すみ肉溶接継手の疲労特性および靱性に優れたステンレス鋼。

[Cr]+0.4×[Si]+0.3×[Mo]−0.4×[Mn]−0.7×[Ni]−0.6×[Cu]
−35×[C]−10×[N]≦12.0 ----(1)
[N]≧(14/48)×[Ti]+(14/27)×[Al] ----(2)
ここで、[Cr]、[Si]、[Mo]、[Mn]、[Ni]、[Cu]、[C]、[N]、[Ti]および[Al]は、それぞれCr、 Si、Mo、Mn、Ni、Cu、C、N、TiおよびAlの含有量(質量%)
C: less than 0.03 mass%,
Si: 1.0 mass% or less,
Mn: 0.5% to 2.5% by mass,
Cr: 11 to 15% by mass,
Ni: more than 0.6% by mass and less than 3.0% by mass,
Mo: 2% by mass or less,
Cu: 2% by mass or less,
Al: 0.05% by mass or less,
N: more than 0.012% by mass and less than 0.050% by mass and
Ti: 0.005 to 0.100 mass%
In the range satisfying the following formulas (1) and (2), and P: 0.04 mass% or less and S: 0.01 mass% or less, the balance being the component composition of Fe and inevitable impurities A stainless steel excellent in fatigue characteristics and toughness of a fillet welded joint when a fillet welded joint is formed.
[Cr] + 0.4 × [Si] + 0.3 × [Mo] −0.4 × [Mn] −0.7 × [Ni] −0.6 × [Cu]
−35 × [C] −10 × [N] ≦ 12.0 ---- (1)
[N] ≧ (14/48) × [Ti] + (14/27) × [Al] ---- (2)
Here, [Cr], [Si], [Mo], [Mn], [Ni], [Cu], [C], [N], [Ti] and [Al] are Cr, Si and Mo, respectively. , Mn, Ni, Cu, C, N, Ti and Al content (% by mass)
請求項1において、成分組成がさらに
Co:0.3質量%以下、
Nb:0.2質量%以下、
V:0.2質量%以下、
Zr:0.2質量%以下および
Ta:0.2質量%以下
の1種または2種以上を含有することを特徴とする、すみ肉溶接継手を形成した際の該すみ肉溶接継手の疲労特性および靱性に優れたステンレス鋼。
In Claim 1, the component composition further
Co: 0.3% by mass or less,
Nb: 0.2% by mass or less,
V: 0.2 mass% or less,
Zr: 0.2 mass% or less and
Ta: Stainless steel excellent in fatigue characteristics and toughness of fillet welded joints when forming fillet welded joints, containing one or more of 0.2% by mass or less.
請求項1または2において、成分組成がさらに
B:0.005質量%以下および
Ca:0.005質量%以下
の1種または2種を含有することを特徴とする、すみ肉溶接継手を形成した際の該すみ肉溶接継手の疲労特性および靱性に優れたステンレス鋼。
In Claim 1 or 2, a component composition is further B: 0.005 mass% or less and
Ca: Stainless steel excellent in fatigue characteristics and toughness of fillet welded joints when forming fillet welded joints, characterized by containing one or two of 0.005% by mass or less.
請求項1ないしは3のいずれかにおいて、成分組成がさらに
W:0.1質量%以下および
Mg:0.01質量%以下
の1種または2種を含有することを特徴とする、すみ肉溶接継手を形成した際の該すみ肉溶接継手の疲労特性および靱性に優れたステンレス鋼。
In any one of Claim 1 thru | or 3, a component composition is further W: 0.1 mass% or less and
Mg: Stainless steel excellent in fatigue characteristics and toughness of fillet welded joints when forming fillet welded joints, characterized by containing one or two of 0.01% by mass or less.
JP2002275617A 2001-09-28 2002-09-20 Stainless steel with excellent fatigue characteristics and toughness of fillet welded joints when forming fillet welded joints Expired - Fee Related JP3933020B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002275617A JP3933020B2 (en) 2001-09-28 2002-09-20 Stainless steel with excellent fatigue characteristics and toughness of fillet welded joints when forming fillet welded joints

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2001299623 2001-09-28
JP2001-299623 2001-09-28
JP2002275617A JP3933020B2 (en) 2001-09-28 2002-09-20 Stainless steel with excellent fatigue characteristics and toughness of fillet welded joints when forming fillet welded joints

Publications (2)

Publication Number Publication Date
JP2003183784A JP2003183784A (en) 2003-07-03
JP3933020B2 true JP3933020B2 (en) 2007-06-20

Family

ID=27615199

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002275617A Expired - Fee Related JP3933020B2 (en) 2001-09-28 2002-09-20 Stainless steel with excellent fatigue characteristics and toughness of fillet welded joints when forming fillet welded joints

Country Status (1)

Country Link
JP (1) JP3933020B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5225620B2 (en) * 2006-07-04 2013-07-03 新日鐵住金ステンレス株式会社 Low chromium-containing stainless steel excellent in corrosion resistance of heat-affected zone multiple times and its manufacturing method
JP6658962B2 (en) * 2017-03-21 2020-03-04 Jfeスチール株式会社 Manufacturing method of perlite rail

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5387911A (en) * 1977-01-10 1978-08-02 Graenges Nyby Ab Production of ferrite cromium steess having impact strength agains high notch rod in welded state and welding structure produced from cromium steel
JPS58174554A (en) * 1982-04-07 1983-10-13 Nippon Steel Corp Stainless steel excellent in ductility and corrosion resistance at weld zone
JP2532160B2 (en) * 1990-10-02 1996-09-11 新日本製鐵株式会社 Ferritic stainless wire with excellent MIG welding workability
JP3422871B2 (en) * 1995-04-11 2003-06-30 新日本製鐵株式会社 Ferritic stainless steel with excellent weldability
JPH1161347A (en) * 1997-08-14 1999-03-05 Kawasaki Steel Corp Martensitic steel for line pipes excellent in corrosion resistance and weldability
JPH11173269A (en) * 1997-12-05 1999-06-29 Zexel:Kk Reciprocating compressor
JP2001152295A (en) * 1999-11-26 2001-06-05 Kawasaki Steel Corp Hot rolled stainless steel plate for civil engineering and building construction use, excellent in workability and weldability
JP3448537B2 (en) * 2000-03-10 2003-09-22 新日本製鐵株式会社 Ferritic stainless steel with excellent weldability
JP4378853B2 (en) * 2000-06-02 2009-12-09 Jfeスチール株式会社 Stainless steel for civil engineering and building structures with excellent fatigue characteristics and paint film adhesion

Also Published As

Publication number Publication date
JP2003183784A (en) 2003-07-03

Similar Documents

Publication Publication Date Title
TWI530572B (en) Ferrous iron - Ma Tian San iron 2 - phase stainless steel and its manufacturing method
JP5050863B2 (en) Ferritic stainless steel sheet for water heaters
CN102459656B (en) Process for producing thick high-strength steel plate with excellent toughness of heat-affected zone in high heat input welding and thick high-strength steel plate with excellent toughness of heat-affected zone in high heat input welding
KR100484983B1 (en) A ferritic stainless steel having superior secondary working embrittleness resistance and superior high temperature fatigue characteristic of welded parts
WO2018159719A1 (en) Fillet welded joint and manufacturing method thereof
CN109804092B (en) Cold-rolled steel sheet for flux-cored wire and method for manufacturing same
JP2009012070A (en) Weld metal of stainless steel weld joint, and its forming method
JP6036645B2 (en) Ferritic-martensitic duplex stainless steel with excellent low-temperature toughness and method for producing the same
JP4893866B2 (en) Structural stainless steel plate having excellent corrosion resistance of welded portion and method for producing the same
JP3894703B2 (en) Gas shielded arc welding wire
JP2010507021A (en) Ferritic stainless steel excellent in workability of welds and corrosion resistance of steel materials and method for producing the same
JP4608818B2 (en) Ferritic stainless steel with excellent secondary work brittleness resistance and high temperature fatigue properties of welds
JP3933020B2 (en) Stainless steel with excellent fatigue characteristics and toughness of fillet welded joints when forming fillet welded joints
JP7207199B2 (en) Steel material and its manufacturing method
JP4192576B2 (en) Martensitic stainless steel sheet
JP4273457B2 (en) Structural stainless steel plate with excellent hole expansion workability
JP2002371338A (en) Steel superior in toughness at laser weld
JP3975882B2 (en) High corrosion resistance low strength stainless steel with excellent workability and toughness of welds and its welded joints
JPH05295480A (en) Thick steel plate for welded structure excellent in toughness of electron beam weld zone
JP7272471B2 (en) steel plate
JP3449307B2 (en) B-added high-strength steel with excellent toughness in the heat affected zone
JP2005139509A (en) High tensile strength steel having excellent weld heat affected zone toughness, and its production method
JPH07278653A (en) Production of steel excellent in cold toughness on welding heat affected zone
JP4254583B2 (en) Cr-containing alloy with excellent strain aging resistance of welds
JP4013515B2 (en) Structural stainless steel with excellent intergranular corrosion resistance

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050526

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061205

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070205

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20070205

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070227

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070312

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees