JP4893866B2 - Structural stainless steel plate having excellent corrosion resistance of welded portion and method for producing the same - Google Patents

Structural stainless steel plate having excellent corrosion resistance of welded portion and method for producing the same Download PDF

Info

Publication number
JP4893866B2
JP4893866B2 JP2011117803A JP2011117803A JP4893866B2 JP 4893866 B2 JP4893866 B2 JP 4893866B2 JP 2011117803 A JP2011117803 A JP 2011117803A JP 2011117803 A JP2011117803 A JP 2011117803A JP 4893866 B2 JP4893866 B2 JP 4893866B2
Authority
JP
Japan
Prior art keywords
less
value
corrosion resistance
mass
stainless steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011117803A
Other languages
Japanese (ja)
Other versions
JP2012012702A (en
Inventor
健一 藤田
裕樹 太田
康 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2011117803A priority Critical patent/JP4893866B2/en
Publication of JP2012012702A publication Critical patent/JP2012012702A/en
Application granted granted Critical
Publication of JP4893866B2 publication Critical patent/JP4893866B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/0068Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for particular articles not mentioned below
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B9/00Measures for carrying out rolling operations under special conditions, e.g. in vacuum or inert atmosphere to prevent oxidation of work; Special measures for removing fumes from rolling mills
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese

Description

本発明は、例えば石炭や鉄鉱石を運ぶ貨車(レールワゴン)のボディ用途材料として好適な溶接部耐食性に優れた構造用ステンレス鋼板およびその製造方法に関する。   TECHNICAL FIELD The present invention relates to a structural stainless steel plate excellent in welded portion corrosion resistance suitable as a material for body use of a freight car (rail wagon) carrying, for example, coal or iron ore, and a method for producing the same.

石炭や鉄鉱石を運ぶ貨車(レールワゴン)のボディ用途材料には、ステンレス鋼が多用されている。採掘された石炭が硫黄分を多く含んでいるため、レールワゴンのボディ用の材料には、耐硫酸腐食性能、特に溶接部の耐粒界腐食性が要求される。   Stainless steel is often used as a body material for freight cars (rail wagons) that carry coal and iron ore. Since mined coal contains a large amount of sulfur, rail wagon body materials are required to have sulfuric acid corrosion resistance, particularly intergranular corrosion resistance of welds.

耐食性と溶接性とを兼備したステンレス鋼として、例えば特許文献1には、溶接部の靭性に優れたTi含有フェライト系ステンレス鋼が開示されている。しかし、特許文献1の技術では、溶接部の組織がフェライト相になるように成分設計しているため、溶接部の靭性や耐食性が十分ではないという問題がある。   As stainless steel having both corrosion resistance and weldability, for example, Patent Document 1 discloses a Ti-containing ferritic stainless steel having excellent welded portion toughness. However, the technique of Patent Document 1 has a problem that the toughness and corrosion resistance of the welded portion are not sufficient because the component design is performed so that the structure of the welded portion becomes a ferrite phase.

これに対して、特許文献2や特許文献3には、高温での相分率を制御することにより、溶接部に適当量のマルテンサイト相を生成させ、溶接部の加工性や耐食性を改善する技術が開示されている。また、特許文献4には、炭酸ガスを用いた溶接法に適したステンレス鋼が開示されている。また、本発明者らの一人は、先に、溶接部の組織を正確に予測し得るパラメータを用い、成分組成を適正化することにより溶接部の耐食性を改善した構造用ステンレス鋼板を提案した(特許文献5)。   On the other hand, in Patent Document 2 and Patent Document 3, by controlling the phase fraction at high temperature, an appropriate amount of martensite phase is generated in the welded portion, thereby improving the workability and corrosion resistance of the welded portion. Technology is disclosed. Patent Document 4 discloses stainless steel suitable for a welding method using carbon dioxide gas. In addition, one of the inventors of the present invention previously proposed a structural stainless steel sheet that has improved the corrosion resistance of the welded portion by optimizing the component composition using parameters that can accurately predict the structure of the welded portion ( Patent Document 5).

特開平3−249150号公報JP-A-3-249150 特開2002−167653号公報JP 2002-167653 A 特開2009−13431号公報JP 2009-13431 A 特開2002−30391号公報JP 2002-30391 A 特開2009−280850号公報JP 2009-280850 A

しかしながら、これら特許文献2〜5に開示された技術では、最適成分範囲に関する検討が必ずしも十分ではない。特に、これらは製造性に対してはほとんど考慮されておらず、スラブ段階での割れ発生や、ヘゲと称される表面欠陥の発生が著しく、歩留まり低下によるコストアップを回避することが困難である。   However, in the techniques disclosed in these Patent Documents 2 to 5, the examination regarding the optimum component range is not always sufficient. In particular, they are hardly considered for manufacturability, and cracking at the slab stage and surface defects called hege are remarkable, and it is difficult to avoid an increase in cost due to a decrease in yield. is there.

本発明はかかる事情に鑑みてなされたものであって、安価かつ高効率に生産することができ、溶接部の耐食性に優れた構造用ステンレス鋼板およびその製造方法を提供することを目的とする。   This invention is made | formed in view of this situation, Comprising: It aims at providing the stainless steel plate for structure which can be manufactured cheaply and highly efficiently, and was excellent in the corrosion resistance of a welding part, and its manufacturing method.

本発明者らの一人は、上記課題を解決するために鋭意研究した結果、化学成分、特にMn、Tiの含有量と、各成分のバランスを適正範囲に調整すれば、粒界近傍のCr欠乏に起因した粒界腐食を抑制することができること、および溶接熱影響部をマルテンサイトを主体とした組織とすることができることを知見し、特許文献5に示すようなパラメータ(F値)を提案した。そして、本発明者らはこれらの知見に基づいて、特に製造性に関する詳細な検討を続けた結果、Alを適量含有させることに加え、V,Ca、Oを所定範囲以下に低減した上で、製造性の良否を示す新たなパラメータとして、FFV値を適正な範囲とすることにより、スラブ割れや介在物起因のヘゲ(表面欠陥)を著しく減らすことができることを見出し、本発明を完成するに至った。   As a result of earnest research to solve the above problems, one of the present inventors has found that if the content of chemical components, particularly Mn and Ti, and the balance of each component are adjusted to an appropriate range, Cr deficiency near the grain boundary The fact that intergranular corrosion caused by the above can be suppressed and that the weld heat-affected zone can be a structure mainly composed of martensite has been proposed, and a parameter (F value) as shown in Patent Document 5 has been proposed. . And based on these findings, the present inventors have continued detailed studies especially on manufacturability. As a result, in addition to containing an appropriate amount of Al, V, Ca and O are reduced to a predetermined range or less, As a new parameter indicating the quality of manufacturability, it has been found that by setting the FFV value to an appropriate range, slab cracks and inclusion-induced scabs (surface defects) can be significantly reduced, and the present invention is completed. It came.

すなわち、本発明は、質量%で、C:0.01〜0.03%、N:0.01〜0.03%、Si:0.10〜0.40%、Mn:1.5〜2.5%、P:0.04%以下、S:0.02%以下、Al:0.05〜0.15%、Cr:10〜13%、Ni:0.5〜1.0%、Ti:4×(C+N)(ただし、C、Nはこれらの含有量(質量%)を示す)以上、0.3%以下を含有し、V:0.05%以下、Ca:0.0030%以下、O:0.0080%以下に規制し、さらに、以下の式で表されるF値およびFFV値が、F値≦11、FFV値≦9.0を満たし、残部がFeおよび不可避不純物からなることを特徴とする、溶接部耐食性に優れた構造用ステンレス鋼板を提供する。
F値=Cr+2×Si+4×Ti−2×Ni−Mn−30×(C+N)
FFV値=Cr+3×Si+16×Ti+Mo+2×Al−2×Mn−4×(Ni+Cu)−40×(C+N)+20×V
ただし、これら式において、各元素記号は、それら元素の含有量(質量%)である。
That is, this invention is mass%, C: 0.01-0.03%, N: 0.01-0.03%, Si: 0.10-0.40%, Mn: 1.5-2 0.5%, P: 0.04% or less, S: 0.02% or less, Al: 0.05 to 0.15%, Cr: 10 to 13%, Ni: 0.5 to 1.0%, Ti : 4 × (C + N) (however, C and N indicate their content (mass%)) or more and 0.3% or less, V: 0.05% or less, Ca: 0.0030% or less , O: Restricted to 0.0080% or less, and further, F value and FFV value represented by the following formula satisfy F value ≦ 11, FFV value ≦ 9.0, and the balance is made of Fe and inevitable impurities The structural stainless steel plate excellent in the corrosion resistance of a welding part characterized by this is provided.
F value = Cr + 2 * Si + 4 * Ti-2 * Ni-Mn-30 * (C + N)
FFV value = Cr + 3 * Si + 16 * Ti + Mo + 2 * Al-2 * Mn-4 * (Ni + Cu) -40 * (C + N) + 20 * V
However, in these formulas, each element symbol is the content (mass%) of these elements.

また、本発明は、上記成分に加えて、さらに質量%で、Cu:1.0%以下を含有することを特徴とする、溶接部耐食性に優れた構造用ステンレス鋼板を提供する。   Moreover, this invention provides the structural stainless steel plate excellent in the corrosion resistance of a welding part characterized by containing Cu: 1.0% or less further by the mass% in addition to the said component.

また、本発明は、上記成分に加えて、さらに質量%で、Mo:1.0%以下を含有することを特徴とする、溶接部耐食性に優れた構造用ステンレス鋼板を提供する。   The present invention also provides a structural stainless steel sheet excellent in welded portion corrosion resistance, characterized by containing Mo: 1.0% or less in addition to the above components.

また、本発明は、質量%で、C:0.01〜0.03%、N:0.01〜0.03%、Si:0.10〜0.40%、Mn:1.5〜2.5%、P:0.04%以下、S:0.02%以下、Al:0.05〜0.15%、Cr:10〜13%、Ni:0.5〜1.0%、Ti:4×(C+N)(ただし、C、Nはこれらの含有量(質量%)を示す)以上、0.3%以下を含有し、V:0.05%以下、Ca:0.0030%以下、O:0.0080%以下に規制し、さらに、以下の式で表されるF値およびFFV値が、F値≦11、FFV値≦9.0を満たし、残部がFeおよび不可避不純物からなる組成を有する鋼スラブを1100〜1300℃の温度に加熱した後、1000℃超の温度域で、圧下率が30%以上である圧延を少なくとも1パス以上行う熱間粗圧延を含む熱間圧延を行うか、または、前記熱間圧延を行った後、熱延板を焼鈍することなくもしくは600〜1000℃の温度で焼鈍してから酸洗を施すことを特徴とする溶接部耐食性に優れた構造用ステンレス鋼板の製造方法を提供する。
F値=Cr+2×Si+4×Ti−2×Ni−Mn−30×(C+N)
FFV値=Cr+3×Si+16×Ti+Mo+2×Al−2×Mn−4×(Ni+Cu)−40×(C+N)+20×V
ただし、これら式において、各元素記号は、それら元素の含有量(質量%)である。
Moreover, this invention is a mass%, C: 0.01-0.03%, N: 0.01-0.03%, Si: 0.10-0.40%, Mn: 1.5-2 0.5%, P: 0.04% or less, S: 0.02% or less, Al: 0.05 to 0.15%, Cr: 10 to 13%, Ni: 0.5 to 1.0%, Ti : 4 × (C + N) (however, C and N indicate their content (mass%)) or more and 0.3% or less, V: 0.05% or less, Ca: 0.0030% or less , O: Restricted to 0.0080% or less, and further, F value and FFV value represented by the following formula satisfy F value ≦ 11, FFV value ≦ 9.0, and the balance is made of Fe and inevitable impurities After heating the steel slab having a composition to a temperature of 1100 to 1300 ° C., at least a rolling with a rolling reduction of 30% or more in a temperature range exceeding 1000 ° C. After performing hot rolling including hot rough rolling performed over a pass or after performing the hot rolling, annealing is performed without annealing the hot-rolled sheet or at a temperature of 600 to 1000 ° C. The present invention provides a method for producing a structural stainless steel sheet having excellent weld corrosion resistance.
F value = Cr + 2 * Si + 4 * Ti-2 * Ni-Mn-30 * (C + N)
FFV value = Cr + 3 * Si + 16 * Ti + Mo + 2 * Al-2 * Mn-4 * (Ni + Cu) -40 * (C + N) + 20 * V
However, in these formulas, each element symbol is the content (mass%) of these elements.

また、本発明は、上記成分に加えて、さらに質量%で、Cu:1.0%以下を含有することを特徴とする、溶接部耐食性に優れた構造用ステンレス鋼板の製造方法を提供する。   Moreover, this invention provides the manufacturing method of the structural stainless steel plate excellent in the weld part corrosion resistance characterized by containing Cu: 1.0% or less further by the mass% in addition to the said component.

また、本発明は、上記成分に加えて、さらに質量%で、Mo:1.0%以下を含有することを特徴とする、溶接部耐食性に優れた構造用ステンレス鋼板の製造方法を提供する。   Moreover, this invention provides the manufacturing method of the structural stainless steel plate excellent in the corrosion resistance of a welding part characterized by containing Mo: 1.0% or less further by the mass% in addition to the said component.

本発明によれば、安価かつ高効率に生産することができ、例えば石炭や鉄鉱石を運ぶ貨車(レールワゴン)のボディ用途材料として好適な、溶接部耐食性に優れた構造用ステンレス鋼板が得られる。   According to the present invention, it is possible to produce a structural stainless steel plate excellent in welded portion corrosion resistance, which can be produced at low cost and with high efficiency, for example, suitable as a body use material of a freight car (rail wagon) carrying coal or iron ore. .

FFV値と表面欠陥発生率の関係を示すグラフである。It is a graph which shows the relationship between a FFV value and a surface defect incidence. 硫酸−硫酸銅腐食試験後の試験片断面の溶接熱影響部において、深いピット状の腐食が認められた場合の観察例を示す光学顕微鏡写真である。It is an optical microscope photograph which shows the example of observation when deep pit-like corrosion is recognized in the welding heat-affected zone of the test piece cross section after a sulfuric acid-copper sulfate corrosion test.

以下、本発明について詳細に説明する。
まず、本発明の成分組成について説明する。以下の説明において、%表示は質量%である。
Hereinafter, the present invention will be described in detail.
First, the component composition of the present invention will be described. In the following description,% display is mass%.

・C:0.01〜0.03%
・N:0.01〜0.03%
CおよびNは、構造用ステンレス鋼板として必要な強度を得るためには、いずれも0.01%以上含有させることが必要である。一方、C,Nの含有量が0.03%を超えると、Cr炭化物あるいはCr炭窒化物が析出しやすくなり、耐食性、特に溶接熱影響部の耐食性が低下する。また、溶接熱影響部が硬化し、靭性も低下する。このため、CおよびNの含有量は、いずれも0.01〜0.03%の範囲とする。より好ましくは、Cは0.015〜0.025%、Nは0.012〜0.02%の範囲である。
C: 0.01-0.03%
・ N: 0.01-0.03%
C and N must each be contained in an amount of 0.01% or more in order to obtain the strength required for a structural stainless steel plate. On the other hand, when the content of C and N exceeds 0.03%, Cr carbide or Cr carbonitride tends to precipitate, and the corrosion resistance, particularly the corrosion resistance of the weld heat affected zone is lowered. Further, the weld heat affected zone is hardened and the toughness is also lowered. For this reason, the C and N contents are both in the range of 0.01 to 0.03%. More preferably, C ranges from 0.015 to 0.025%, and N ranges from 0.012 to 0.02%.

・Si:0.10〜0.40%
Siは、脱酸剤として用いられる元素であり、その効果を得るには0.10%以上含有することが必要である。一方、その含有量が0.40%を超えると熱延鋼板の靭性を低下させる。このため、Si含有量は0.10〜0.40%の範囲とする。好ましくは、下限が0.20%、上限が0.30%である。
・ Si: 0.10 to 0.40%
Si is an element used as a deoxidizing agent, and it is necessary to contain 0.10% or more in order to obtain the effect. On the other hand, when the content exceeds 0.40%, the toughness of the hot-rolled steel sheet is lowered. For this reason, Si content shall be the range of 0.10-0.40%. Preferably, the lower limit is 0.20% and the upper limit is 0.30%.

・Mn:1.5〜2.5%
Mnは、脱酸剤として、また構造用ステンレス鋼板としての必要な強度を確保するための強化元素として有用な元素であり、さらに高温におけるオーステナイト安定化元素でもある。また、本発明においては、溶接熱影響部のミクロ組織を所望の体積率を有するマルテンサイト組織に制御するうえで重要な元素である。このような作用を発揮させるためには、その含有量は1.5%以上必要である。一方、2.5%を超えて含有させても、その効果が飽和するばかりか、含有量が過剰となって靭性を低下させ、また製造工程での脱スケール性を低下させて表面性状に悪影響を及ぼし、加えて合金コストも増大してしまう。このため、Mnの含有量は1.5〜2.5%の範囲とする。より好ましくは、1.8〜2.5%の範囲である。さらに好ましくは、1.85〜2.0%の範囲である。
・ Mn: 1.5-2.5%
Mn is an element useful as a deoxidizer and as a strengthening element for securing the necessary strength as a structural stainless steel plate, and is also an austenite stabilizing element at high temperatures. In the present invention, it is an important element for controlling the microstructure of the weld heat affected zone to a martensite structure having a desired volume ratio. In order to exert such an effect, the content is required to be 1.5% or more. On the other hand, even if the content exceeds 2.5%, not only the effect is saturated, but the content becomes excessive and the toughness is lowered, and the descaling property in the production process is lowered and the surface properties are adversely affected. In addition, the alloy cost also increases. For this reason, content of Mn shall be 1.5 to 2.5% of range. More preferably, it is 1.8 to 2.5% of range. More preferably, it is 1.85 to 2.0% of range.

・P:0.04%以下
Pは、熱間加工性の点から少ない方が好ましく、その含有量の許容される上限値を0.04%とする。より好ましくは、0.035%以下である。
-P: 0.04% or less P is preferably smaller in terms of hot workability, and the allowable upper limit of the content is 0.04%. More preferably, it is 0.035% or less.

・S:0.02%以下
Sは、熱間加工性および耐食性の点から少ない方が好ましく、その含有量の許容される上限値を0.02%とする。好ましくは0.005%以下である。
S: 0.02% or less S is preferably smaller in terms of hot workability and corrosion resistance, and the allowable upper limit of the content is 0.02%. Preferably it is 0.005% or less.

・Al:0.05〜0.15%
Alは、一般的には脱酸のために含有させるが、本発明では、製造性、特にスラブ段階での割れの発生を抑制するのに有効に働くことを見出し、このような機能を発揮させるために適量含有させる。スラブ割れの発生を抑制するためには、Al含有に加え、後述するようにV、Ca、Oの低減、さらにFFV値の最適化が必要である。Al含有によりスラブ割れが改善される機構については、必ずしも明確になっているわけではないが、相分率の適正化と介在物形態の制御の効果によるものと推定している。このような効果を得るためには、Alを0.05%以上含有させることが必要である。一方、その含有量が0.15%を超えると、大型のAl系介在物が生成して表面欠陥の原因となる。このため、Alの含有量を0.05〜0.15%の範囲とする。より好ましくは、0.080〜0.150%の範囲である。さらに好ましくは、0.085〜0.120%の範囲である。
-Al: 0.05-0.15%
Al is generally contained for deoxidation, but in the present invention, it is found that it works effectively to suppress the production of cracks, particularly at the slab stage, and exerts such a function. Therefore, an appropriate amount is included. In order to suppress the occurrence of slab cracking, it is necessary to reduce V, Ca, and O and further optimize the FFV value, as described later, in addition to Al content. The mechanism by which slab cracking is improved by the inclusion of Al is not necessarily clear, but is presumed to be due to the effects of optimizing the phase fraction and controlling the inclusion form. In order to acquire such an effect, it is necessary to contain 0.05% or more of Al. On the other hand, when the content exceeds 0.15%, a large Al-based inclusion is generated and causes surface defects. For this reason, the content of Al is set to a range of 0.05 to 0.15%. More preferably, it is 0.080 to 0.150% of range. More preferably, it is 0.085 to 0.120% of range.

・Cr:10〜13%
Crは、不動態皮膜を形成し、耐食性、特に溶接熱影響部の耐食性を確保するうえで必須の元素であり、その効果を得るためには10%以上含有させることが必要である。一方、Crを13%を超えて含有させると、コストを上昇させるばかりでなく、溶接部において、高温で十分なオーステナイト相を確保することが困難となり、溶接後の溶接熱影響部に必要な分率のマルテンサイト組織を得ることが困難となる。その結果、溶接熱影響部での耐粒界腐食性の低下を招く。したがって、Cr含有量は、10〜13%の範囲とする。好ましくは、10.5〜12.5%である。
・ Cr: 10-13%
Cr is an essential element for forming a passive film and ensuring the corrosion resistance, particularly the corrosion resistance of the weld heat affected zone. In order to obtain the effect, it is necessary to contain 10% or more. On the other hand, if Cr is contained in excess of 13%, not only the cost is increased, but it becomes difficult to secure a sufficient austenite phase at a high temperature in the welded portion, and the amount necessary for the welded heat affected zone after welding is increased. It becomes difficult to obtain a martensitic structure of the rate. As a result, the intergranular corrosion resistance is lowered in the weld heat affected zone. Therefore, the Cr content is in the range of 10 to 13%. Preferably, it is 10.5 to 12.5%.

・Ni:0.5〜1.0%
Niは、強度と靭性を確保する目的で0.5%以上含有させる。一方、Niは高価な元素であり、経済性の観点から、その上限を1.0%とする。なお、NiはMnと同様に、高温におけるオーステナイト安定化元素であり、溶接熱影響部のミクロ組織を所望の体積率を有するマルテンサイト組織に制御するうえで有用であるが、本発明では、その効果がMnの添加により十分に得られるので、Niの含有量は0.5〜1.0%の範囲が適当である。より好ましくは、0.60〜1.0%の範囲である。さらに好ましくは、0.60〜0.90%の範囲である。
Ni: 0.5-1.0%
Ni is contained in an amount of 0.5% or more for the purpose of ensuring strength and toughness. On the other hand, Ni is an expensive element, and its upper limit is set to 1.0% from the viewpoint of economy. Ni is an austenite stabilizing element at a high temperature, similar to Mn, and is useful in controlling the microstructure of the weld heat affected zone to a martensitic structure having a desired volume fraction. Since the effect can be sufficiently obtained by the addition of Mn, the Ni content is suitably in the range of 0.5 to 1.0%. More preferably, it is 0.60 to 1.0% of range. More preferably, it is 0.60 to 0.90% of range.

・Ti:4×(C+N)以上、0.3%以下
Tiは、本発明において優れた溶接部耐食性を得るために重要な元素であり、特に溶接熱影響部の耐粒界腐食性を向上させるために必須の元素である。Tiは鋼中のC、NをTiの炭化物、窒化物あるいは炭窒化物(以後、炭化物、窒化物、炭窒化物の3種を総称して、炭窒化物等と記す)として析出固定し、Crの炭窒化物等の生成を抑制する効果を有する。本発明において、鋼板の溶接熱影響部では、フェライトとマルテンサイトからなる組織を有するが、耐食性という点では、冷却中に炭窒化物等の析出をともなうフェライト相部分での耐食性の低下が問題である。本発明に係る鋼板では、溶接時の溶接熱影響部にCrの炭窒化物等が析出することによって粒界近傍にCr欠乏が生成し、特にフェライト相の部分での耐粒界腐食性が低下する問題を、Tiを含有させることにより解決している。このような効果を発揮させるためには、Tiの含有量を4×(C+N)以上(ただし、C、Nはこれらの含有量(質量%)を示す)とする必要がある。一方、0.3%を超えて多量に含有させても、その効果は飽和するばかりか、鋼中に多量のTiの炭窒化物等が析出し、靭性の劣化を招く。このため、Tiの含有量は、4×(C+N)以上、0.3%以下とする。より好ましくは、0.180〜0.230%の範囲であり、Tiの含有量が同時に4×(C+N)以上を満たすよう、C、Nを低減することが有効である。
Ti: 4 × (C + N) or more, 0.3% or less Ti is an important element for obtaining excellent weld corrosion resistance in the present invention, and particularly improves the intergranular corrosion resistance of the weld heat affected zone. It is an essential element. Ti precipitates and fixes C and N in steel as Ti carbide, nitride, or carbonitride (hereinafter, three types of carbide, nitride, and carbonitride are collectively referred to as carbonitride). It has the effect of suppressing the formation of Cr carbonitrides and the like. In the present invention, the weld heat-affected zone of the steel sheet has a structure composed of ferrite and martensite. However, in terms of corrosion resistance, the problem is a decrease in corrosion resistance in the ferrite phase part accompanied by precipitation of carbonitrides and the like during cooling. is there. In the steel sheet according to the present invention, Cr deficiency is generated in the vicinity of the grain boundary due to precipitation of Cr carbonitride or the like in the weld heat-affected zone during welding, and particularly the intergranular corrosion resistance in the ferrite phase portion is reduced. This problem is solved by containing Ti. In order to exert such effects, the Ti content needs to be 4 × (C + N) or more (however, C and N indicate their content (mass%)). On the other hand, even if it is contained in a large amount exceeding 0.3%, the effect is not only saturated, but a large amount of Ti carbonitride is precipitated in the steel, leading to deterioration of toughness. For this reason, content of Ti shall be 4 * (C + N) or more and 0.3% or less. More preferably, it is in the range of 0.180 to 0.230%, and it is effective to reduce C and N so that the Ti content simultaneously satisfies 4 × (C + N) or more.

本発明では、生産性、特にスラブ段階での割れや介在物起因で発生するヘゲ(表面欠陥)の発生を抑制するために、以下のようにV、Ca、Oを低減することが重要である。   In the present invention, it is important to reduce V, Ca, and O as follows in order to suppress productivity, particularly cracking at the slab stage and generation of scabs (surface defects) caused by inclusions. is there.

・V:0.05%以下
Vは、Cr原料などの不純物として含まれることが多く、意図せずに含有される場合があるが、特にスラブ段階での割れの発生を抑えるためには、その含有量を厳しく規制する必要がある。そのような観点からVの含有量を0.05%以下とする必要がある。好ましい範囲は0.03%以下、さらに好ましい範囲は0.03%未満である。含有量を0.01%以下とすることにより、より大きな割れ抑制効果が得られるが、原料の選別等が必要となり、経済的には不利となる。
V: 0.05% or less V is often contained as an impurity such as Cr raw material, and may be included unintentionally, but in order to suppress the occurrence of cracks particularly in the slab stage, It is necessary to strictly control the content. From such a viewpoint, the V content needs to be 0.05% or less. A preferred range is 0.03% or less, and a more preferred range is less than 0.03%. By setting the content to 0.01% or less, a greater cracking suppression effect can be obtained, but it is economically disadvantageous because raw material selection is required.

・Ca:0.0030%以下
Caは、低融点の介在物を生成させ、特に介在物起因の表面欠陥の原因となる。このため、本発明ではその含有量を厳しく制限する必要があり、その上限を0.0030%とする。Ca含有量は低いほど好ましく、0.0010%、さらには0.0002%以下とすることが好ましいが、原料の選別等が必要となり、経済的には不利となる。
-Ca: 0.0030% or less Ca generates inclusions having a low melting point, and causes surface defects caused by inclusions in particular. For this reason, in this invention, it is necessary to restrict | limit the content severely, and the upper limit shall be 0.0030%. The Ca content is preferably as low as possible, and is preferably 0.0010%, and more preferably 0.0002% or less, but it is economically disadvantageous because it requires selection of raw materials.

・O:0.0080%以下
Oは、酸化物系介在物の生成を抑制し、高い生産性を確保するために、その含有量を低くする必要があり、その上限を0.0080%にする。好ましくは、0.0060%以下である。
O: 0.0080% or less O is required to reduce the content in order to suppress generation of oxide inclusions and ensure high productivity, and the upper limit is set to 0.0080%. . Preferably, it is 0.0060% or less.

さらに、本発明では、以下に示すF値、FFV値を適正な範囲とすることで、耐食性や生産性を大きく改善する。   Furthermore, in this invention, corrosion resistance and productivity are improved greatly by making the F value and FFV value shown below into an appropriate range.

・F値≦11
F値は、Cr+2×Si+4×Ti−2×Ni−Mn−30×(C+N)(ただし、各元素記号は、それら元素の含有量(質量%)である)で表され、溶接時の溶接熱影響部のミクロ組織を推定するパラメータであり、より詳しくはマルテンサイト組織の体積率(フェライト組織の残存率)を推定するパラメータである。溶接熱影響部のように高温にさらされた部位では、その一部がオーステナイト(あるいはさらに一部がδフェライト)に変態し、この相が冷却過程でマルテンサイトに変態する。その割合は、フェライト安定化元素(フェライト生成元素)とオーステナイト安定化元素(オーステナイト生成元素)の量的バランスの影響を受ける。上記F値を示す式中の係数が正の元素(Cr,Si,Ti)はフェライト安定化元素であり、係数が負の元素(Ni,Mn,C,N)はオーステナイト安定化元素である。すなわち、F値が大きいほどフェライト組織が残存しやすく(フェライト組織の体積率が大きい、すなわちマルテンサイト組織の体積率が小さい)、小さいほどフェライト組織が残存しにくい(フェライト組織の体積率が小さい、すなわち、マルテンサイト組織の体積率が大きい)こととなる。
・ F value ≦ 11
F value is expressed as Cr + 2 × Si + 4 × Ti-2 × Ni-Mn-30 × (C + N) (where each element symbol is the content (% by mass) of these elements), and the welding heat during welding It is a parameter for estimating the microstructure of the affected part, more specifically, a parameter for estimating the volume ratio of the martensite structure (remaining ratio of the ferrite structure). In a part exposed to a high temperature such as a weld heat affected zone, a part thereof is transformed into austenite (or a part thereof is δ ferrite), and this phase is transformed into martensite during the cooling process. The ratio is affected by the quantitative balance between the ferrite stabilizing element (ferrite-forming element) and the austenite stabilizing element (austenite-generating element). Elements with positive coefficients (Cr, Si, Ti) in the formula showing the F value are ferrite stabilizing elements, and elements with negative coefficients (Ni, Mn, C, N) are austenite stabilizing elements. That is, as the F value increases, the ferrite structure tends to remain (the volume ratio of the ferrite structure is large, that is, the volume ratio of the martensite structure decreases), and as the F value decreases, the ferrite structure hardly remains (the volume ratio of the ferrite structure is small). That is, the volume ratio of the martensite structure is large.

特許文献5においては、F値と溶接熱影響部のマルテンサイト組織の体積率との関係を調査し、さらに硫酸−硫酸銅腐食試験により溶接熱影響部近傍の耐食性を評価することで、成分の最適化を図っているが、本発明でも上記特許文献5と同様に、溶接熱影響部の耐食性の向上を図るために、上記のF値を11以下(マルテンサイト体積率:40%以上)とする。好ましくは、F値:10.5以下(マルテンサイト体積率60%以上)であり、さらに好ましくは10以下である。なお、溶接部の耐食性の観点からF値の下限は5.0以上とするのが好ましい。さらに好ましい範囲は6.0以上である。   In Patent Document 5, the relationship between the F value and the volume ratio of the martensitic structure of the weld heat affected zone is investigated, and the corrosion resistance in the vicinity of the weld heat affected zone is evaluated by a sulfuric acid-copper sulfate corrosion test. In the present invention, the F value is set to 11 or less (martensite volume ratio: 40% or more) in order to improve the corrosion resistance of the weld heat-affected zone as in the case of Patent Document 5 in the present invention. To do. The F value is preferably 10.5 or less (martensite volume ratio 60% or more), more preferably 10 or less. In addition, it is preferable that the minimum of F value shall be 5.0 or more from a viewpoint of the corrosion resistance of a welding part. A more preferable range is 6.0 or more.

・FFV値≦9.0
FFV値は、Cr+3×Si+16×Ti+Mo+2×Al−2×Mn−4×(Ni+Cu)−40×(C+N)+20×V(ただし、各元素記号は、それら元素の含有量(質量%)である)で表され、本発明において、製造性を示す指標として新たに導き出したものである。このFFV値は、熱延中の相バランスを考慮したもので、上記のような成分調整、特にAl含有や、V、Ca、Oの上限の規制を行った上で、この値を小さくすることにより、スラブ段階での割れや介在物を起因とした表面欠陥の発生を著しく少なくすることができる。F値を考案した際には考慮していなかったAl量を考慮した新たなパラメータの最適化を図ることにより表面欠陥の発生による歩留低下を大きく抑えることに成功したのが本発明の大きな特徴である。FFV値の最適化による製造性改善の機構は必ずしも明らかになっているわけではないが、FFV値を9.0以下とすることで製造性が著しく改善されることから、FFV値を9.0以下とする。好ましくは8.5以下である。なお、FFV値を小さくするには、Cr量を減らしたり、C、N量を増やしたりすることが有効となるが、このようにすると耐食性の低下が懸念される。このため、FFV値の下限は5.0以上とするのが好ましい。さらに好ましい範囲は6.0以上である。
-FFV value ≤ 9.0
FFV value is Cr + 3 * Si + 16 * Ti + Mo + 2 * Al-2 * Mn-4 * (Ni + Cu) -40 * (C + N) + 20 * V (however, each element symbol is content (mass%) of these elements) In the present invention, it is newly derived as an index indicating manufacturability. This FFV value takes into account the phase balance during hot rolling, and the value should be reduced after adjusting the components as described above, especially by restricting the Al content and the upper limit of V, Ca, and O. Thus, the occurrence of surface defects due to cracks and inclusions in the slab stage can be remarkably reduced. A major feature of the present invention is that it has succeeded in greatly reducing the yield drop due to the occurrence of surface defects by optimizing a new parameter that takes into account the amount of Al that was not taken into account when the F value was devised. It is. Although the mechanism for improving the manufacturability by optimizing the FFV value is not necessarily clarified, the manufacturability is remarkably improved by setting the FFV value to 9.0 or less. Therefore, the FFV value is set to 9.0. The following. Preferably it is 8.5 or less. In order to reduce the FFV value, it is effective to reduce the Cr amount or increase the C and N amounts. However, if this is done, there is a concern that the corrosion resistance may be lowered. For this reason, the lower limit of the FFV value is preferably 5.0 or more. A more preferable range is 6.0 or more.

熱延板あるいは熱延焼鈍板の状態で使用される本発明鋼板では、表面欠陥を少なくするためにはスラブ段階での割れや介在物を制御することが重要である。表面欠陥の発生は歩留を大きく低下させる割れやヘゲといった部分は見かけが悪いばかりでなく、錆発生の起点とも成り得るため、製品として出荷する際には対象の部分を切り落とさなければならないためである。なお、上記FFV値の式にはMo、V、Cuが含まれているが、これらは鋼中に含有されない場合もあり、これらが含有されない場合には、これらのうち含有されない成分を0%としてFFV値を算出する。

図1に、FFV値と表面欠陥発生率の関係を示す。欠陥の発生率は、コイル全長に対し、欠陥が発生した部分の長さから算出したFFV値を9.0以下の適正な範囲とすることにより、表面欠陥の発生が著しく抑えられることがわかる。
In the steel sheet of the present invention used in the state of a hot rolled sheet or a hot rolled annealed sheet, it is important to control cracks and inclusions at the slab stage in order to reduce surface defects. The occurrence of surface defects is not only the appearance of cracks and dents that greatly reduce the yield, but it can also be the starting point of rust generation, so when shipping as a product, the target part must be cut off It is. In addition, although Mo, V, and Cu are included in the above formula of the FFV value, these may not be contained in the steel, and in the case where these are not contained, the component not contained is defined as 0%. FFV value is calculated.

FIG. 1 shows the relationship between the FFV value and the surface defect occurrence rate. It can be seen that the occurrence rate of the defects can be remarkably suppressed by setting the FFV value calculated from the length of the portion where the defects are generated to an appropriate range of 9.0 or less with respect to the total coil length.

本発明においては、上記成分の他に、必要に応じて以下の範囲でCu、Moを含有させることができる。   In the present invention, in addition to the above components, Cu and Mo can be contained in the following ranges as necessary.

・Cu:1.0%以下
Cuは、耐食性を向上させる元素であり、特に隙間腐食を低減させる元素である。このため、高い耐食性が要求される場合に添加することができる。しかし、1.0%を超えて含有させると、熱間加工性が低下するうえ、高温での相バランスが崩れ、溶接熱影響部で所望の組織を得ることが困難となる。よって、Cuを含有させる場合には、その上限を1.0%とする。耐食性向上効果を十分に発揮させるためには0.3%以上含有させることが有効である。より好ましい範囲は、0.3〜0.5%である。
Cu: 1.0% or less Cu is an element that improves corrosion resistance, and particularly an element that reduces crevice corrosion. For this reason, it can be added when high corrosion resistance is required. However, if the content exceeds 1.0%, the hot workability is deteriorated and the phase balance at high temperature is lost, making it difficult to obtain a desired structure in the weld heat affected zone. Therefore, when Cu is contained, the upper limit is made 1.0%. In order to sufficiently exhibit the effect of improving corrosion resistance, it is effective to contain 0.3% or more. A more preferable range is 0.3 to 0.5%.

・Mo:1.0%以下
Moは、耐食性を向上させる元素であり、特に高い耐食性が要求される場合に添加することができる。しかし、1.0%を超えて含有させると、冷間での加工性が低下するうえ、熱間圧延での肌荒れが起こり、表面品質が極端に低下する。よって、Moを含有させる場合には、その上限を1.0%とする。耐食性を十分に発揮させるためには0.03%以上含有させることが有効である。より好ましい範囲は、0.1〜1.0%である。
Mo: 1.0% or less Mo is an element that improves corrosion resistance, and can be added when particularly high corrosion resistance is required. However, if the content exceeds 1.0%, the workability in the cold state is deteriorated, and the rough surface in the hot rolling occurs, so that the surface quality is extremely lowered. Therefore, when Mo is contained, the upper limit is made 1.0%. In order to sufficiently exhibit corrosion resistance, it is effective to contain 0.03% or more. A more preferable range is 0.1 to 1.0%.

本発明においては、上述したような、CuやMoを1.0%以下含有させることによる耐食性の改善の他、0.005%以下のBを含有させることによる延性の改善など、従来の知見に基づいて他の元素を含有させてもよいが、その場合にも高温での相バランスを考慮することが重要である。なお、Nbは強いスタビライズ元素であり、CやNと結びついて相バランスを大きく崩すため、本発明では添加しない。なお、以上規定した元素以外の残部はFeおよび不可避的不純物である。   In the present invention, in addition to the improvement in corrosion resistance by containing 1.0% or less of Cu or Mo as described above, the conventional findings such as improvement of ductility by containing 0.005% or less of B are included. However, in this case, it is important to consider the phase balance at a high temperature. Note that Nb is a strong stabilizing element, and is not added in the present invention because it is combined with C and N to greatly collapse the phase balance. The balance other than the elements specified above is Fe and inevitable impurities.

本発明に係る鋼板は、溶接熱影響部の耐食性の向上を図るために、上記のF値を11以下とすることにより、溶接熱影響部のマルテンサイト体積率は40%以上となる。さらに好ましくは、F値を10.5以下とすることにより、溶接熱影響部のマルテンサイト体積率は60%以上となる。さらに好ましくは10以下であり、この場合のマルテンサイト体積率は80%以上となる。また、本発明に係る鋼板は、母材部は体積率で50%以上がフェライト組織である。残部の組織は、特に熱延ままの状態では、マルテンサイト相や残留γ相が存在し、一部に炭窒化物などを含む組織である。特に後述するような適切な組成範囲にし適切な焼鈍条件で熱延板焼鈍を施した後の熱延焼鈍板の組織は、体積率でほぼ100%がフェライト相組織を有しており、加工性に非常に優れる。   In the steel sheet according to the present invention, in order to improve the corrosion resistance of the weld heat affected zone, the martensite volume ratio of the weld heat affected zone becomes 40% or more by setting the F value to 11 or less. More preferably, by setting the F value to 10.5 or less, the martensite volume fraction of the weld heat affected zone becomes 60% or more. More preferably, it is 10 or less, and the martensite volume ratio in this case is 80% or more. In the steel sheet according to the present invention, the base material portion has a ferrite structure with a volume ratio of 50% or more. The remaining structure is a structure in which a martensite phase and a residual γ phase exist, particularly in a state of being hot-rolled, and partially includes carbonitride. In particular, the structure of the hot-rolled annealed sheet after being subjected to hot-rolled sheet annealing in an appropriate composition range as described later under an appropriate annealing condition has a ferrite phase structure of almost 100% in volume ratio, and the workability Very good.

次に、本発明に係るステンレス鋼板の製造方法について説明する。
本発明のステンレス鋼板の製造方法は、定法に従って行うものであればよく、特に限定されないが、高効率に製造することができる方法として、上記成分組成に溶製した鋼を連続鋳造等によりスラブとした後、熱延コイルとし、これを必要に応じて焼鈍した後、デスケーリング(ショットブラスト、酸洗等)を行って、本発明に係るステンレス鋼板とする方法が推奨される。
Next, the manufacturing method of the stainless steel plate which concerns on this invention is demonstrated.
The method for producing the stainless steel sheet of the present invention is not particularly limited as long as it is carried out according to a conventional method, but as a method that can be produced with high efficiency, a steel slab melted in the above composition is slabd by continuous casting or the like. After that, a hot rolled coil is formed, and after annealing as necessary, descaling (shot blasting, pickling, etc.) is performed to obtain a stainless steel plate according to the present invention.

以下、詳細に説明する。
まず、本発明の成分組成に調整した溶鋼を、転炉または電気炉等の通常用いられる公知の溶製炉にて溶製した後、真空脱ガス(RH法)、VOD(Vacuum Oxygen Decarburization)法、AOD(Argon Oxygen Decarburization)法等の公知の精錬方法で精錬し、次いで、連続鋳造法あるいは造塊−分塊法で鋼スラブ(鋼素材)とする。鋳造法は、生産性および品質の観点から連続鋳造が好ましい。また、スラブ厚は、後述する熱間粗圧延での圧下率を確保するために、100mm以上とすることが好ましい。より好ましい範囲は200mm以上である。
Details will be described below.
First, molten steel adjusted to the component composition of the present invention is melted in a commonly used melting furnace such as a converter or an electric furnace, and then vacuum degassing (RH method), VOD (Vacuum Oxygen Decarburization) method , Refining by a known refining method such as AOD (Argon Oxygen Decarburization) method, and then forming a steel slab (steel material) by a continuous casting method or ingot-bundling method. The casting method is preferably continuous casting from the viewpoint of productivity and quality. Further, the slab thickness is preferably set to 100 mm or more in order to secure a reduction ratio in hot rough rolling described later. A more preferable range is 200 mm or more.

次いで、鋼スラブを1100〜1300℃の温度に加熱した後、熱間圧延して熱延鋼板とする。スラブ加熱温度は、熱延板の肌荒れ防止のためには高いほうが望ましいが、1300℃を超えるとスラブ垂れが著しくなり、また結晶粒が粗大化して熱延板の靭性が低下する。一方、1100℃未満の加熱温度では、熱間圧延での負荷が高くなり、熱延での肌荒れが著しくなるうえ、熱延中の再結晶が不十分となり、やはり熱延板の靭性が低下する。   Subsequently, after heating a steel slab to the temperature of 1100-1300 degreeC, it hot-rolls to make a hot-rolled steel plate. The slab heating temperature is preferably higher in order to prevent roughing of the hot-rolled sheet, but if it exceeds 1300 ° C., the slab droops significantly, and the crystal grains become coarse and the toughness of the hot-rolled sheet decreases. On the other hand, when the heating temperature is less than 1100 ° C., the load in hot rolling becomes high, the rough surface in hot rolling becomes remarkable, recrystallization during hot rolling becomes insufficient, and the toughness of the hot rolled sheet is also lowered. .

熱間粗圧延の工程は、1000℃超の温度域で、圧下率が30%以上である圧延を少なくとも1パス以上行うことが好ましい。この強圧下圧延により、鋼板の結晶組織が微細化され、靭性が向上する。熱間粗圧延の後、常法に従い、仕上圧延を行う。   In the hot rough rolling step, it is preferable to perform at least one pass of rolling with a rolling reduction of 30% or more in a temperature range exceeding 1000 ° C. By this strong rolling, the crystal structure of the steel sheet is refined and the toughness is improved. After hot rough rolling, finish rolling is performed according to a conventional method.

熱間圧延により製造した板厚2.0〜8.0mm程度の熱延板は、そのまま、あるいは焼鈍することなく酸洗してから、構造材として利用することができる。熱延板に対し、600〜1000℃の温度で熱延板を焼鈍してから酸洗を施してもよい。熱延板の焼鈍温度は、600℃未満では、熱延ままの状態で存在する可能性のあるマルテンサイト相や残留γ相が残存したままとなる場合があり、フェライト組織が体積率で50%未満となり、十分な加工性が得られない。一方、1000℃を超えると結晶粒の粗大化が著しくなり、靭性が低下する。熱延板の焼鈍は、いわゆる箱焼鈍により600〜1000℃の温度にて1時間以上保持するのが好ましい。また、焼鈍温度が高くなりすぎると、γ変態が生じる温度に入る場合があり好ましくない。このため、組成を適切な範囲に調整し、かつその組成に応じた適切な温度範囲を選択することが必要である。本発明鋼板の組成範囲では、主として600〜900℃の焼鈍温度にした場合には、体積率で、ほぼ100%がフェライト相となるためこの温度範囲が好ましい。   A hot-rolled sheet having a thickness of about 2.0 to 8.0 mm manufactured by hot rolling can be used as a structural material as it is or after pickling without annealing. The hot-rolled sheet may be pickled after annealing the hot-rolled sheet at a temperature of 600 to 1000 ° C. If the annealing temperature of the hot-rolled sheet is less than 600 ° C., the martensite phase and the residual γ phase that may exist in the hot-rolled state may remain, and the ferrite structure may be 50% by volume. Therefore, sufficient workability cannot be obtained. On the other hand, when the temperature exceeds 1000 ° C., the coarsening of crystal grains becomes remarkable and the toughness is lowered. The hot-rolled sheet is preferably annealed at a temperature of 600 to 1000 ° C. for 1 hour or longer by so-called box annealing. On the other hand, if the annealing temperature is too high, it may enter a temperature at which the γ transformation occurs. For this reason, it is necessary to adjust the composition to an appropriate range and select an appropriate temperature range according to the composition. In the composition range of the steel sheet of the present invention, when the annealing temperature is mainly 600 to 900 ° C., this temperature range is preferable because almost 100% of the volume ratio becomes a ferrite phase.

本発明に係るステンレス鋼板の溶接には、TIG、MIGをはじめとするアーク溶接、シーム溶接、スポット溶接等の抵抗溶接、レーザー溶接等、通常の溶接方法は全て適用可能である。   For welding of the stainless steel plate according to the present invention, all ordinary welding methods such as arc welding including TIG and MIG, seam welding, resistance welding such as spot welding, and laser welding can be applied.

表1に示す成分組成を有するステンレス鋼を、転炉−VOD−連続鋳造法により、200mm厚のスラブとした。これらスラブを1180℃の温度に加熱した後、熱間圧延により板厚5.0mmのコイル状の熱延板とした。熱延終了温度は900℃、熱延後の巻取り温度は700℃とした。得られた熱延鋼板について、690℃で10時間の焼鈍を行った後、ショットブラストおよび酸洗を行ってスケールを除去した。   Stainless steel having the component composition shown in Table 1 was made into a 200 mm thick slab by a converter-VOD-continuous casting method. These slabs were heated to a temperature of 1180 ° C., and then hot rolled to form a coiled hot rolled plate having a thickness of 5.0 mm. The hot rolling end temperature was 900 ° C., and the coiling temperature after hot rolling was 700 ° C. The obtained hot-rolled steel sheet was annealed at 690 ° C. for 10 hours, and then subjected to shot blasting and pickling to remove the scale.

これらスケール除去後の鋼板から平板サンプルを切り出し、下板と立て板からなるT型試験体を組み立て、両側一層すみ肉溶接(ガスメタルアーク溶接、シールドガス:98容量%Ar−2容量%O、流量:20リットル/分)を行い、すみ肉溶接試験片を3個作製した。溶接棒には、株式会社神戸製鋼所社製MGS−309LSを用い、入熱量は0.4〜0.8kJ/mmの範囲とした。 A flat plate sample is cut out from the steel plate after scale removal, a T-shaped test body composed of a lower plate and a standing plate is assembled, and both sides of the fillet weld (gas metal arc welding, shielding gas: 98 volume% Ar-2 volume% O 2). , Flow rate: 20 liter / min), and three fillet welded test pieces were produced. MGS-309LS manufactured by Kobe Steel Co., Ltd. was used as the welding rod, and the heat input was in the range of 0.4 to 0.8 kJ / mm.

これらのすみ肉溶接試験片のすみ肉溶接部から、腐食試験片を採取し、硫酸−硫酸銅腐食試験(ASTM A262 practice EおよびASTM A763 practice Zに準拠したModified Strauss test,試験液はCu/6%CuSO/0.5%HSOとし、この沸騰液中に端面を研磨した試験片を20時間浸漬)を行い、溶接熱影響部近傍の腐食状況を観察した。また、熱延焼鈍板の酸洗後の表面状態を全長に亘って観察した。 Corrosion test specimens were collected from the fillet welds of these fillet weld specimens, and the sulfuric acid-copper sulfate corrosion test (Modified Strauss test according to ASTM A262 practice E and ASTM A763 practice Z, the test solution was Cu / 6. % CuSO 4 /0.5% H 2 SO 4, and a test piece whose end face was polished in this boiling liquid was immersed for 20 hours), and the corrosion state in the vicinity of the weld heat affected zone was observed. Moreover, the surface state after the pickling of the hot-rolled annealed plate was observed over the entire length.

図2は硫酸−硫酸銅腐食試験後の試験片断面の観察例を示す光学顕微鏡写真である。この写真のように溶接熱影響部において、粒界腐食が認められたり、さらにひどい深いピット状の腐食が認められた場合をC、わずかに腐食が認められた場合をB、光学顕微鏡の観察では腐食が認められなかった場合をAとして評価した。また、熱延焼鈍板の酸洗後の表面状態を全長に亘って観察した。全長に対し、スラブ割れあるいは介在物が起因となる表面欠陥が観察された長さの割合を指標とし、欠陥発生の割合が3%以下をa、3%超え30%までをb、30%超えをcとして評価した。これらの結果を表2に示す。   FIG. 2 is an optical micrograph showing an observation example of a cross section of a test piece after a sulfuric acid-copper sulfate corrosion test. As shown in this photo, when grain boundary corrosion is observed in the weld heat-affected zone or when severe deep pit-like corrosion is observed, C, when slight corrosion is observed, B, when observed with an optical microscope The case where corrosion was not recognized was evaluated as A. Moreover, the surface state after the pickling of the hot-rolled annealed plate was observed over the entire length. The ratio of the length at which surface defects due to slab cracking or inclusions were observed relative to the total length was used as an index, and the ratio of defect generation was 3% or less a, 3% to 30%, b, 30% Was evaluated as c. These results are shown in Table 2.

その結果、本発明の範囲内の本発明鋼板であるNo.1〜5、10〜13、15では、溶接部の耐食性が良好で、しかも表面状態も極めて良好であった。これに対し、F値が本発明の範囲から外れる比較鋼板であるNo.9および14では、溶接熱影響部でのマルテンサイト生成量が少ないため、耐粒界腐食性が明らかに劣っていた。また、Siが本発明の範囲よりも高く、Alが本発明の範囲よりも低い比較鋼板であるNo.6およびFFV値が本発明の範囲から外れる比較鋼板であるNo.7、8、9および14では、熱延焼鈍後の表面観察において、スラブ起因の割れや介在物起因のヘゲが多く観察された。   As a result, No. 1 which is the steel sheet of the present invention within the scope of the present invention. In 1-5, 10-13, and 15, the corrosion resistance of the welded portion was good, and the surface condition was also very good. On the other hand, No. which is a comparative steel plate whose F value deviates from the scope of the present invention. In Nos. 9 and 14, since the amount of martensite produced in the weld heat affected zone was small, the intergranular corrosion resistance was clearly inferior. Further, No. 1 is a comparative steel plate in which Si is higher than the range of the present invention and Al is lower than the range of the present invention. No. 6 and No. 6 which are comparative steel plates whose FFV values deviate from the scope of the present invention. In 7, 8, 9 and 14, in the surface observation after hot rolling annealing, many cracks due to slabs and lashes due to inclusions were observed.

本発明鋼板は熱延板あるいは熱延焼鈍板の状態で使用されるため、ヘゲの発生は歩留まりを大きく低下させる。ヘゲ部は見かけが悪いばかりでなく、錆発生の起点ともなり得るため、製品として出荷する際には対象の部分を切り落とさなければならないためである。   Since the steel sheet of the present invention is used in the state of a hot-rolled sheet or a hot-rolled annealed sheet, the occurrence of lashes greatly reduces the yield. This is because the shaved portion not only has a bad appearance but can also be a starting point of rust generation, and therefore, when shipped as a product, the target portion must be cut off.

Claims (6)

質量%で、
C:0.01〜0.03%、
N:0.01〜0.03%、
Si:0.10〜0.40%、
Mn:1.5〜2.5%、
P:0.04%以下、
S:0.02%以下、
Al:0.05〜0.15%、
Cr:10〜13%、
Ni:0.5〜1.0%、
Ti:4×(C+N)(ただし、C、Nはこれらの含有量(質量%)を示す)以上、0.3%以下
を含有し、
V:0.05%以下、
Ca:0.0030%以下、
O:0.0080%以下
に規制し、
さらに、以下の式で表されるF値およびFFV値が、F値≦11、FFV値≦9.0を満たし、残部がFeおよび不可避不純物からなることを特徴とする、溶接部耐食性に優れた構造用ステンレス鋼板。
F値=Cr+2×Si+4×Ti−2×Ni−Mn−30×(C+N)
FFV値=Cr+3×Si+16×Ti+Mo+2×Al−2×Mn−4×(Ni+Cu)−40×(C+N)+20×V
ただし、これら式において、各元素記号は、それら元素の含有量(質量%)である。
% By mass
C: 0.01-0.03%,
N: 0.01-0.03%,
Si: 0.10 to 0.40%,
Mn: 1.5 to 2.5%
P: 0.04% or less,
S: 0.02% or less,
Al: 0.05 to 0.15%,
Cr: 10-13%
Ni: 0.5 to 1.0%,
Ti: 4 × (C + N) (however, C and N indicate their content (mass%)) or more and 0.3% or less,
V: 0.05% or less,
Ca: 0.0030% or less,
O: Restricted to 0.0080% or less,
Furthermore, F value and FFV value represented by the following formula satisfy F value ≦ 11, FFV value ≦ 9.0, and the balance is made of Fe and inevitable impurities, and has excellent welded portion corrosion resistance Structural steel plate.
F value = Cr + 2 * Si + 4 * Ti-2 * Ni-Mn-30 * (C + N)
FFV value = Cr + 3 * Si + 16 * Ti + Mo + 2 * Al-2 * Mn-4 * (Ni + Cu) -40 * (C + N) + 20 * V
However, in these formulas, each element symbol is the content (mass%) of these elements.
請求項1の成分に加えて、さらに質量%で、Cu:1.0%以下を含有することを特徴とする、溶接部耐食性に優れた構造用ステンレス鋼板。   A structural stainless steel plate excellent in welded portion corrosion resistance, characterized by further containing, in addition to the components of claim 1, Cu: 1.0% or less by mass%. 請求項1または請求項2の成分に加えて、さらに質量%で、Mo:1.0%以下を含有することを特徴とする、溶接部耐食性に優れた構造用ステンレス鋼板。   A structural stainless steel plate excellent in welded portion corrosion resistance, characterized by further containing, in addition to the components of claim 1 or 2, at a mass percentage of Mo: 1.0% or less. 質量%で、
C:0.01〜0.03%、
N:0.01〜0.03%、
Si:0.10〜0.40%、
Mn:1.5〜2.5%、
P:0.04%以下、
S:0.02%以下、
Al:0.05〜0.15%、
Cr:10〜13%、
Ni:0.5〜1.0%、
Ti:4×(C+N)(ただし、C、Nはこれらの含有量(質量%)を示す)以上、0.3%以下を含有し、
V:0.05%以下、
Ca:0.0030%以下、
O:0.0080%以下
に規制し、
さらに、以下の式で表されるF値およびFFV値が、F値≦11、FFV値≦9.0を満たし、残部がFeおよび不可避不純物からなる組成を有する鋼スラブを1100〜1300℃の温度に加熱した後、1000℃超の温度域で、圧下率が30%以上である圧延を少なくとも1パス以上行う熱間粗圧延を含む熱間圧延を行うか、または、前記熱間圧延を行った後、熱延板を焼鈍することなくもしくは600〜1000℃の温度で焼鈍してから酸洗を施すことを特徴とする溶接部耐食性に優れた構造用ステンレス鋼板の製造方法。
F値=Cr+2×Si+4×Ti−2×Ni−Mn−30×(C+N)
FFV値=Cr+3×Si+16×Ti+Mo+2×Al−2×Mn−4×(Ni+Cu)−40×(C+N)+20×V
ただし、これら式において、各元素記号は、それら元素の含有量(質量%)である。
% By mass
C: 0.01-0.03%,
N: 0.01-0.03%,
Si: 0.10 to 0.40%,
Mn: 1.5 to 2.5%
P: 0.04% or less,
S: 0.02% or less,
Al: 0.05 to 0.15%,
Cr: 10-13%
Ni: 0.5 to 1.0%,
Ti: 4 × (C + N) (however, C and N indicate their content (mass%)) or more and 0.3% or less,
V: 0.05% or less,
Ca: 0.0030% or less,
O: Restricted to 0.0080% or less,
Further, a steel slab having a composition in which the F value and FFV value represented by the following formula satisfy F value ≦ 11 and FFV value ≦ 9.0, and the balance is composed of Fe and inevitable impurities, is 1100 to 1300 ° C. Then, hot rolling including hot rough rolling in which rolling at a rolling reduction of 30% or more is performed at least one pass in a temperature range exceeding 1000 ° C. or the hot rolling was performed. A method for producing a structural stainless steel sheet with excellent welded portion corrosion resistance, wherein the steel sheet is subjected to pickling after annealing at a temperature of 600 to 1000 ° C. without annealing the hot-rolled sheet.
F value = Cr + 2 * Si + 4 * Ti-2 * Ni-Mn-30 * (C + N)
FFV value = Cr + 3 * Si + 16 * Ti + Mo + 2 * Al-2 * Mn-4 * (Ni + Cu) -40 * (C + N) + 20 * V
However, in these formulas, each element symbol is the content (mass%) of these elements.
請求項4の鋼スラブの成分に加えて、さらに質量%で、Cu:1.0%以下を含有することを特徴とする溶接部耐食性に優れた構造用ステンレス鋼板の製造方法。   A method for producing a structural stainless steel sheet having excellent welded portion corrosion resistance, further comprising, in addition to the steel slab component of claim 4, by mass: Cu: 1.0% or less. 請求項4または請求項5の鋼スラブの成分に加えて、さらに質量%で、Mo:1.0%以下を含有することを特徴とする溶接部耐食性に優れた構造用ステンレス鋼板の製造方法。   A method for producing a structural stainless steel sheet with excellent welded portion corrosion resistance, which further comprises Mo: 1.0% or less in addition to the components of the steel slab of claim 4 or 5.
JP2011117803A 2010-05-31 2011-05-26 Structural stainless steel plate having excellent corrosion resistance of welded portion and method for producing the same Active JP4893866B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011117803A JP4893866B2 (en) 2010-05-31 2011-05-26 Structural stainless steel plate having excellent corrosion resistance of welded portion and method for producing the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2010124059 2010-05-31
JP2010124059 2010-05-31
JP2011117803A JP4893866B2 (en) 2010-05-31 2011-05-26 Structural stainless steel plate having excellent corrosion resistance of welded portion and method for producing the same

Publications (2)

Publication Number Publication Date
JP2012012702A JP2012012702A (en) 2012-01-19
JP4893866B2 true JP4893866B2 (en) 2012-03-07

Family

ID=45066832

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011117803A Active JP4893866B2 (en) 2010-05-31 2011-05-26 Structural stainless steel plate having excellent corrosion resistance of welded portion and method for producing the same

Country Status (12)

Country Link
US (1) US20130126052A1 (en)
EP (1) EP2578715B1 (en)
JP (1) JP4893866B2 (en)
KR (1) KR101409291B1 (en)
CN (1) CN102933732B (en)
AU (1) AU2011259992B2 (en)
BR (1) BR112012030684B1 (en)
CA (1) CA2799696C (en)
ES (1) ES2643150T3 (en)
RU (1) RU2522065C1 (en)
TW (1) TWI439555B (en)
WO (1) WO2011152475A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201418549A (en) * 2012-11-12 2014-05-16 Shehkai Prec Co Ltd Composite concrete screw anchor
WO2015064128A1 (en) * 2013-10-31 2015-05-07 Jfeスチール株式会社 Ferrite-martensite two-phase stainless steel exhibiting low-temperature toughness, and method for producing same
WO2015064077A1 (en) 2013-10-31 2015-05-07 Jfeスチール株式会社 Ferrite-martensite two-phase stainless steel, and method for producing same
CN108690936B (en) * 2018-06-13 2020-12-01 燕山大学 Stainless steel rail material for welding high manganese steel frog and rail and preparation method thereof
KR102173277B1 (en) * 2018-11-06 2020-11-03 주식회사 포스코 Hot-rolled steel sheet with excellent low temperature impact toughness and manufacturing method thereof

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3650731A (en) * 1969-01-31 1972-03-21 Allegheny Ludlum Steel Ferritic stainless steel
SU595420A1 (en) * 1976-12-06 1978-02-28 Предприятие П/Я А-1147 Steel
JPS6199628A (en) * 1984-10-19 1986-05-17 Kawasaki Steel Corp Manufacture of austenitic stainless steel sheet or strip
JPH03249150A (en) * 1990-02-27 1991-11-07 Nippon Steel Corp Ferritic stainless steel having excellent toughness in weld zone
SU1723191A1 (en) * 1990-06-25 1992-03-30 Волгоградский Политехнический Институт Stainless steel
JP2000080416A (en) * 1998-08-31 2000-03-21 Kawasaki Steel Corp MANUFACTURE OF HIGH Cr MARTENSITIC WELDED STEEL PIPE FOR LINE PIPE EXCELLENT IN WELDABILITY AND CORROSION RESISTANCE
JP3508698B2 (en) * 2000-06-06 2004-03-22 Jfeスチール株式会社 Stainless steel hot rolled steel strip for civil and building structures with excellent initial rust resistance
CN101906587B (en) * 2000-08-31 2013-11-20 杰富意钢铁株式会社 Low carbon martensitic stainless steel and method for production thereof
JP2002121652A (en) * 2000-10-12 2002-04-26 Kawasaki Steel Corp Cr-CONTAINING STEEL FOR AUTOMOBILE SUSPENSION
JP4457492B2 (en) 2000-11-29 2010-04-28 Jfeスチール株式会社 Stainless steel with excellent workability and weldability
EP1652950B1 (en) * 2003-07-22 2014-10-15 Nippon Steel & Sumitomo Metal Corporation Martensitic stainless steel
CA2536051C (en) * 2003-09-05 2009-07-14 Sumitomo Metal Industries, Ltd. Welded structure having improved resistance to stress corrosion cracking
JP2006219717A (en) * 2005-02-09 2006-08-24 Nippon Steel Corp Steel sheet for vessel having superior deformation resistance, surface characteristic and weldability, and manufacturing method therefor
JP4740021B2 (en) * 2006-04-20 2011-08-03 新日鐵住金ステンレス株式会社 Cr-containing thin steel sheet having excellent shape freezing property and method for producing the same
JP5225620B2 (en) * 2006-07-04 2013-07-03 新日鐵住金ステンレス株式会社 Low chromium-containing stainless steel excellent in corrosion resistance of heat-affected zone multiple times and its manufacturing method

Also Published As

Publication number Publication date
KR101409291B1 (en) 2014-06-18
EP2578715A4 (en) 2015-08-19
CN102933732B (en) 2016-06-29
WO2011152475A1 (en) 2011-12-08
RU2522065C1 (en) 2014-07-10
KR20130034025A (en) 2013-04-04
ES2643150T3 (en) 2017-11-21
BR112012030684A2 (en) 2017-12-05
JP2012012702A (en) 2012-01-19
RU2012157554A (en) 2014-07-20
AU2011259992B2 (en) 2013-12-19
TWI439555B (en) 2014-06-01
EP2578715A1 (en) 2013-04-10
CA2799696C (en) 2015-11-17
CA2799696A1 (en) 2011-12-08
AU2011259992A1 (en) 2012-12-20
EP2578715B1 (en) 2017-07-12
CN102933732A (en) 2013-02-13
TW201207128A (en) 2012-02-16
BR112012030684B1 (en) 2018-08-14
US20130126052A1 (en) 2013-05-23

Similar Documents

Publication Publication Date Title
JP5773098B1 (en) Ferritic-martensitic duplex stainless steel and method for producing the same
JP5885884B2 (en) Ferritic stainless hot-rolled steel sheet, manufacturing method thereof, and steel strip
JP5918796B2 (en) Ferritic stainless hot rolled steel sheet and steel strip with excellent toughness
CN111433381B (en) High Mn steel and method for producing same
JP4893866B2 (en) Structural stainless steel plate having excellent corrosion resistance of welded portion and method for producing the same
JP5501795B2 (en) Low-chromium stainless steel with excellent corrosion resistance in welds
JP6036645B2 (en) Ferritic-martensitic duplex stainless steel with excellent low-temperature toughness and method for producing the same
JP4538095B2 (en) Steel plate with excellent low temperature toughness and low strength anisotropy of base metal and weld heat affected zone, and method for producing the same
JP2009013431A (en) Low chromium-containing stainless steel excellent in the corrosion resistance of repeatedly welded heat-affected zone, and producing method thereof
WO2015064077A1 (en) Ferrite-martensite two-phase stainless steel, and method for producing same
JP5741454B2 (en) Ni-added steel sheet excellent in toughness and productivity in which Charpy test value at −196 ° C. is 100 J or more for both base metal and welded joint, and manufacturing method thereof
JP5884183B2 (en) Structural stainless steel sheet
WO2022025083A1 (en) Highly corrosion-resistant ni-cr-mo-n alloy having excellent phase stability
JP4469353B2 (en) Method for producing high strength steel material having tensile strength of 570 MPa class excellent in toughness of weld heat affected zone
JP2009280850A (en) Stainless steel sheet for structure having excellent weld zone corrosion resistance, and weld structure
JP2005139509A (en) High tensile strength steel having excellent weld heat affected zone toughness, and its production method
JP5037203B2 (en) Method for producing high-strength steel material having yield stress of 470 MPa or more and tensile strength of 570 MPa or more excellent in toughness of weld heat-affected zone
JP2007302978A (en) Method for manufacturing high-strength steel of tensile strength of 780 mpa class having excellent toughness of weld heat affected zone
JP2023127225A (en) Weld joint of martensitic stainless steel, weld structure and weld method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111019

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20111019

TRDD Decision of grant or rejection written
A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20111110

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111122

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111205

R150 Certificate of patent or registration of utility model

Ref document number: 4893866

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150106

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250