JP2006219717A - Steel sheet for vessel having superior deformation resistance, surface characteristic and weldability, and manufacturing method therefor - Google Patents

Steel sheet for vessel having superior deformation resistance, surface characteristic and weldability, and manufacturing method therefor Download PDF

Info

Publication number
JP2006219717A
JP2006219717A JP2005033521A JP2005033521A JP2006219717A JP 2006219717 A JP2006219717 A JP 2006219717A JP 2005033521 A JP2005033521 A JP 2005033521A JP 2005033521 A JP2005033521 A JP 2005033521A JP 2006219717 A JP2006219717 A JP 2006219717A
Authority
JP
Japan
Prior art keywords
less
steel sheet
weldability
steel
deformation resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005033521A
Other languages
Japanese (ja)
Inventor
Hidekuni Murakami
英邦 村上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2005033521A priority Critical patent/JP2006219717A/en
Publication of JP2006219717A publication Critical patent/JP2006219717A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a steel sheet for a vessel, which has superior deformation resistance, surface characteristics and weldability, and keeps them from being deteriorated, and to provide a manufacturing method therefor. <P>SOLUTION: The steel sheet comprises, by mass%, 0.0800% or less C, 0.0600% or less N, 2.0% or less Si, 2.0% or less Mn, 0.10% or less P, 0.05% or less S, 2.0% or less Al, and the balance iron with unavoidable impurities. The manufacturing method includes the step of controlling the concentration of carbon and/or nitrogen so that the total amount of C and N can be 6,000 ppm or less in the surface layer of 1/8 sheet thickness deep from the surface of the steel sheet, and the total amount of C and N in the center layer of 1/4 sheet thickness thick of the steel sheet can be less than the total amount of C and N of the surface layer by 30 ppm or more. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、飲料缶等の金属容器に用いて好適な耐変形性、表面特性、溶接性が著しく良好な容器用鋼板及びその製造方法に関するものである。   TECHNICAL FIELD The present invention relates to a steel plate for containers that is remarkably excellent in deformation resistance, surface characteristics, and weldability suitable for use in metal containers such as beverage cans, and a method for producing the same.

近年、容器の低コスト化のために容器用鋼板の極薄化が進行し、このような極薄の容器用鋼板で容器を製造した場合に顕在化している問題の一つに容器の変形がある。この変形は、容器の製造過程や内容物を充填した後の一般市場における容器のハンドリング時に起きる外力の作用のみならず、容器の内部圧力の増減、すなわち内容物の加熱処理時の増圧や内容物保持のための減圧処理、または炭酸飲料など内容物によっては必須となる増圧、さらには流通や保持中の温度変化に伴う内圧の変化等により生じる。
容器の耐変形性を向上させるには、容器のデザインのみならず、素材としてはより硬質なものを使用する必要がある。しかし、一般的に硬質な材料は延性が低く、缶成形時の材料破断などの問題を引き起こす。
In recent years, container steel sheets have been made extremely thin to reduce the cost of containers, and one of the problems that has become apparent when containers are manufactured using such ultrathin container steel sheets is the deformation of containers. is there. This deformation is not only due to the action of external force that occurs during container handling in the general market after filling the container and the contents, but also the increase and decrease of the internal pressure of the container, that is, the pressure increase and contents during the heat treatment of the contents This is caused by a decompression process for holding an object, a pressure increase which is essential depending on contents such as carbonated beverages, and a change in internal pressure accompanying a temperature change during distribution or holding.
In order to improve the deformation resistance of the container, it is necessary to use not only the container design but also a harder material. However, generally hard materials have low ductility and cause problems such as material breakage during can molding.

一方、容器用鋼板は用途により様々な硬度の材料が造り分けられており、生産性を向上させるには上工程では同一の素材を準備し、できるだけ下工程での条件変更により材質を造り分けることが効率的である。このための方法として焼鈍後の再冷延(2CR)の圧下率によるものがある。
しかし、この方法では、再冷延(2CR)の圧下率を変えて同一の板厚の鋼板を製造するには、その前の工程での冷延板厚を造り分けておく必要があり、生産性の格段の向上は望めない。また、硬化手段として加工による転位強化を利用するため通常の固溶強化などに比べると延性の劣化が大きく缶成形の際のフランジ成形性が劣るなどの不具合も発生し易い。
On the other hand, steel plates for containers are made of materials with various hardness depending on the application. To improve productivity, prepare the same material in the upper process, and make the material by changing the conditions in the lower process as much as possible. Is efficient. As a method for this, there is a method based on the rolling reduction of re-rolling (2CR) after annealing.
However, in this method, in order to produce a steel sheet with the same thickness by changing the rolling reduction of re-cold rolling (2CR), it is necessary to create the cold-rolled sheet thickness in the previous process separately. I cannot expect a marked improvement in sex. In addition, since dislocation strengthening by processing is used as a curing means, defects such as deterioration in ductility and inferior flange formability during can molding are likely to occur compared to normal solid solution strengthening.

そこで、焼鈍以降の工程で延性をそれほど阻害せずに強度調整する方法として、焼鈍時の窒化による技術が提案されている(特許文献1〜3参照)。
また、本発明者は、鋼板を窒化する技術を特に、0.4mm以下の板厚の薄い鋼板に適用するにあたり、鋼板により形成された部材の耐変形性を効率的に向上させるための技術を提案している(特許文献4参照)。
特開平08−170122号公報 特開平08−176788号公報 特開2001−107148号公報 特開2004−218061号公報
Therefore, as a method for adjusting the strength without significantly impairing ductility in the steps after annealing, a technique by nitriding during annealing has been proposed (see Patent Documents 1 to 3).
Further, the present inventor has applied a technique for efficiently improving the deformation resistance of a member formed of a steel plate, particularly when applying the technology for nitriding a steel plate to a thin steel plate having a thickness of 0.4 mm or less. It has been proposed (see Patent Document 4).
Japanese Patent Laid-Open No. 08-170122 Japanese Patent Laid-Open No. 08-176788 JP 2001-107148 A JP 2004-218061 A

ところで、従来の焼鈍時の窒化による技術では、窒化による表面硬度造り分けと、それによる生産性の向上を図ることはできるものの、特に表内層の硬度を制御することにより、極薄素材での耐変形性の向上が十分ではないという問題点があった。また、その製造方法については、アンモニア含有雰囲気中で保持する点は提案されているものの、表内層の材質を制御するための窒化の方法については、殆ど触れられておらず、これらの技術により本発明が目的とする極薄素材で成形した容器の耐変形性を向上させることは難しい。
また、本発明者が提案した鋼板を窒化する技術は、0.4mm以下の薄い板厚の鋼板により形成された部材の耐変形性を効率的に向上させることはできるものの、条件によっては、耐変形性のみならず、表面特性や溶接性にも問題が生じる虞がある。
By the way, with the conventional nitriding technology during annealing, the surface hardness can be separated by nitriding and the productivity can be improved. However, by controlling the hardness of the inner layer, the resistance to ultra-thin materials can be improved. There was a problem that improvement in deformability was not sufficient. In addition, the manufacturing method has been proposed to be maintained in an ammonia-containing atmosphere, but the nitriding method for controlling the material of the inner surface layer is hardly mentioned, and these techniques are used to describe this method. It is difficult to improve the deformation resistance of a container formed of an ultrathin material intended by the invention.
Further, although the technique proposed by the present inventors for nitriding a steel plate can efficiently improve the deformation resistance of a member formed by a steel plate having a thin plate thickness of 0.4 mm or less, depending on the conditions, There is a possibility that not only the deformability but also the surface characteristics and weldability may cause problems.

例えば、耐変形性については、窒化処理による窒化量の割に変形性の向上効果が小さくなり、表面特性については、めっきや塗装、フィルム等の密着性等の表面処理性が低下するばかりでなく、表面光沢等の外観も悪化する虞がある。
また、溶接性については、適正な溶接電流範囲が、生産に支障をきたすほどに顕著に小さくなり、特に、表面特性の低下は、耐食性の劣化や、溶接性の劣化の原因にもなるため、大きな問題となり得る。
For example, with regard to deformation resistance, the effect of improving deformability is small for the amount of nitriding by nitriding treatment, and for surface characteristics, not only surface treatment properties such as adhesion of plating, coating, film, etc. are deteriorated. Further, the appearance such as surface gloss may be deteriorated.
In addition, with regard to weldability, the appropriate welding current range becomes remarkably small so as to hinder production, and in particular, a decrease in surface properties can cause deterioration in corrosion resistance and weldability, It can be a big problem.

本発明は、上記の事情に鑑みてなされたものであって、極薄の鋼板を使用して製造された容器で問題となる変形を、素材の表層および内層の材質を窒化を適用することで制御し改善する際に、特に、単純に窒化のみを適用した場合に生じる耐変形性や表面特性、溶接性の劣化を防止することが可能な耐変形性、表面特性、溶接性が著しく良好な鋼板及びその製造方法を提供することを目的とする。   The present invention has been made in view of the above-mentioned circumstances. By applying nitriding to the material of the surface layer and the inner layer of the material, the deformation which becomes a problem in a container manufactured using an extremely thin steel plate is applied. When controlling and improving, deformation resistance, surface characteristics, weldability that can prevent deterioration of weldability, especially when only nitriding is applied, are extremely good. It aims at providing a steel plate and its manufacturing method.

本発明者は、窒化過程を経て製造される板厚0.4mm以下の鋼板の成分および窒化条件と材質との関係を検討するうちに、窒化を適用しても目的とする耐変形性の向上効果が明確でなくなり、同時に表面特性、溶接性が劣化する事例があることが分かり、さらに検討を進めた結果、成分を特定範囲に限定し、さらに浸炭雰囲気での熱処理を併用することで、鋼材の表層部および内層部の材質を制御するとともに、表面特性や溶接性に影響を及ぼす鋼板の表面状態を良好に制御することが可能になり、極薄鋼板を素材とした容器で望まれる耐変形性、表面特性および溶接性を両立しつつ大幅に改善することができることを見出し、本発明を完成するに至ったものであり、本発明の要旨とするところは以下の通りである。   The present inventor has improved the intended deformation resistance even when nitriding is applied while examining the relationship between the composition of the steel sheet having a thickness of 0.4 mm or less manufactured through the nitriding process and the nitriding conditions and the material. It turns out that there are cases where the effect is not clear, and at the same time the surface properties and weldability deteriorate, and as a result of further investigation, by limiting the components to a specific range and further using heat treatment in a carburizing atmosphere, As well as controlling the material of the surface layer and inner layer of the steel, it is possible to satisfactorily control the surface condition of the steel sheet that affects the surface characteristics and weldability, and the deformation resistance desired for containers made of ultra-thin steel sheets The present invention has been completed by finding that it is possible to significantly improve the properties, surface characteristics and weldability, and the gist of the present invention is as follows.

(1) 炭素および/または窒素の濃度制御工程を経て製造される鋼板であって、
質量%で、C:0.0800%以下、N:0.0600%以下、Si:2.0%以下、Mn:2.0%以下、P:0.10%以下、S:0.05%以下、Al:2.0%以下を含有し、残部が鉄および不可避不純物からなり、
前記鋼板の表面からの深さが板厚の1/8の表層におけるC及びNの合計量が6000ppm以下であり、
かつ、前記表層のC及びNの合計量と前記鋼板の板厚の1/4の層厚の中心層におけるC及びNの合計量との差が30ppm以上であることを特徴とする耐変形性、表面特性、溶接性が著しく良好な鋼板。
(1) A steel plate manufactured through a carbon and / or nitrogen concentration control step,
In mass%, C: 0.0800% or less, N: 0.0600% or less, Si: 2.0% or less, Mn: 2.0% or less, P: 0.10% or less, S: 0.05% Hereinafter, Al: 2.0% or less, the balance consists of iron and inevitable impurities,
The total amount of C and N in the surface layer whose depth from the surface of the steel sheet is 1/8 of the plate thickness is 6000 ppm or less,
The difference between the total amount of C and N in the surface layer and the total amount of C and N in the central layer having a layer thickness of 1/4 of the plate thickness of the steel sheet is 30 ppm or more. Steel sheet with extremely good surface properties and weldability.

(2) 前記鋼板の表面における窒化物および/または炭化物の面積率は、前記鋼板の板厚の1/4の層厚である中心層の前記表面に平行な断面における窒化物および/または炭化物の面積率の1.5倍以上であることを特徴とする(1)に記載の耐変形性、表面特性、溶接性が著しく良好な鋼板。 (2) The area ratio of nitrides and / or carbides on the surface of the steel sheet is that of nitrides and / or carbides in a cross section parallel to the surface of the central layer, which is ¼ of the thickness of the steel sheet. The steel sheet having an extremely good deformation resistance, surface characteristics, and weldability according to (1), wherein the steel sheet has an area ratio of 1.5 times or more.

(3) 前記鋼板の表面粗さ(Ra)は0.90μm以下であり、かつ、この鋼板の表面の長さ1インチあたりの凹凸の頂点の個数は250個以上であることを特徴とする(1)または(2)に記載の耐変形性、表面特性、溶接性が著しく良好な鋼板。 (3) The surface roughness (Ra) of the steel sheet is 0.90 μm or less, and the number of concavo-convex vertices per inch of the surface length of the steel sheet is 250 or more ( A steel sheet having remarkably good deformation resistance, surface characteristics and weldability as described in 1) or (2).

(4) さらに、質量%で、Ti:0.05%以下、Nb:0.05%以下、B:0.015%以下、Cr:20%以下、Ni:10%以下、Cu:5%以下の群から選択された1種または2種以上を含有してなることを特徴とする(1)、(2)または(3)に記載の耐変形性、表面特性、溶接性が著しく良好な鋼板。 (4) Further, by mass%, Ti: 0.05% or less, Nb: 0.05% or less, B: 0.015% or less, Cr: 20% or less, Ni: 10% or less, Cu: 5% or less (1), (2) or (3), wherein the steel sheet has excellent deformation resistance, surface characteristics, and weldability, characterized by containing at least one selected from the group of .

(5) さらに、質量%で、Sn、Sb、Mo、Ta、V、Wの群から選択された1種または2種以上を合計で0.1%以下含有してなることを特徴とする(1)ないし(4)のいずれかに記載の耐変形性、表面特性、溶接性が著しく良好な鋼板。 (5) Further, it is characterized by containing, in mass%, one or more selected from the group of Sn, Sb, Mo, Ta, V and W in a total of 0.1% or less ( 1) A steel plate having remarkably good deformation resistance, surface characteristics, and weldability according to any one of (4).

(6) 前記鋼板の板厚は0.400mm以下であることを特徴とする(1)ないし(5)のいずれかに記載の耐変形性、表面特性、溶接性が著しく良好な鋼板。 (6) The steel sheet having excellent deformation resistance, surface characteristics, and weldability according to any one of (1) to (5), wherein the steel sheet has a thickness of 0.400 mm or less.

(7) 質量%で、C:0.0800%以下、N:0.0600%以下、Si:2.0%以下、Mn:2.0%以下、P:0.10%以下、S:0.05%以下、Al:2.0%以下を含有し、残部が鉄および不可避不純物からなる鋼材に熱間圧延、冷間圧延、再結晶熱処理を順次施す鋼板の製造方法であって、
前記再結晶熱処理と同時またはその後に、炭素および/または窒素の濃度制御を行い、
前記鋼材の表面からの深さが板厚の1/8の表層におけるC及びNの合計量を6000ppm以下、かつ、前記表層のC及びNの合計量と前記鋼板の板厚の1/4の層厚の中心層におけるC及びNの合計量との差を30ppm以上とすることを特徴とする耐変形性、表面特性、溶接性が著しく良好な鋼板の製造方法。
(7) By mass%, C: 0.0800% or less, N: 0.0600% or less, Si: 2.0% or less, Mn: 2.0% or less, P: 0.10% or less, S: 0 0.05% or less, Al: 2.0% or less, a steel sheet manufacturing method in which hot rolling, cold rolling, and recrystallization heat treatment are sequentially performed on a steel material in which the balance is iron and inevitable impurities,
At the same time as or after the recrystallization heat treatment, the concentration of carbon and / or nitrogen is controlled,
The total amount of C and N in the surface layer whose depth from the surface of the steel material is 1/8 of the plate thickness is 6000 ppm or less, and the total amount of C and N in the surface layer is 1/4 of the plate thickness of the steel plate. A method for producing a steel sheet having significantly good deformation resistance, surface characteristics, and weldability, characterized in that a difference between the total amount of C and N in the central layer of the layer thickness is 30 ppm or more.

(8) 前記炭素の濃度制御は、浸炭処理であり、前記窒素の濃度制御は、窒化処理であることを特徴とする(7)に記載の耐変形性、表面特性、溶接性が著しく良好な鋼板の製造方法。 (8) The carbon concentration control is carburizing treatment, and the nitrogen concentration control is nitriding treatment. Deformation resistance, surface characteristics, and weldability according to (7) are remarkably good. A method of manufacturing a steel sheet.

(9) 前記浸炭処理は、前記鋼材の温度が550〜800℃の状態にて浸炭性ガスを0.02%以上含有する雰囲気中に1秒以上360秒以下保持することを特徴とする(8)に記載の耐変形性、表面特性、溶接性が著しく良好な鋼板の製造方法。 (9) The carburizing treatment is characterized in that the steel material is maintained in an atmosphere containing carburizing gas at 0.02% or more in a state of 550 to 800 ° C. for 1 second or more and 360 seconds or less (8 The method for producing a steel sheet having excellent deformation resistance, surface characteristics and weldability as described in (1).

(10) 前記窒化処理は、前記鋼材の温度が550〜800℃の状態にてアンモニアガスを0.02%以上含有する雰囲気中に1秒以上360秒以下保持することを特徴とする(8)に記載の耐変形性、表面特性、溶接性が著しく良好な鋼板の製造方法。 (10) The nitriding treatment is characterized in that the steel material is held in an atmosphere containing ammonia gas at 0.02% or more in a state of 550 to 800 ° C. for 1 second or more and 360 seconds or less (8). A method for producing a steel sheet having excellent deformation resistance, surface characteristics and weldability as described in 1.

(11) 前記窒化処理を行うに際し、0.10<浸炭性ガス濃度(体積%)/アンモニアガス濃度(体積%)<10とすることを特徴とする(10)に記載の耐変形性、表面特性、溶接性が著しく良好な鋼板の製造方法。 (11) When performing the nitriding treatment, 0.10 <Carburizing gas concentration (volume%) / Ammonia gas concentration (volume%) <10. Deformation resistance and surface according to (10) A method of manufacturing a steel sheet with extremely good characteristics and weldability.

(12) 前記浸炭処理、前記窒化処理のいずれか一方、または双方の、前記550℃以上の温度域の熱履歴における温度と時間の積を48000以下とし、その後、550℃から300℃までの平均冷却速度を10℃/秒以上にて冷却することを特徴とする(9)、(10)または(11)に記載の耐変形性、表面特性、溶接性が著しく良好な鋼板の製造方法。 (12) The product of the temperature and time in the thermal history of the temperature range of 550 ° C. or higher for either one or both of the carburizing treatment and the nitriding treatment is 48000 or less, and then the average from 550 ° C. to 300 ° C. The method for producing a steel sheet having excellent deformation resistance, surface characteristics, and weldability according to (9), (10) or (11), wherein the cooling rate is 10 ° C./second or more.

(13) 前記再結晶熱処理の後に、0.5%以上70%以下の圧延率にて再度冷間圧延を行うことを特徴とする(7)ないし(12)のいずれかに記載の耐変形性、表面特性、溶接性が著しく良好な鋼板の製造方法。 (13) The deformation resistance according to any one of (7) to (12), wherein cold rolling is performed again at a rolling rate of 0.5% to 70% after the recrystallization heat treatment. , A method for producing a steel sheet with remarkably good surface properties and weldability.

本発明の耐変形性、表面特性、溶接性が著しく良好な鋼板によれば、前記鋼板の表面からの深さが板厚の1/8の表層におけるC+Nの合計量を6000ppm以下とし、かつ、前記表層のC+Nの合計量と前記鋼板の板厚の1/4の層厚の中心層におけるC+Nの合計量との差を30ppm以上としたので、この鋼板を用いて製造された金属容器等の立体構造を有する各種部材の耐変形性、表面特性および製造の際の溶接性を向上させることができる。   According to the steel sheet having extremely good deformation resistance, surface characteristics and weldability of the present invention, the total amount of C + N in the surface layer whose depth from the surface of the steel sheet is 1/8 of the plate thickness is 6000 ppm or less, and Since the difference between the total amount of C + N of the surface layer and the total amount of C + N in the central layer having a layer thickness of 1/4 of the plate thickness of the steel plate is 30 ppm or more, a metal container or the like manufactured using this steel plate Deformation resistance, surface characteristics and weldability during production of various members having a three-dimensional structure can be improved.

本発明の耐変形性、表面特性、溶接性が著しく良好な鋼板の製造方法によれば、質量%で、C:0.0800%以下、N:0.0600%以下、Si:2.0%以下、Mn:2.0%以下、P:0.10%以下、S:0.05%以下、Al:2.0%以下を含有し、残部が鉄および不可避不純物からなる鋼材に熱間圧延、冷間圧延、再結晶熱処理を順次施す際に、前記再結晶熱処理と同時またはその後に、炭素および/または窒素の濃度制御処理を行うので、鋼材の表層及び中心層におけるC及びNの合計量を所定量以下に制御することができる。したがって、耐変形性、表面特性、溶接性が著しく良好な鋼板を容易に製造することができる。   According to the method for producing a steel sheet having excellent deformation resistance, surface characteristics, and weldability according to the present invention, C: 0.0800% or less, N: 0.0600% or less, Si: 2.0% by mass%. Below, Mn: 2.0% or less, P: 0.10% or less, S: 0.05% or less, Al: 2.0% or less, hot-rolled to a steel material whose balance is iron and inevitable impurities When performing the cold rolling and the recrystallization heat treatment in sequence, since the carbon and / or nitrogen concentration control treatment is performed simultaneously with or after the recrystallization heat treatment, the total amount of C and N in the surface layer and the center layer of the steel material Can be controlled below a predetermined amount. Therefore, it is possible to easily manufacture a steel sheet having extremely good deformation resistance, surface characteristics, and weldability.

本発明の耐変形性、表面特性、溶接性が著しく良好な鋼板及びその製造方法の一実施の形態について説明する。
なお、この実施の形態は、発明の趣旨をより良く理解させるために詳細に説明するものであるから、特に指定の無い限り、本発明を限定するものではない。
An embodiment of a steel plate having excellent deformation resistance, surface characteristics, and weldability and a method for producing the same according to the present invention will be described.
Note that this embodiment is described in detail for better understanding of the gist of the invention, and thus does not limit the present invention unless otherwise specified.

本発明の鋼板は、炭素および/または窒素の濃度制御工程を経て製造される鋼板であって、
質量%で、C:0.0800%以下、N:0.0600%以下、Si:2.0%以下、Mn:2.0%以下、P:0.10%以下、S:0.05%以下、Al:2.0%以下を含有し、残部が鉄および不可避不純物からなり、
前記鋼板の表面からの深さが板厚の1/8の表層におけるC及びNの合計量が6000ppm以下であり、
かつ、前記表層のC及びNの合計量と前記鋼板の板厚の1/4の層厚の中心層におけるC及びNの合計量との差が30ppm以上である。
The steel sheet of the present invention is a steel sheet manufactured through a carbon and / or nitrogen concentration control step,
In mass%, C: 0.0800% or less, N: 0.0600% or less, Si: 2.0% or less, Mn: 2.0% or less, P: 0.10% or less, S: 0.05% Hereinafter, Al: 2.0% or less, the balance consists of iron and inevitable impurities,
The total amount of C and N in the surface layer whose depth from the surface of the steel sheet is 1/8 of the plate thickness is 6000 ppm or less,
And the difference of the total amount of C and N of the said surface layer and the total amount of C and N in the center layer of the layer thickness of 1/4 of the plate | board thickness of the said steel plate is 30 ppm or more.

ここで、鋼板の組成を上記の様に限定した理由について説明する。
Cは、鋼板の特性に最も顕著に効くもので、特に加工性の劣化を回避するために必要なものであり、その含有量は0.0800%以下が好ましく、より好ましくは0.0600%以下、さらに好ましくは0.040%以下である。
本発明の鋼板では、熱処理により焼鈍後にCと同様の性質を有するNを増量させることもできるので、強度確保などの観点で必要となるCの含有量は低くても構わない。
Here, the reason why the composition of the steel sheet is limited as described above will be described.
C is most effective for the characteristics of the steel sheet, and is particularly necessary for avoiding deterioration of workability, and its content is preferably 0.0800% or less, more preferably 0.0600% or less. More preferably, it is 0.040% or less.
In the steel sheet of the present invention, N having the same properties as C can be increased after annealing by heat treatment, so the C content required from the standpoint of securing the strength may be low.

この様な観点から設定されるCの含有量は、0.0050%以下でも必要な強度確保が可能であり、0.0020%以下でも必要な強度確保が可能であれば構わない。また、Cの含有量を0.0015%以下とした場合、Nの含有量との兼ね合いもあるが、通常の容器では規格外の極軟質材の製造も可能となる。
また、本発明で特徴的な表層硬化を浸炭雰囲気での熱処理によって行うのであれば、加工性と耐変形性および溶接性への影響、および製造条件の変動に関連したこれらの効果の安定性を考えた場合のCの含有量は、好ましくは0.0050〜0.035%、より好ましくは0.010〜0.030%、さらに好ましくは0.015〜0.025%である。
The content of C set from such a viewpoint can ensure the necessary strength even if it is 0.0050% or less, and may be sufficient if the necessary strength can be ensured even if it is 0.0020% or less. In addition, when the C content is 0.0015% or less, there is a balance with the N content, but in an ordinary container, it is possible to manufacture a non-standard extremely soft material.
Also, if the surface hardening characteristic of the present invention is performed by heat treatment in a carburizing atmosphere, the effects on workability, deformation resistance and weldability, and the stability of these effects related to fluctuations in manufacturing conditions are improved. The content of C when considered is preferably 0.0050 to 0.035%, more preferably 0.010 to 0.030%, and still more preferably 0.015 to 0.025%.

Nの含有量も、Cの含有量と同様、加工性の劣化を回避するために加えるもので、めっき等の表面特性の劣化を回避するために必要なものである。
Nの含有量の好ましい範囲は0.600%以下、より好ましい範囲は0.300%以下である。
また、加工性の観点からは、Nの含有量は低いことが好ましいことは言うまでもなく、好ましくは0.0050%以下、さらに好ましくは0.0030%以下である。
また、本発明で特徴的な表層硬化を窒化雰囲気での熱処理によって行うのであれば、加工性と耐変形性および溶接性への影響、および製造条件の変動に関連したこれらの効果の安定性を考えた場合のNの含有量は、好ましくは0.0050〜0.100%、より好ましくは0.010〜0.080%、さらに好ましくは0.020〜0.060%である。
Similar to the C content, the N content is added to avoid deterioration of workability and is necessary to avoid deterioration of surface characteristics such as plating.
A preferred range for the N content is 0.600% or less, and a more preferred range is 0.300% or less.
Further, from the viewpoint of workability, it is needless to say that the N content is preferably low, preferably 0.0050% or less, and more preferably 0.0030% or less.
In addition, if the surface hardening characteristic of the present invention is performed by heat treatment in a nitriding atmosphere, the effects on workability, deformation resistance, weldability, and the stability of these effects related to fluctuations in manufacturing conditions are improved. The content of N when considered is preferably 0.0050 to 0.100%, more preferably 0.010 to 0.080%, and still more preferably 0.020 to 0.060%.

ここで注意を要するのは、後述する様に最終製品でのC及びNの含有量は、缶の耐変形性効果や良好な表面特性、溶接性を付与するために存在するものであり、浸炭雰囲気での熱処理や窒化雰囲気での熱処理を行う前に存在するC、Nとは効果が異なることである。   It should be noted here that as described later, the C and N contents in the final product are present in order to impart a deformation resistance effect, good surface characteristics, and weldability of the can. The effect is different from C and N existing before heat treatment in an atmosphere or heat treatment in a nitriding atmosphere.

Siは強度調整のために添加されるものであるが、多すぎると加工性が劣化するために、その含有量を2.0%以下とする。
本発明の鋼板では、Siは、結晶粒界にて窒化により鋼中に侵入したC、Nと炭化物、窒化物を形成し、脆性的な割れを生じさせるばかりでなく、本発明の効果を損ねる場合もあるので、鋼組成によっては、その含有量を1.5%以下、さらには1.0%以下に制限する必要が生ずることもある。
Si is added to adjust the strength, but if it is too much, the workability deteriorates, so the content is made 2.0% or less.
In the steel sheet of the present invention, Si forms C, N and carbides and nitrides that enter the steel by nitriding at the grain boundaries, and not only causes brittle cracks, but also impairs the effects of the present invention. In some cases, depending on the steel composition, the content may need to be limited to 1.5% or less, and further to 1.0% or less.

Mnは、強度調整のために添加されるものであるから、添加することが好ましいが、多すぎると加工性が劣化するので、2.0%以下とする。
Pは、強度調整のために添加されるものであり、多すぎると加工性が劣化するので、0.10%以下とする。
Sは、熱間延性を劣化させ、鋳造や熱間圧延の阻害要因となるので、含有量は少ないほど好ましく、0.05%以下とする。
Alは、脱酸のために添加される元素であるが、含有量が多いと鋳造が困難となり、表面の疵が増加する等の弊害が生じる虞があるので、2.0%以下とする。
Since Mn is added for adjusting the strength, it is preferable to add it. However, if it is too much, the workability deteriorates, so the content is made 2.0% or less.
P is added for adjusting the strength, and if it is too much, the workability deteriorates, so the content is made 0.10% or less.
S deteriorates the hot ductility and becomes an impediment to casting and hot rolling, so the smaller the content, the more preferable it is 0.05% or less.
Al is an element added for deoxidation, but if the content is large, casting becomes difficult, and there is a risk of causing problems such as an increase in surface wrinkles, so the content is made 2.0% or less.

本発明の鋼板は、上記の組成に加えて、
さらに、質量%で、Ti:0.05%以下、Nb:0.05%以下、B:0.015%以下、Cr:20%以下、Ni:10%以下、Cu:5%以下の群から選択された1種または2種以上を含有してなることが好ましい。
In addition to the above composition, the steel sheet of the present invention has
Further, in terms of mass%, Ti: 0.05% or less, Nb: 0.05% or less, B: 0.015% or less, Cr: 20% or less, Ni: 10% or less, Cu: 5% or less It is preferable to contain one or more selected ones.

ここで、各元素の含有量を上記の様に限定した理由について説明する。
Tiは、鋼板の再結晶温度を上げ、本発明が対象とする極薄鋼板の焼鈍通板性を著しく劣化させるので、含有量は少ないほど好ましく、0.050%以下とする。特に高いr値が必要でない通常の用途では、Tiを添加する必要はなく、したがって、その含有量は0.03%以下、さらに好ましくは0.02%以下とする。
一方、Tiは、浸炭熱処理前まで固溶状態で残存させておき、浸炭に伴い表面から鋼板に侵入するCにより特に鋼板表層部にTi炭化物を形成させ、鋼板表層のみを優先的に硬化させるという、本発明が目的とする効果をより高めることもできる。
Here, the reason for limiting the content of each element as described above will be described.
Since Ti raises the recrystallization temperature of a steel plate and significantly deteriorates the annealing passability of the ultrathin steel plate targeted by the present invention, the smaller the content, the better. The content is made 0.050% or less. In normal applications where a particularly high r value is not required, it is not necessary to add Ti, and therefore the content thereof is 0.03% or less, more preferably 0.02% or less.
On the other hand, Ti is left in a solid solution state before the carburizing heat treatment, and Ti carbide is formed in the steel sheet surface layer portion in particular by C entering the steel sheet from the surface with carburizing, and only the steel sheet surface layer is preferentially cured. Further, the effect aimed by the present invention can be further enhanced.

本発明の鋼板は、本発明にて規定していない特性を付与するために、上記の組成に加えて、
さらに、質量%で、Sn、Sb、Mo、Ta、V、Wの群から選択された1種または2種以上を合計で0.1%以下含有してなることが好ましい。
In addition to the above composition, the steel plate of the present invention is provided with the characteristics not specified in the present invention,
Furthermore, it is preferable to contain 0.1% or less in total of one or more selected from the group consisting of Sn, Sb, Mo, Ta, V, and W by mass%.

ここで、鋼板の板厚方向の部位の区分について図1に基づき説明する。
ここでは、鋼板の表面からの深さが板厚の1/8の表層部分を「表層1/8厚さ」と称し、鋼板の板厚の1/4の層厚の中心層部分を「中心層1/4厚さ」と称する。これら「表層1/8厚さ」及び「中心層1/4厚さ」それぞれの対応部位を図1に示す。
なお、「表層1/8厚さ」に対応する部位は、鋼板の両面に存在するが、本発明では、鋼板のどちらか一方の面について本発明の限定範囲に該当するものを対象とする。浸炭の方法や浸炭前の表面処理、さらには浸炭後の何らかの処理等により表と裏の炭素分布や表面での炭化物分布を変化させることは比較的容易であるが、本発明では、そのような表裏異材質の鋼板についても対象とする。これは片面のみでも本発明が目的とする耐変形性を得ることが可能であり、また、少なくとも浸炭を行った面については、表面特性や溶接性の向上が可能だからである。
Here, the division | segmentation of the site | part of the thickness direction of a steel plate is demonstrated based on FIG.
Here, the surface layer portion whose depth from the surface of the steel plate is 1/8 of the plate thickness is referred to as “surface layer 1/8 thickness”, and the central layer portion of the steel plate thickness of 1/4 is referred to as “center”. Referred to as "layer 1/4 thickness". Corresponding portions of these “surface layer 1/8 thickness” and “center layer 1/4 thickness” are shown in FIG.
In addition, although the site | part corresponding to "surface layer 1/8 thickness" exists in both surfaces of a steel plate, in this invention, what corresponds to the limited range of this invention is made into any one surface of a steel plate. It is relatively easy to change the front and back carbon distribution and the carbide distribution on the surface by carburizing method, surface treatment before carburizing, and some treatment after carburizing. This also applies to steel sheets made of different materials. This is because the deformation resistance intended by the present invention can be obtained on only one side, and at least the carburized surface can improve surface characteristics and weldability.

ここで、「表層1/8厚さのC+N量」とは、表層1/8厚さにおけるC及びNの合計量のことであり、鋼板を研磨し、相当の部位のみを残存させた後、分析を行なうことで測定する。
同様に、「中心層1/4厚さのC+N量」とは、中心層1/4厚さにおけるC及びNの合計量のことであり、両面を研磨除去した後、相当の部位のみについての分析値を使用する。
この分析値は、成分元素の局所的な偏析や組織の不均一等により、通常、多少のばらつきが生ずるが、異常値を除外することができる程度の適当な回数の分析結果により決定される。
Here, “the amount of C + N of the surface layer 1/8 thickness” means the total amount of C and N in the surface layer 1/8 thickness, and after polishing the steel plate and leaving only a corresponding portion, Measure by performing analysis.
Similarly, the “C + N amount of the center layer 1/4 thickness” is the total amount of C and N in the center layer 1/4 thickness, and after polishing and removing both surfaces, Use analysis values.
This analysis value is determined by an analysis result of an appropriate number of times so that an abnormal value can be excluded, although a slight variation usually occurs due to local segregation of component elements or non-uniformity of the structure.

本発明の鋼板は、表層1/8厚さのC+N量が6000ppm以下である。
表層1/8厚さの平均で6000ppmということは、本発明の鋼材を通常の工程条件で製板した場合、最表面のC+N量が10000ppm以上となっており、メッキ不良など表面の問題が起きやすくなるからである。
よって、表層1/8厚さのC+N量の上限は、3000ppm以下が好ましく、より好ましくは2000ppm以下である。
In the steel sheet of the present invention, the amount of C + N having a surface layer thickness of 1/8 is 6000 ppm or less.
The average thickness of the surface layer 1/8 is 6000 ppm. When the steel material of the present invention is produced under normal process conditions, the C + N amount on the outermost surface is 10,000 ppm or more, and surface problems such as defective plating occur. This is because it becomes easier.
Therefore, the upper limit of the C + N amount of the surface layer 1/8 thickness is preferably 3000 ppm or less, more preferably 2000 ppm or less.

本発明では、鋼板の表層部と中心層部のC+N量に差をつけることが必要である。
この差は[表層1/8厚さのC+N量]−[中心層1/4厚さのC+N量]で規定され、この値は30ppm以上が好ましい。その理由は、この値が30ppmより小さいと、本発明が目的とする耐変形性が小さくなる虞があるからである。
この値は、好ましくは50ppm以上、より好ましくは70ppm以上、さらに好ましくは100ppm以上、さらに好ましくは150ppm以上、さらに好ましくは200ppm以上、さらに好ましくは300ppm以上である。
In the present invention, it is necessary to make a difference in the amount of C + N between the surface layer portion and the center layer portion of the steel sheet.
This difference is defined by [C + N amount of 1/8 thickness of surface layer]-[C + N amount of 1/4 thickness of center layer], and this value is preferably 30 ppm or more. The reason is that if this value is less than 30 ppm, there is a risk that the intended deformation resistance of the present invention is reduced.
This value is preferably 50 ppm or more, more preferably 70 ppm or more, still more preferably 100 ppm or more, still more preferably 150 ppm or more, still more preferably 200 ppm or more, and further preferably 300 ppm or more.

さらに、本発明では鋼板の板厚方向の特定位置に存在する炭化物または窒化物のサイズおよび数密度が規定される。以下、本発明で規定すべき炭化物または窒化物を「特定析出物」と定義する。
この特定析出物は、電子顕微鏡等の回折パターン、または電子顕微鏡に付設されたX線分析機器、あるいは化学分析等によっても同定が可能なものである。この特定析出物のサイズおよび面積率と数密度を制御するためには、後述する550〜800℃の温度範囲で温度と時間、および550から300℃までの冷却過程における冷却速度などを適当に制御することが有効であり、この影響は通常の条件であれば一般の析出物形成と同様、冷却速度が速く、低温であるほど窒化物サイズは微細かつ高密度となり、一方、冷却速度が遅く、所定の冷却温度まで長時間を要するほど、窒化物は異常粒成長し易くなり、窒化物サイズは粗大化する。
Furthermore, in this invention, the size and number density of the carbide | carbonized_material or nitride which exist in the specific position of the plate | board thickness direction of a steel plate are prescribed | regulated. Hereinafter, the carbide or nitride to be defined in the present invention is defined as “specific precipitate”.
This specific precipitate can be identified by a diffraction pattern such as an electron microscope, an X-ray analyzer attached to the electron microscope, or chemical analysis. In order to control the size, area ratio, and number density of the specific precipitate, the temperature and time in the temperature range of 550 to 800 ° C., which will be described later, and the cooling rate in the cooling process from 550 to 300 ° C. are appropriately controlled. This effect is effective under normal conditions, as is the case with general precipitate formation, the cooling rate is fast, the lower the temperature, the finer and denser the nitride size, while the slower the cooling rate, The longer the time required for the predetermined cooling temperature, the easier the nitride grows and the nitride size becomes coarser.

なお、本発明の特定析出物とは、炭化物または窒化物単独の析出物のみでなく、炭化物と窒化物の複合析出物、さらには酸化物、硫化物等との複合析出物も含まれる。
複合析出物を形成した場合、一つの析出物の種類および各化合物についてのサイズを特定することは困難であるが、明らかに一つの析出物が炭化物または窒化物である部分と、その他に分けられる場合を除いて、一つの特定析出物とする。
特定析出物の観察方法は特に限定されるものではないが、走査型電子顕微鏡(SEM)に付設されたエネルギー分散型X線マイクロアナライザ(EDX)や他の表面観察装置を用いて直接観察してもよいし、SPEED法によって得られた抽出レプリカ等を観察することも可能である。ただし、抽出レプリカ等ではレプリカが鋼板上の観察面のみの情報からなるようにレプリカ作成時に注意を払う必要がある。それは、SPEED法等による場合、電解抽出量が多すぎると板厚方向の情報が重畳することになり、鋼板を直接観察した時より、多くの析出物を観察することになるからである。
The specific precipitate of the present invention includes not only a precipitate of carbide or nitride alone, but also a composite precipitate of carbide and nitride, and further a composite precipitate of oxide, sulfide and the like.
When a composite precipitate is formed, it is difficult to specify the type of one precipitate and the size of each compound, but it is clearly divided into a portion where one precipitate is carbide or nitride and the other Except in some cases, it is a single specific precipitate.
The method for observing the specific precipitate is not particularly limited, but is directly observed using an energy dispersive X-ray microanalyzer (EDX) attached to a scanning electron microscope (SEM) or other surface observation apparatus. It is also possible to observe an extracted replica or the like obtained by the SPEED method. However, in the case of an extracted replica or the like, it is necessary to pay attention when creating the replica so that the replica consists only of information on the observation surface on the steel plate. This is because, in the case of the SPEED method or the like, if the amount of electrolytic extraction is too large, information in the plate thickness direction is superimposed, and more precipitates are observed than when the steel plate is directly observed.

それ故、電解抽出量は鋼板厚さに換算して2μm以内にとどめるべきである。また、特定析出物が非常に微細で抽出が良好でないと思われる場合には、薄膜を透過型電子顕微鏡(TEM)で観察してもよい。
組成の判定は、EDXにより分析を行い、主として観察される非金属元素がCの場合を炭化物、Nの場合を窒化物とする。また、大きさが小さいためCまたはNの特性スペクトルは明瞭ではなくとも、Fe、Ti、Nb、B、Cr等が検出され、かつ、O、S等の明瞭なスペクトルが観察されず、かつ炭化物または窒化物と特定できる他の析出物との形態比較から特定析出物とほぼ断定できる析出物も、本発明における特定析出物とする。
Therefore, the amount of electrolytic extraction should be kept within 2 μm in terms of steel plate thickness. In addition, when the specific precipitate is very fine and extraction is not good, the thin film may be observed with a transmission electron microscope (TEM).
The determination of the composition is analyzed by EDX, and when the observed non-metallic element is C, carbide is used, and when N is nitride, nitride is used. Further, because the size is small, the characteristic spectrum of C or N is not clear, but Fe, Ti, Nb, B, Cr, etc. are detected, and clear spectra of O, S, etc. are not observed, and carbides Alternatively, a precipitate that can be almost determined to be a specific precipitate from a form comparison between the nitride and another precipitate that can be specified is also a specific precipitate in the present invention.

また、析出物の定性に電子線回折パターン等を用いても良い。特定析出物の同定はEDXや電子線回折パターンといった手法によるものではなく、現在性能向上が著しいどのような分析機器を使用しても構わない。要は析出物の種類とサイズおよび数密度が、妥当と認められる方法により決定できればよい。
特定析出物の下限値は、本発明の出願時における通常使用される分析機器の分解能が概ね0.02μmであることから、0.02μmを下限値とした。
Moreover, you may use an electron beam diffraction pattern etc. for the qualification of a precipitate. The identification of the specific precipitate is not based on a technique such as EDX or electron diffraction pattern, and any analytical instrument that is currently significantly improved in performance may be used. In short, it is only necessary that the type, size, and number density of the precipitates can be determined by an appropriate method.
The lower limit value of the specific precipitate is set to 0.02 μm because the resolution of a commonly used analytical instrument at the time of filing of the present invention is approximately 0.02 μm.

また、形状が延伸した窒化物が見られる場合があるが、形状が等方的でないものについては、長径と短径との平均を、その析出物の直径とする。
鋼板1/4厚さ位置における断面観察においては、鋼板の研磨が必要となることは言うまでもないが、鋼板の表面を清浄にするため、または析出物を明確にし正確な観察を行うため、何らかの研磨またはエッチングを行うことも可能である。
鋼板の表面を研磨またはエッチングした場合、観察面は厳密には鋼板表面ではなくなるため、加工を行わないことが好ましいことは言うまでもなく、研磨等を必要としない何らかの方法を選択すべきである。表面を加工する場合も、加工による板厚減少量は2μm程度以下にとどめるべきである。
また、板の表面方向からの観察(二次元的な観察)ではなく、断面方向からの観察(表面および1/4厚さ位置に関する観察は二次元的でなく一次元的)により面積率や数密度、直径等を算出してもよい。なお、画像解析装置等を用いて窒化物の数と直径を求めることもできる。
Moreover, although the nitride which the shape extended | stretched may be seen, about the thing whose shape is not isotropic, let the average of a major axis and a minor axis be the diameter of the precipitate.
Needless to say, it is necessary to polish the steel plate in the cross-sectional observation at the 1/4 thickness position of the steel plate. Alternatively, etching can be performed.
When the surface of the steel plate is polished or etched, the observation surface is not strictly the surface of the steel plate, and it is needless to say that it is preferable not to perform processing, and any method that does not require polishing or the like should be selected. Even when the surface is processed, the reduction in plate thickness due to the processing should be limited to about 2 μm or less.
In addition, the area ratio and number are not based on the observation from the surface direction of the plate (two-dimensional observation) but from the cross-sectional direction (observation on the surface and 1/4 thickness position is not two-dimensional but one-dimensional). You may calculate a density, a diameter, etc. Note that the number and diameter of nitrides can also be obtained using an image analysis device or the like.

本発明の特徴の一つは、鋼板表面での特定析出物の状態に差を有せしめることである。
以下、本発明の重要な要件である鋼板の表面状態について説明する。
本発明は、主に鋼板の表面の特定析出物の形態を制御するものであり、鋼板に炭素および/または窒素の濃度制御、すなわち、浸炭雰囲気での熱処理や窒化雰囲気での熱処理を施し、鋼板の表面を当該鋼板とは異なる物質で覆うことで、表面の不均一さを増大させ、目的とする表面状態に関連した特性の向上を図るものである。
また表面状態に関連した特性は、表面に形成される特定析出物の形態に依存するため、炭素および/または窒素の濃度制御、すなわち、浸炭雰囲気での熱処理や窒化雰囲気での熱処理後の熱履歴、冷却条件等によっても特定析出物についての制御を行う。
One of the characteristics of the present invention is to make a difference in the state of specific precipitates on the steel sheet surface.
Hereinafter, the surface state of the steel sheet, which is an important requirement of the present invention, will be described.
The present invention mainly controls the form of specific precipitates on the surface of a steel sheet, and the steel sheet is subjected to carbon and / or nitrogen concentration control, that is, heat treatment in a carburizing atmosphere or heat treatment in a nitriding atmosphere. By covering the surface with a material different from that of the steel plate, the surface non-uniformity is increased, and the characteristics related to the target surface state are improved.
In addition, since the properties related to the surface state depend on the form of specific precipitates formed on the surface, the concentration of carbon and / or nitrogen is controlled, that is, the heat history after heat treatment in a carburizing atmosphere or heat treatment in a nitriding atmosphere. The specific precipitates are also controlled depending on the cooling conditions.

鋼板の表面における特定析出物の状態を限定する方法として、本発明では特定析出物の面積率を用い、鋼板の表面における窒化物および/または炭化物の面積率と、前記鋼板の板厚の1/4の層厚である中心層の前記表面に平行な断面における窒化物および/または炭化物の面積率との比、すなわち、[表面での窒化物および/または炭化物の面積率]/[板厚1/4位置の断面での窒化物および/または炭化物の面積率]、で規定でき、この比を1.5以上、好ましくは3以上、より好ましくは6以上、さらに好ましくは10以上、さらに好ましくは30以上、さらに好ましくは100以上とする。
この比が1.5を下まわると、本発明の効果が小さくなり、目的とする鋼板が得られない。一方、この比が大きいほど、基本的には本発明の効果が大きくなることは言うまでもない。
As a method for limiting the state of the specific precipitate on the surface of the steel sheet, in the present invention, the area ratio of the specific precipitate is used, and the area ratio of nitride and / or carbide on the surface of the steel sheet and 1 / th of the plate thickness of the steel sheet. The ratio of the area ratio of nitride and / or carbide in the cross section parallel to the surface of the central layer having a layer thickness of 4, ie, [area ratio of nitride and / or carbide on the surface] / [plate thickness 1 / 4 area area ratio of nitride and / or carbide], and this ratio is 1.5 or more, preferably 3 or more, more preferably 6 or more, more preferably 10 or more, and still more preferably 30 or more, more preferably 100 or more.
When this ratio is less than 1.5, the effect of the present invention is reduced and the intended steel sheet cannot be obtained. On the other hand, it goes without saying that the effect of the present invention basically increases as the ratio increases.

この特定析出物の面積率は、最終製品の鋼板と、浸炭雰囲気での熱処理や窒化雰囲気での熱処理を施す以前の鋼板とを比較することによっても、同様に規定することができる。この場合、最終製品の鋼板における表面の窒化物および/または炭化物の面積率と、浸炭雰囲気での熱処理や窒化雰囲気での熱処理を施す以前の鋼板における表面の窒化物および/または炭化物の面積率との比、すなわち、[最終製品板の表面での窒化物および/または炭化物の面積率]/窒化処理前や浸炭処理前の鋼板の表面での窒化物および/または炭化物の面積率]、で規定でき、この場合も上記と同様に、この比を1.5以上、好ましくは3以上、より好ましくは6以上、さらに好ましくは10以上、さらに好ましくは30以上、さらに好ましくは100以上とする。
この比が大きいほど基本的には本発明の効果が大きくなることは言うまでもない。
The area ratio of the specific precipitate can be similarly defined by comparing the steel plate of the final product with the steel plate before being subjected to heat treatment in a carburizing atmosphere or heat treatment in a nitriding atmosphere. In this case, the surface nitride and / or carbide area ratio in the final product steel sheet, and the surface nitride and / or carbide area ratio in the steel sheet before heat treatment in a carburizing atmosphere or heat treatment in the nitriding atmosphere Ratio, that is, [area ratio of nitride and / or carbide on the surface of the final product plate] / area ratio of nitride and / or carbide on the surface of the steel plate before nitriding or carburizing treatment] In this case as well, the ratio is set to 1.5 or more, preferably 3 or more, more preferably 6 or more, still more preferably 10 or more, still more preferably 30 or more, and still more preferably 100 or more, as described above.
Needless to say, the larger the ratio, the greater the effect of the present invention.

この特定析出物が鋼板全面を覆っていても問題はない。ただし、膜状に形成した特定析出物は、破壊し易く、製造工程での通板においては少なからず破壊する。そこで、注意を要するのは、表面の特定析出物の膜が非常に厚い場合で、鋼板の破断の起点になったり、何らかの表面欠陥として認識される場合もある。したがって、鋼材にC、Nを過剰に添加することで生じる鋼板の表面におけるC、Nの高濃度化は避けるべきである。
さらに、表面の特定析出物の形態としては、粗大なものがまばらに分散するよりも、ある程度微細なものが均一に分散することが好ましい。
ただし、あまりに微細なものは本発明が目的とする表面改質効果に対する寄与が小さくなる場合もあるので、直径0.10μm以上のものを対象とする。
There is no problem even if this specific precipitate covers the entire surface of the steel sheet. However, the specific deposit formed in a film shape is easy to break, and it is not a little broken in the sheet passing in the manufacturing process. Therefore, it is necessary to pay attention to the case where the film of the specific precipitate on the surface is very thick, which may be the starting point of the fracture of the steel plate or may be recognized as some surface defect. Therefore, high concentration of C and N on the surface of the steel sheet caused by excessive addition of C and N to the steel material should be avoided.
Further, as the form of the specific precipitate on the surface, it is preferable that the fine precipitates are uniformly dispersed rather than the coarse ones being dispersed sparsely.
However, too fine ones may have a small contribution to the target surface modification effect of the present invention, so those having a diameter of 0.10 μm or more are targeted.

本発明の特徴の他の一つは、鋼板の表面粗度を制御することである。
以下、本発明の鋼板の表面粗度の制御について説明する。
鋼板の表面粗度については、様々なものが考えられるが、本発明では、表面粗さ(Ra)と、長さ1インチあたりの凹凸の頂点の個数(PPI)を採用することとする。
表面粗さ(Ra)およびPPIの測定方法は特に限定するものではないが、触針式、レーザー式などの方法、二次元、三次元測定など通常行われる方法を用いる。
Another feature of the present invention is to control the surface roughness of the steel sheet.
Hereinafter, control of the surface roughness of the steel sheet of the present invention will be described.
Although various things can be considered about the surface roughness of a steel plate, in this invention, suppose that surface roughness (Ra) and the number of the peak of an unevenness | corrugation per inch (PPI) are employ | adopted.
The method for measuring the surface roughness (Ra) and the PPI is not particularly limited, and a commonly used method such as a stylus method or a laser method, or two-dimensional or three-dimensional measurement is used.

本発明では、鋼板の表面粗さ(Ra)が0.90μm以下、かつ、そのPPIが250個以上であることを特徴とする。
ここで、表面粗さ(Ra)が0.90μmを超えるか、または、PPIが250個未満であると、本発明が目的とする色調、密着性、溶接性などの表面凹凸に起因する特性が劣化する。
この表面粗さ(Ra)は、好ましくは0.80μm以下、より好ましくは0.70μm以下、さらに好ましくは0.60μm以下、さらに好ましくは0.50μm以下である。
また、このPPIは、好ましくは300以上、より好ましくは350以上、さらに好ましくは400以上、さらに好ましくは450以上、さらに好ましくは500以上である。
In the present invention, the surface roughness (Ra) of the steel sheet is 0.90 μm or less and the PPI is 250 or more.
Here, when the surface roughness (Ra) exceeds 0.90 μm or the PPI is less than 250, the characteristics caused by the surface irregularities such as color tone, adhesion, weldability and the like intended by the present invention are obtained. to degrade.
The surface roughness (Ra) is preferably 0.80 μm or less, more preferably 0.70 μm or less, further preferably 0.60 μm or less, and further preferably 0.50 μm or less.
The PPI is preferably 300 or more, more preferably 350 or more, still more preferably 400 or more, still more preferably 450 or more, and further preferably 500 or more.

定性的には、高さの揃った凹凸が高密度で存在することが好ましい。
表面粗さ(Ra)の下限は、特に限定されるものではなく、窒化・浸炭条件や調質圧延条件等により目的に応じた値に制御される。この下限値は、現実的には0.02μm以上である。
また、PPIの上限も限定されるものではなく、目的に応じて窒化・浸炭条件や調質圧延条件等により制御される。
Qualitatively, it is preferable that unevenness with uniform height exists at a high density.
The lower limit of the surface roughness (Ra) is not particularly limited, and is controlled to a value according to the purpose by nitriding / carburizing conditions, temper rolling conditions, and the like. This lower limit value is practically 0.02 μm or more.
Further, the upper limit of PPI is not limited, and is controlled by nitriding / carburizing conditions, temper rolling conditions, and the like according to the purpose.

基本的には、上述の独立した特定析出物または独立して露出した鋼表面部を微細に分散させた方が、表面粗さ(Ra)は低く、PPIは高くなる。
具体的には、高濃度のアンモニア雰囲気中で短時間の窒化を、高濃度の浸炭性雰囲気中で短時間の浸炭を、それぞれ行い、その後の冷却を高速で行うことになる。もちろん、表面の状態はそれ以前の鋼成分や結晶粒径、焼鈍温度や冷延条件、さらには窒化・浸炭後の調質圧延時の圧下率やパス数、ロール粗度、金属めっきを行う場合はめっき条件等にも影響されるので、特定の範囲に限定することは困難であるが、基本的な制御は通常行われるものと同様である。
Basically, the surface roughness (Ra) is lower and the PPI is higher when the above-mentioned independent specific precipitates or the independently exposed steel surface are finely dispersed.
Specifically, short-time nitridation is performed in a high-concentration ammonia atmosphere and short-term carburization is performed in a high-concentration carburizing atmosphere, and then cooling is performed at a high speed. Of course, the surface condition is the previous steel composition, crystal grain size, annealing temperature and cold rolling conditions, as well as rolling reduction and number of passes during temper rolling after nitriding and carburizing, roll roughness, metal plating Since it is also affected by plating conditions and the like, it is difficult to limit to a specific range, but the basic control is the same as that normally performed.

従来の技術では、鋼板の表面粗度を制御するために、焼鈍後の調質圧延において圧延ロールの凹凸を転写したり、特殊な電解処理やめっき等により表面被覆する金属の形態を制御したり、さらには、粗度は金属めっきなどの鋼板表面への付着の状態にも強く依存するため、めっきによる被覆物の形態等が精緻に行われてきた。
一方、本発明においては、これらの条件をほとんど受けることがないため、生産上の多大な利点を享受することができる。
In the conventional technology, in order to control the surface roughness of the steel sheet, the unevenness of the rolling roll is transferred in the temper rolling after annealing, or the form of the metal coated on the surface by special electrolytic treatment or plating is controlled. Furthermore, since the roughness strongly depends on the state of adhesion to the surface of the steel plate such as metal plating, the form of the coating by plating has been precisely performed.
On the other hand, in the present invention, since these conditions are hardly received, a great production advantage can be obtained.

例えば、圧延ロールの凹凸については、従来は圧延により圧延ロールの凹凸が摩滅してしまうため、鋼板表面の凹凸を好ましい範囲に規定するために圧延ロールの取り替え、凹凸加工を頻繁に行う必要があるばかりでなく、その管理のために生産を中断する等、生産性、労力の面でも過大な負荷を生じていた。
これに対し、本発明においては、鋼板の表面状態は調質圧延の方法にはほとんど影響されず、圧延ロールの凹凸の摩滅をほとんど管理することなく大量の処理を行うことが可能となる。
For example, with regard to the unevenness of the rolling roll, conventionally, the unevenness of the rolling roll is worn out by rolling, and therefore it is necessary to frequently perform replacement of the rolling roll and uneven processing in order to define the unevenness on the surface of the steel sheet within a preferable range. Not only that, production was interrupted for its management, which caused an excessive load in terms of productivity and labor.
On the other hand, in the present invention, the surface state of the steel sheet is hardly affected by the temper rolling method, and a large amount of processing can be performed without almost managing the wear of the unevenness of the rolling roll.

また、金属めっきの形態についても、特にめっき条件等を精緻に制御することなく、非常に微細で形状が揃った金属めっき被覆物を均一に分散させることが可能になる。これにより、鋼板の生産性を大幅に向上させることが可能となる。
なお、一般的に、焼鈍後には調質圧延が行われる場合がほとんどであるが、本発明では、通常の連続焼鈍ライン内を通板させる際のハースロールの曲げによっても鋼板表面に微細な亀裂、凹凸が形成されるため、調質圧延が必須となるものではない。
In addition, regarding the form of metal plating, it is possible to uniformly disperse a very fine and uniform metal plating coating without particularly controlling the plating conditions and the like. Thereby, the productivity of the steel sheet can be greatly improved.
In general, temper rolling is usually performed after annealing, but in the present invention, fine cracks are also formed on the surface of the steel sheet by bending of a hearth roll when passing through a normal continuous annealing line. Since the irregularities are formed, temper rolling is not essential.

このように、鋼板の表面粗度がその粗度を生じさせる手法、条件にほとんど影響を受けない理由は明確ではないが、粗度を生じる原因が鋼板そのもの、つまり鋼表面での特定析出物の分散状態にあるためと考えられる。以下、このメカニズムについて説明する。
本発明の鋼板は、鋼板表面の通常に比べれば非常に大きな部分を特定析出物で覆うことにより、通常の基本的に均質なFeである鋼板とは異なった状態にしていることが基本的な点である。鋼板の表面が特定析出物で部分的に覆われている場合には、特定析出物の部分と鋼板が露出している部分とで表面特性に差が生じている。
As described above, it is not clear why the surface roughness of the steel sheet is hardly affected by the method and conditions for generating the roughness, but the cause of the roughness is the steel sheet itself, that is, the specific precipitate on the steel surface. This is thought to be due to the distributed state. Hereinafter, this mechanism will be described.
The steel sheet of the present invention is basically in a state different from a steel sheet, which is basically homogeneous Fe, by covering a very large portion of the steel sheet surface with a specific precipitate as compared with a normal one. Is a point. When the surface of the steel plate is partially covered with the specific precipitate, there is a difference in surface characteristics between the specific precipitate portion and the portion where the steel plate is exposed.

この特定析出物は、鋼を構成する成分とは変形特性が大きく異なるものであるから、スキンパスや鋼板製造時の通板に伴う曲げ加工による変形は、ミクロな領域で特定析出物部分と鋼板露出部分で異なる。
これにより、本発明の鋼板の製造過程では、表面粗度についてはスキンパスなどの加工条件の影響が緩和され、鋼板表面の特定析出物の状態のみに強く依存したものとなる。また、ほぼ全面が特定析出物で覆われた場合にも、この特定析出物は鋼板製造時の際のわずかな変形により微細化され、均一な表面粗度を形成するようになる。
Since this specific precipitate is greatly different in deformation characteristics from the components that make up steel, deformation due to bending during the skin pass and through-sheeting during steel plate production is limited to the specific precipitate portion and the exposed steel plate in the micro area. Different in part.
Thereby, in the manufacturing process of the steel sheet of the present invention, the influence of the processing conditions such as the skin pass is alleviated on the surface roughness, and strongly depends only on the state of the specific precipitate on the steel sheet surface. Further, even when almost the entire surface is covered with the specific precipitate, the specific precipitate is refined by a slight deformation during the production of the steel sheet, and forms a uniform surface roughness.

さらに、このような特定析出物は、例えば、メッキ等の表面処理における被覆物質との濡れ性、反応性が通常の鋼板とは大きく変化する。そのため、表面処理における被覆物質は、鋼板表面の特定析出物の存在状態に依存して不均一性を示すようになる。そこで、鋼板製造時に、鋼板の表面に形成される特定析出物または露出した鋼表面を微細化しておけば、表面処理による被覆物質を表面処理条件等に関わらず微細化することができる。   Further, such specific precipitates greatly change in wettability and reactivity with a coating substance in a surface treatment such as plating, for example, from a normal steel plate. Therefore, the coating substance in the surface treatment shows non-uniformity depending on the presence state of specific precipitates on the steel sheet surface. Therefore, if the specific precipitate formed on the surface of the steel sheet or the exposed steel surface is refined during the production of the steel sheet, the coating material by the surface treatment can be refined regardless of the surface treatment conditions.

本発明の鋼板は、
質量%で、C:0.0800%以下、N:0.0600%以下、Si:2.0%以下、Mn:2.0%以下、P:0.10%以下、S:0.05%以下、Al:2.0%以下を含有し、残部が鉄および不可避不純物からなる鋼材に熱間圧延、冷間圧延、再結晶熱処理を順次施す際に、再結晶熱処理と同時またはその後に、炭素および/または窒素の濃度制御を行い、前記鋼材の表面からの深さが板厚の1/8の表層におけるC及びNの合計量を6000ppm以下、かつ、前記表層のC及びNの合計量と前記鋼板の板厚の1/4の層厚の中心層におけるC及びNの合計量との差を30ppm以上とすることにより得ることができる。
The steel plate of the present invention is
In mass%, C: 0.0800% or less, N: 0.0600% or less, Si: 2.0% or less, Mn: 2.0% or less, P: 0.10% or less, S: 0.05% In the following, when a steel material containing Al: 2.0% or less and the balance being iron and inevitable impurities is subjected to hot rolling, cold rolling, and recrystallization heat treatment in sequence, carbon is simultaneously with or after the recrystallization heat treatment. And / or nitrogen concentration control, the total amount of C and N in the surface layer whose depth from the surface of the steel material is 1/8 of the plate thickness is 6000 ppm or less, and the total amount of C and N in the surface layer It can be obtained by setting the difference from the total amount of C and N in the central layer having a layer thickness of 1/4 of the thickness of the steel sheet to 30 ppm or more.

ここで、炭素の濃度制御は、浸炭処理が好ましく、浸炭処理は、浸炭雰囲気での熱処理が好ましい。また、窒素の濃度制御は、窒化処理が好ましく、窒化処理は窒素雰囲気での熱処理が好ましい。
以下、本発明の重要な要件である浸炭処理の条件、および必要に応じて適用される窒化処理の条件について説明する。
浸炭処理と窒化処理は、それぞれ単独で行っても良いし、別々に行っても良い。また、処理の順番も特に制限されない。ただし、本発明の効果が、窒化に伴う表層Cの脱炭の影響を浸炭により補うことにより発現し易くなるものであることや、鋼板の表層のみを硬化させるため熱処理時間を短くすることが有利であることから、窒化の後に浸炭することが好ましく、さらに好ましくは、同時に処理する、いわゆる浸炭・窒化雰囲気で処理することが好ましい。
Here, the carbon concentration control is preferably carburizing treatment, and the carburizing treatment is preferably heat treatment in a carburizing atmosphere. The nitrogen concentration is preferably controlled by nitriding treatment, and the nitriding treatment is preferably heat treatment in a nitrogen atmosphere.
Hereinafter, the conditions for carburizing treatment, which are important requirements of the present invention, and the conditions for nitriding treatment applied as necessary will be described.
The carburizing process and the nitriding process may be performed independently or separately. Further, the order of processing is not particularly limited. However, it is advantageous that the effect of the present invention is easily manifested by supplementing the effect of decarburization of the surface layer C due to nitriding by carburizing, and shortening the heat treatment time to cure only the surface layer of the steel plate. Therefore, it is preferable to perform carburization after nitriding, and it is more preferable to perform processing in a so-called carburizing / nitriding atmosphere that is processed simultaneously.

注意すべき点は、これらの熱処理前後で、鋼板のC含有量およびN含有量の双方が増加する必要はない。
例えば、浸炭処理を適用する場合、特殊な場合においては、本発明が規定する浸炭処理の前に何らかの工程で大幅な脱炭が起きており、鋳片から最終製品におよぶ全工程を考えると、鋼板平均でのC含有量は減少しているものの鋼板表層では顕著なC増量が生じ、結果として、本発明の鋼板を得ることができるからである。窒化処理とN含有量に関しても同様であり、結果として、本発明で主たる目的である耐変形性や表面特性、溶接性に関しては、鋼板平均でのCおよびNの各々の量は、本発明においては重要な意味を有しないこととなる。
It should be noted that it is not necessary to increase both the C content and the N content of the steel sheet before and after these heat treatments.
For example, when applying carburizing treatment, in special cases, significant decarburization has occurred in some process before carburizing treatment specified by the present invention, and considering the entire process from the slab to the final product, This is because although the C content in the steel sheet average is reduced, a significant C increase occurs in the steel sheet surface layer, and as a result, the steel sheet of the present invention can be obtained. The same applies to the nitriding treatment and the N content. As a result, with respect to deformation resistance, surface characteristics, and weldability, which are the main purposes of the present invention, the respective amounts of C and N in the steel sheet average are determined in the present invention. Will not have an important meaning.

以上のような理由から、本発明では単に「浸炭処理」という表現が行われている場合にも、例えば、窒化処理と同時に行われる場合には、結果として窒化に起因すると考えられるC量の減少量が大きく、処理前後でC量が減少する場合もある。このような事例を考え、本発明では、より厳密な表現が必要と考えられる部分では、単に「浸炭処理」ではなく、「浸炭雰囲気での熱処理」といった表現を用いる。すなわち、熱処理雰囲気によっては、浸炭性ガスを含む雰囲気中での熱処理であるにもかかわらず脱炭が起きる場合が考えられるが、その場合にも、浸炭性ガスを含まない雰囲気において熱処理を行った場合と比較すれば、脱炭量は小さく抑えられているからである。   For the above reasons, in the present invention, even when the expression “carburizing process” is simply performed, for example, when it is performed simultaneously with the nitriding process, as a result, a reduction in the C amount that is considered to be caused by nitriding. The amount is large, and the amount of C may decrease before and after processing. Considering such cases, the present invention uses expressions such as “heat treatment in a carburizing atmosphere” instead of simply “carburizing treatment” in parts where more strict expressions are considered necessary. That is, depending on the heat treatment atmosphere, decarburization may occur despite the heat treatment in an atmosphere containing a carburizing gas. In this case, the heat treatment was performed in an atmosphere containing no carburizing gas. This is because the amount of decarburization is kept small compared to the case.

本発明で重要な点は、浸炭雰囲気で熱処理を行うことで、目的にとって非常に好ましい濃度分布、鋼板表面を含む表層での特定析出物分布を得ることである。
例えば、窒化雰囲気での熱処理を行わない場合や、窒化による材質変化が小さい場合には、浸炭雰囲気での熱処理が上記の分布を制御するための主要な手段となる。また、上記の分布を主として窒化により制御する場合には、浸炭雰囲気での熱処理は、主として窒化に伴う脱炭に起因する、耐変形性や表面特性、溶接性の不具合を抑制・改善するための主要な手段となる。
The important point in the present invention is to obtain a highly preferable concentration distribution for the purpose and a specific precipitate distribution in the surface layer including the steel sheet surface by performing the heat treatment in a carburizing atmosphere.
For example, when the heat treatment in the nitriding atmosphere is not performed or when the material change due to nitriding is small, the heat treatment in the carburizing atmosphere is a main means for controlling the above distribution. In addition, when the above distribution is controlled mainly by nitriding, the heat treatment in the carburizing atmosphere is mainly for suppressing and improving defects in deformation resistance, surface characteristics, and weldability caused by decarburization accompanying nitriding. It becomes the main means.

なお、本発明で特に耐変形性に関して目的とする強度を達成するには、基本的には、浸炭処理によるよりも、窒化処理によるほうが好ましい。その理由は、CよりNの方が鋼中への固溶限が大きく、大きな固溶体強化の効果を利用できることや、高温からの急速冷却熱処理により多量かつ微細な析出物を得やすいことによるからである。よって、発明の最も好ましい形態としては、窒化により必要な耐変形性を付与し、その際に不可避的に起きる可能性がある表面C状態の変化に起因する表面特性および溶接性への悪影響を、浸炭処理を行うことにより回避するとともに、好ましい炭化物形態を実現することで、表面特性や溶接性を浸炭処理を行わないもの以上に向上させるものとなる。   In order to achieve the target strength, particularly with respect to deformation resistance, in the present invention, basically, nitriding treatment is preferable to carburizing treatment. The reason for this is that N has a larger solid solution limit in steel than C and can utilize the effect of strengthening a large solid solution, and it is easy to obtain a large amount of fine precipitates by rapid cooling heat treatment from a high temperature. is there. Therefore, as the most preferable form of the invention, the necessary deformation resistance is imparted by nitriding, and the adverse effect on the surface properties and weldability due to the change in the surface C state that may inevitably occur at that time, By avoiding the carburizing treatment and realizing a preferable carbide form, the surface characteristics and weldability are improved more than those without carburizing treatment.

以下、本発明では、「浸炭雰囲気での熱処理」および「窒化雰囲気での熱処理」を包括する用語として「特定熱処理」を用いる。
この特定熱処理は、冷延後の再結晶焼鈍と同時またはその後に、再結晶焼鈍と連続して行なうことが生産性の観点からは好都合である。焼鈍の方法はバッチ式または連続焼鈍を問わずに適用が可能である。ただし、特定熱処理の生産性およびコイル内材質の均一性の観点からは連続焼鈍法がはるかに有利である。
また、本発明が規定するように表内層の材質を制御し大きな効果を得るには特定熱処理時間およびその後の熱履歴が長時間化するのは不利となることからも、少なくとも特定熱処理は連続焼鈍設備で行なわれることが好ましい。また、特別な理由がない場合は連続焼鈍材に適用されるものとする。
特に、連続焼鈍工程において炉中の雰囲気を部分的に制御し、前半で再結晶、後半で特定熱処理する工程は生産性や材質の均一性、浸炭または窒化状態の制御のし易さなど多くのメリットがある。
Hereinafter, in the present invention, “specific heat treatment” is used as a term encompassing “heat treatment in a carburizing atmosphere” and “heat treatment in a nitriding atmosphere”.
It is advantageous from the viewpoint of productivity that this specific heat treatment is performed simultaneously with or after the recrystallization annealing after the cold rolling and continuously with the recrystallization annealing. The annealing method can be applied regardless of batch type or continuous annealing. However, the continuous annealing method is far more advantageous from the viewpoint of the productivity of the specific heat treatment and the uniformity of the material in the coil.
Further, in order to obtain a large effect by controlling the material of the inner layer as specified by the present invention, it is disadvantageous that the specific heat treatment time and the subsequent heat history are prolonged. It is preferably performed in equipment. Moreover, when there is no special reason, it shall apply to a continuous annealing material.
In particular, in the continuous annealing process, the atmosphere in the furnace is partially controlled, the process of recrystallization in the first half and the specific heat treatment in the second half are many such as productivity, uniformity of material, easy control of carburizing or nitriding state, etc. There are benefits.

また、再結晶が終了する前に特定熱処理を行なうと、再結晶が著しく抑制されて未再結晶組織が残り、加工性の顕著な劣化が起こる場合があり注意が必要である。この限界は、鋼成分や特定熱処理条件、再結晶焼鈍条件などで複雑に決定されるものであるが、未再結晶組織が残存しない条件を適度な試行の後に見出すことは容易である。また、特定熱処理の条件は、特定熱処理による鋼板のC、N量の変化のみならず、鋼成分や再結晶焼鈍条件、さらには特定熱処理後の熱履歴等も考慮し、C、Nの鋼板表面から内部への拡散や板表面での特定析出物の形態変化を考えて決定する必要がある。単にロックウェル硬度で決定される材質だけを指標にしたのでは本発明が目的とする好ましい耐変形性や表面特性、溶接性を得ることはできない。   In addition, if a specific heat treatment is performed before recrystallization is completed, recrystallization is remarkably suppressed, an unrecrystallized structure remains, and remarkable deterioration in workability may occur. This limit is complicatedly determined by steel components, specific heat treatment conditions, recrystallization annealing conditions, and the like, but it is easy to find a condition in which no unrecrystallized structure remains after an appropriate trial. The specific heat treatment conditions include not only changes in the C and N contents of the steel sheet due to the specific heat treatment, but also steel components and recrystallization annealing conditions, as well as the heat history after the specific heat treatment, etc. It is necessary to determine the diffusion from the inside to the inside and the change in the shape of the specific precipitate on the plate surface. If only the material determined by the Rockwell hardness is used as an index, the preferred deformation resistance, surface characteristics and weldability intended by the present invention cannot be obtained.

特定熱処理の条件は、詳細には適当な回数の試行結果を参考とし決定する必要があるが、基本的な考え方は以下のようであり、それに基づき本発明を規定する。
すなわち、特定熱処理は板温度が550〜800℃の状態で行なわれることが好ましい。これは通常の焼鈍のように特定熱処理の雰囲気をこの温度にしておきその雰囲気中を鋼板を通過させることで板温度をこの範囲にして行なうことも可能であるし、特定熱処理の雰囲気そのものはより低い温度としておき、この範囲の温度に加熱した鋼板をその中に侵入させることで特定熱処理を進行させてもよい。
The specific heat treatment conditions need to be determined in detail with reference to the results of trials of an appropriate number of times, but the basic idea is as follows, and the present invention is defined based on the following.
That is, the specific heat treatment is preferably performed at a plate temperature of 550 to 800 ° C. It is also possible to set the temperature of the specified heat treatment to this temperature by passing the steel plate through this atmosphere as in the normal annealing, and the temperature of the specified heat treatment itself is more than that. The specific heat treatment may be allowed to proceed by keeping the temperature low and allowing a steel plate heated to a temperature in this range to enter.

特定熱処理における雰囲気をこの温度に昇温する場合には、鋼板の特定熱処理とは無関係な雰囲気の変質および分解により鋼板の特定熱処理の効率が低下する場合があるので550〜750℃とする。好ましくは600〜700℃、さらに好ましくは630〜680℃である。また、特定熱処理の雰囲気については、例えば、窒化処理の場合には、窒化性ガスとして体積比でアンモニアガス等の窒化性ガスを0.02%以上含んだものとすることが好ましく、また、浸炭処理の場合には、浸炭性ガスとして体積比でアセチレン、エチレン、メタン、ブタン、エタン等の炭化水素ガスを0.02%以上含んだものとすることが好ましい。   When the temperature in the specific heat treatment is raised to this temperature, the efficiency of the specific heat treatment of the steel sheet may be reduced due to alteration and decomposition of the atmosphere unrelated to the specific heat treatment of the steel sheet, so that the temperature is set to 550 to 750 ° C. Preferably it is 600-700 degreeC, More preferably, it is 630-680 degreeC. As for the atmosphere of the specific heat treatment, for example, in the case of nitriding, it is preferable to contain 0.02% or more of a nitriding gas such as ammonia gas by volume ratio as the nitriding gas. In the case of treatment, it is preferable that the carburizing gas contains 0.02% or more of a hydrocarbon gas such as acetylene, ethylene, methane, butane and ethane by volume ratio.

これらのガスや雰囲気の種類は、窒化処理または浸炭処理と同等の効果を有するものであれば、特に限定されるものではなく、残部は水素ガス、窒素ガス、二酸化炭素ガス、アルゴン等、各種の比較的不活性なガスが可能である。特に、アンモニアガスは窒化効率を上げるために効果が高く、所定の窒化量を短時間で得ることが可能となるため鋼板中心へのNの拡散を抑制し、本発明にとって好ましい効果を得ることができる。特定熱処理のための窒化性ガスの濃度は0.02%以下でも十分であるが、好ましくは0.1%以上、さらに好ましくは0.2%以上、さらに好ましくは1.0%以上、さらに好ましくは5%以上であり、さらに10%以上とすれば5秒以下での熱処理でも十分な効果を得ることが可能となる。   The type of these gases and atmospheres is not particularly limited as long as it has an effect equivalent to that of nitriding or carburizing, and the remainder is various gases such as hydrogen gas, nitrogen gas, carbon dioxide gas, and argon. A relatively inert gas is possible. In particular, ammonia gas is highly effective for increasing the nitriding efficiency, and a predetermined amount of nitriding can be obtained in a short time. Therefore, N diffusion to the center of the steel sheet can be suppressed, and a favorable effect can be obtained for the present invention. it can. The concentration of the nitriding gas for the specific heat treatment may be 0.02% or less, but is preferably 0.1% or more, more preferably 0.2% or more, more preferably 1.0% or more, more preferably Is 5% or more, and if it is further 10% or more, a sufficient effect can be obtained even by heat treatment in 5 seconds or less.

また、浸炭性ガスの濃度も同様に、好ましくは0.1%以上、さらに好ましくは0.2%以上、さらに好ましくは1.0%以上、さらに好ましくは5%以上であり、さらに10%以上とすれば5秒以下での熱処理でも十分な効果を得ることが可能となる。また、通常の焼鈍においては窒素ガスと水素ガスを主体とした雰囲気中で焼鈍が行なわれるが、露点の変化や、酸素や水蒸気等が通常の熱処理等と同程度に混入し、浸炭や窒化が影響を受けることも考慮して、適当な試行の後に、好ましい範囲に制御が可能である。   Similarly, the concentration of the carburizing gas is preferably 0.1% or more, more preferably 0.2% or more, further preferably 1.0% or more, more preferably 5% or more, and further 10% or more. As a result, a sufficient effect can be obtained even by heat treatment in 5 seconds or less. In normal annealing, annealing is performed in an atmosphere mainly composed of nitrogen gas and hydrogen gas. However, dew point changes, oxygen, water vapor, etc. are mixed to the same extent as in normal heat treatment, and carburization and nitriding occur. In consideration of the influence, it is possible to control within a preferable range after an appropriate trial.

特定熱処理の時間は特に限定されるものではないが、550℃以上という本発明の温度条件に絡んで、最大0.400mm程度の鋼板厚さを想定すると、特定熱処理中の鋼中のCまたはNの拡散を考慮しても、本発明が目的とする特定析出物分布等が得られなくなることを考え、360秒を上限とする。また、特定熱処理効率を向上させても本発明が必要とする鋼板板厚方向の濃度分布、表面での特定析出物分布、表面粗度等を得るには1秒は必要である。好ましくは2〜60秒、さらに好ましくは3〜20秒である。   Although the time for the specific heat treatment is not particularly limited, assuming a steel sheet thickness of about 0.400 mm at the maximum in relation to the temperature condition of the present invention of 550 ° C. or higher, C or N in the steel during the specific heat treatment In consideration of the diffusion of, the specific precipitate distribution and the like intended by the present invention can no longer be obtained, and the upper limit is 360 seconds. Moreover, even if the specific heat treatment efficiency is improved, one second is required to obtain the concentration distribution in the thickness direction of the steel sheet, the specific precipitate distribution on the surface, the surface roughness, and the like required by the present invention. The time is preferably 2 to 60 seconds, more preferably 3 to 20 seconds.

鋼板板厚方向の濃度分布、表面での特定析出物分布、表面粗度等を制御するには、特定熱処理後の鋼板の熱履歴も重要となる。対象となる鋼板の板厚および鋼中でのCまたはNの拡散を考慮すると、高温での長時間保持は好ましくないが、この熱処理によりCまたはN分布を適当になだらかにすることで本発明の効果をより顕著にすることも可能になるので、このためには550℃以上の温度域での履歴が重要で、この温度域での温度と時間の積を48000以下とすることが好ましい。   In order to control the concentration distribution in the thickness direction of the steel sheet, the distribution of specific precipitates on the surface, the surface roughness, etc., the thermal history of the steel sheet after the specific heat treatment is also important. Considering the thickness of the target steel sheet and the diffusion of C or N in the steel, holding at a high temperature for a long time is not preferable. However, by appropriately smoothing the C or N distribution by this heat treatment, Since the effect can be made more prominent, a history in a temperature range of 550 ° C. or higher is important for this purpose, and the product of temperature and time in this temperature range is preferably 48000 or less.

この48000という数値は、600℃で80秒、800℃で60秒に相当するが、温度が連続的に変化するときは、その効果が適当に評価されるように5秒程度ごとの時間領域に分割し温度変化を記録し、各領域についての温度と時間の積の和を求めることでも可能である。もちろん、ある温度幅をもった温度領域に分割して温度と時間の積の和を求めてもよい。温度と時間の積の値は、好ましくは24000以下、さらに好ましくは12000以下で、通常は特定熱処理終了時点で鋼中CまたはNの分布がほぼ決定するように特定熱処理条件を設定しておくことが好ましい。   This value of 48000 corresponds to 80 seconds at 600 ° C. and 60 seconds at 800 ° C., but when the temperature changes continuously, it is in a time region of about 5 seconds so that the effect is appropriately evaluated. It is also possible to divide and record temperature changes and obtain the sum of products of temperature and time for each region. Of course, the sum of the product of temperature and time may be obtained by dividing into temperature regions having a certain temperature range. The value of the product of temperature and time is preferably 24000 or less, more preferably 12000 or less, and the specific heat treatment conditions are usually set so that the distribution of C or N in the steel is almost determined at the end of the specific heat treatment. Is preferred.

上記の熱履歴に絡んで、特定熱処理後の冷却速度が発明の効果に大きく影響する。すなわち、CまたはN分布がほとんど変化しない低温短時間においても、冷却過程での特定析出物の形成状態が大きく変化するため、特定析出物の分布には顕著な差が見られる場合がある。550℃から300℃までの平均冷却速度を10℃/秒以上とすることで、高温での保持過程で形成した特定析出物の状態を保持するとともに、固溶CまたはNをより多く残存させ表層部を中心層に比し相対的に硬質にし耐変形性を向上させることが可能となる。好ましくは20℃/秒以上、さらに好ましくは50℃/秒以上である。ただし、固溶CまたはNを過度に残存させると用途によっては時効性が問題となる場合があるので注意が必要である。   The cooling rate after the specific heat treatment greatly affects the effect of the invention in connection with the thermal history. That is, even in a low temperature and short time period in which the C or N distribution hardly changes, the formation state of the specific precipitates during the cooling process changes greatly, and thus there may be a significant difference in the distribution of the specific precipitates. By setting the average cooling rate from 550 ° C. to 300 ° C. to 10 ° C./second or more, the state of the specific precipitate formed in the holding process at a high temperature is maintained, and more solid solution C or N is left to remain. It is possible to improve the deformation resistance by making the portion relatively hard compared to the center layer. Preferably it is 20 degreeC / second or more, More preferably, it is 50 degreeC / second or more. However, care should be taken because aging may be a problem depending on the use if the solid solution C or N is excessively left.

上記の熱処理条件の意味するところは、以下のようである。
特定析出物の分散状態は、特定析出物を形成する初期の状態、言い換えれば特定析出物の核形成時の状態と、その後の特定析出物の成長挙動に大きく依存する。そして、窒化物の核形成は通常の鋼中での析出等と同様に、低温で析出元素が過飽和に固溶した状態で高密度かつ微細に核形成が起きる現象であると考えられる。つまり、過飽和な固溶元素は何らかの析出物を形成しようとするが、その際の温度が低いと十分な拡散が起きず拡散距離が短くなるため微細な析出形態となる。
The meanings of the above heat treatment conditions are as follows.
The dispersion state of the specific precipitates greatly depends on the initial state in which the specific precipitates are formed, in other words, the state at the time of nucleation of the specific precipitates and the subsequent growth behavior of the specific precipitates. Nitride nucleation is considered to be a phenomenon in which nucleation occurs finely and finely in a state where precipitation elements are dissolved in a supersaturated state at a low temperature, like precipitation in ordinary steel. That is, supersaturated solid solution elements try to form some precipitates, but if the temperature at that time is low, sufficient diffusion does not occur and the diffusion distance becomes short, resulting in a fine precipitation form.

本発明では、窒化処理でNが過飽和な状態に制御するためには、アンモニアガス濃度が高いことが好ましいことになる。ただし、温度は低すぎると十分な窒化が起きなくなり、アンモニアガス濃度が高くても十分な過飽和状態に制御できなくなる場合もある。また、その後、特定熱処理中に特定析出物の成長が起きる。一般に析出物は、高温、長時間であるほど成長するが、本発明鋼における特定熱処理中には、表面からC、Nが供給されると同時に、鋼板内部へのC、Nの拡散が起き、必ずしも平衡状態にあるとは限らないため、均質な成分を有する鋼板中での析出物の成長挙動がそのまま当てはまらないことに注意する必要がある。   In the present invention, in order to control N to be in a supersaturated state by nitriding, it is preferable that the ammonia gas concentration is high. However, if the temperature is too low, sufficient nitriding does not occur, and even if the ammonia gas concentration is high, it may not be possible to control to a sufficiently supersaturated state. Thereafter, the growth of specific precipitates occurs during the specific heat treatment. In general, the precipitate grows as the temperature and the time increase, but during the specific heat treatment in the steel of the present invention, C and N are supplied from the surface, and at the same time, the diffusion of C and N into the steel plate occurs. Since it is not always in an equilibrium state, it must be noted that the growth behavior of precipitates in a steel sheet having a homogeneous component does not apply as it is.

このような状況を、完全に数式化し最適条件を正確に提示することは現時点では困難であるが、基本的には上記のような考えに従い、本発明のような製造条件になる。最適な状況としては、ある程度の窒化・浸炭が十分に起き、かつ拡散が過度には起きない温度域で、本発明で想定している雰囲気中での熱処理の場合には550〜800℃程度の温度域で、比較的高めのガス濃度で窒化・浸炭し、鋼板表面での特定析出物の核形成、成長を行うことが好ましい。   Although it is difficult at this time to completely formulate such a situation and accurately present the optimum conditions, the manufacturing conditions are basically as in the present invention in accordance with the above-described idea. As an optimal situation, in a temperature range where nitriding and carburizing to some extent sufficiently occur and diffusion does not occur excessively, in the case of heat treatment in an atmosphere assumed in the present invention, it is about 550 to 800 ° C. It is preferable to perform nitrification and growth of specific precipitates on the steel sheet surface by nitriding and carburizing at a relatively high gas concentration in the temperature range.

特に、成長について時間的な因子を考えれば、より拡散を抑制した低温においては長時間保持しても微細化を行うことは可能である。
この制御に対する考え方は、特定ガスでの窒化・浸炭に限定されるものではないため、雰囲気ガスは特定のガスに限定されるものではないことは言うまでもない。一般的に知られている核形成・成長現象のメタラジーを用いて析出核を微細化する方向での制御を行うものであり、特定の熱処理方法に応じて好ましい条件を設定することは容易なことである。
In particular, considering time factors for growth, it is possible to carry out miniaturization even at a low temperature at which diffusion is further suppressed even if it is held for a long time.
Since the idea for this control is not limited to nitriding / carburizing with a specific gas, it goes without saying that the atmospheric gas is not limited to a specific gas. Controls in the direction of refining the precipitation nuclei using the generally known nucleation / growth phenomenon metallurgy, and it is easy to set favorable conditions according to the specific heat treatment method It is.

本発明は、浸炭処理のみによって達成することも可能であるが、上述のように窒化処理を伴うことが効果の観点からは好ましく、また、浸炭処理の効果は、特性制御にとってより効果の大きい窒化処理を施した際の、脱炭による特性劣化を浸炭によって補う場合に、非常に好ましく働くため、窒化処理と浸炭処理の両方が行われる場合が好ましい。
このような場合、特定熱処理における浸炭性ガス濃度とアンモニアガス濃度の比を特定範囲内に制御することで、発明の顕著な効果を得ることが可能となる。
すなわち、窒化に対して浸炭の効果が小さすぎる場合は、脱炭による悪影響を回避することが困難となり、一方、浸炭の効果が大きすぎる場合は、窒化との複合的な効果が得られなくなる。
Although the present invention can be achieved only by carburizing treatment, it is preferable from the viewpoint of the effect that nitriding treatment is involved as described above, and the effect of carburizing treatment is nitriding which is more effective for property control. Since it works very favorably when carburizing compensates for characteristic deterioration due to decarburization when the treatment is performed, it is preferable that both nitriding treatment and carburizing treatment are performed.
In such a case, the remarkable effect of the invention can be obtained by controlling the ratio of the carburizing gas concentration and the ammonia gas concentration in the specific heat treatment within a specific range.
That is, when the effect of carburizing is too small for nitriding, it is difficult to avoid the adverse effects due to decarburization. On the other hand, when the effect of carburizing is too great, the combined effect with nitriding cannot be obtained.

そこで、本発明においては、窒化処理を行うに際しての条件として、浸炭性ガス濃度(体積%)/アンモニアガス濃度(体積%)をREとすると、0.10<RE<10とすることが好ましく、より好ましくは0.20<RE<8であり、さらに好ましくは0.30<RE<5、さらに好ましくは0.40<RE<3、さらに好ましくは0.40<RE<2である。
ここで、浸炭性ガス濃度およびアンモニアガス濃度は、熱処理炉内の雰囲気を採取して決定することも可能であるが、炉内の雰囲気は炉壁や鋼板での分解により濃度が変化し、場所的な不均一性も大きくなる虞があることから、本発明では炉内に導入される浸炭性ガスおよびアンモニアガスそれぞれの流量から求める。
Therefore, in the present invention, if the carburizing gas concentration (volume%) / ammonia gas concentration (volume%) is RE as a condition for performing the nitriding treatment, it is preferable that 0.10 <RE <10. More preferably, 0.20 <RE <8, still more preferably 0.30 <RE <5, still more preferably 0.40 <RE <3, and still more preferably 0.40 <RE <2.
Here, the carburizing gas concentration and the ammonia gas concentration can be determined by collecting the atmosphere in the heat treatment furnace, but the concentration of the atmosphere in the furnace changes due to the decomposition on the furnace wall and the steel plate. Therefore, in the present invention, it is determined from the flow rates of the carburizing gas and ammonia gas introduced into the furnace.

このように、特定熱処理により、耐変形性への悪影響が抑制されるメカニズムは、単純に脱炭に起因する表層硬化の劣化を浸炭により補うと考えることも可能であるが、定量的には、単に脱炭量と浸炭量では説明できない点もあり、窒化との相互作用による硬化メカニズムの変化、析出物形態の変化等の影響も考えられるが、本発明の特徴はむしろ、表面特性や溶接性への好ましい影響である。   As described above, the mechanism by which the adverse effect on the deformation resistance is suppressed by the specific heat treatment can be considered to simply compensate for the deterioration of the surface hardening due to the decarburization, but quantitatively, There are also points that cannot be explained simply by the amount of decarburization and the amount of carburization, and it is possible to consider the effects of changes in the hardening mechanism and precipitates due to the interaction with nitriding, but the characteristics of the present invention are rather surface characteristics and weldability. Is a positive impact.

本発明により顕著な表面特性および溶接性向上効果が得られる理由は、表面が硬質化していることに起因する表面粗度、凹凸の差、または、表面に多量に形成される特定析出物によるものである。これらは、溶接性時には、例えば、接触抵抗を変化させ、また、表面処理時には被覆物質との界面反応を変化させ、直接的に好ましい効果を及ぼすのみならず、例えば、表面でのメッキ形態が変化することで溶接性が好ましい方向に変化するといった、相互作用的な効果をも示すものである。   The reason why remarkable surface characteristics and weldability improvement effect can be obtained by the present invention is due to the surface roughness due to the hardened surface, the difference in unevenness, or specific precipitates formed on the surface in large quantities It is. These change, for example, the contact resistance at the time of weldability, and change the interfacial reaction with the coating material at the time of surface treatment, and not only have a favorable effect directly, but also, for example, the plating form on the surface changes. This also shows an interactive effect such that the weldability changes in a preferable direction.

特に、薄手の容器用鋼板の製造においては、硬度調整や板厚調整のために再結晶焼鈍の後に再冷延を行なう場合がある。この圧下率は、形状調整のために行なわれるスキンパスに近い1%程度から、冷延と同様の50%以上までがあり、本発明においても、従来鋼と同様の再冷延の適用が可能である。
例えば、形状矯正等を目的とする場合は、0.5%から1.5%程度の範囲で圧延が行われ、本発明鋼も、通常は、この程度の圧延が行われる。
In particular, in the manufacture of thin steel plates for containers, re-rolling may be performed after recrystallization annealing in order to adjust hardness or plate thickness. The rolling reduction ranges from about 1%, which is close to the skin pass used for shape adjustment, to 50% or more, which is the same as that in cold rolling. In the present invention, recold rolling similar to conventional steel can be applied. is there.
For example, when aiming at shape correction or the like, rolling is performed in a range of about 0.5% to 1.5%, and the steel of the present invention is usually rolled at this level.

本発明鋼で特に注意を払う必要が生ずるのは、高強度化や薄手化のため1.5%を超えるような高い再冷延率を適用した場合である。単純に考えると表層が硬く内層が軟らかい本発明鋼において再冷延を適用すると軟らかい内層のみが優先的に加工硬化し、本発明で耐変形性を高めるために付与している表層のみの優先的な硬化が消失してしまうようにも考えられるが、実際には、本発明鋼においては、通常程度の再冷延率であれば再冷延により、むしろC、N含有量が高く硬質な表層部の方が優先的に硬質化し、本発明鋼で形成される表内層の硬度差はより明瞭になる。   It is necessary to pay particular attention to the steel according to the present invention when a high re-cold rolling rate exceeding 1.5% is applied in order to increase the strength or reduce the thickness. Considering simply, when re-cold rolling is applied to the steel of the present invention where the surface layer is hard and the inner layer is soft, only the soft inner layer is preferentially work-hardened, and only the surface layer given in the present invention is given priority in order to improve deformation resistance. However, in the steel of the present invention, if the re-rolling rate is a normal level, the hard surface layer with a high C and N content is rather high by re-rolling. The part hardens preferentially, and the hardness difference of the inner layer formed of the steel of the present invention becomes clearer.

この理由は、表層は多量の固溶C、Nおよび特定析出物のため加工硬化しやすくなっており、一方、内層は表層により拘束されているため優先的に変形することができないためであり、表層を大きく上回るように選択的に硬化することはない。とはいえ、再冷延率が顕著に高くなれば、鋼板自体が十分に硬質化し本発明技術のように板厚方向の材質分布を制御せずとも十分な缶強度を得ることが可能となり、同時に、本発明の特徴である表面粗度の制御を介した表面特性や溶接性の向上効果が小さくなる傾向もあるため、通常の適用範囲を大幅に越えてまで再冷延率を高める意義は小さい。   This is because the surface layer is easy to work harden due to a large amount of solid solution C, N and specific precipitates, while the inner layer is restrained by the surface layer and cannot be preferentially deformed, It is not selectively cured so as to greatly exceed the surface layer. Nonetheless, if the re-cold rolling rate is remarkably high, the steel plate itself becomes sufficiently hard, and it becomes possible to obtain sufficient can strength without controlling the material distribution in the plate thickness direction as in the present technology, At the same time, since the effect of improving surface characteristics and weldability through the control of surface roughness, which is a feature of the present invention, tends to be small, the significance of increasing the re-cold rolling rate far beyond the normal application range is small.

また、再冷延率が高くなると、加工性が低下することから、不用意な高圧下の適用は避けるべきである。以上のことから、本発明鋼に再冷延を適用する場合は70%程度までとすることが好ましい。再冷延の時期は、生産性の観点から好ましい工程である、再結晶焼鈍と特定熱処理を連続的に行なう工程においては特定熱処理の後になるが、再結晶焼鈍と特定熱処理を別の工程で行なう場合には特定熱処理の前に行なうことも可能である。
また、溶接部を考えた場合、通常の材料では、溶接の熱により材料が局部的に軟化し、フランジ成形等において加工歪が集中し、成形性を劣化させる虞があるが、表層部にCまたはNを多量に含有した本発明鋼では、この溶接熱による軟化も抑制されるため、溶接部の成形性についても向上させることが可能となる。
In addition, if the re-rolling ratio increases, the workability decreases, so careless application under high pressure should be avoided. From the above, when recold rolling is applied to the steel of the present invention, it is preferable to be up to about 70%. The re-rolling time is after the specific heat treatment in the step of continuously performing the recrystallization annealing and the specific heat treatment, which is a preferable process from the viewpoint of productivity, but the recrystallization annealing and the specific heat treatment are performed in separate steps. In some cases, it may be performed before the specific heat treatment.
In addition, when considering a welded portion, in a normal material, the material may be locally softened by the heat of welding, and processing distortion may be concentrated in flange forming or the like, which may deteriorate formability. Alternatively, in the steel of the present invention containing a large amount of N, the softening due to this welding heat is also suppressed, so that the formability of the welded portion can be improved.

本発明の鋼板の厚みの好ましい範囲は、0.400mm以下である。
これは、鋼板の厚みがこれより厚い場合には、成形部材の変形は問題となり難いからである。また、鋼板の厚みが厚い場合には、特定熱処理による表層硬化の厚さが相対的に小さくなり、発明の効果が現れ難くなるためでもある。
鋼板の厚みのより好ましい範囲は0.300mm以下、さらに好ましくは0.240mm以下、さらに好ましくは0.200mm以下であり、特に、板厚が0.180mm以下の鋼板では、非常に顕著な効果を得ることが可能となる。
The preferable range of the thickness of the steel sheet of the present invention is 0.400 mm or less.
This is because when the thickness of the steel plate is thicker than this, the deformation of the formed member hardly causes a problem. Moreover, when the thickness of the steel plate is thick, the thickness of the surface layer hardening by the specific heat treatment becomes relatively small, and the effect of the invention is hardly exhibited.
A more preferable range of the thickness of the steel sheet is 0.300 mm or less, more preferably 0.240 mm or less, and further preferably 0.200 mm or less. Particularly, a steel sheet having a thickness of 0.180 mm or less has a very remarkable effect. Can be obtained.

本発明の効果は、鋼材の成分調整以降、焼鈍前の熱履歴、製造履歴によらない。熱延を行う場合のスラブはインゴット法、連続鋳造法などの製造法には限定されず、また熱延に至るまでの熱履歴にもよらないため、スラブ再加熱法、鋳造したスラブを再加熱することなく直接熱延するCC−DR法、さらには粗圧延などを省略した薄スラブ鋳造によっても本発明の効果を得ることができる。
また、熱間圧延の条件にもよらず、仕上げ温度をα+γの二相域とする二相域圧延や、粗バーを接合して圧延する連続熱延によっても本発明の効果を得ることができる。
The effect of the present invention does not depend on the heat history and the manufacturing history before annealing after adjusting the components of the steel material. The slab for hot rolling is not limited to manufacturing methods such as the ingot method and continuous casting method, and it does not depend on the heat history until hot rolling, so the slab reheating method and the cast slab are reheated. The effects of the present invention can also be obtained by the CC-DR method in which hot rolling is directly performed without thinning, and also by thin slab casting in which rough rolling is omitted.
The effect of the present invention can also be obtained by two-phase rolling in which the finishing temperature is α + γ two-phase region or continuous hot rolling in which a rough bar is joined and rolled regardless of the hot rolling conditions. .

また、本発明鋼を溶接部を有する容器用素材として用いる場合には、熱影響部の軟化を抑制、特にC、N濃度が高い表層部が急冷され硬化するため溶接部の強度を向上させる効果も有する。これは、B、Nb等、通常においても熱影響部の軟化を抑制する元素が添加された場合には、さらに顕著となる。一方、絞り成形やしごき成形等を経て製造される、いわゆる2ピース缶においては、板表面が硬質化するため成形金型との摩擦係数が低下し成形性が向上する硬化も有する。
さらには、表層を硬質化し曲げ変形に対する抵抗性を高めているため、成形中の鋼板の曲げ座屈が生じ難くなる、すなわち、しわの発生を抑制する効果も現れる。
In addition, when the steel of the present invention is used as a container material having a welded portion, the softening of the heat-affected zone is suppressed, and in particular, the effect of improving the strength of the welded portion because the surface layer portion having a high C and N concentration is quenched and hardened. Also have. This becomes even more pronounced when elements such as B, Nb, etc. that normally suppress the softening of the heat affected zone are added. On the other hand, in a so-called two-piece can manufactured through drawing or ironing, the plate surface is hardened so that the coefficient of friction with the molding die is lowered and the moldability is improved.
Furthermore, since the surface layer is hardened and resistance to bending deformation is increased, bending buckling of the steel sheet during forming becomes difficult to occur, that is, an effect of suppressing generation of wrinkles also appears.

本発明は、容器用鋼板として分類される板厚が比較的薄い鋼板を対象としたものであるが、用途は、容器に限定されるものではなく、何らかの立体構造を有する部材であればよい。これらの部材では、めっき等の表面処理性の向上、成形後の外力による変形抑制、色調などの外観の向上、塗装等の被覆の密着性向上、溶接性の向上などの効果を期待する用途で、発明の効果が発揮される。   The present invention is intended for a steel sheet having a relatively small thickness classified as a steel sheet for containers, but the application is not limited to containers, and any member having any three-dimensional structure may be used. These components are used for applications such as improved surface treatment properties such as plating, suppression of deformation due to external force after molding, improved appearance such as color tone, improved adhesion of coatings such as coating, and improved weldability. The effect of the invention is exhibited.

通常、本発明の鋼板は、表面処理鋼板用の原板として使用されるが、表面処理により本発明の効果はなんら損なわれるものではない。缶用表面処理としては通常、錫、クロム(ティンフリー)ニッケルなどが施される。また、近年使用されるようになっている有機皮膜を被覆したラミネート鋼板用の原板としても、本発明の効果を損なうことなく使用できる。
また、結晶粒径や集合組織等にもよらず、十分な効果を得ることが可能である。
本発明鋼板を得る手段としては、窒化・浸炭処理に限定されるものではなく、液体、プラズマ、イオン注入等で行うことも可能である。
Usually, although the steel plate of this invention is used as a negative | original plate for surface-treated steel plates, the effect of this invention is not impaired at all by surface treatment. As the surface treatment for cans, tin, chromium (tin-free) nickel, etc. are usually applied. Moreover, it can be used without impairing the effect of this invention also as a negative | original plate for laminated steel plates which coat | covered the organic membrane which has come to be used in recent years.
In addition, it is possible to obtain a sufficient effect regardless of the crystal grain size, texture, or the like.
The means for obtaining the steel sheet of the present invention is not limited to nitriding / carburizing treatment, and can be performed by liquid, plasma, ion implantation or the like.

本発明は、表面の少なからざる領域を特定析出物で覆うことを条件とするものであるから、何らかの方法で表面にC、Nを高濃度化させるものであれば適用することが可能である。特に、鋼板のCおよびN各々の含有量の合計量を増加させることなく、鋼板の板厚方向のC、N分布を変化させ、表面のみにてC、Nを高濃度化させ、特定析出物を形成させるようなプロセスであれば、鋼板の加工性等の変化も小さくなり好都合である。また、鋼板を窒化、浸炭するプロセスに限らず、何らかのC、N含有物質を鋼板表面に付着させることで、鋼板表面を改質するプロセスでも本発明の実現は可能である。特に鋼板との反応性が低い何らかの特定析出物を表面に付着させれば、鋼板母材そのものの加工性等の特性への影響が小さくなるため好都合である。   Since the present invention is based on the condition that a certain area of the surface is covered with a specific precipitate, it can be applied as long as the C and N concentration is increased on the surface by some method. In particular, without increasing the total content of C and N in the steel sheet, the C and N distribution in the thickness direction of the steel sheet is changed to increase the concentration of C and N only on the surface, and the specific precipitate If the process is such that the change in the workability of the steel sheet is reduced, it is advantageous. In addition, the present invention can be realized not only in the process of nitriding and carburizing a steel sheet but also in the process of modifying the steel sheet surface by adhering some C and N-containing substances to the steel sheet surface. In particular, if any specific precipitate having low reactivity with the steel plate is adhered to the surface, it is advantageous because the influence on the properties such as workability of the steel plate base material itself is reduced.

次に、本発明の鋼を実施例及び比較例にて説明する。
ここでは、表1に示す実施例及び比較例各々の成分の鋼について、熱間圧延、冷間圧延、特定熱処理を伴う焼鈍後、スキンパスまたは再冷延を施して鋼板を製造し、その後、これらの鋼板の表面にSnめっきを施し、容器用鋼板として最も一般的なものの一つであるSnめっき鋼板を作製した。
次いで、実施例及び比較例各々のSnめっき鋼板について、色調、表面被覆の密着性、溶接性の評価を行なった。
密着性は、エポキシフェノール系塗料を25mg/m両面塗布し焼付乾燥した2枚の鋼板を、ナイロン系接着剤で加熱圧着して試験片とし、この試験片を水道水で濡らした状態でT型剥離試験を行い、剥離強度を測定した。
Next, the steel of this invention is demonstrated in an Example and a comparative example.
Here, about the steel of each component of Examples and Comparative Examples shown in Table 1, after hot rolling, cold rolling, annealing with specific heat treatment, skin pass or re-cold rolling is performed, and then steel plates are manufactured. The surface of the steel plate was Sn-plated to produce a Sn-plated steel plate which is one of the most common steel plates for containers.
Next, the color tone, adhesion of the surface coating, and weldability were evaluated for each of the Sn-plated steel sheets of Examples and Comparative Examples.
Adhesion, the two steel plates to the epoxy phenolic paint was baked dry 25 mg / m 2 coated on both sides, and thermocompression bonding a nylon-based adhesive a test piece, T The test piece in a state wetted with tap water A mold peel test was performed to measure peel strength.

ここでは、剥離強度の高いものを密着性が良好とし、優劣を判定した。
色調は、透明なポリエステル樹脂を10μm塗布、乾燥後、分光測色計を用いて得られるL値により評価した。L値は、その値が高いほど色調が優れていることを示し、この値で優劣の判定を行った。
溶接性は、通常3ピース缶で適用されているシーム溶接において溶接電流を変えて溶接を行い、溶接時のスプラッシュ発生(チリ発生)、ピールテスト(ハインテスト)による溶接部強度、溶接時の鋼板表面と極輪間のアーク電流による溶接部表面損傷から溶接可能電流範囲を求め、範囲の広さと下限値により溶接性の優劣を判定した。こでは、特に良好なものを「◎」、良好なものを「○」、通常のものを「△」、不良なものを「×」とした。範囲の広さは、広いほうが製造上の安定性が高くなるため好ましく、下限が低いほうが溶接部の温度上昇によるめっき剥離や材質変化が生じ難いため好ましい。
Here, an adhesive having a high peel strength was regarded as having good adhesion, and superiority or inferiority was determined.
The color tone was evaluated based on the L value obtained using a spectrocolorimeter after applying 10 μm of a transparent polyester resin and drying. The L value indicates that the higher the value, the better the color tone, and the superiority or inferiority was determined with this value.
Welding is performed by changing the welding current in seam welding, which is normally applied to 3-piece cans. Splash generation during welding (chilli generation), weld strength by peel test (hain test), steel plate during welding The weldable current range was determined from the surface damage of the weld due to the arc current between the surface and the polar ring, and the superiority or inferiority of the weldability was determined by the range and the lower limit. Here, particularly good ones were designated as “◎”, good ones as “◯”, ordinary ones as “Δ”, and poor ones as “x”. A wider range is preferable because the manufacturing stability is higher, and a lower limit is preferable because plating peeling or material change due to a rise in the temperature of the weld is less likely to occur.

耐変形性は、2つの方法により評価を行った。3ピース缶相当の評価は、実施例及び比較例各々の試作材で製造した3ピース缶の胴部を直径:10mm、長さ:40mmの円柱金型で押し込んだ際の、金型の押し込み量と押し込み荷重の相関において、降伏に相当する変極点となる荷重(レオメーター強度)を耐変形性の指標とした。
また、2ピース缶相当の評価は、上記の試作材で製造した、缶底が凹形状となっている2ピース缶の内圧を高め、缶底が凸形状にバックリングする際の圧力を、耐変形性の指標とした。この圧力の値は、高いほど外力による変形が小さくなり耐変形性が良好ということになる。なお、粗度はレーザー式三次元粗度計を用いて測定した。
Deformation resistance was evaluated by two methods. The evaluation equivalent to a three-piece can is based on the amount of indentation of the die when the barrel of a three-piece can manufactured with the prototype material of each of the examples and comparative examples is pushed in with a cylindrical die having a diameter of 10 mm and a length of 40 mm. In the correlation between the indentation load and the indentation load, the load (rheometer strength) serving as an inflection point corresponding to yield was used as an index of deformation resistance.
In addition, the evaluation equivalent to a two-piece can is made by increasing the internal pressure of a two-piece can manufactured using the above-mentioned prototype material and having a concave bottom, and the pressure when the can bottom buckles into a convex shape. It was used as an index of deformability. The higher the pressure value, the smaller the deformation due to external force and the better the deformation resistance. The roughness was measured using a laser type three-dimensional roughness meter.

なお、板厚方向の成分変化については、特定熱処理前の時点では各サンプルとも、通常の方法で製造されているため、板厚方向の元素の変化はごくわずかで本発明の効果にとって無視できる程度のものであった。
実施例及び比較例各々の熱延、冷延、焼鈍、特定熱処理条件等を表1に示す。特定熱処理は全て焼鈍の中盤以降で行なわれており、特定熱処理による浸炭または窒化が起きる前に再結晶は完了していたものと考えられる。
なお、表1でのC、N量は製品である鋼板の板厚平均の値である。
実施例及び比較例各々の鋼の特性を表2に示す。
Regarding the component change in the plate thickness direction, since each sample is manufactured by a normal method before the specific heat treatment, the change in the element in the plate thickness direction is negligible and can be ignored for the effect of the present invention. It was a thing.
Table 1 shows hot rolling, cold rolling, annealing, specific heat treatment conditions and the like of each of the examples and comparative examples. All the specific heat treatments are performed after the middle of annealing, and it is considered that recrystallization was completed before carburization or nitridation by the specific heat treatment occurred.
In addition, the C and N amounts in Table 1 are values of the plate thickness average of the steel plate as a product.
Table 2 shows the characteristics of the steels of the examples and comparative examples.

表1中、「A」は、550〜800℃における温度と時間の積であり、「B」は、550〜300℃における冷却速度であり、「C」は、窒化および浸炭の同時処理であり、「D」は、窒化処理後、浸炭処理であり、「E」は、浸炭性ガス濃度/アンモニアガス濃度である。
また、表2中、「F」は、[表層1/8厚さのC+N量]−[中心層1/4厚さのC+N量]であり、「G」は、[表面での炭化物または窒化物の面積率]/[板厚1/4位置での炭化物または窒化物の面積率]である。
また、「H」は、缶形状が3Pの場合は缶胴挫屈加重(kgf)、2Pの場合は缶底挫屈圧力(kgf/cm)であり、表2では、3P缶を無印、2P缶を「*」で示している。
In Table 1, “A” is a product of temperature and time at 550 to 800 ° C., “B” is a cooling rate at 550 to 300 ° C., and “C” is simultaneous treatment of nitriding and carburizing. , “D” is carburizing after nitriding, and “E” is carburizing gas concentration / ammonia gas concentration.
In Table 2, “F” is [C + N amount of ¼ thickness of surface layer] − [C + N amount of ¼ thickness of center layer], and “G” is [carbide or nitride on the surface] Area ratio of the object] / [area ratio of carbide or nitride at the 1/4 position of the plate thickness].
In addition, “H” is a can body buckling load (kgf) when the can shape is 3P, and a can bottom buckling pressure (kgf / cm 2 ) when the can shape is 2P. The 2P can is indicated by “*”.

Figure 2006219717
Figure 2006219717

Figure 2006219717
Figure 2006219717

本発明の製造法により板厚方向の状態を本発明の範囲内に制御することで、良好な耐変形性と溶接性が得られていることが確認できた。窒化のみを行ったものの一部は脱炭量が大きく、特性の劣化が見られるものもあった。   It was confirmed that good deformation resistance and weldability were obtained by controlling the thickness direction state within the range of the present invention by the production method of the present invention. Some of those subjected only to nitriding had a large amount of decarburization, and some of the characteristics were deteriorated.

本発明は、鋼材の成分を特定範囲に限定し、さらに浸炭雰囲気での熱処理を併用することで、鋼材の表層部および内層部の材質を制御するとともに、表面特性や溶接性に影響を及ぼす鋼板の表面状態を良好に制御したものであるから、容器用鋼板はもちろんのこと、何等かの立体構造を有する部材用鋼板として広く適用可能であり、その産業上の利用価値は極めて大きい。   The present invention limits the components of the steel material to a specific range and further uses heat treatment in a carburizing atmosphere to control the material of the surface layer portion and the inner layer portion of the steel material, and also affects the surface characteristics and weldability. Since the surface state of the steel plate is well controlled, it can be widely applied not only to steel plates for containers but also to steel plates for members having any three-dimensional structure, and its industrial utility value is extremely large.

鋼板の板厚方向の部位の区分を示す模式図である。It is a schematic diagram which shows the division | segmentation of the site | part of the plate | board thickness direction of a steel plate.

Claims (13)

炭素および/または窒素の濃度制御工程を経て製造される鋼板であって、
質量%で、C:0.0800%以下、N:0.0600%以下、Si:2.0%以下、Mn:2.0%以下、P:0.10%以下、S:0.05%以下、Al:2.0%以下を含有し、残部が鉄および不可避不純物からなり、
前記鋼板の表面からの深さが板厚の1/8の表層におけるC及びNの合計量が6000ppm以下であり、
かつ、前記表層のC及びNの合計量と前記極薄鋼板の板厚の1/4の層厚の中心層におけるC及びNの合計量との差が30ppm以上であることを特徴とする耐変形性、表面特性、溶接性が著しく良好な鋼板。
A steel plate manufactured through a carbon and / or nitrogen concentration control step,
In mass%, C: 0.0800% or less, N: 0.0600% or less, Si: 2.0% or less, Mn: 2.0% or less, P: 0.10% or less, S: 0.05% Hereinafter, Al: 2.0% or less, the balance consists of iron and inevitable impurities,
The total amount of C and N in the surface layer whose depth from the surface of the steel sheet is 1/8 of the plate thickness is 6000 ppm or less,
The difference between the total amount of C and N in the surface layer and the total amount of C and N in the central layer having a layer thickness that is ¼ of the thickness of the ultrathin steel plate is 30 ppm or more. Steel sheet with remarkably good deformability, surface properties and weldability.
前記鋼板の表面における窒化物および/または炭化物の面積率は、前記鋼板の板厚の1/4の層厚である中心層の前記表面に平行な断面における窒化物および/または炭化物の面積率の1.5倍以上であることを特徴とする請求項1記載の耐変形性、表面特性、溶接性が著しく良好な鋼板。   The area ratio of nitrides and / or carbides on the surface of the steel sheet is the area ratio of nitrides and / or carbides in a cross section parallel to the surface of the central layer, which is a quarter of the thickness of the steel sheet. The steel sheet having a remarkably good deformation resistance, surface characteristics, and weldability according to claim 1, wherein the steel sheet is 1.5 times or more. 前記鋼板の表面粗さ(Ra)は0.90μm以下であり、かつ、この鋼板の表面の長さ1インチあたりの凹凸の頂点の個数は250個以上であることを特徴とする請求項1または2記載の耐変形性、表面特性、溶接性が著しく良好な鋼板。   The surface roughness (Ra) of the steel sheet is 0.90 μm or less, and the number of concavo-convex vertices per inch of the surface length of the steel sheet is 250 or more. 2. A steel sheet having remarkably good deformation resistance, surface characteristics and weldability. さらに、質量%で、Ti:0.05%以下、Nb:0.05%以下、B:0.015%以下、Cr:20%以下、Ni:10%以下、Cu:5%以下の群から選択された1種または2種以上を含有してなることを特徴とする請求項1、2または3記載の耐変形性、表面特性、溶接性が著しく良好な鋼板。   Further, in terms of mass%, Ti: 0.05% or less, Nb: 0.05% or less, B: 0.015% or less, Cr: 20% or less, Ni: 10% or less, Cu: 5% or less 4. The steel sheet according to claim 1, 2 or 3, wherein the steel sheet contains one or more selected ones or more, and has excellent deformation resistance, surface characteristics and weldability. さらに、質量%で、Sn、Sb、Mo、Ta、V、Wの群から選択された1種または2種以上を合計で0.1%以下含有してなることを特徴とする請求項1ないし4のいずれか1項記載の耐変形性、表面特性、溶接性が著しく良好な鋼板。   Furthermore, it contains 1% or more selected from the group of Sn, Sb, Mo, Ta, V, and W in a mass% of 0.1% or less in total. 4. A steel plate having excellent deformation resistance, surface characteristics, and weldability according to any one of 4 above. 前記鋼板の板厚は0.400mm以下であることを特徴とする請求項1ないし5のいずれか1項記載の耐変形性、表面特性、溶接性が著しく良好な鋼板。   6. The steel sheet according to claim 1, wherein the steel sheet has a thickness of 0.400 mm or less, and has excellent deformation resistance, surface characteristics, and weldability. 質量%で、C:0.0800%以下、N:0.0600%以下、Si:2.0%以下、Mn:2.0%以下、P:0.10%以下、S:0.05%以下、Al:2.0%以下を含有し、残部が鉄および不可避不純物からなる鋼材に熱間圧延、冷間圧延、再結晶熱処理を順次施す鋼板の製造方法であって、
前記再結晶熱処理と同時またはその後に、炭素および/または窒素の濃度制御を行い、
前記鋼材の表面からの深さが板厚の1/8の表層におけるC及びNの合計量を6000ppm以下、かつ、前記表層のC及びNの合計量と前記鋼板の板厚の1/4の層厚の中心層におけるC及びNの合計量との差を30ppm以上とすることを特徴とする耐変形性、表面特性、溶接性が著しく良好な鋼板の製造方法。
In mass%, C: 0.0800% or less, N: 0.0600% or less, Si: 2.0% or less, Mn: 2.0% or less, P: 0.10% or less, S: 0.05% Hereinafter, Al: 2.0% or less, a steel sheet manufacturing method in which a steel material comprising the balance iron and inevitable impurities is subjected to hot rolling, cold rolling, and recrystallization heat treatment in order,
At the same time as or after the recrystallization heat treatment, the concentration of carbon and / or nitrogen is controlled,
The total amount of C and N in the surface layer whose depth from the surface of the steel material is 1/8 of the plate thickness is 6000 ppm or less, and the total amount of C and N in the surface layer is 1/4 of the plate thickness of the steel plate. A method for producing a steel sheet having significantly good deformation resistance, surface characteristics, and weldability, characterized in that a difference between the total amount of C and N in the central layer of the layer thickness is 30 ppm or more.
前記炭素の濃度制御は、浸炭処理であり、前記窒素の濃度制御は、窒化処理であることを特徴とする請求項7記載の耐変形性、表面特性、溶接性が著しく良好な鋼板の製造方法。   8. The method of manufacturing a steel sheet with excellent deformation resistance, surface characteristics, and weldability according to claim 7, wherein the carbon concentration control is carburizing treatment, and the nitrogen concentration control is nitriding treatment. . 前記浸炭処理は、前記鋼材の温度が550〜800℃の状態にて浸炭性ガスを0.02%以上含有する雰囲気中に1秒以上360秒以下保持することを特徴とする請求項8記載の耐変形性、表面特性、溶接性が著しく良好な鋼板の製造方法。   The said carburizing process hold | maintains 1 second or more and 360 second or less in the atmosphere which contains carburizing gas 0.02% or more in the state whose temperature of the said steel materials is 550-800 degreeC. A method for producing a steel sheet with extremely good deformation resistance, surface characteristics and weldability. 前記窒化処理は、前記鋼材の温度が550〜800℃の状態にてアンモニアガスを0.02%以上含有する雰囲気中に1秒以上360秒以下保持することを特徴とする請求項8記載の耐変形性、表面特性、溶接性が著しく良好な鋼板の製造方法。   9. The anti-nitriding treatment according to claim 8, wherein the nitriding treatment is held for 1 second to 360 seconds in an atmosphere containing 0.02% or more of ammonia gas in a state where the temperature of the steel material is 550 to 800 ° C. 9. A method for producing a steel sheet with remarkably good deformability, surface characteristics and weldability. 前記窒化処理を行うに際し、0.10<浸炭性ガス濃度(体積%)/アンモニアガス濃度(体積%)<10とすることを特徴とする請求項10記載の耐変形性、表面特性、溶接性が著しく良好な鋼板の製造方法。   The deformation resistance, surface characteristics, and weldability according to claim 10, wherein, in performing the nitriding treatment, 0.10 <Carburizing gas concentration (volume%) / Ammonia gas concentration (volume%) <10. Is a method for producing a steel sheet with extremely good quality. 前記浸炭処理、前記窒化処理のいずれか一方、または双方の、前記550℃以上の温度域の熱履歴における温度と時間の積を48000以下とし、その後、550℃から300℃までの平均冷却速度を10℃/秒以上にて冷却することを特徴とする請求項9、10または11記載の耐変形性、表面特性、溶接性が著しく良好な鋼板の製造方法。   The product of the temperature and time in the thermal history of the temperature range of 550 ° C. or higher for either one or both of the carburizing treatment and the nitriding treatment is 48000 or less, and then the average cooling rate from 550 ° C. to 300 ° C. is set. The method for producing a steel sheet having excellent deformation resistance, surface characteristics, and weldability according to claim 9, wherein cooling is performed at 10 ° C./second or more. 前記再結晶熱処理の後に、0.5%以上70%以下の圧延率にて再度冷間圧延を行うことを特徴とする請求項7ないし12のいずれか1項記載の耐変形性、表面特性、溶接性が著しく良好な鋼板の製造方法。   The cold-rolling is performed again at a rolling rate of 0.5% or more and 70% or less after the recrystallization heat treatment, deformation resistance, surface characteristics according to any one of claims 7 to 12, A method for producing a steel sheet with extremely good weldability.
JP2005033521A 2005-02-09 2005-02-09 Steel sheet for vessel having superior deformation resistance, surface characteristic and weldability, and manufacturing method therefor Pending JP2006219717A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005033521A JP2006219717A (en) 2005-02-09 2005-02-09 Steel sheet for vessel having superior deformation resistance, surface characteristic and weldability, and manufacturing method therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005033521A JP2006219717A (en) 2005-02-09 2005-02-09 Steel sheet for vessel having superior deformation resistance, surface characteristic and weldability, and manufacturing method therefor

Publications (1)

Publication Number Publication Date
JP2006219717A true JP2006219717A (en) 2006-08-24

Family

ID=36982229

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005033521A Pending JP2006219717A (en) 2005-02-09 2005-02-09 Steel sheet for vessel having superior deformation resistance, surface characteristic and weldability, and manufacturing method therefor

Country Status (1)

Country Link
JP (1) JP2006219717A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007332417A (en) * 2006-06-14 2007-12-27 Kobe Steel Ltd Steel sheet for nitriding treatment
WO2011152475A1 (en) * 2010-05-31 2011-12-08 Jfeスチール株式会社 Structural stainless steel sheet having excellent corrosion resistance in welded part, and method for producing same
JP2013538935A (en) * 2010-07-02 2013-10-17 アクティエボラゲット・エスコーエッフ Bearing ring manufacturing method, bearing ring, and bearing
US11860082B1 (en) * 2018-07-18 2024-01-02 Massachusetts Materials Technologies Llc Method of determining an index of quality of a weld in a formed object through mechanical contact testing

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08170122A (en) * 1994-12-15 1996-07-02 Nippon Steel Corp Production of original sheet for high strength container
JPH08176788A (en) * 1994-12-27 1996-07-09 Nippon Steel Corp Production of steel plate for vessel
JPH08311545A (en) * 1995-05-17 1996-11-26 Nippon Steel Corp Production of steel sheet for can
JP2001107148A (en) * 1999-10-01 2001-04-17 Nippon Steel Corp Method for producing high strength and high ductility steel sheet for vessel remarkably good in flange formability
JP2004218061A (en) * 2002-11-21 2004-08-05 Nippon Steel Corp Container use steel sheet remarkably satisfactory in deformation resistance, and its production method
JP2004323905A (en) * 2003-04-24 2004-11-18 Nippon Steel Corp Extra thin steel sheet for container having remarkably excellent can characteristic, and its manufacturing method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08170122A (en) * 1994-12-15 1996-07-02 Nippon Steel Corp Production of original sheet for high strength container
JPH08176788A (en) * 1994-12-27 1996-07-09 Nippon Steel Corp Production of steel plate for vessel
JPH08311545A (en) * 1995-05-17 1996-11-26 Nippon Steel Corp Production of steel sheet for can
JP2001107148A (en) * 1999-10-01 2001-04-17 Nippon Steel Corp Method for producing high strength and high ductility steel sheet for vessel remarkably good in flange formability
JP2004218061A (en) * 2002-11-21 2004-08-05 Nippon Steel Corp Container use steel sheet remarkably satisfactory in deformation resistance, and its production method
JP2004323905A (en) * 2003-04-24 2004-11-18 Nippon Steel Corp Extra thin steel sheet for container having remarkably excellent can characteristic, and its manufacturing method

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007332417A (en) * 2006-06-14 2007-12-27 Kobe Steel Ltd Steel sheet for nitriding treatment
JP4646858B2 (en) * 2006-06-14 2011-03-09 株式会社神戸製鋼所 Steel sheet for nitriding treatment
WO2011152475A1 (en) * 2010-05-31 2011-12-08 Jfeスチール株式会社 Structural stainless steel sheet having excellent corrosion resistance in welded part, and method for producing same
JP2012012702A (en) * 2010-05-31 2012-01-19 Jfe Steel Corp Stainless steel sheet for structure having excellent corrosion resistance in welded part, and method for manufacturing the same
AU2011259992B2 (en) * 2010-05-31 2013-12-19 Jfe Steel Corporation Structural stainless steel sheet having excellent corrosion resistance at weld and method for manufacturing same
KR101409291B1 (en) 2010-05-31 2014-06-18 제이에프이 스틸 가부시키가이샤 Structural stainless steel sheet having excellent corrosion resistance at weld and method for manufacturing same
JP2013538935A (en) * 2010-07-02 2013-10-17 アクティエボラゲット・エスコーエッフ Bearing ring manufacturing method, bearing ring, and bearing
US11860082B1 (en) * 2018-07-18 2024-01-02 Massachusetts Materials Technologies Llc Method of determining an index of quality of a weld in a formed object through mechanical contact testing

Similar Documents

Publication Publication Date Title
JP6281671B1 (en) Hot-dip galvanized steel sheet
JP5304966B1 (en) Alloy hot-dip galvanized steel sheet
JP2008274332A (en) Steel sheet for can, and its manufacturing method
JP6028884B1 (en) Steel plate for cans and method for producing steel plate for cans
JP4299858B2 (en) Steel plate for container and method for producing the same
US11850821B2 (en) Hot-pressed member, cold-rolled steel sheet for hot-pressed member, and method for producing the same
US20130294963A1 (en) Steel sheet for can having high strength and high formability, and method for manufacturing the same
JP4328124B2 (en) Steel sheet for ultra-thin containers with extremely good can characteristics and manufacturing method thereof
JP2006219717A (en) Steel sheet for vessel having superior deformation resistance, surface characteristic and weldability, and manufacturing method therefor
JP4299859B2 (en) Steel plate for container and method for producing the same
WO2021002415A1 (en) Galvanized steel sheet for hot stamping, method for producing galvanized steel sheet for hot stamping, and hot stamp molded body
JP6813132B2 (en) Steel sheet for cans and its manufacturing method
JP2001107187A (en) High strength steel sheet for can and its producing method
WO2006027854A1 (en) Steel sheet for extremely thin container and method for production thereof
EP2634282A1 (en) Steel sheet for can, and process for producing same
JP6421773B2 (en) Steel plate for can and manufacturing method thereof
JP2009174055A (en) Mother sheet for high strength extra-thin cold rolled steel sheet, and method for producing the same
JP4133520B2 (en) Steel plate for containers with extremely good deformation resistance and method for producing the same
WO2017150066A1 (en) Steel sheet for cans and manufacturing method therefor
JP3596037B2 (en) Manufacturing method of steel plate for can-making
JP6421772B2 (en) Manufacturing method of steel sheet for cans
JP6881696B1 (en) Steel sheet for cans and its manufacturing method
JP2001107148A (en) Method for producing high strength and high ductility steel sheet for vessel remarkably good in flange formability
JP2006009069A (en) High-rigidity steel sheet causing little damage to surface coating film after having been worked, and manufacturing method therefor
JP2004323906A (en) Steel sheet with partially different material for container, and its manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070904

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090924

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091006

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091207

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20101207