JP2004323905A - Extra thin steel sheet for container having remarkably excellent can characteristic, and its manufacturing method - Google Patents

Extra thin steel sheet for container having remarkably excellent can characteristic, and its manufacturing method Download PDF

Info

Publication number
JP2004323905A
JP2004323905A JP2003119381A JP2003119381A JP2004323905A JP 2004323905 A JP2004323905 A JP 2004323905A JP 2003119381 A JP2003119381 A JP 2003119381A JP 2003119381 A JP2003119381 A JP 2003119381A JP 2004323905 A JP2004323905 A JP 2004323905A
Authority
JP
Japan
Prior art keywords
less
steel sheet
steel
nitriding
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003119381A
Other languages
Japanese (ja)
Other versions
JP4328124B2 (en
Inventor
Hidekuni Murakami
英邦 村上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2003119381A priority Critical patent/JP4328124B2/en
Publication of JP2004323905A publication Critical patent/JP2004323905A/en
Application granted granted Critical
Publication of JP4328124B2 publication Critical patent/JP4328124B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Metal Rolling (AREA)
  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To improve both deformation resistance and can formability of a container manufactured using an extra thin steel sheet for a container, without sacrificing either of the two. <P>SOLUTION: Steel having a composition consisting of, by mass, ≤0.0800% C, ≤0.600% N, ≤2.0% Si, ≤2.0% Mn, ≤0.10% P, ≤0.05% S, ≤2.0% Al and the balance mainly Fe is cold rolled. Then, atmosphere, temperature, time, etc., in recrystallization annealing or subsequent heat treatment are regulated and also proper surface treatment is carried out prior to the heat treatment, by which changes in N content in the steel, particularly the size and number density of nitrides with respect to a surface layer part and a central layer part, are controlled to values within proper different ranges, respectively. By this method, both the deformation resistance and can formability of the container manufactured using the extra thin steel sheet of ≤0.400 mm sheet thickness can be improved without sacrificing either of them. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、飲料缶などの金属容器に利用される鋼板およびその製造方法に関する。
【0002】
【従来の技術】
飲料缶、食品缶などに代表される容器用鋼板は、容器の低コスト化のため鋼板の薄手化が進行し、0.2mm以下の素材も適用されるに至っている。このような極薄材料で容器を製造した場合に顕在化している問題の一つに容器の変形がある。
これは、容器の製造過程や内容物を充填した後の一般市場における容器のハンドリング時に起きる外力の作用のみならず、容器の内部圧力の増減、すなわち、内容物の加熱処理時の増圧や内容物保持のための減圧処理、または、炭酸飲料など内容物によっては必須となる増圧、さらには流通や保持中の温度変化による容器の変形である。
耐変形性を向上させるには容器のデザインのみならず、素材としては、より硬質なものを使用する必要がある。しかし、一般的に硬質な材料は延性が低く、缶成形時の材料破断などの問題を引き起こす。
【0003】
また、極薄材料では厚い材料よりも比較的低い歪みで破断が起きるため、極薄材料では厚手材以上に良好な延性を有する材料が求められる。さらに、缶成形では鋼板の溶接後に溶接部を更に成形する場合があり、このような場合には、特定部位への変形の集中が起き易く、この点からも良好な延性が必要とされる。
焼鈍以降の工程で延性をそれほど阻害せずに高強度化する方法として焼鈍時の窒化による技術が特開平08−170122号公報、特開平08−176788号公報、特開2001−107148号公報などに開示されている。
しかし、これらの技術は、特に表内層の硬度を鋼板成分や窒化条件も考慮して極薄素材にとって最適に制御するという視点を欠いており、上記技術によって極薄素材を基に缶を製造する場合に素材の缶成形性や缶の耐変形性は必ずしも満足できるものではなかった。
【0004】
【特許文献1】特開平08−170122号公報
【特許文献2】特開平08−176788号公報
【特許文献3】特開2001−107148号公報
【特許文献4】特開2002−012948号公報
【0005】
【発明が解決しようとする課題】
本発明は、前述のような従来技術の問題点を解決し、極薄素材を使用して製造された容器で問題となる変形について、素材の表層および内層の材質を、窒化を適用することで制御し大幅に変化させるとともに、硬質な場合にも良好な延性を持つ鋼板およびその製造方法を提供することを課題とする。
【0006】
【課題を解決するための手段】
本発明者らは、前述の課題を解決するために、特に窒化過程を経て製造される板厚0.4mm以下の鋼板の成分および窒化条件と材質との関係を検討するうち、成分、特にN量を特定範囲に限定し、さらに窒化条件を最適に調整することで材料の表層部および内層部の窒化物形態を好ましく制御することが可能であり、これにより極薄鋼板を素材とした容器で問題となっている変形を大幅に抑制できることを見出した。
すなわち、本発明は、冷間圧延後に窒化処理を行い、鋼中の窒素量を増加させることにより単に表面硬度を造り分けただけでは缶の耐変形性はそれほど向上するものではなく、極薄素材で缶の耐変形性を向上させるために必要な窒化条件が存在すること、および、その制御方法を見出したものであり、その要旨は、特許請求の範囲に記載した通りの下記内容である。
【0007】
(1) 質量%で、C:0.0800%以下、N:0.600%以下、Si:2.0%以下、Mn:2.0%以下、P:0.10%以下、S:0.05%以下、Al:2.0%以下を含有し、
直径1μm以下0.02μm以上の窒化物に関し、鋼板の表層1/8厚さ内に数密度0.2個/μm以上で存在する領域を有し、かつ、下記(A)式を満足することを特徴とする板厚0.400mm以下の缶特性が著しく良好な極薄容器用鋼板。
(鋼板の板厚1/8位置での数密度)>(鋼板の板厚1/4位置での数密度)・・・(A)
(2)質量%で、C:0.0800%以下、N:0.600%以下、Si:2.0%以下、Mn:2.0%以下、P:0.10%以下、S:0.05%以下、Al:2.0%以下を含有し、
直径1μm以下0.02μm以上の窒化物に関し、下記(B)式を満足することを特徴とする板厚0.400mm以下の缶特性が著しく良好な極薄容器用鋼板。
(鋼板の板厚1/20位置での数密度)/(鋼板の板厚1/4位置での数密度)
>1.5 ・・・(B)
(3)鋼板の板厚1/4位置での、直径1μm以下0.02μm以上の窒化物の数密度が10個/μm以下であることを特徴とする(1)または(2)に記載の缶特性が著しく良好な極薄容器用鋼板。
(4)鋼成分として、更に質量%で、Ti:0.08%以下、Nb:0.08%以下、B:0.015%以下、Cr:2.0%以下の1種または2種以上を含有することを特徴とする(1)乃至(3)に記載の缶特性が著しく良好な極薄容器用鋼板。
(5)鋼成分として、更に質量%で、Sn、Sb、Mo、Ta、V、Wの合計で0.1%以下を含有することを特徴とする(1)乃至(4)に記載の缶特性が著しく良好な極薄容器用鋼板。
(6)鋼成分の残部がFeおよび不可避的不純物であることを特徴とする(1)乃至(5)に記載の缶特性が著しく良好な極薄容器用鋼板。
【0008】
(7)(1)乃至(6)に記載の鋼板を製造するに際し、質量%で、C:0.0800%以下、N:0.0300%以下、Si:2.0%以下、Mn:2.0%以下、P:0.10%以下、S:0.05%以下、Al:2.0%以下を含有する鋼を、冷延後、再結晶焼鈍と同時、または、再結晶焼鈍後に窒化処理を行い、鋼板の表層1/8厚さ内に、直径1μm以下0.02μm以上の窒化物が数密度0.2個/μm以上で存在する領域を形成し、かつ、鋼板中のNを質量%で0.600%以下とすることを特徴とする板厚0.400mm以下の缶特性が著しく良好な極薄容器用鋼板の製造方法。
(8)(1)乃至(6)に記載の鋼板を製造するに際し、質量%で、C:0.0800%以下、N:0.0300%以下、Si:2.0%以下、Mn:2.0%以下、P:0.10%以下、S:0.05%以下、Al:2.0%以下を含有する鋼を、冷延後、再結晶焼鈍と同時、または、再結晶焼鈍後に窒化処理を行い、鋼板の表層1/8厚さ内に、直径1μm以下0.02μm以上の窒化物について、下記(B)式を満足し、かつ、鋼板中のNを質量%で0.600%以下とすることを特徴とする板厚0.400mm以下の缶特性が著しく良好な極薄容器用鋼板の製造方法。
(鋼板の板厚1/20位置での数密度)/(鋼板の板厚1/4位置での数密度)
>1.5 ・・・(B)
(9)(1)乃至(6)に記載の鋼板を製造するに際し、質量%で、C:0.0800%以下、N:0.0300%以下、Si:2.0%以下、Mn:2.0%以下、P:0.10%以下、S:0.05%以下、Al:2.0%以下を含有する鋼を、冷延後、再結晶焼鈍と同時、または、再結晶焼鈍後に窒化処理を行い、直径1μm以下0.02μm以上の窒化物について、下記(C)式を満足し、かつ、鋼板中のNを質量%で0.600%以下とすることを特徴とする板厚0.400mm以下の缶特性が著しく良好な極薄容器用鋼板の製造方法。
(窒化処理後の鋼板の板厚1/20位置での数密度)/(窒化処理前の鋼板の板厚1/20位置での数密度)>1.5 ・・・(C)
(10)質量%で、C:0.0800%以下、N:0.0300%以下、Si:2.0%以下、Mn:2.0%以下、P:0.10%以下、S:0.05%以下、Al:2.0%以下を含有し、残部Feおよび不可避的不純物からなる鋼を、冷延後、再結晶焼鈍と同時、または、再結晶焼鈍後に窒化処理を行い、鋼板の板厚1/4位置での、直径1μm以下0.02μm以上の窒化物の数密度が10個/μm以下であり、かつ、鋼板のNを質量%で0.600%以下とすることを特徴とする(7)乃至(9)に記載の缶特性が著しく良好な極薄容器用鋼板の製造方法。
(11)再結晶焼鈍と同時、または、再結晶焼鈍後に窒化処理を行なうに際し、板温度が550〜800℃の状態で、アンモニアガスを0.02%以上含有する雰囲気中に0.1秒以上、360秒以下保持し、窒化処理の後、550℃以上の温度域で温度と時間の積を48000(℃・秒)以下とするか、550℃から300℃までの平均冷却速度を10℃/秒以上とすることを特徴とする(7)乃至(10)に記載の缶特性が著しく良好な極薄容器用鋼板の製造方法。
(12)再結晶焼鈍の後、窒化処理前または窒化処理後に、圧下率が20%以下の再冷延を行なうことを特徴とする(7)乃至(11)に記載の缶特性が著しく良好な極薄容器用鋼板の製造方法。
【0009】
【発明の実施の形態】
以下に本発明を詳細に説明する。
まず、本発明における鋼材成分について説明する。成分は全て質量%である。C量の上限は、加工性の劣化を回避するために必要であり、C:0.0800%以下とする。好ましくは0.0600%以下、さらに好ましくは0.040%以下である。
窒化によりCと同様の性質を有するNを増量させる本発明鋼では強度確保などの観点で必要となるC含有量は低くても構わない。C:0.0050%以下でも必要な強度確保が可能であり、0.0020%以下でも構わないし、0.0015%以下とすれば窒化量との兼ね合いもあるが極軟質材の製造も可能で、r値を向上させ絞り成形性を高く保つ意味ではCは低い方が好ましい。
窒化前のN量の上限も、加工性の劣化を回避するために必要であり、N:0.0300%以下とする。好ましくは、N:0.0200%以下、さらに好ましくはN:0.0150%以下、さらに好ましくはN:0.0100%以下、さらに好ましくはN:0.0100%以下、さらに好ましくはN:0.0050%以下さらに好ましくはN:0.0030%以下である。r値を向上させ絞り成形性を高く保つ意味では窒化前のN量は低い方が好ましい。注意を要するのは、後述のように窒化によって含有させたNは、缶の耐変形性効果等を付与するために鋼板の板厚位置により異なった量で存在するものであり、窒化前に存在するNとは効果が多少異なることである。
【0010】
窒化後のN量の上限は、加工性の劣化を回避するために加え、めっき等の表面処理性の劣化を回避するためにも必要であり、N:0.600%以下とする。好ましくはN:0.300%以下、さらに好ましくはN:0.150%以下、さらに好ましくはN:0.100%以下、さらに好ましくはN:0.050%以下、さらに好ましくはN:0.030%以下である。ただし、窒化による硬化部をより硬質化させる意味ではN量は高い方が好ましいことは言うまでもない。
Siは、強度調整のために添加されるが多すぎると加工性が劣化するため2.0%以下とする。本発明鋼においては結晶粒界において窒化により鋼中に浸入したNと窒化物を形成し、脆性的な割れを起こすばかりでなく、本発明の効果を損ねる場合もあるので、1.5%以下、さらに1.0%以下にする必要が生ずる場合もある。特に成形性を高く保つ意味ではSi量は低い方が好ましく、0.5%以下、さらには、0.1%以下とすることで成形性は向上する。
【0011】
Mnは、強度調整のために添加されるが多すぎると加工性が劣化するため2.0%以下とする。成形性を高く保つ意味ではMn量は低い方が好ましく、0.6%以下、さらには0.2%以下とすることで成形性は向上する。
Pは、強度調整のために添加されるが多すぎると加工性が劣化するため0.10%以下とする。成形性を高く保つ意味ではP量は低い方が好ましく、0.05%以下、さらには0.01%以下とすることで成形性は向上する。
Sは、熱間延性を劣化させ、鋳造や熱間圧延の阻害要因となるので0.05%以下とする。成形性を保つ意味ではS量は低い方が好ましく、0.02%以下、さらには0.01%以下とすることで成形性は向上する。
【0012】
Alは、脱酸のために添加される元素であるが、高いと鋳造が困難となる。表面の疵が増加するなどの害があるため2.0%以下とする。またAl量が0.2%以上と高い場合には窒化により鋼板に浸入したNと結合し鋼中に多量のAlNを形成し窒化部を硬質化させる効果もある。窒化の程度が低い鋼板板厚中心部の成形性を高く保つ意味ではAl量は低い方が好ましく、0.2%以下、さらには0.1%以下とすることで窒化程度の低い部位の成形性は向上する。
以上の基本元素以外に通常の容器用鋼板で考慮される元素の効果およびその制御について以下に述べる。
Tiは、鋼板の再結晶温度を上げ、本発明が対象とする極薄鋼板の焼鈍通板性を著しく劣化させる。このため0.080%以下とする。特に高いr値が必要でない通常の用途ではTiを添加する必要はなく、0.04%以下、さらに好ましくは0.01%以下とする。また窒化前に鋼中に固溶しているTiは窒化により鋼板に浸入したNと結合し鋼中に微細なTiNを形成し窒化部を硬質化させる効果が強い。このため窒化の程度が低い鋼板板厚中心層でも材質の硬質化が必要以上に現れてしまう場合もあるため軟質な鋼板を得る必要がある場合は、Ti量は低い方が好ましく、0.005%以下、さらには0.003%以下とすることで鋼板の不用意な硬質化を抑制することができる。
【0013】
NbもTiと同様の影響を有し、再結晶温度を上げ、本発明が対象とする極薄鋼板の通板性を著しく劣化させる。このため0.08%以下とする。特に高いr値が必要でない通常の用途では特に高いr値が必要でない通常の用途では,Nbを添加する必要はなく、0.04%以下、さらに好ましくは0.01%以下とする。また窒化前に鋼中に固溶しているNbは窒化により鋼板に浸入したNと結合し鋼中に微細なNbNを形成し窒化部を硬質化させる効果が強い。このため窒化の程度が低い鋼板板厚中心層でも材質の硬質化が必要以上に現れてしまう場合もあるため軟質な鋼板を得る必要がある場合は、Nb量は低い方が好ましく、0.005%以下、さらには0.003%以下とすることで鋼板の不用意な硬質化を抑制することができる。
BはTi、Nbを0.01%程度以上含有する鋼板に添加した場合、鋼板の再結晶温度を上げ、本発明が対象とする極薄鋼板の焼鈍通板性を著しく劣化させるが、Ti,Nbの含有量が少ない場合にはこの点での悪影響は小さくむしろ再結晶温度を下げるため低温での再結晶焼鈍が可能となり焼鈍通板性を向上させる効果も有するため積極的に添加することも可能である。しかし過剰な添加は鋳造時の鋳片の割れが顕著になるため上限を0.015%とする。再結晶温度を低下させ焼鈍通板性を向上させる目的では窒化前の含有N量との関係でB/N=0.6〜1.5とすれば十分である。また窒化前に鋼中に固溶しているBは窒化により鋼板に浸入したNと結合し鋼中に微細なBNを形成し窒化部を硬質化させる効果が強い。このBNによる表層硬質化を活用する場合は窒化前の含有Bと含有N量との比をB/N>0.8としておくことが好ましい。この比を1.5以上、さらには2.5以上とすることでBN形成による硬化が顕著になる。一方、BNの形成が原因となり材質の硬質化が必要以上に現れ成形性を劣化させてしまう場合もあるので注意を要する。本発明鋼で特にBN形成による硬質化を活用しないのであれば、窒化前の含有Bと含有N量との比をB/N<0.8、さらに厳格にはB/N<0.1とすればよい。
【0014】
窒化前に鋼中に固溶しているCrは窒化により鋼板に浸入したNと結合し鋼中に微細なCr窒化物を形成し窒化部を硬質化させる効果を有する。このため材質の硬質化が必要以上に現れてしまう場合もあるが、逆にこの窒化物を活用して窒化部の硬度を効果的に高めることも可能である。この目的でCrを0.01%以上添加することが好ましい。しかし一方でCrは鋼板の再結晶温度を上げ、過剰に添加すると本発明が対象とする極薄鋼板の焼鈍通板性を著しく劣化させる場合がある。この再結晶温度の上昇による焼鈍通板性の低下を回避するには2.0%以下とすることが好ましく、0.6%以下であれば再結晶温度の上昇は実用的に問題ない程度に抑制できる。
また、耐食性を高めるなど本発明で規定していない特性を付与するためにCr,Ni,Cu等を添加することは可能であるが、過剰な添加は本発明鋼に必須となる窒化能を低下させる場合があるのでCr:30%以下、Ni:15%以下、Cu:5%以下とすることが好ましく、さらに好ましくはCr:15%以下、Ni:5%以下、Cu:2%以下にとどめるべきである。
【0015】
さらに、本発明で規定していない特性を付与するためにSn, Sb,Mo,Ta,V,Wを合計
で0.1%以下含有することは可能であるが、過剰な添加は本発明鋼に必須となる窒化能を低下させる場合があるので注意が必要である.特にSn,Sbの含有は窒化効率が低くなる場合があるので窒化を適用して窒化物の制御を行なう場合には注意を要する。Sn、Sbについて窒化効率を顕著に妨げないためにはそれぞれを0.06%以下、好ましくは0.02%以下とする。
ここで本明細書中にて用いる、鋼板板厚方向の部位の区分について図1を用いて説明する。
「表層1/8厚さ」とは図1中の対応領域を表す。なお、「表層1/8厚さ」に対応する領域は鋼板の両表面について存在するが本発明ではそのどちらか一面についてでも本発明の限定範囲に該当するものを対象とする。窒化の方法や窒化前の表面処理、さらには窒化後の何らかの処理当により表と裏の窒化物分布を変化させることは比較的容易であるが本発明ではそのような表裏異表層の鋼板についても対象とする。これは片面のみでも本発明が目的とする耐変形性を得ることが可能だからである。
【0016】
また、「板厚1/8位置」とは図1中の対応位置を表す。また、「板厚1/4位置」とは図1中の対応位置を表す。なお、これらに対応する位置は鋼板の両表面について存在するが本発明ではそのどちらか一面についてでも本発明の限定範囲に該当するものを対象とする。
窒化の方法や窒化前の表面処理、さらには窒化後の何らかの処理当により表と裏の窒化物分布を変化させることは比較的容易であるが本発明ではそのような表裏異表層の鋼板についても対象とする。これは片面のみでも本発明が目的とする耐変形性を得ることが可能だからである。
なお図には示さないが「板厚1/20位置」は「板厚1/8位置」と同様に鋼板表面から板厚の20分の1の深さの位置を指すものとする。
【0017】
本発明では鋼板の板厚方向の特定位置または特定層内に存在する窒化物のサイズおよび数密度が規定される。存在する析出物については電子顕微鏡などの回折パターンや付設されたX線分析機器などで同定が可能である。もちろん化学分析などこれ以外の方法によっ
ても同定が可能なものである。本発明で対象とする窒化物の平均直径は1.0μm以下とする。
これ以上では高強度化の効率が著しく低下するばかりでなく、加工時の割れの起点となり延性を劣化させるとともに、粗大な窒化物が鋼板表面に露出した場合はめっき等の表面処理に悪影響を及ぼす。これらの特性の観点から、この平均直径は0.40μm以下とすることが好ましく、さらに好ましくは0.20μm以下、さらには0.10μm以下が好ましい。これらの直径および後述の数密度は例えば電子顕微鏡観察で定量が可能である。
【0018】
この窒化物サイズと数密度の制御は、高強度化と加工性保持を両立する観点から非常に重要である。というのは、これらが強度および加工性にそれぞれ影響するというのみならず、これらを変化させたときの強度または加工性が変化する挙動が異なるためである。すなわち、強度上昇効果が高く、加工性劣化効率の低い領域に制御する必要がある。このためには前述の450〜700℃の温度範囲で温度と時間およびこの温度域に入る直前の冷却速度などを適当に制御することが有効であり、この影響は通常の条件であれば一般の析出物形成と同様である。
すなわち、高冷速、低温であるほど窒化物サイズは微細かつ高密度となり、長時間化によりサイズは粗大化する。
なお、窒化物単独の析出物でなく酸化物や炭化物、硫化物などと複合析出した場合も対象とする。複合析出物を形成した場合には、一つの析出物の種類および各化合物についてのサイズを特定することは困難であるが、明らかに一つの析出物が窒化物である部分とその他に分けられる場合を除いて一つの窒化物として判定するものとする。
【0019】
窒化物は、基本的には本発明ではSPEED法によって得られた抽出レプリカをEDX付電子顕微鏡にて観察するが、窒化物が非常に微細で抽出が良好でないと思われる場合には薄膜を透過電子顕微鏡で観察してもよい。組成の判定はEDXにより分析を行い主として観察される非金属元素がNの場合を硫化物とする.また、大きさが小さいためNの特性スペクトルは明瞭ではなくともFe,Ti、Nb、B、Cr等が検出されかつ、O、S等の明瞭なスペクトルが観察されず、かつ窒化物と特定できる他の析出物との形態比較から窒化物とほぼ断定できる析出物も窒化物として本発明で考慮に入れる。また析出物の定性に電子線回折パターン等を用いても良い。窒化物の同定はEDXや電子線回折パターンといった手法によるものではなく、現在性能向上が著しいどのような分析機器を使用しても構わない。要は析出物の種類とサイズおよび数密度が、妥当と認められる方法により決定できればよい。析出物によっては炭化物か窒化物かの判別が困難な場合もあると考えられるが、通常の分析機器でその種類が妥当に決定できないものは本発明からは除外する。大きさが非常に微小でありEDXスペクトルや通常の分析機器で定性不可能なものは本発明で考慮すべき窒化物からは除外する。本発明出願時に発明者が通常使用する分析機器ではこの最小サイズは大体0.02μmであるので、本発明では0.02μmを下限とした。より高度な分析機器を使用しより微細な窒化物まで考慮すれば数密度は増加することは当然である。
【0020】
また本発明者が使用した経験のない機器により個々の原子配置までが明示された場合に、Nと金属原子の超微細な原子合体をどこまで窒化物と判定するかの問題も含むことからも対象とする窒化物サイズの下限を明示しておくことは重要と考えられる。
窒化物の直径および数は偏りがない程度の視野について計測する。本発明においては、対象となる径の窒化物の数が1視野内に約500個となるような倍率に設定して、無作為に10視野を選択し、数密度については対象窒化物数をその時の視野面積とSPEED法による電解厚さで除し、また平均直径は個々の窒化物径の合計を個数で除した。ここで、視野内の対象となる硫化物は全て計測する必要があることは言うまでもない。なお、画像解析等を用いて窒化物数と直径を求めることもできる。
【0021】
また、形状が延伸したものが見られる場合があるが、形状が等方的でないものについては長径と短径の平均をその析出物の直径とする。
析出物の数密度はレプリカ作成過程における電解工程において試料表面を通電した全電荷が、Feの2価イオン(Fe2+)として鋼板が電解されるのに消費され、電解時に残滓として残る析出物がすべてレプリカ上に補足されるとして計算した。例えばレプリカ作成においては試料表面積において50C(クーロン)/cmの電気量で電解を行なえば、試料表面から18μmの厚さ内にある析出物がレプリカ上で観察されることになる。ただし、測定対象の鋼板が非常に薄い場合、例えば18μmの厚さ内にある析出物をまとめて観測してしまうと観測位置が板厚のどの位置に相当するのかが不明瞭になり、本発明で規定する「1/8厚さ」」または「1/4位置」、「1/8位置」、「1/20位置」等の規定の意味が曖昧になることから、SPEED法における電解厚さは18μmに限定されるものではない。理想的には厚さ0の面上に存在する析出物を観測するべきであろうが、これでは測定誤差が大きくなる危惧を生ずる。板厚にもよるが電解厚さは5〜20μm程度とすべきで、対象板厚位置が電解部の厚さ中心となるように研磨を行なうものとする。
また電解を板表面から板厚方向へではなく板厚断面から板面内の方向に行い、板厚方向の情報を含むようなレプリカを作成し、このレプリカ上の窒化物の数密度の板厚方向への分布を測定し、この分布から特定の板厚位置での窒化物の数密度を決定することも可能である。
【0022】
以下、本発明の重要な要件である窒化の状態について記述する。
本発明が対象とする技術は基本的には本発明者が特願2002−337647号において出願した表層と中心層の成分・材質を適当に制御した缶特性が優れた容器用極薄鋼板に適用されることで極めて優れた効果を示すが、これに限定されるものではない。しかし本発明の記述においては「表層1/8厚さ」の領域内および「板厚1/20位置」、「板厚1/8位置」、「板厚1/4位置」での窒化物の状態を主として用い、これらにより板厚位置での窒化物の状態が異なるように制御することが本発明の主要な効果で、このように窒化物の状態を制御することで特願2002−337647号における効果をより好ましく得ることが可能となる。これは容器用極薄材では表層部の状態が缶としての利用特性上重要であるとの知見にも沿うものであり板厚方向に特性変動を有する鋼板の析出物の分布状態を表現する上で板厚位置での窒化物のサイズと数密度を用いるものである。本発明は主に表層部の窒化物を中心部に比較してより多量に、微細に分散させるものであり、本発明が製造法の一つとして想定している一般的な窒化の方法から考えて基本的に鋼板表面が優先的に窒化され窒化に伴ない生成する窒化物の量が中心層に比較して増加するはずであるとの想定によっている。またその際に形成される窒化物は本発明の目的からして粗大なものはどちらかといえば好ましいものではなく、窒化後の熱履歴、特に冷却条件等により微細に分散させることが好ましいものとなるので、本発明では微細な窒化物についての制御を行なうものとしている。
【0023】
このように本発明の特徴の一つは鋼板板厚位置での窒化物の状態に差を有せしめることである。この差は本発明が対象とする窒化物について、鋼板の(表層1/8厚さ)内に数密度0.2個/μm以上で存在する領域を有し、かつ(鋼板の(板厚1/8位置)での数密度)>(鋼板の(板厚1/4位置)での数密度)により限定される。窒化物の数密度はN含有量と窒化物のサイズとの関係で取りうる範囲に制限はあるが、0.2個/μm以上とすることが好ましく、さらに好ましくは2個/μm以上であり、20個/μm以上、さらには200個/μm以上、さらには1000個/μm以上とすれば硬質化の点で非常に有効となる。
また(鋼板の(板厚1/20位置)での数密度)/(鋼板の(板厚1/4位置)での数密度)でも規定でき、この比を1.5超、好ましくは3以上、さらに好ましくは6以上、さらに好ましくは10以上、さらに好ましくは30以上、さらに好ましくは100以上とする。この比が小さいと本発明の効果が小さくなり目的とする鋼板が得られない。またこのように表層部の窒化物の数密度を増大させる方法として窒化を適用する場合は(窒化処理後の鋼板の(板厚1/20位置)での数密度)/(窒化処理前の鋼板の(板厚1/20位置)での数密度)で規定することもでき、この場合も上と同様にこの比を1.5超、好ましくは3以上、さらに好ましくは6以上、さらに好ましくは10以上、さらに好ましくは30以上、さらに好ましくは100以上とする。この比が大きいほど基本的には本発明の効果が大きくなることは言うまでもない。
また本発明の主たる制御目的が鋼板中心層に比べ鋼板表層に微細窒化物を多量に分散することであることから明らかなように鋼板中心層に微細な窒化物を多量に分散することは本発明の効果をより好ましく享受する観点からは好ましくない。本発明の効果を顕著にするためには、鋼板の(板厚1/4位置)での直径1μm以下0.02μm以上の窒化物数密度を10個/μm以下とすることが好ましい。
【0024】
次に窒化条件に関して述べる。本発明の窒化処理は冷延後の再結晶焼鈍と同時またはその後に、再結晶焼鈍と連続して行なうことが生産性の観点からは好都合であるが、特に限定するものではない。焼鈍の方法はバッチ式または連続焼鈍を問わずに適用が可能である。
ただし窒化処理の生産性および窒化材のコイル内材質の均一性の観点からは連続焼鈍法がはるかに有利である。また本発明が規定するように表内層の材質を制御し大きな効果を得るには窒化時間およびその後の熱履歴が長時間化するのは不利となることからも、少なくとも窒化処理は連続焼鈍設備で行なわれることが好ましい。特別な理由がない場合は連続焼鈍を適用するものとする。特に連続焼鈍工程において炉中の雰囲気を部分的に制御し、前半で再結晶、後半で窒化する工程は生産性や材質の均一性、窒化状態の制御のし易さなど多くのメリットがある。
【0025】
また再結晶が終了する前に窒化処理を行なうと、再結晶が著しく抑制されて未再結晶組織が残り、加工性の顕著な劣化が起こる場合があり注意が必要である。この限界は鋼成分や窒化条件、再結晶焼鈍条件などで複雑に決定されるものであるが、当業者であれば未再結晶組織が残存しない条件を適度な試行の後に見出すことは容易である。窒化処理は窒化による鋼板のN増加量のみならず、鋼成分や再結晶焼鈍条件、さらには窒化後の熱履歴等も考慮し、Nの鋼板表面から内部への拡散や板厚断面での窒化物変化を考えて決定する必要がある。単にロックウェル硬度や引張試験等で決定される材質だけを指標にしたのでは本発明が目的とする好ましい耐変形性を得ることはできない。この条件は実操業では適当な回数の試行を参考とし決定する必要があるが、基本的な考え方は以下のようであり、それに基づき本発明を規定する。すなわち、窒化は板温度が550〜800℃の状態で行なわれる必要がある。これは通常の焼鈍のように窒化雰囲気をこの温度にしておきその雰囲気中に鋼板を通過させることで板温度をこの範囲にし同時に窒化を行なうことも可能であるし、窒化雰囲気はより低い温度としておき、この範囲の温度に加熱した鋼板をその中に侵入させることで窒化を進行させてもよい。窒化雰囲気をこの温度に昇温する場合には鋼板の窒化とは無関係な雰囲気の変質および分解により鋼板の窒化効率が低下する場合があるので550〜750℃とする。好ましくは600〜700℃、さらに好ましくは630〜680℃である。窒化雰囲気は体積比で窒素ガスを10%以上、さらに好ましくは20%以上、さらに好ましくは40%以上、さらに好ましくは60%以上含み、必要に応じて水素ガスを90%以下、さらに好ましくは80%以下、さらに好ましくは60%以下、さらに好ましくは20%以下含み、さらに必要に応じてアンモニアガスを0.02%以上含んだものとし、残部は酸素ガス、水素ガス、二酸化炭素ガス、炭化水素ガスまたは各種の不活性ガスなどとする。
【0026】
特にアンモニアガスは窒化効率を上げるために効果が高く、所定の窒化量を短時間で得ることが可能となるため鋼板中心へのNの拡散を抑制し、本発明にとって好ましい効果を得ることができる。この効果は0.02%以下でも十分であるが、好ましくは0.1%以上、さらに好ましくは0.2%以上、さらに好ましくは1.0%以上、さらに好ましくは5%以上、10%以上とすれば5秒以下での窒化処理でも十分な効果を得ることが可能となり、20%以上さらには40%以上とすれば窒化温度や板厚にもよるが1秒またはそれ以下の短時間でも明確な効果を得ることが可能となる。また、アンモニアガス以外の比率、特に窒素ガスと水素ガスが主要なガス成分となる場合については体積で(窒素ガス)/(水素ガス)を1以上にすることが窒化効率の点から好ましく、この比を2以上にすることでさらに効率的な窒化が可能となる。また、通常の焼鈍においては窒素ガスと水素ガスを主体とした雰囲気中で窒化しないような条件で焼鈍が行なわれるが、当業者であれば上に述べたアンモニアガスの混入に限らず、露点の変更やわずかな微量ガスの混入、ガス比率の変更などにより窒化が起きる条件に変更することも適当な試行の後に可能である。少なくとも焼鈍を含む熱処理により窒化したことが現在の分析能力によって検知できるものを本発明の対象とする。
【0027】
窒化雰囲気での保持時間は特に限定されるものではないが、550℃以上という本発明の温度条件に絡んで、最大0.400mmという鋼板厚さを考えると保持中の鋼中Nの拡散により窒化により鋼板表面から浸入したNが鋼板中心層へ到達し、本発明が目的とするN分布または窒化物分布が得られなくなること考え360秒を上限とするのが望ましい。また、窒化効率を向上させても本発明が必要とする窒化量および鋼板板厚方向の窒素および硬度分布を得るには0.1秒は必要である。好ましくは1〜60秒、さらに好ましくは2〜20秒、さらに好ましくは3〜10秒である。
【0028】
鋼板板厚方向の窒化物分布を制御するには窒化後の鋼板の熱履歴も重要となる。対象となる鋼板の板厚および鋼中での窒素の拡散および窒化物形成・成長を考慮すると高温での長時間保持は好ましくない。しかし、この熱処理により窒素分布を適当になだらかにすることで本発明の効果をより顕著にすることも可能となる。このためには550℃以上の温度域での履歴が重要で、この温度域での温度と時間の積を48000以下とすることが好ましい。これは600℃で80秒、800℃で60秒に相当するが、温度が連続的に変化するときはその効果が適当に評価されるように5秒程度ごとの時間領域に分割し温度変化を記録し、各領域についての温度と時間の積の和を求めることでも評価が可能である。
もちろんこれはある温度幅をもった温度領域に分割して評価してもよい。好ましくは24000以下、さらに好ましくは12000以下、さらに好ましくは6000以下で、通常は窒化終了時点で鋼中窒素の分布がほぼ決定するように窒化条件を設定しておき、その後の冷却過程において窒化物の生成を制御することが好ましい。本発明が対象とする窒化は主として多量のNが固溶した状態で行われ、多量の窒化物がその後の温度低下に伴い起こるため窒化後の冷却工程の制御は重要である。
【0029】
この冷却工程での熱履歴に絡んで、窒化後の冷却速度が発明の効果に大きく影響する。すなわち、窒素分布がほとんど変化しない低温短時間でも冷却過程での窒化物の形成状態が大きく変化する場合がある。550℃から300℃までの平均冷却速度を10℃/s以上とすることで、特に中心層に比し相対的にN濃度が高く冷却速度が高い表層部で微細な窒化物を数多く生成させることが可能となる。好ましくは20℃/s以上、さらに好ましくは50℃/s以上である。ただし、冷却速度が速すぎると固溶窒素が過度に残存し用途によっては時効性が問題となる場合があるので注意が必要である。
【0030】
薄手の容器用鋼板の製造においては、硬度調整や板厚調整のために再結晶焼鈍の後に再冷延を行なう場合がある。この圧下率は形状調整のために行なわれるスキンパスに近い数%程度から、冷延と同様の50%以上までが実用化されている。本発明に再冷延法を適用する場合、この圧下率は20%以下に限定する。圧下率がこれ以上になると本発明が特徴とする表層と内層の材質差が小さくなり発明の効果が消失するのみでなく、鋼板自体が硬質になり本発明によって耐変形性を付与する必要性がなくなる。また、再冷延圧下率の上昇は鋼板の加工性を劣化させるので缶強度を付与する目的に限定すれば本来好ましい方法ではない。また溶接を考えると加工硬化部は容易に軟化し溶接部強度の低下を起こしやすいことからも圧下率を低くすることが好ましい。好ましくは15%以下、さらに好ましくは10%以下、好ましくは5%以下、好ましくは3%以下とする。再冷延の時期は生産性の観点から好ましい再結晶焼鈍と窒化処理を連続的に行う工程においては窒化処理の後になるが、再結晶焼鈍と窒化処理を別の工程で行う場合には窒化処理の前に行うことも可能である。
【0031】
本発明は板厚0.400mm以下の鋼板に適用されるものとする。これは板厚がこれより厚い鋼板では成形部材の変形は問題となりにくいからである。また、板厚が厚い場合には窒化による表層硬化層の厚さが相対的に小さくなり発明の効果が現れにくくなるためもある。好ましくは0.300mm以下、さらに好ましくは0.240mm以下の鋼板を対象とし、0.190mm以下、さらには0.160mm以下の鋼板では非常に顕著な効果を得ることが可能となる。
このように主として窒化後の窒化物の状態を表層と中心層を区別し板厚方向への分布を考慮し制御することで、ただ単にNを含有した鋼や表面硬度の造り分けのみを目的として窒化した鋼に無い本発明鋼特有の材質を持つようになるメカニズムは明確ではないが、缶の変形に伴う鋼板表層部の曲げ変形に対する抵抗性が窒化物により効果的に高まるためと考えられる。そして、この効果は対象材の板厚や変形が起きる際の外力、内庄や容器の形状などの条件が絡んだ応力状態、本発明で規定する窒化条件と相まった表層と中心層の差を意識した窒化物のサイズと数密度により、非常に効果的に耐変形性が発現するためではないかと推定される。
【0032】
本発明の効果は成分調整以降、焼鈍前の熱履歴、製造履歴によらない。熱延を行なう場合のスラブはインゴット法、連続鋳造法などの製造法には限定されず、また熱延に至るまでの熱履歴にもよらないため、スラブ再加熱法、鋳造したスラブを再加熱することなく直接熱延するCC−DR法、さらには粗圧延などを省略した薄スラブ鋳造によっても本発明の効果を得ることができる。また熱延条件にもよらず、仕上げ温度をα+γの二相域とする二相域圧延や、粗バーを接合して圧延する連続熱延によっても本発明の効果を得られる。
また、本発明鋼を溶接部を有する容器用素材として用いる場合には、熱影響部の軟化を抑制、特に窒化物量が多い表層部が急加熱、急冷されることで窒化物が溶解、そしてさらなる微細窒化物として再析出、一部は固溶Nとして残存し硬化するため溶接部の強度を向上させる効果も有する。これはB,Nbなど通常でも熱影響部の軟化を抑制する元素が添加された場合にはさらに顕著となる。一方、絞り成形やしごき成形等を経て製造されるいわゆる2ピース缶においては板表面が硬質化するため成形金型との摩擦係数が低下し成形性が向上する硬化も有する。さらには表層を硬質化し曲げ変形に対する抵抗性を高めているため成形中の鋼板の曲げ座屈がおき難くなる、すなわちしわの発生を抑制する効果も現れる。
通常、本発明鋼板は表面処理鋼板用の原板として使用されるが、表面処理により本発明の効果はなんら損われるものではない。缶用表面処理としては通常、ニッケル、錫、クロム(ティンフリー)などが施される。また、近年使用されるようになっている有機皮膜を被覆したラミネート鋼板用の原板としても、本発明の効果を損うことなく使用できる。
【0033】
<実施例1>
缶胴部を溶接により形成する3ピース缶において、窒化条件を変化させ窒化物の制御を行った鋼板で3ピース缶胴を製造した。この缶の胴部を10mmφ、長さ40mmの円柱金型で押し込んだ際の変形抵抗を測定するとともに缶端部を通常の蓋を巻き締めるのと同様にフランジ成形した。
変形試験においては金型の押し込み量と押し込み荷重の相関を示すと図2のようになり、ある荷重で変極点を生ずる。この変極点となる荷重を耐変形性の指標とした。この値が高いほど外力による変形が小さくなり耐変形性が良好ということになる。またフランジ成形においてはフランジ部に割れが生じるまでのフランジ長さを測定した。この長さが長いほどフランジ成形性が良好で蓋の巻き締め時の欠陥が発生し難いこととなる。
【0034】
表1に示す各成分の鋼について、熱間圧延、冷間圧延、窒化を伴う焼鈍後、スキンパスまたは再冷延を施して鋼板を製造し、耐変形性およびフランジ成形性を評価した。熱延、冷延、焼鈍、窒化条件等を表1に示す。窒化は全て焼鈍の中盤以降で行なわれており、窒化が起きる前に再結晶は完了していたものと考えられる条件となっている。表1でのN量は窒化前の板厚平均のN量である。鋼板は通常の方法で製造されているため窒化前は板厚方向の元素の変化および窒化物の状態の変化はごくわずかで本発明の効果にとって無視できる程度のものである。すなわち、窒化前の鋼板の成分および窒化物サイズと数密度については表層1/20厚さ、表層1/8厚さおよび中心層1/4厚さの数値は同じものとなる。
これらの鋼についての材質を表2に示す。本発明の製造法によるものは良好な耐変形性とフランジ成形性が両立できていることが確認できる。
【0035】
<実施例2>
質量%で、C:0.02%、Si:0.02%、Mn:0.2%、P:0.01%、S:0.01%、Al:0.04%、N:0.002%を含む250mm厚さの鋼片を連続鋳造で製造し、スラブ加熱温度:1100℃、仕上げ温度:880℃、巻き取り温度:600℃で2.0mmの熱延板にした。酸洗し、0.17mmに冷延し、連続焼鈍ラインにて650℃×30秒で再結晶焼鈍した。一部の材料は連続焼鈍ラインの焼鈍炉に連続したアンモニア含有雰囲気で満たした窒化処理炉内を通板し窒化処理を行った。窒化処理炉内には加熱設備は設置されておらず、再結晶焼鈍炉で加熱されたままの板を650℃で窒化処理炉内に侵入させることで窒化を行った。窒化処理炉内の雰囲気は鋼板による熱の持ち込みにより加熱されるため窒化処理中の板温度の降下はそれほど大きくなく、窒化処理炉から出てくる板の温度は窒化処理時間にもよるが600℃程度であった。
【0036】
このように製造した鋼板を1.5%のスキンパスの後、通常の電気Snめっきを施しぶりき鋼板を製造した。これらを用い、通常の製缶メーカーで行われるのと同様の方法で3ピース缶を製造し缶強度を実施例1と同様の方法で評価した。なお、製缶した全ての材料で溶接、蓋のまき締め等の問題は発生しなかった。得られた缶強度を窒化処理雰囲気中のアンモニア濃度、窒化処理後の冷却速度および窒化処理時間で整理したものが図3である。
図3においてAはアンモニア濃度4%、窒化後の冷却速度20℃/秒、Bはアンモニア濃度4%、窒化後の冷速120℃/秒、Cはアンモニア濃度10%、窒化後の冷速20℃/秒、Dはアンモニア濃度20%、窒化後の冷速20℃/秒とした場合を示し、窒化後の冷速は550℃から300℃の平均冷却速度である。また、缶強度を(窒化処理後の鋼板の(表層1/20厚さ)での数密度)/(窒化処理前の鋼板の(表層1/20厚さ)での数密度)で整理したものが図4である。本発明により缶強度を著しく上昇させることができる。図中には同成分の鋼により再結晶焼鈍まえの冷延率のみを変えて製造した板厚が異なる材料の缶強度も示す。本発明により目的とする缶強度を維持したまま材料の薄手化が可能となることがわかる。
【表1】

Figure 2004323905
【表2】
Figure 2004323905
【0037】
【発明の効果】
以上述べたごとく本発明によれば、容器の耐変形性、缶成形性の一方を犠牲にすることなく両立して著しく向上できる極薄容器用鋼板を高生産性にて得ることが可能となる。
【図面の簡単な説明】
【図1】鋼板の厚み方向の位置を示す図である。
【図2】変形試験における金型押し込み量と押し込み荷重の関係を示す図である。
【図3】窒化時間と缶強度の関係を示す図である。
【図4】窒化前後の窒化物数の比と缶強度の関係を示す図である。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a steel plate used for a metal container such as a beverage can and a method for producing the same.
[0002]
[Prior art]
As for the steel plate for containers such as beverage cans and food cans, the thickness of the steel plate has been reduced in order to reduce the cost of the container, and materials having a thickness of 0.2 mm or less have been applied. One of the problems that has become apparent when a container is manufactured from such an extremely thin material is deformation of the container.
This is due not only to the action of external forces that occur during the handling of containers in the general manufacturing process after the container is manufactured or after the contents are filled, but also to increase or decrease the internal pressure of the containers, that is, to increase the pressure during heating of the contents and the contents. This is a pressure reduction treatment for holding the object, or a pressure increase which is essential depending on the contents such as carbonated beverages, and a deformation of the container due to a temperature change during distribution or holding.
In order to improve the deformation resistance, it is necessary to use not only a container design but also a harder material. However, generally, a hard material has low ductility, and causes problems such as material breakage during can molding.
[0003]
In addition, since ultra-thin materials break at a relatively lower strain than thick materials, ultra-thin materials require materials having better ductility than thick materials. Further, in the case forming, the welded portion may be further formed after the steel sheet is welded. In such a case, the deformation tends to concentrate on a specific portion, and good ductility is also required from this point.
As a method of increasing the strength without significantly impairing the ductility in the steps after annealing, techniques of nitriding during annealing are disclosed in JP-A-08-170122, JP-A-08-176788, JP-A-2001-107148, and the like. It has been disclosed.
However, these techniques lack the viewpoint of optimally controlling the hardness of the inner surface layer especially for the ultra-thin material in consideration of the steel sheet composition and the nitriding conditions, and the above-described technology produces cans based on the ultra-thin material. In this case, the moldability of the material and the deformation resistance of the can were not always satisfactory.
[0004]
[Patent Document 1] JP-A-08-170122
[Patent Document 2] Japanese Patent Application Laid-Open No. 08-176788
[Patent Document 3] JP-A-2001-107148
[Patent Document 4] JP-A-2002-012948
[0005]
[Problems to be solved by the invention]
The present invention solves the problems of the prior art as described above, and applies a nitriding method to the material of the surface layer and the inner layer of the material for the deformation that is a problem in a container manufactured using an ultrathin material. It is an object of the present invention to provide a steel sheet which can be controlled and changed greatly and has good ductility even when hard, and a method for manufacturing the same.
[0006]
[Means for Solving the Problems]
In order to solve the above-mentioned problems, the present inventors have studied the components of a steel plate having a thickness of 0.4 mm or less and the relationship between the nitriding conditions and the materials, particularly, the components, particularly the N, By limiting the amount to a specific range and further adjusting the nitriding conditions optimally, it is possible to preferably control the nitride morphology of the surface layer portion and the inner layer portion of the material. It has been found that the problematic deformation can be greatly suppressed.
That is, according to the present invention, the deformation resistance of the can is not so much improved only by separately producing the surface hardness by performing the nitriding treatment after the cold rolling and increasing the amount of nitrogen in the steel, and the ultra-thin material. The present inventors have found that there is a nitriding condition necessary for improving the deformation resistance of the can and a method for controlling the nitriding condition, and the gist is as follows as described in the claims.
[0007]
(1) In mass%, C: 0.0800% or less, N: 0.600% or less, Si: 2.0% or less, Mn: 2.0% or less, P: 0.10% or less, S: 0 0.05% or less, Al: 2.0% or less,
Regarding nitride having a diameter of 1 μm or less and 0.02 μm or more, a number density of 0.2 / μm within 1/8 thickness of the surface layer of the steel sheet 3 A steel sheet for an ultra-thin container having a region existing as described above and satisfying the following formula (A) and having remarkably good can properties with a sheet thickness of 0.400 mm or less.
(Number density at 1/8 thickness position of steel sheet)> (Number density at 1/4 thickness position of steel sheet) (A)
(2) In mass%, C: 0.0800% or less, N: 0.600% or less, Si: 2.0% or less, Mn: 2.0% or less, P: 0.10% or less, S: 0 0.05% or less, Al: 2.0% or less,
An ultra-thin container steel sheet having a can thickness of 0.400 mm or less, characterized by satisfying the following formula (B) with respect to a nitride having a diameter of 1 μm or less and 0.02 μm or more.
(Number density at 1/20 position of steel plate thickness) / (Number density at 1/4 position of steel plate thickness)
> 1.5 (B)
(3) The number density of nitrides having a diameter of not more than 1 μm and not less than 0.02 μm at a position of 1/4 thickness of the steel sheet is 10 pieces / μm 3 The steel sheet for an ultra-thin container according to (1) or (2), which has the following remarkable characteristics:
(4) As a steel component, one or more of Ti: 0.08% or less, Nb: 0.08% or less, B: 0.015% or less, and Cr: 2.0% or less in mass%. (1) to (3), wherein the can properties are extremely good.
(5) The can according to any one of (1) to (4), further comprising, as a steel component, 0.1% or less in total of Sn, Sb, Mo, Ta, V, and W in mass%. Ultra-thin steel sheet with extremely good properties.
(6) The ultra-thin container steel sheet according to (1) to (5), wherein the balance of the steel component is Fe and inevitable impurities.
[0008]
(7) In producing the steel sheet according to (1) to (6), in mass%, C: 0.0800% or less, N: 0.0300% or less, Si: 2.0% or less, Mn: 2 0.0% or less, P: 0.10% or less, S: 0.05% or less, Al: 2.0% or less after cold rolling, simultaneously with recrystallization annealing, or after recrystallization annealing Nitriding is performed, and nitrides having a diameter of 1 μm or less and 0.02 μm or more have a number density of 0.2 / μm within 1/8 thickness of the surface layer of the steel sheet. 3 An extremely thin container steel sheet having a can thickness of 0.400 mm or less, characterized by forming a region existing as described above and setting the N in the steel sheet to 0.600% or less by mass%. Production method.
(8) In producing the steel sheet according to (1) to (6), in mass%, C: 0.0800% or less, N: 0.0300% or less, Si: 2.0% or less, Mn: 2 0.0% or less, P: 0.10% or less, S: 0.05% or less, Al: 2.0% or less after cold rolling, simultaneously with recrystallization annealing, or after recrystallization annealing Nitriding treatment is performed to satisfy the following formula (B) for nitrides having a diameter of 1 μm or less and 0.02 μm or more within 1/8 thickness of the surface layer of the steel sheet, and N in the steel sheet is 0.600 by mass%. % Or less, and a method for producing an extremely thin steel sheet for a container having a remarkably good can property with a sheet thickness of 0.400 mm or less.
(Number density at 1/20 position of steel plate thickness) / (Number density at 1/4 position of steel plate thickness)
> 1.5 (B)
(9) In producing the steel sheet according to (1) to (6), in mass%, C: 0.0800% or less, N: 0.0300% or less, Si: 2.0% or less, Mn: 2 0.0% or less, P: 0.10% or less, S: 0.05% or less, Al: 2.0% or less after cold rolling, simultaneously with recrystallization annealing, or after recrystallization annealing A thickness of a nitride having a diameter of 1 μm or less and 0.02 μm or more satisfying the following formula (C) and N in the steel sheet being set to 0.600% or less by mass% in a nitriding treatment. A method for producing an ultra-thin steel sheet for containers having extremely good can properties of 0.400 mm or less.
(Number density of steel sheet after nitriding treatment at 1/20 position) / (number density of steel sheet before nitriding treatment at 1/20 position)> 1.5 (C)
(10) In mass%, C: 0.0800% or less, N: 0.0300% or less, Si: 2.0% or less, Mn: 2.0% or less, P: 0.10% or less, S: 0 A steel containing 0.05% or less, Al: 2.0% or less, and the balance consisting of Fe and unavoidable impurities is subjected to nitriding after cold rolling and simultaneously with recrystallization annealing or after recrystallization annealing. The number density of nitride having a diameter of 1 μm or less and 0.02 μm or more at a plate thickness 1/4 position is 10 / μm 3 The method for producing a steel sheet for an ultra-thin container according to any one of (7) to (9), wherein the N is not more than 0.600% by mass%.
(11) Simultaneously with the recrystallization annealing, or when performing the nitriding treatment after the recrystallization annealing, at a plate temperature of 550 to 800 ° C., in an atmosphere containing 0.02% or more of ammonia gas for 0.1 second or more. After the nitriding treatment, the product of the temperature and the time is set to 48000 (° C. · s) or less in the temperature range of 550 ° C. or more, or the average cooling rate from 550 ° C. to 300 ° C. is set to 10 ° C. / (7) The method for producing a steel sheet for an ultra-thin container according to (7) to (10), wherein the can property is remarkably good.
(12) After the recrystallization annealing, before or after the nitriding treatment, re-rolling is performed at a rolling reduction of 20% or less, and the can characteristics according to (7) to (11) are remarkably good. Manufacturing method of steel sheet for ultra-thin containers.
[0009]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the present invention will be described in detail.
First, the steel component in the present invention will be described. All components are% by weight. The upper limit of the C amount is necessary to avoid deterioration of workability, and is set to 0.0800% or less. Preferably it is 0.0600% or less, more preferably 0.040% or less.
In the steel of the present invention in which N having the same properties as C is increased by nitriding, the C content required from the viewpoint of securing strength may be low. C: The required strength can be ensured even at 0.0050% or less, and may be 0.0020% or less. If it is 0.0015% or less, there is a balance with the amount of nitriding, but extremely soft material can be produced. In order to improve the r value and maintain high drawability, C is preferably lower.
The upper limit of the amount of N before nitriding is also necessary to avoid deterioration of workability, and is set to N: 0.0300% or less. Preferably, N: 0.0200% or less, more preferably N: 0.0150% or less, further preferably N: 0.0100% or less, more preferably N: 0.0100% or less, and further preferably N: 0. 0.0050% or less, more preferably N: 0.0030% or less. In order to improve the r value and keep the drawability high, the N content before nitriding is preferably low. It should be noted that, as described later, N contained by nitriding exists in different amounts depending on the thickness position of the steel sheet in order to impart the deformation resistance effect of the can, etc., and exists before nitriding. The effect is somewhat different from N.
[0010]
The upper limit of the amount of N after nitriding is necessary not only to avoid deterioration in workability but also to avoid deterioration in surface treatment properties such as plating, and is set to 0.600% or less. Preferably, N: 0.300% or less, more preferably, N: 0.150% or less, further preferably, N: 0.100% or less, more preferably, N: 0.050% or less, and further preferably, N: 0. 030% or less. However, it goes without saying that a higher N content is preferable in order to harden the hardened portion by nitriding.
Si is added for the purpose of adjusting the strength, but if it is too much, the workability is deteriorated, so that the content is set to 2.0% or less. In the steel of the present invention, nitrides formed in the steel at the crystal grain boundaries by nitridation form N and nitrides, which not only cause brittle cracking but also may impair the effects of the present invention. In some cases, it may be necessary to reduce the amount to 1.0% or less. In particular, in order to keep the formability high, the amount of Si is preferably low, and the formability is improved by setting it to 0.5% or less, and further to 0.1% or less.
[0011]
Mn is added for adjusting the strength, but if it is too much, the workability is deteriorated, so that Mn is made 2.0% or less. In order to keep the moldability high, the Mn content is preferably low, and the moldability is improved by setting it to 0.6% or less, and more preferably 0.2% or less.
P is added for adjusting the strength, but if too much, the workability is deteriorated, so P is set to 0.10% or less. In order to keep the moldability high, the P content is preferably low, and the moldability is improved by setting the P content to 0.05% or less, further 0.01% or less.
S deteriorates hot ductility and becomes a hindrance factor of casting and hot rolling. Therefore, S is set to 0.05% or less. In order to maintain the formability, the S content is preferably low, and the formability is improved by setting the S content to 0.02% or less, and further to 0.01% or less.
[0012]
Al is an element added for deoxidation, but if it is high, casting becomes difficult. Since there is harm such as an increase in surface flaws, the content is set to 2.0% or less. In addition, when the Al content is as high as 0.2% or more, there is an effect that nitriding is combined with N infiltrated into the steel sheet to form a large amount of AlN in the steel and harden the nitrided portion. In order to maintain high formability in the center of the steel sheet thickness where the degree of nitriding is low, the Al content is preferably low. Sex is improved.
The effects of elements considered in ordinary steel plates for containers other than the above basic elements and their control will be described below.
Ti raises the recrystallization temperature of the steel sheet and significantly deteriorates the annealing passability of the ultra-thin steel sheet targeted by the present invention. For this reason, it is set to 0.080% or less. In ordinary applications where a particularly high r value is not required, it is not necessary to add Ti, and the content is set to 0.04% or less, more preferably 0.01% or less. Further, Ti which is dissolved in the steel before nitriding is combined with N which has infiltrated the steel plate by nitriding to form fine TiN in the steel and has a strong effect of hardening the nitrided portion. For this reason, even in the case of a steel sheet having a low degree of nitriding, the hardening of the material may appear more than necessary even in the center layer, and if it is necessary to obtain a soft steel sheet, the lower the Ti content, the better. % Or less, more preferably 0.003% or less, it is possible to suppress inadvertent hardening of the steel sheet.
[0013]
Nb also has the same effect as Ti, raises the recrystallization temperature, and significantly deteriorates the passability of the ultra-thin steel sheet targeted by the present invention. Therefore, the content is set to 0.08% or less. In a normal use where a particularly high r value is not required, in a normal use where a particularly high r value is not required, it is not necessary to add Nb, and the Nb content is set to 0.04% or less, more preferably 0.01% or less. Further, Nb dissolved in the steel before nitriding is combined with N infiltrated into the steel sheet by nitriding to form fine NbN in the steel and has a strong effect of hardening the nitrided portion. For this reason, even in the case of a steel sheet having a low degree of nitriding, the hardening of the material may appear more than necessary even in the central layer, and if it is necessary to obtain a soft steel sheet, the Nb content is preferably as low as 0.005. % Or less, more preferably 0.003% or less, it is possible to suppress inadvertent hardening of the steel sheet.
When B is added to a steel sheet containing about 0.01% or more of Ti and Nb, B raises the recrystallization temperature of the steel sheet and significantly deteriorates the annealing passability of the ultra-thin steel sheet targeted by the present invention. When the content of Nb is small, the adverse effect on this point is small, but rather the recrystallization temperature is lowered, so that recrystallization annealing can be performed at a low temperature and the effect of improving the annealing passability is also provided. It is possible. However, excessive addition causes significant cracking of the slab during casting, so the upper limit is made 0.015%. For the purpose of lowering the recrystallization temperature and improving the annealing passability, it is sufficient to set B / N = 0.6 to 1.5 in relation to the N content before nitriding. In addition, B, which forms a solid solution in the steel before nitriding, has a strong effect of forming fine BN in the steel by combining with N infiltrated into the steel sheet by nitriding to harden the nitrided portion. When utilizing the surface layer hardening by BN, it is preferable to set the ratio of the B content and the N content before nitriding to B / N> 0.8. When this ratio is 1.5 or more, and more preferably 2.5 or more, the hardening due to the formation of BN becomes remarkable. On the other hand, care must be taken because the formation of BN may cause the material to harden more than necessary and deteriorate the formability. If the hardening due to BN formation is not particularly utilized in the steel of the present invention, the ratio between the B content and the N content before nitriding is set to B / N <0.8, and more strictly, B / N <0.1. do it.
[0014]
The Cr dissolved in the steel before nitriding combines with N infiltrated into the steel sheet by nitriding to form fine Cr nitrides in the steel and has an effect of hardening the nitrided portion. For this reason, the hardening of the material may appear more than necessary. On the contrary, it is also possible to effectively increase the hardness of the nitrided portion by using this nitride. For this purpose, it is preferable to add 0.01% or more of Cr. However, on the other hand, if Cr increases the recrystallization temperature of the steel sheet and is excessively added, it may significantly deteriorate the annealing passability of the ultra-thin steel sheet targeted by the present invention. In order to avoid a decrease in annealing passability due to an increase in the recrystallization temperature, the content is preferably set to 2.0% or less, and if it is 0.6% or less, the increase in the recrystallization temperature is practically acceptable. Can be suppressed.
It is possible to add Cr, Ni, Cu, etc. to impart properties not specified in the present invention, such as to increase corrosion resistance, but excessive addition lowers the nitriding ability essential for the steel of the present invention. Therefore, it is preferable that the content of Cr is 30% or less, the content of Ni is 15% or less, and the content of Cu is 5% or less. More preferably, the content of Cr is 15% or less, the content of Ni is 5% or less, and the content of Cu is 2% or less. Should.
[0015]
Further, Sn, Sb, Mo, Ta, V, and W are summed up to give characteristics not specified in the present invention.
Although it is possible to contain 0.1% or less, it should be noted that excessive addition may lower the nitriding ability essential for the steel of the present invention. In particular, the inclusion of Sn and Sb may lower the nitriding efficiency, so care must be taken when controlling the nitride by applying nitriding. In order to prevent Sn and Sb from notably impairing the nitriding efficiency, the respective contents are set to 0.06% or less, preferably 0.02% or less.
Here, the division of the parts in the thickness direction of the steel sheet used in this specification will be described with reference to FIG.
The “surface layer 1/8 thickness” indicates the corresponding region in FIG. In addition, although the area | region corresponding to "1/8 thickness of a surface layer" exists in both surfaces of a steel plate, in this invention, the thing which corresponds to the limited range of this invention about any one of them. It is relatively easy to change the nitride distribution on the front and back by nitriding method and surface treatment before nitriding, and even some treatment after nitriding, but in the present invention, such a steel sheet with different front and back surface layers set to target. This is because the deformation resistance targeted by the present invention can be obtained even with only one surface.
[0016]
The “plate thickness 1/8 position” indicates the corresponding position in FIG. The “plate thickness 1/4 position” indicates the corresponding position in FIG. In addition, the positions corresponding to these exist on both surfaces of the steel sheet, but the present invention is intended for any one of the surfaces that falls within the limited range of the present invention.
It is relatively easy to change the nitride distribution on the front and back by nitriding method and surface treatment before nitriding, and even some treatment after nitriding, but in the present invention, such a steel sheet with different front and back surface layers set to target. This is because the deformation resistance targeted by the present invention can be obtained even with only one surface.
Although not shown in the drawing, the “sheet thickness 1/20 position” indicates a position at a depth of 1/20 of the sheet thickness from the steel sheet surface similarly to the “sheet thickness 1/8 position”.
[0017]
In the present invention, the size and the number density of the nitride present at a specific position or a specific layer in the thickness direction of the steel sheet are specified. The existing precipitate can be identified by a diffraction pattern such as an electron microscope or an attached X-ray analyzer. Of course, other methods such as chemical analysis
Can be identified. The average diameter of the nitride targeted in the present invention is 1.0 μm or less.
Above this, not only does the efficiency of high strength remarkably decrease, but it also becomes a starting point of cracking during processing and deteriorates ductility, and when coarse nitride is exposed on the steel sheet surface, it adversely affects surface treatment such as plating . In light of these characteristics, the average diameter is preferably equal to or less than 0.40 μm, more preferably equal to or less than 0.20 μm, and still more preferably equal to or less than 0.10 μm. These diameters and the number density described below can be quantified by, for example, observation with an electron microscope.
[0018]
Control of the nitride size and number density is very important from the viewpoint of achieving both high strength and good workability. This is because not only do they affect the strength and the workability, but also when they are changed, the behavior in which the strength or the workability changes is different. That is, it is necessary to control the region to have a high strength increasing effect and a low workability deterioration efficiency. To this end, it is effective to appropriately control the temperature and time in the above-mentioned temperature range of 450 to 700 ° C. and the cooling rate immediately before entering this temperature range. Similar to the formation of a precipitate.
That is, the higher the cooling rate and the lower the temperature, the finer and denser the nitride size, and the longer the size, the coarser the size.
It should be noted that not only nitrides but also oxides, carbides, sulfides, and the like, as well as composite precipitates, are included. When complex precipitates are formed, it is difficult to specify the type of one precipitate and the size of each compound, but when one precipitate is clearly divided into a nitride part and other parts Is determined as one nitride except for.
[0019]
Basically, in the present invention, the extracted replica obtained by the SPEED method is observed with an electron microscope equipped with an EDX in the present invention, but when the nitride is considered to be very fine and the extraction is not good, it passes through the thin film. You may observe with an electron microscope. The composition is determined by EDX analysis, and when the observed nonmetallic element is N, it is regarded as sulfide. Further, since the characteristic spectrum of N is not clear because of its small size, Fe, Ti, Nb, B, Cr and the like are detected, and no clear spectrum such as O and S is observed, and it can be specified as nitride. In the present invention, a precipitate which can be almost determined to be a nitride based on a morphological comparison with other precipitates is also considered as a nitride. In addition, an electron diffraction pattern or the like may be used for the qualification of the precipitate. The identification of the nitride is not based on a technique such as EDX or an electron diffraction pattern, and any analytical instrument whose performance is remarkably improved at present may be used. In short, it suffices if the type, size and number density of the precipitate can be determined by a method recognized as appropriate. It is considered that it may be difficult to determine whether the precipitate is a carbide or a nitride depending on the precipitate. However, those whose type cannot be properly determined by ordinary analytical instruments are excluded from the present invention. Those which are very small in size and cannot be qualitatively determined by the EDX spectrum or ordinary analytical instruments are excluded from the nitrides to be considered in the present invention. Since the minimum size is about 0.02 μm in an analytical instrument usually used by the inventor at the time of filing the present invention, the lower limit of the present invention is 0.02 μm. Naturally, the number density will increase if more advanced analytical instruments are used and finer nitrides are considered.
[0020]
In addition, when the arrangement of individual atoms is clearly specified by a device that the inventor has not used before, the problem of determining how much a superfine atomic union of N and metal atoms is determined to be a nitride is included. It is considered important to clearly specify the lower limit of the nitride size.
The diameter and the number of nitrides are measured in a field of view where there is no deviation. In the present invention, the magnification is set such that the number of nitrides of the target diameter is about 500 in one visual field, and 10 visual fields are selected at random. The field diameter was divided by the electrolytic thickness by the SPEED method, and the average diameter was obtained by dividing the total of individual nitride diameters by the number. Here, it is needless to say that all the target sulfides in the visual field need to be measured. It should be noted that the number and diameter of nitrides can also be obtained by using image analysis or the like.
[0021]
In some cases, the elongated shape may be seen, but for the non-isotropic shape, the average of the major axis and the minor axis is defined as the diameter of the precipitate.
The number density of the precipitates is determined by the fact that the total electric charge applied to the sample surface in the electrolysis step in the replica making process is a divalent ion of Fe (Fe 2+ ) Was calculated assuming that the steel sheet was consumed to be electrolyzed and that any precipitate remaining as a residue during electrolysis was captured on the replica. For example, in replica production, 50 C (coulomb) / cm in sample surface area 2 When the electrolysis is performed with the amount of electricity, a precipitate within a thickness of 18 μm from the sample surface is observed on the replica. However, when the steel plate to be measured is extremely thin, for example, if precipitates within a thickness of 18 μm are collectively observed, it becomes unclear which position of the plate thickness corresponds to the observation position. Since the meaning of the definition such as "1/8 thickness" or "1/4 position", "1/8 position", "1/20 position" specified by the above becomes ambiguous, the electrolytic thickness in the SPEED method is Is not limited to 18 μm. Ideally, a precipitate existing on a plane having a thickness of 0 should be observed, but this may cause an increase in measurement error. Although it depends on the plate thickness, the electrolytic thickness should be about 5 to 20 μm, and the polishing should be performed so that the target plate thickness position is the center of the thickness of the electrolytic portion.
In addition, electrolysis is performed not from the plate surface to the plate thickness direction but from the plate thickness cross section to the direction in the plate surface, and a replica containing information on the plate thickness direction is created. It is also possible to determine the number density of nitride at a specific thickness position from this distribution.
[0022]
Hereinafter, the state of nitriding, which is an important requirement of the present invention, will be described.
The technology to which the present invention is applied is basically applied to an ultra-thin steel sheet for a container having excellent can characteristics in which the components and materials of the surface layer and the central layer, which the present inventor has filed in Japanese Patent Application No. 2002-337647, are appropriately controlled. However, the effect is extremely excellent, but the present invention is not limited to this. However, in the description of the present invention, the nitride in the region of “surface 1/8 thickness” and at “plate thickness 1/20 position”, “plate thickness 1/8 position”, “plate thickness 1/4 position” The main effect of the present invention is to mainly use the state and control the state of the nitride at the plate thickness position differently according to the state. By controlling the state of the nitride in this way, Japanese Patent Application No. 2002-337647. Can be more preferably obtained. This is in line with the knowledge that the state of the surface layer is very important in terms of the characteristics of use as cans in ultra-thin materials for containers, and is used to express the distribution of precipitates in steel sheets that have characteristic fluctuations in the thickness direction. And the size and number density of the nitride at the plate thickness position are used. The present invention mainly disperses the nitride in the surface layer in a larger amount and finely as compared with the central part, and is considered from the general nitriding method assumed as one of the manufacturing methods by the present invention. Basically, it is assumed that the surface of the steel sheet is preferentially nitrided, and the amount of nitride generated along with nitriding should increase as compared with the central layer. In addition, the nitride formed at that time is rather unpreferable if it is coarse for the purpose of the present invention, and it is preferable to disperse the heat history after nitriding, particularly finely by cooling conditions and the like. Therefore, in the present invention, control of fine nitrides is performed.
[0023]
As described above, one of the features of the present invention is to provide a difference in the state of the nitride at the thickness position of the steel sheet. This difference is due to the fact that the nitride having a number density of 0.2 pieces / μm in the (surface layer 1/8 thickness) of the steel sheet for the nitride of the present invention 3 It has a region that exists as described above, and is limited by (number density of steel sheet at (plate thickness 1/8 position))> (number density of steel sheet at (plate thickness 1/4 position)). Although the number density of the nitride is limited to a range that can be taken depending on the relationship between the N content and the size of the nitride, the number density is 0.2 pieces / μm. 3 More preferably, it is more preferably 2 pieces / μm 3 20 pieces / μm 3 More than 200 pieces / μm 3 More than 1000 pieces / μm 3 This is very effective in terms of hardening.
It can also be defined by (number density of steel sheet at (plate thickness 1/20 position)) / (number density of steel sheet at (plate thickness 1/4 position)), and this ratio exceeds 1.5, preferably 3 or more. And more preferably 6 or more, more preferably 10 or more, further preferably 30 or more, and still more preferably 100 or more. If this ratio is small, the effect of the present invention will be small, and the desired steel sheet cannot be obtained. When nitriding is applied as a method for increasing the number density of nitrides in the surface layer in this manner, (number density of steel sheet after nitriding at (sheet thickness 1/20 position)) / (number of steel sheet before nitriding treatment) It can also be defined by the number density at the plate thickness 1/20 position), and in this case as well, this ratio exceeds 1.5, preferably 3 or more, more preferably 6 or more, and still more preferably 10 or more. , More preferably 30 or more, more preferably 100 or more. Needless to say, the effect of the present invention basically increases as the ratio increases.
In addition, it is clear from the fact that the main control object of the present invention is to disperse a large amount of fine nitrides in the surface layer of the steel sheet as compared with the central layer of the steel sheet. It is not preferable from the viewpoint of more preferably enjoying the effect of (1). In order to make the effect of the present invention remarkable, the number density of nitrides having a diameter of 1 μm or less and 0.02 μm or more at a steel plate (at a plate thickness of 1/4 position) is set to 10 / μm. 3 It is preferable to set the following.
[0024]
Next, the nitriding conditions will be described. It is convenient from the viewpoint of productivity that the nitridation treatment of the present invention is performed simultaneously with or after recrystallization annealing after cold rolling and subsequently with recrystallization annealing, but it is not particularly limited. The method of annealing can be applied regardless of batch type or continuous annealing.
However, the continuous annealing method is much more advantageous from the viewpoint of the productivity of the nitriding treatment and the uniformity of the coil material of the nitride material. In addition, since it is disadvantageous that the nitriding time and the subsequent heat history are prolonged in order to obtain a large effect by controlling the material of the inner layer as specified by the present invention, at least the nitriding treatment is performed by a continuous annealing facility. It is preferably performed. If there is no special reason, continuous annealing shall be applied. In particular, the step of partially controlling the atmosphere in the furnace in the continuous annealing step, recrystallization in the first half, and nitriding in the second half has many advantages such as productivity, uniformity of materials, and easy control of the nitriding state.
[0025]
If the nitriding treatment is performed before the recrystallization is completed, recrystallization is remarkably suppressed, an unrecrystallized structure remains, and remarkable deterioration in workability may occur. This limit is complicatedly determined by the steel composition, nitriding conditions, recrystallization annealing conditions, etc., but it is easy for those skilled in the art to find conditions after which unrecrystallized structures do not remain after appropriate trials. . The nitriding treatment considers not only the amount of N increase in the steel sheet due to nitriding, but also the steel composition, recrystallization annealing conditions, heat history after nitriding, etc., and diffusion of N from the steel sheet surface to the inside and nitriding in the sheet thickness cross section. It is necessary to decide in consideration of changes in things. Simply using only the material determined by Rockwell hardness, tensile test, or the like as an index, it is not possible to obtain the desired deformation resistance intended by the present invention. In actual operation, these conditions need to be determined with reference to an appropriate number of trials. The basic concept is as follows, and the present invention is defined based on the following. That is, nitriding needs to be performed at a plate temperature of 550 to 800 ° C. This is because it is possible to set the plate temperature to this range and simultaneously perform nitriding by setting the nitriding atmosphere to this temperature as in normal annealing and passing the steel sheet through the atmosphere, and the nitriding atmosphere is set to a lower temperature. Alternatively, the nitriding may be advanced by infiltrating a steel sheet heated to a temperature in this range into the steel sheet. When the temperature of the nitriding atmosphere is raised to this temperature, the nitriding efficiency of the steel sheet may decrease due to the alteration and decomposition of the atmosphere unrelated to the nitriding of the steel sheet. Preferably it is 600-700 degreeC, More preferably, it is 630-680 degreeC. The nitriding atmosphere contains nitrogen gas at a volume ratio of 10% or more, more preferably 20% or more, further preferably 40% or more, further preferably 60% or more, and if necessary, hydrogen gas at 90% or less, more preferably 80% or more. % Or less, more preferably 60% or less, more preferably 20% or less, and if necessary, 0.02% or more of ammonia gas, and the balance is oxygen gas, hydrogen gas, carbon dioxide gas, hydrocarbon Gas or various inert gases.
[0026]
In particular, ammonia gas is highly effective in increasing the nitriding efficiency, and it is possible to obtain a predetermined amount of nitriding in a short time, so that diffusion of N to the center of the steel sheet can be suppressed, and a favorable effect for the present invention can be obtained. . This effect is sufficient even if 0.02% or less, but preferably 0.1% or more, more preferably 0.2% or more, further preferably 1.0% or more, more preferably 5% or more, and 10% or more. In this case, a sufficient effect can be obtained even with a nitriding treatment of 5 seconds or less, and if it is 20% or more, and even 40% or more, depending on the nitriding temperature and the plate thickness, it can be as short as 1 second or less. A clear effect can be obtained. In addition, when the ratio other than ammonia gas, particularly nitrogen gas and hydrogen gas are the main gas components, it is preferable to make (nitrogen gas) / (hydrogen gas) 1 or more by volume from the viewpoint of nitriding efficiency. By setting the ratio to 2 or more, more efficient nitriding becomes possible. In addition, in normal annealing, annealing is performed under conditions that do not cause nitridation in an atmosphere mainly composed of nitrogen gas and hydrogen gas. However, those skilled in the art are not limited to the mixing of ammonia gas described above, and the dew point It is also possible to change to conditions under which nitriding occurs by a change, a slight mixing of a small amount of gas, a change in the gas ratio, etc. after an appropriate trial. An object of the present invention is to detect at least the nitridation by heat treatment including annealing by the current analysis capability.
[0027]
The holding time in the nitriding atmosphere is not particularly limited. However, in view of the steel sheet thickness of 0.400 mm at maximum in view of the temperature condition of the present invention of 550 ° C. or more, the nitriding due to the diffusion of N in the steel being held. It is preferable that the upper limit is set to 360 seconds in view of the fact that N penetrating from the steel sheet surface reaches the steel sheet central layer due to the above and the N distribution or the nitride distribution targeted by the present invention cannot be obtained. Further, even if the nitriding efficiency is improved, it takes 0.1 seconds to obtain the amount of nitriding and the distribution of nitrogen and hardness in the thickness direction of the steel sheet required by the present invention. It is preferably 1 to 60 seconds, more preferably 2 to 20 seconds, and still more preferably 3 to 10 seconds.
[0028]
In order to control the distribution of nitrides in the thickness direction of the steel sheet, the thermal history of the steel sheet after nitriding is also important. Considering the thickness of the target steel sheet and the diffusion of nitrogen in the steel and the formation and growth of nitrides, long-term holding at a high temperature is not preferable. However, the effect of the present invention can be made more remarkable by appropriately smoothing the nitrogen distribution by this heat treatment. For this purpose, the history in a temperature range of 550 ° C. or more is important, and the product of the temperature and time in this temperature range is preferably 48000 or less. This corresponds to 80 seconds at 600 ° C. and 60 seconds at 800 ° C. When the temperature changes continuously, the temperature change is divided into time regions of about 5 seconds so that the effect is appropriately evaluated. Evaluation is also possible by recording and obtaining the sum of the product of temperature and time for each area.
Of course, this may be evaluated by dividing into temperature regions having a certain temperature range. Preferably, the nitriding condition is set so as to be 24,000 or less, more preferably 12,000 or less, and still more preferably 6000 or less, and usually the distribution of nitrogen in the steel is almost determined at the end of nitriding. Is preferably controlled. The nitridation targeted by the present invention is mainly performed in a state where a large amount of N is dissolved, and since a large amount of nitride is generated with a decrease in temperature thereafter, control of a cooling process after nitriding is important.
[0029]
In connection with the heat history in the cooling step, the cooling rate after nitriding greatly affects the effect of the invention. In other words, the state of nitride formation during the cooling process may change significantly even at a low temperature for a short time when the nitrogen distribution hardly changes. By setting the average cooling rate from 550 ° C. to 300 ° C. to be 10 ° C./s or more, a large number of fine nitrides are generated particularly in the surface layer portion having a relatively high N concentration and a high cooling rate compared to the central layer. Becomes possible. It is preferably at least 20 ° C / s, more preferably at least 50 ° C / s. However, it should be noted that if the cooling rate is too high, solute nitrogen may remain excessively and aging may become a problem depending on the application.
[0030]
In the production of thin steel sheets for containers, re-rolling may be performed after recrystallization annealing for hardness adjustment and sheet thickness adjustment. The rolling reduction has been put to practical use from a few percent close to the skin pass performed for shape adjustment to 50% or more similar to that of cold rolling. When the re-cold rolling method is applied to the present invention, the rolling reduction is limited to 20% or less. When the rolling reduction is more than this, not only does the material difference between the surface layer and the inner layer characterized by the present invention become small and the effect of the invention disappears, but also the steel sheet itself becomes hard and it is necessary to impart deformation resistance by the present invention. Disappears. In addition, an increase in the re-rolling rolling reduction deteriorates the workability of the steel sheet, and is not an inherently preferable method if it is limited to the purpose of imparting can strength. In consideration of welding, it is preferable to reduce the rolling reduction because the work hardened portion is easily softened and the strength of the welded portion is easily reduced. It is preferably at most 15%, more preferably at most 10%, preferably at most 5%, preferably at most 3%. The re-rolling is performed after the nitriding treatment in the step of continuously performing the recrystallization annealing and the nitriding treatment, which is preferable from the viewpoint of productivity. However, when the recrystallization annealing and the nitriding treatment are performed in different steps, the nitriding treatment is performed. It is also possible to do before.
[0031]
The present invention is applied to a steel plate having a thickness of 0.400 mm or less. This is because deformation of the formed member is less likely to be a problem with a steel plate having a larger thickness. In addition, when the plate thickness is large, the thickness of the hardened surface layer due to nitriding becomes relatively small, so that the effect of the invention is hardly exhibited. For a steel sheet preferably 0.300 mm or less, more preferably 0.240 mm or less, a very remarkable effect can be obtained with a steel sheet of 0.190 mm or less, more preferably 0.160 mm or less.
In this way, by mainly controlling the state of nitride after nitriding by distinguishing the surface layer and the central layer and considering the distribution in the thickness direction, the purpose is simply to separate N-containing steel and surface hardness. The mechanism by which the nitrided steel has a material unique to the steel of the present invention that is not present is not clear, but it is considered that the nitride effectively increases the resistance to bending deformation of the surface layer of the steel sheet accompanying deformation of the can. This effect is conscious of the external force when the sheet thickness or deformation of the target material occurs, the stress state involving conditions such as the inner profile and the shape of the container, and the difference between the surface layer and the central layer, which is combined with the nitriding conditions specified in the present invention. It is presumed that the deformation and the density of the nitride are very effective in expressing the deformation resistance.
[0032]
The effect of the present invention does not depend on the heat history and the manufacturing history before the annealing after the component adjustment. The slab for hot rolling is not limited to manufacturing methods such as ingot method and continuous casting method, and it does not depend on the heat history up to hot rolling, so slab reheating method, reheating the cast slab The effect of the present invention can also be obtained by the CC-DR method in which hot rolling is performed directly without performing, and also by thin slab casting in which rough rolling and the like are omitted. In addition, the effects of the present invention can be obtained by two-phase zone rolling in which the finishing temperature is a two-phase zone of α + γ or continuous hot rolling in which a rough bar is joined and rolled, regardless of the hot rolling conditions.
Further, when the steel of the present invention is used as a material for a container having a welded portion, the softening of the heat-affected zone is suppressed, and particularly, the surface layer having a large amount of nitride is rapidly heated and rapidly cooled to dissolve the nitride, and furthermore. It reprecipitates as fine nitrides and partially remains as solid solution N and hardens, so that it also has the effect of improving the strength of the weld. This becomes even more remarkable when an element that suppresses the softening of the heat-affected zone, such as B and Nb, is added. On the other hand, in a so-called two-piece can manufactured through drawing or ironing, the surface of the plate is hardened so that the coefficient of friction with the molding die is reduced and the moldability is improved. Further, since the surface layer is hardened and the resistance to bending deformation is increased, bending buckling of the steel sheet during forming hardly occurs, that is, an effect of suppressing generation of wrinkles also appears.
Usually, the steel sheet of the present invention is used as an original sheet for a surface-treated steel sheet, but the surface treatment does not impair the effects of the present invention at all. As the surface treatment for cans, nickel, tin, chromium (tin-free) or the like is usually applied. Further, it can also be used as a raw sheet for a laminated steel sheet coated with an organic film, which has recently been used without impairing the effects of the present invention.
[0033]
<Example 1>
In a three-piece can in which the can body was formed by welding, a three-piece can body was manufactured from a steel sheet in which nitriding conditions were changed and nitrides were controlled. The deformation resistance when the body of the can was pushed in with a cylindrical mold having a diameter of 10 mm and a length of 40 mm was measured, and the end of the can was flange-formed in the same manner as when a normal lid was wound.
In the deformation test, the correlation between the amount of pressing of the mold and the pressing load is as shown in FIG. 2, and an inflection point occurs at a certain load. The load serving as the inflection point was used as an index of deformation resistance. The higher the value, the smaller the deformation due to external force and the better the deformation resistance. Further, in the flange forming, the length of the flange until a crack was generated in the flange portion was measured. The longer the length is, the better the flange formability is, and the more difficult it is for defects to occur when the lid is tightened.
[0034]
The steel of each component shown in Table 1 was subjected to skin rolling or re-cold rolling after annealing involving hot rolling, cold rolling, and nitriding, and a steel sheet was manufactured, and deformation resistance and flange formability were evaluated. Table 1 shows hot rolling, cold rolling, annealing, nitriding conditions and the like. All the nitriding is performed after the middle stage of the annealing, and the conditions are considered to be that the recrystallization was completed before the nitriding occurred. The N amount in Table 1 is the average N thickness before the nitriding. Since the steel sheet is manufactured by an ordinary method, changes in elements in the sheet thickness direction and changes in the state of nitride before nitriding are negligible and negligible for the effects of the present invention. That is, regarding the components, nitride size and number density of the steel sheet before nitriding, the numerical values of the surface layer 1/20 thickness, the surface layer 1/8 thickness and the central layer 1/4 thickness are the same.
Table 2 shows the materials for these steels. It can be confirmed that the production method of the present invention achieves both good deformation resistance and flange formability.
[0035]
<Example 2>
In mass%, C: 0.02%, Si: 0.02%, Mn: 0.2%, P: 0.01%, S: 0.01%, Al: 0.04%, N: 0. A slab having a thickness of 250 mm containing 002% was produced by continuous casting, and was formed into a 2.0 mm hot-rolled sheet at a slab heating temperature of 1100 ° C., a finishing temperature of 880 ° C., and a winding temperature of 600 ° C. It was pickled, cold rolled to 0.17 mm, and recrystallized and annealed at 650 ° C. for 30 seconds in a continuous annealing line. Some of the materials were passed through a nitriding furnace filled with a continuous ammonia-containing atmosphere in an annealing furnace of a continuous annealing line to perform a nitriding treatment. No heating equipment was installed in the nitriding furnace, and nitriding was performed by injecting the plate heated in the recrystallization annealing furnace at 650 ° C. into the nitriding furnace. Since the atmosphere in the nitriding furnace is heated by bringing in heat from the steel sheet, the drop of the sheet temperature during the nitriding treatment is not so large, and the temperature of the sheet coming out of the nitriding treatment furnace depends on the nitriding treatment time, but is 600 ° C. It was about.
[0036]
After the steel plate thus manufactured was subjected to a 1.5% skin pass, normal electrical Sn plating was applied to manufacture a tinplate steel plate. Using these, a three-piece can was manufactured in the same manner as that performed by a normal can maker, and the can strength was evaluated in the same manner as in Example 1. No problems such as welding and lid tightening occurred in all the canned materials. FIG. 3 shows the obtained can strengths arranged by the ammonia concentration in the nitriding atmosphere, the cooling rate after the nitriding treatment, and the nitriding time.
In FIG. 3, A is an ammonia concentration of 4%, a cooling rate after nitriding is 20 ° C./sec, B is an ammonia concentration of 4%, a cooling rate after nitriding is 120 ° C./sec, C is an ammonia concentration of 10%, and a cooling rate is 20 after nitriding. ° C / sec, D indicates the case where the ammonia concentration was 20% and the cooling rate after nitriding was 20 ° C / sec, and the cooling rate after nitriding was an average cooling rate from 550 ° C to 300 ° C. In addition, the can strength was arranged by (number density at (surface layer 1/20 thickness) of steel sheet after nitriding treatment) / (number density at (surface layer 1/20 thickness) of steel sheet before nitriding treatment). Is shown in FIG. According to the present invention, can strength can be significantly increased. The figure also shows the can strength of materials with different sheet thicknesses manufactured by changing only the cold rolling ratio before recrystallization annealing using steel of the same composition. It can be seen that the present invention makes it possible to make the material thinner while maintaining the desired can strength.
[Table 1]
Figure 2004323905
[Table 2]
Figure 2004323905
[0037]
【The invention's effect】
As described above, according to the present invention, it is possible to obtain, with high productivity, an ultra-thin container steel sheet which can be significantly improved without sacrificing one of the container's deformation resistance and can formability. .
[Brief description of the drawings]
FIG. 1 is a diagram showing a position in a thickness direction of a steel sheet.
FIG. 2 is a diagram showing a relationship between a mold pushing amount and a pushing load in a deformation test.
FIG. 3 is a diagram showing the relationship between nitriding time and can strength.
FIG. 4 is a diagram showing the relationship between the ratio of the number of nitrides before and after nitriding and the strength of the can.

Claims (12)

質量%で、C:0.0800%以下、N:0.600%以下、Si:2.0%以下、Mn:2.0%以下、P:0.10%以下、S:0.05%以下、Al:2.0%以下を含有し、
直径1μm以下0.02μm以上の窒化物に関し、鋼板の表層1/8厚さ内に数密度0.2個/μm以上で存在する領域を有し、かつ、下記(A)式を満足することを特徴とする板厚0.400mm以下の缶特性が著しく良好な極薄容器用鋼板。
(鋼板の板厚1/8位置での数密度)>(鋼板の板厚1/4位置での数密度)・・・(A)
In mass%, C: 0.0800% or less, N: 0.600% or less, Si: 2.0% or less, Mn: 2.0% or less, P: 0.10% or less, S: 0.05% Hereinafter, containing Al: 2.0% or less,
Regarding the nitride having a diameter of 1 μm or less and 0.02 μm or more, it has a region having a number density of 0.2 / μm 3 or more within the 1/8 thickness of the surface layer of the steel sheet and satisfies the following formula (A). An ultra-thin steel sheet for containers having a remarkably good can property with a sheet thickness of 0.400 mm or less.
(Number density at 1/8 thickness position of steel sheet)> (Number density at 1/4 thickness position of steel sheet) (A)
質量%で、C:0.0800%以下、N:0.600%以下、Si:2.0%以下、Mn:2.0%以下、P:0.10%以下、S:0.05%以下、Al:2.0%以下を含有し、
直径1μm以下0.02μm以上の窒化物に関し、下記(B)式を満足することを特徴とする板厚0.400mm以下の缶特性が著しく良好な極薄容器用鋼板。
(鋼板の板厚1/20位置での数密度)/(鋼板の板厚1/4位置での数密度)>1.5 ・・・(B)
In mass%, C: 0.0800% or less, N: 0.600% or less, Si: 2.0% or less, Mn: 2.0% or less, P: 0.10% or less, S: 0.05% Hereinafter, containing Al: 2.0% or less,
An ultra-thin container steel sheet having a can thickness of 0.400 mm or less, characterized by satisfying the following formula (B) with respect to a nitride having a diameter of 1 μm or less and 0.02 μm or more.
(Number density at 1/20 position of steel plate thickness) / (Number density at 1/4 position of steel plate thickness)> 1.5 (B)
鋼板の板厚1/4位置での、直径1μm以下0.02μm以上の窒化物の数密度が10個/μm以下であることを特徴とする請求項1または請求項2に記載の缶特性が著しく良好な極薄容器用鋼板。 3. The can characteristic according to claim 1, wherein the number density of nitrides having a diameter of 1 μm or less and 0.02 μm or more at a quarter thickness position of the steel sheet is 10 or less / μm 3 or less. 4. Good steel sheet for ultra-thin containers. 鋼成分として、更に質量%で、Ti:0.08%以下、Nb:0.08%以下、B:0.015%以下、Cr:2.0%以下の1種または2種以上を含有することを特徴とする請求項1乃至請求項3に記載の缶特性が著しく良好な極薄容器用鋼板。As a steel component, one or more of Ti: 0.08% or less, Nb: 0.08% or less, B: 0.015% or less, and Cr: 2.0% or less are further contained in mass%. 4. The steel sheet for an ultra-thin container according to claim 1, wherein the can properties are remarkably good. 鋼成分として、更に質量%で、Sn、Sb、Mo、Ta、V、Wの合計で0.1%以下を含有することを特徴とする請求項1乃至請求項4に記載の缶特性が著しく良好な極薄容器用鋼板。5. The can characteristics according to claim 1, wherein the steel component further contains 0.1% or less by mass in total of Sn, Sb, Mo, Ta, V and W. Good steel sheet for ultra-thin containers. 鋼成分の残部がFeおよび不可避的不純物であることを特徴とする請求項1乃至請求項5に記載の缶特性が著しく良好な極薄容器用鋼板。6. The steel sheet for an ultra-thin container according to claim 1, wherein the balance of the steel component is Fe and inevitable impurities. 請求項1乃至請求項6に記載の鋼板を製造するに際し、質量%で、C:0.0800%以下、N:0.0300%以下、Si:2.0%以下、Mn:2.0%以下、P:0.10%以下、S:0.05%以下、Al:2.0%以下を含有する鋼を、冷延後、再結晶焼鈍と同時、または、再結晶焼鈍後に窒化処理を行い、鋼板の表層1/8厚さ内に、直径1μm以下0.02μm以上の窒化物が数密度0.2個/μm以上で存在する領域を形成し、かつ、鋼板中のNを質量%で0.600%以下とすることを特徴とする板厚0.400mm以下の缶特性が著しく良好な極薄容器用鋼板の製造方法。In producing the steel sheet according to any one of claims 1 to 6, in mass%, C: 0.0800% or less, N: 0.0300% or less, Si: 2.0% or less, Mn: 2.0% Hereinafter, a steel containing P: 0.10% or less, S: 0.05% or less, and Al: 2.0% or less is subjected to nitriding treatment after cold rolling and simultaneously with recrystallization annealing or after recrystallization annealing. Then, a region in which nitrides having a diameter of 1 μm or less and 0.02 μm or more exist at a number density of 0.2 / μm 3 or more within the surface 1/8 thickness of the steel sheet, and N in the steel sheet is measured by mass %. A method for producing a steel sheet for an ultra-thin container, which has remarkably good can properties with a sheet thickness of 0.400 mm or less, characterized by being 0.600% or less. 請求項1乃至請求項6に記載の鋼板を製造するに際し、質量%で、C:0.0800%以下、N:0.0300%以下、Si:2.0%以下、Mn:2.0%以下、P:0.10%以下、S:0.05%以下、Al:2.0%以下を含有する鋼を、冷延後、再結晶焼鈍と同時に、または、再結晶焼鈍後に窒化処理を行い、鋼板の表層1/8厚さ内に、直径1μm以下0.02μm以上の窒化物について、下記(B)式を満足し、かつ、鋼板中のNを質量%で0.600%以下とすることを特徴とする板厚0.400mm以下の缶特性が著しく良好な極薄容器用鋼板の製造方法。
(鋼板の板厚1/20位置での数密度)/(鋼板の板厚1/4位置での数密度)>1.5 ・・・(B)
In producing the steel sheet according to any one of claims 1 to 6, in mass%, C: 0.0800% or less, N: 0.0300% or less, Si: 2.0% or less, Mn: 2.0% Hereinafter, a steel containing P: 0.10% or less, S: 0.05% or less, and Al: 2.0% or less is subjected to a nitriding treatment after cold rolling and simultaneously with recrystallization annealing or after recrystallization annealing. Performing, within the surface layer 1/8 thickness of the steel sheet, for the nitride having a diameter of 1 μm or less and 0.02 μm or more, satisfy the following expression (B), and set the N in the steel sheet to 0.600% or less by mass%. A method for producing a steel sheet for an ultra-thin container having a remarkably good can property with a sheet thickness of 0.400 mm or less.
(Number density at 1/20 position of steel plate thickness) / (Number density at 1/4 position of steel plate thickness)> 1.5 (B)
請求項1乃至請求項6に記載の鋼板を製造するに際し、質量%で、C:0.0800%以下、N:0.0300%以下、Si:2.0%以下、Mn:2.0%以下、P:0.10%以下、S:0.05%以下、Al:2.0%以下を含有する鋼を、冷延後、再結晶焼鈍と同時、または、再結晶焼鈍後に窒化処理を行い、直径1μm以下0.02μm以上の窒化物について、下記(C)式を満足し、かつ、鋼板中のNを質量%で0.600%以下とすることを特徴とする板厚0.400mm以下の缶特性が著しく良好な極薄容器用鋼板の製造方法。
(窒化処理後の鋼板の板厚1/20位置での数密度)/(窒化処理前の鋼板の板厚1/20位置での数密度)>1.5 ・・・(C)
In producing the steel sheet according to any one of claims 1 to 6, in mass%, C: 0.0800% or less, N: 0.0300% or less, Si: 2.0% or less, Mn: 2.0% Hereinafter, a steel containing P: 0.10% or less, S: 0.05% or less, and Al: 2.0% or less is subjected to nitriding treatment after cold rolling and simultaneously with recrystallization annealing or after recrystallization annealing. For a nitride having a diameter of 1 μm or less and 0.02 μm or more, the following formula (C) is satisfied and N in the steel sheet is set to 0.600% or less by mass%. A method for producing a steel sheet for an ultra-thin container having extremely good can properties as follows.
(Number density of steel sheet after nitriding treatment at 1/20 position) / (number density of steel sheet before nitriding treatment at 1/20 position)> 1.5 (C)
質量%で、C:0.0800%以下、N:0.0300%以下、Si:2.0%以下、Mn:2.0%以下、P:0.10%以下、S:0.05%以下、Al:2.0%以下を含有し、残部Feおよび不可避的不純物からなる鋼を、冷延後、再結晶焼鈍と同時に、または、再結晶焼鈍後に窒化処理を行い、鋼板の板厚1/4位置での、直径1μm以下0.02μm以上の窒化物の数密度が10個/μm以下であり、かつ、鋼板のNを質量%で0.600%以下とすることを特徴とする請求項7乃至請求項9に記載の缶特性が著しく良好な極薄容器用鋼板の製造方法。In mass%, C: 0.0800% or less, N: 0.0300% or less, Si: 2.0% or less, Mn: 2.0% or less, P: 0.10% or less, S: 0.05% Hereinafter, a steel containing 2.0% or less of Al and the balance of Fe and unavoidable impurities is subjected to nitriding after cold rolling and simultaneously with recrystallization annealing or after recrystallization annealing. The number density of the nitride having a diameter of 1 μm or less and 0.02 μm or more at the / 4 position is 10 pieces / μm 3 or less, and the N of the steel sheet is 0.600% or less by mass%. The method for producing a steel sheet for an ultra-thin container according to any one of claims 7 to 9, which has remarkably good can properties. 再結晶焼鈍と同時に、または、再結晶焼鈍後に窒化処理を行なうに際し、板温度が550〜800℃の状態で、アンモニアガスを0.02%以上含有する雰囲気中に0.1秒以上、360秒以下保持し、窒化処理の後、550℃以上の温度域で温度と時間の積を48000(℃・秒)以下とするか、550℃から300℃までの平均冷却速度を10℃/秒以上とすることを特徴とする請求項7乃至請求項10に記載の缶特性が著しく良好な極薄容器用鋼板の製造方法。At the same time as the recrystallization annealing or when performing the nitriding treatment after the recrystallization annealing, at a plate temperature of 550 to 800 ° C., in an atmosphere containing 0.02% or more of ammonia gas for 0.1 to 360 seconds. After the nitriding treatment, the product of temperature and time is set to 48000 (° C. · s) or less in a temperature range of 550 ° C. or more after the nitriding treatment, or the average cooling rate from 550 ° C. to 300 ° C. is set to 10 ° C./s or more. The method for producing a steel sheet for an ultra-thin container according to claim 7, wherein the properties of the can are remarkably good. 再結晶焼鈍の後、窒化処理前または窒化処理後に、圧下率が20%以下の再冷延を行うことを特徴とする請求項7乃至請求項11に記載の缶特性が著しく良好な極薄容器用鋼板の製造方法。The ultra-thin container having remarkably good can characteristics according to claim 7, wherein re-rolling is performed at a rolling reduction of 20% or less after the recrystallization annealing, before the nitriding treatment, or after the nitriding treatment. Manufacturing method for steel sheet.
JP2003119381A 2003-04-24 2003-04-24 Steel sheet for ultra-thin containers with extremely good can characteristics and manufacturing method thereof Expired - Fee Related JP4328124B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003119381A JP4328124B2 (en) 2003-04-24 2003-04-24 Steel sheet for ultra-thin containers with extremely good can characteristics and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003119381A JP4328124B2 (en) 2003-04-24 2003-04-24 Steel sheet for ultra-thin containers with extremely good can characteristics and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2004323905A true JP2004323905A (en) 2004-11-18
JP4328124B2 JP4328124B2 (en) 2009-09-09

Family

ID=33498616

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003119381A Expired - Fee Related JP4328124B2 (en) 2003-04-24 2003-04-24 Steel sheet for ultra-thin containers with extremely good can characteristics and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4328124B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006027854A1 (en) * 2004-09-09 2006-03-16 Nippon Steel Corporation Steel sheet for extremely thin container and method for production thereof
JP2006219717A (en) * 2005-02-09 2006-08-24 Nippon Steel Corp Steel sheet for vessel having superior deformation resistance, surface characteristic and weldability, and manufacturing method therefor
JP2007253199A (en) * 2006-03-23 2007-10-04 Nippon Steel Corp Thin steel plate having excellent surface cracking resistance during hot rolling, and its manufacturing method
JP2007332417A (en) * 2006-06-14 2007-12-27 Kobe Steel Ltd Steel sheet for nitriding treatment
WO2011068231A1 (en) 2009-12-02 2011-06-09 Jfeスチール株式会社 Steel sheet for cans and method for producing same
US20120067469A1 (en) * 2009-05-18 2012-03-22 Hidekuni Murakami Very thin steel sheet and production method thereof
WO2012073914A1 (en) 2010-12-01 2012-06-07 Jfeスチール株式会社 Steel sheet for can, and process for producing same
WO2013008457A1 (en) * 2011-07-12 2013-01-17 Jfeスチール株式会社 Steel sheet for can and process for producing same
DE102013102273A1 (en) * 2013-03-07 2014-09-25 Thyssenkrupp Rasselstein Gmbh A method of producing a cold rolled flat steel product for deep drawing and ironing applications, flat steel product and use of such a flat steel product
JP2017534748A (en) * 2014-08-27 2017-11-24 ティッセンクルップ ラッセルシュタイン ゲー エム ベー ハー Manufacturing method of nitrided wrapping steel
JP6315158B1 (en) * 2017-09-19 2018-04-25 新日鐵住金株式会社 Stainless steel sheet and method for producing the same, separator for polymer electrolyte fuel cell, polymer electrolyte fuel cell, and polymer electrolyte fuel cell

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006027854A1 (en) * 2004-09-09 2006-03-16 Nippon Steel Corporation Steel sheet for extremely thin container and method for production thereof
JP2006219717A (en) * 2005-02-09 2006-08-24 Nippon Steel Corp Steel sheet for vessel having superior deformation resistance, surface characteristic and weldability, and manufacturing method therefor
JP2007253199A (en) * 2006-03-23 2007-10-04 Nippon Steel Corp Thin steel plate having excellent surface cracking resistance during hot rolling, and its manufacturing method
JP4516924B2 (en) * 2006-03-23 2010-08-04 新日本製鐵株式会社 Thin steel plate with excellent surface crack resistance during hot rolling and its manufacturing method
JP2007332417A (en) * 2006-06-14 2007-12-27 Kobe Steel Ltd Steel sheet for nitriding treatment
JP4646858B2 (en) * 2006-06-14 2011-03-09 株式会社神戸製鋼所 Steel sheet for nitriding treatment
US9689052B2 (en) * 2009-05-18 2017-06-27 Nippon Steel & Sumitomo Metal Corporation Very thin steel sheet and production method thereof
US20120067469A1 (en) * 2009-05-18 2012-03-22 Hidekuni Murakami Very thin steel sheet and production method thereof
WO2011068231A1 (en) 2009-12-02 2011-06-09 Jfeスチール株式会社 Steel sheet for cans and method for producing same
US8557065B2 (en) 2009-12-02 2013-10-15 Jfe Steel Corporation Steel sheet for cans and method for manufacturing the same
JP2011137223A (en) * 2009-12-02 2011-07-14 Jfe Steel Corp Steel sheet for can and method for producing the same
WO2012073914A1 (en) 2010-12-01 2012-06-07 Jfeスチール株式会社 Steel sheet for can, and process for producing same
CN103270183A (en) * 2010-12-01 2013-08-28 杰富意钢铁株式会社 Steel sheet for can, and process for producing same
KR101570755B1 (en) 2010-12-01 2015-11-27 제이에프이 스틸 가부시키가이샤 Steel sheet for can having high strength and high formability, and method for manufacturing the same
WO2013008457A1 (en) * 2011-07-12 2013-01-17 Jfeスチール株式会社 Steel sheet for can and process for producing same
DE102013102273A1 (en) * 2013-03-07 2014-09-25 Thyssenkrupp Rasselstein Gmbh A method of producing a cold rolled flat steel product for deep drawing and ironing applications, flat steel product and use of such a flat steel product
US10184159B2 (en) 2013-03-07 2019-01-22 Thyssenkrupp Steel Europe Ag Method for producing a cold-rolled flat steel product for deep-drawing and ironing applications, flat steel product, and use of a flat steel product of said type
JP2017534748A (en) * 2014-08-27 2017-11-24 ティッセンクルップ ラッセルシュタイン ゲー エム ベー ハー Manufacturing method of nitrided wrapping steel
JP6315158B1 (en) * 2017-09-19 2018-04-25 新日鐵住金株式会社 Stainless steel sheet and method for producing the same, separator for polymer electrolyte fuel cell, polymer electrolyte fuel cell, and polymer electrolyte fuel cell
WO2019058409A1 (en) * 2017-09-19 2019-03-28 新日鐵住金株式会社 Stainless steel sheet and production method therefor, separator for solid polymer fuel battery, solid polymer fuel battery cell and solid polymer fuel battery

Also Published As

Publication number Publication date
JP4328124B2 (en) 2009-09-09

Similar Documents

Publication Publication Date Title
EP3282031B1 (en) Heat-treated steel sheet member, and production method therefor
EP2138599B1 (en) High-strength hot-dip galvanized steel sheet and method for producing the same
EP2246456B9 (en) High-strength steel sheet and process for production thereof
JP5058978B2 (en) Hard ultra-thin steel plate and manufacturing method thereof
JP5971434B2 (en) High-strength hot-dip galvanized steel sheet excellent in stretch flangeability, in-plane stability and bendability of stretch flangeability, and manufacturing method thereof
KR100733016B1 (en) FERRITIC STAINLESS STEEL PLATE WITH Ti AND METHOD FOR PRODUCTION THEREOF
EP2530180A1 (en) Steel sheet and process for producing steel sheet
KR20190110577A (en) Hot press member and its manufacturing method
WO2012128225A1 (en) Steel sheet for hot-stamped member and process for producing same
WO2013114850A1 (en) Hot-dip galvanized steel sheet and production method therefor
JP6825747B2 (en) Hot-pressed members, cold-rolled steel sheets for hot-pressed members, and their manufacturing methods
JP5924459B1 (en) Stainless steel for cold rolled steel
JP6428986B1 (en) Cold-rolled steel sheet for drawn cans and manufacturing method thereof
WO2020262651A1 (en) Steel sheet
EP2180070A1 (en) Process for manufacturing high-strength hot-rolled steel sheet
WO2021251275A1 (en) Steel sheet and manufacturing method therefor
TWI428453B (en) Steel plate for can and manufacturing method thereof
JP4299858B2 (en) Steel plate for container and method for producing the same
JP4328124B2 (en) Steel sheet for ultra-thin containers with extremely good can characteristics and manufacturing method thereof
JP6702357B2 (en) Low yield ratio type high strength steel sheet and method for producing the same
JP2005146321A (en) Steel having fine structure, and its production method
JP5453748B2 (en) Easy open end with very good openability and method for producing the same
JP2016113670A (en) Ferritic stainless steel and method for producing the same
WO2006027854A1 (en) Steel sheet for extremely thin container and method for production thereof
JP2006219717A (en) Steel sheet for vessel having superior deformation resistance, surface characteristic and weldability, and manufacturing method therefor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050915

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080122

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080310

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090609

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090612

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120619

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4328124

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120619

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130619

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130619

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130619

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130619

Year of fee payment: 4

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130619

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees