JP4378853B2 - Stainless steel for civil engineering and building structures with excellent fatigue characteristics and paint film adhesion - Google Patents

Stainless steel for civil engineering and building structures with excellent fatigue characteristics and paint film adhesion Download PDF

Info

Publication number
JP4378853B2
JP4378853B2 JP2000165566A JP2000165566A JP4378853B2 JP 4378853 B2 JP4378853 B2 JP 4378853B2 JP 2000165566 A JP2000165566 A JP 2000165566A JP 2000165566 A JP2000165566 A JP 2000165566A JP 4378853 B2 JP4378853 B2 JP 4378853B2
Authority
JP
Japan
Prior art keywords
mass
less
stainless steel
steel
civil engineering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000165566A
Other languages
Japanese (ja)
Other versions
JP2001342548A (en
Inventor
好弘 矢沢
工 宇城
進 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2000165566A priority Critical patent/JP4378853B2/en
Publication of JP2001342548A publication Critical patent/JP2001342548A/en
Application granted granted Critical
Publication of JP4378853B2 publication Critical patent/JP4378853B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Heat Treatment Of Sheet Steel (AREA)
  • Heat Treatment Of Steel (AREA)

Description

【0001】
【産業上の利用分野】
この発明は、疲労特性と塗膜密着性に優れた土木・建築構造用ステンレス鋼に関するものである。
【0002】
【従来の技術】
土木・建築構造用材料としては、従来、主に SS400等の普通鋼、SM490 等の高張力鋼およびこれらの鋼材に塗装やめっきを施した材料が使用されてきた。
しかしながら、近年、設計の多様化に伴い、各種材料の利用が検討され始めている。
【0003】
なかでも、耐食性や意匠性に優れたステンレス鋼は、発銹に対する保守費用がほとんど必要ないため、ライフサイクルコスト(LCC)の観点から見ると、極めて魅力的な材料といえる。
【0004】
特に、海岸地帯に建設される建築物は、短寿命なことに加え、腐食抑制のための保守費用が増大するという問題を抱えており、またウォーターフロント開発を推進する上でも、溶接性と耐食性、特に耐初期発錆性に優れた土木・建築構造用耐食性機能材としてのステンレス鋼の役割が大いに期待されている。
【0005】
ステンレス鋼は、その金属組織から、SUS430に代表されるフェライト系ステンレス鋼、SUS410鋼に代表されるマルテンサイト系ステンレス鋼、SUS304に代表されるオーステナイト系ステンレス鋼、SUS329鋼に代表される2相ステンレス鋼およびSUS630に代表される析出硬化型ステンレス鋼に大別される。
【0006】
このような各種ステンレス鋼の中で、従来から土木・建築構造用材料として検討されてきたのは、材料強度、耐食性、溶接の容易さ、溶接部靱性および汎用性を含めて使用実績が最も多い、オーステナイト系ステンレス鋼である。
【0007】
オーステナイト系ステンレス鋼は、強度、耐食性、耐火性および溶接部靱性等の土木・建築用材料に要求される特性を十分に満足する特性を有している。
【0008】
しかしながら、このオーステナイト系ステンレス鋼は、
1) NiやCr等の合金元素を多量に含有しているために、普通鋼に比べると格段に高価であること、
2) 応力腐食割れを生じること、
3) 熱膨張率が普通鋼に比べて大きく、また熱伝導度が比較的小さいために、溶接時の熱影響に起因した歪みが蓄積し易く、精度を要求される部材等には適用が難しいこと、
などのため、普通鋼やこれに塗装やめっきを施した材料が使用されていた汎用構造材への適用は難しく、適用範囲が制限されるという問題があった。
【0009】
このため、最近では、めっきや塗装を施した普通鋼の代替として、Cr含有量が15mass%以下の低Cr含有合金鋼及びその塗装鋼板の土木・建築用鋼材への適用が検討されつつある。
【0010】
ここで、土木・建築構造材用途にステンレス鋼を使用する場合、疲労特性や塗膜密着性も重要な選定因子となる。
【0011】
ステンレス鋼の塗膜密着性を改善したものとして、例えば、特開平6−235100号公報に、光輝焼鈍後、陽極電解をする樹脂塗装用ステンレス鋼の製造方法が提案されている。
【0012】
しかしながら、土木・建築構造物用のステンレス鋼において、その疲労特性と塗膜密着性の双方を有効に改善する技術についてはこれまで明らかにされていなかった。
【0013】
【発明が解決しようとする課題】
この発明は、上記したような従来技術における問題点を解決し、疲労特性と塗膜密着性の双方を有効に改善した土木・建築構造用ステンレス鋼を提供することにある。
【0014】
【課題を解決するための手段】
発明者らは、上記した課題を達成するための手段として、ショットブラストやブラシ、ダルロール等によってステンレス鋼板の表面改質を図ることが有用であること、及びこの表面改質を行うことによって、ステンレス鋼板または鋼帯表面の凹凸〈粗さ)および残留応力を種々変化させたところ、鋼組成を適正に設定した上で、表面粗さおよび表層の残留応力の双方を適正に制御しさえすれば、熱処理条件を変更することなく、疲労特性と塗膜密着性の双方を有効に改善できることを見出し、この発明を完成したものである。
【0015】
すなわち、この発明の要旨構成は次のとおりである。
1.Cr:8mass%超え、15mass%未満
C:0.0025mass%超え、0.03mass%未満
N:0.0025mass%超え、0.03mass%未満
S:0.03mass%未満
Mn:0.5mass %超え、3.0mass%以下
Al:0.5mass %未満
P:0.04mass%未満
Si:0.1mass%超え、2.0mass%未満
を含有し、残部Feおよび不可避的不純物の組成になり、かつ、表面の算術平均粗さ(Ra)が0.2〜50μmであり、しかも、表層に0.01〜50MPaの残留圧縮応力が生ずる歪みを導入したことを特徴とする疲労特性および塗膜密着性に優れた土木・建築構造用ステンレス鋼。
【0016】
2.上記1において、さらに
Cu:3.0 mass%未満、
Mo:3.0 mass%未満および
Ni:3.0 mass%未満
のうちから選んだ1種または2種以上を含有する組成になることを特徴とする疲労特性および塗膜密着性に優れた土木・建築構造用ステンレス鋼。
【0017】
3.上記1または2において、さらに
Co:0.01mass%以上、0.5 mass%未満、
V:0.01mass%以上、0.5 mass%未満および
W:0.001 mass%以上、0.05mass%未満
のうちから選んだ1種または2種以上を含有する組成になることを特徴とする疲労特性および塗膜密着性に優れた土木・建築構造用ステンレス鋼。
【0018】
4.上記1、2または3において、さらに
B:0.0002〜0.002 mass%を含有する組成になることを特徴とする疲労特性および塗膜密着性に優れた土木・建築構造用ステンレス鋼。
【0019】
5.上記1〜4のいずれか1項において、さらに
Ti:0.7 mass%未満、
Nb:0.7 mass%未満、
Ta:0.7 mass%未満および
Zr:0.5 mass%未満
のうちから選んだ1種または2種以上を含有する組成になることを特徴とする疲労特性および塗膜密着性に優れた土木・建築構造用ステンレス鋼。
【0020】
【発明の実施の形態】
次に、この発明において、ステンレス鋼の化学組成を上記要旨構成の通りに限定した理由について説明する。
【0021】
Cr:8mass%超え、15mass%未満
Crは、耐食性の改善に有効な元素であるが、その含有量が8mass%以下では十分な耐食性の確保が難しい。また、Crはフェライト相(α相)安定化元素であるため、15mass%以上の添加は加工性の低下を招くだけでなく、オーステナイト相(γ相)の安定性を低下させることになって、焼入れ時に所定量のマルテンサイト相を確保できなくなるため、溶接部強度が低下する。
従って、この発明では、Cr含有量は、8mass%超え、15mass%未満とした。尚、耐錆性、加工性及び溶接性を兼備する上で特に好ましいCr含有量の範囲は10.0〜13.5mass%である。
【0022】
C及びN:ともに 0.0025 mass%超え、0.03mass%未満
溶接熱影響部の靱性および加工性の改善および溶接割れ防止には、従来から知られているとおり、C,Nの低減が有効である。またC,Nは、マルテンサイト相の硬さにも大きな影響を及ぼすだけでなく、(Fe,Cr)23C6 ,(Fe,Cr)7C3 ,(Fe,Cr)3C ,(Fe,Cr)2N ,(Fe,Cr)などのようなFe−Cr系の炭化物や窒化物を形成し、Cr欠乏相に伴う耐食性劣化の原因にもなり、C及びNの含有量のそれぞれが0.03mass%以上の場合に炭化物等の形成が顕著になることから、C及びNの含有量は、いずれも0.03mass%未満とした。ただし、この発明の鋼組成範囲において、C及びN含有量の低減は溶接部特性や加工性、耐食性等の改善には有効ではあるが、C及びNの含有量をそれぞれ0.0025mass%以下にすることは、精錬負荷を増大させることになるため、従って、C及びNの含有量は、いずれも0.0025mass%超え、0.03mass%未満とした。尚、C及びNの含有量は、いずれも 0.005〜0.02mass%とすることがより好適である。
【0023】
S: 0.03 mass%未満
Sは、Mnと結合してMnSを形成し、初期発錆起点となる。またSは、結晶粒界に偏析して粒界脆化を促進する有害元素でもあるので、極力低減することが好ましい。特にS含有量が0.03mass%以上になると、その悪影響が顕著になるので、Sの含有量は0.03mass%未満、より好ましくは 0.006mass%以下に抑制するものとした。
【0024】
Mn: 0.5 mass %超え、3.0 mass%以下
Mnは、オーステナイト相(γ相)安定化元素であり、溶接熱影響部組織をマルテンサイト組織として溶接部靱性の改善に有効に寄与する。また、Mnは、Siと同様、脱酸剤としても有用な元素であり、Mn含有量が 0.5mass%以下だと、十分な脱酸剤としての効果が得られないので、Mn含有量は0.5mass %超えとした。一方、 3.0mass%を超える過剰の添加は、加工性の低下やMnS の形成による耐食性の低下を招くので、Mn含有量は 3.0mass%以下に制限した。尚、Mn含有量は、0.7〜1.5 mass%の範囲にすることがより好適である。
【0025】
Al: 0.5 mass %未満
Alは、脱酸剤として有用な元素であるばかりでなく、溶接部の靱性向上にも有効に寄与するが、その含有量が 0.5mass%以上となると介在物が多くなって機械的性質の劣化を招くので、Al含有量は 0.5mass%未満に限定した。尚、Alは特に鋼中に含有されていなくてもよい。
【0026】
P: 0.04 mass%未満
Pは、熱間加工性、成形性及び靱性を低下させるだけでなく、耐食性に対しても有害な元素であり、特にP含有量が0.04mass%以上になると、その影響が顕著になるので、P含有量は0.04mass%未満に抑制するものとした。尚、P含有量は0.025mass %以下にすることがより好適である。
【0027】
Si: 0.1mass%超え、2.0 mass%未満
Siは、脱酸剤として有用な元素であるが、その含有量が 0.1mass%以下では十分な脱酸効果が得られず、一方、 2.0mass%以上の過剰添加は靱性や加工性の低下を招くので、Si含有量は 0.1 mass %超え、2.0 mass%未満とした。尚、Si含有量は、0.3 〜0.5 mass%とすることがより好適である。
【0028】
以上、この発明に従うステンレス鋼中に含有する必須成分について説明したが、この発明では、その他にも以下に述べる各種元素を適宜含有させることができる。
【0029】
Cu:3.0 mass%未満
Cuは、オーステナイト安定化元素であり、耐食性を向上させるとともに、オーステナイト相を形成させ、溶接熱影響部での粒成長を抑制し、靭性改善に有効な元素である。ただし、Cu含有量が3.0 mass%以上になると、脆化、特に熱間割れの感受性が強くなる傾向があることから、Cu含有量は3.0mass%未満の範囲にすることが好ましい。尚、Cu含有量は、耐食性改善効果を顕著に発揮するようになる0.1 mass%を下限とし、熱間割れ感受性が強くなる傾向がある0.6 mass%を上限とすることがより好適である。
【0030】
Mo:3.0 mass%未満
Moも、Cuと同様に耐食性の改善に有効な元素である。しかしながら、Mo含有量が3.0 mass%以上だと、オーステナイト相の安定性が低下して、靱性や加工性が低下する傾向があるので、Mo含有量は3.0 mass%未満の範囲にすることが好ましい。尚、耐食性と加工性のバランスという観点からは、Mo含有量は 0.1〜0.5 mass%の範囲にすることがより好適である。
【0031】
Ni:3.0 mass%未満
Niは、延性や靭性を向上させる元素であり、特に溶接熱影響部の靭性を向上させる必要がある場合には添加することが好ましい。ただし、Ni含有量が3.0 mass%以上になると、反対に素材を硬質化するとともにその効果が小さくなる傾向があるため、Ni含有量は3.0 mass%未満の範囲にすることが好ましい。また、耐錆性改善効果を顕著に発揮させる必要がある場合には、Ni含有量は0.1 mass%以上にすることが好ましい。
【0032】
Co:0.01mass%以上、0.5mass%未満、V:0.01mass%以上、0.5mass%未満、W:0.001mass%以上、0.05mass%未満
Co,及びWは、高価なCr,Ni,Mo等を多量に添加したり、C,Nを極端に低減することなしに、鋼の耐初期発錆性の改善に有効な元素であり、必要に応じて適宜添加することができる。Co,及びWの含有量はそれぞれ、上記改善効果が顕在化する0.01mass%,0.01mass%,0.001mass%とすることが好ましい。また、V及びWの含有量のそれぞれは、0.5mass%以上及び0.05mass%以上になると、炭化物の析出によって素材の硬質化が顕著になる傾向があるので、それぞれ0.5mass%未満及び0.05mass%未満に制限することが好ましく、Co含有量は、0.5mass%以上だと、鋼の硬質化を招くおそれがあるため0.5mass%未満に制限することが好ましい。尚、より好適には、Co含有量が0.03〜0.2mass%、含有量が0.05〜0.2mass%、そして、W含有量が0.005〜0.02mass%である。
【0033】
B:0.0002〜0.002 mass%
Bは、鋼の焼入れ性改善に有効な元素である。しかしながら、B含有量が0.0002mass%未満では十分な上記改善効果が得られず、また、0.002 mass%を超える場合には、却って素材が硬くなり、靭性や加工性を損なう傾向があるため、B含有量は0.0002〜0.002 mass%とすることが好ましい。尚、B含有量は0.0005〜0.001mass %であることがより好適である。
【0034】
Ti:0.7 mass%未満、Nb:0.7 mass%未満、Ta:0.7 mass%未満、Zr:0.5 mass%未満
Ti、Nb、Ta及びZrはいずれも、炭窒化物形成元素であり、溶接時や熱処理時にCr炭窒化物の粒界析出を抑制して、耐食性の向上に有効に作用する。また、Tiは、焼入れ性の改善にも有効な元素である。しかしながら、Ti, Nb,Ta含有量は 0.7mass%以上、またZr含有量は 0.5mass%以上になると、素材が硬質化する傾向があるため、Ti、Nb及びTaの含有量はいずれも0.7 mass%未満、Zr含有量は0.5mass%未満とすることが好ましい。尚、Ti、Nb、Ta及びZrの含有量の好適範囲は、いずれも0.01〜0.3 mass%である。
【0035】
残部Feおよび不可避的不純物
上述した鋼組成成分以外の残部は、Feおよび不可避的不純物である。不可避的不純物としては、例えばO含有量が0.010 mass%以下の範囲であることが容認される。
【0036】
また、この発明の構成上の主な特徴は、上記鋼組成に限定した上で、鋼表面の算術平均粗さRaを0.2 〜50μmとするとともに、鋼表層に0.01〜50MPa の残留圧縮応力に相当する歪みを導入することにある。
【0037】
鋼表面の算術平均粗さRa:0.2 〜50μm
鋼表面の算術平均粗さRaは、特に塗膜密着性に大きな影響を及ぼすことから、0.2 〜50μmとする。すなわち、鋼表面の算術平均粗さRaが0.2 μm未満だと、十分な塗膜密着性が得られなくなるからであり、また、50μmを超えると、表面の凹凸が激しくなって、却って密着性が低下するとともに塗装面の色調や凹凸が目立つようになるからである。
尚、ここでいう算術表面粗さRaとは、JIS B0601に規定された算術平均粗さRaを意味する。
【0038】
鋼表層に0.01〜50MPa の残留圧縮応力が生ずる歪みを導入すること
鋼表層に0.01〜50MPa の残留圧縮応力が生じる歪みを導入することは、この発明の構成上で最も重要な特徴である。
【0039】
発明者らが疲労特性、特に疲労強度を向上させるための検討を行ったところ、ブラシやショットブラスト、ダルロール等を用い、板厚方向に0.01〜50MPa の残留圧縮応力に相当する歪みを鋼表層に導入することによって、疲労強度が格段に向上することを見出した。すなわち、疲労破壊は、引張り応力が加わった時に、応力集中部分が起点となって生じるが、鋼表層に0.01〜50MPa の残留圧縮応力に相当する歪みを導入することで、応力集中が緩和され、疲労強度が増大することを見出し、この発明を完成させることに成功したのである。尚、前記残留圧縮応力を0.01〜50MPa に限定したのは、前記残留圧縮応力が0.01MPa 未満だと、十分に応力集中を緩和することができなくなり、疲労強度の増大効果が顕著ではなくなるからであり、また、前記残留圧縮応力が50MPa よりも大きくなると、著しく素材が硬化するからである。また、ここでいう「鋼表層」とは、X線回折法により板面から測定したときの値を意味し、具体的には、鋼表面からを含む厚さ200μm程度の層であると考えられる。
尚、上記X線回折法は、理学電機(株)社製のRINT1500のX線回折装置を用い、CoKα線を使用し、θ−2θ法により、電圧46kV、電流150 mAの条件で行った。
【0040】
図1は、この発明に従う鋼組成を有するステンレス鋼板について疲労試験を行い、繰返し応力(MPa )と疲労破壊までの繰返し数(回)の関係をプロットした図、即ち、S−N線図を示したものの一例であり、図1中の、「●」はショットブラスト処理を行うことによって0.80MPa の残留圧縮応力に相当する歪みを導入したステンレス鋼板の場合のデータであり、「○」はショットブラスト処理を行わない)ステンレス鋼板(残留圧縮応力:0.002MPa)の場合のデータである。
【0041】
図1から明らかなように、残留圧縮応力を導入したステンレス鋼板は、疲労特性が格段に向上していることが分かる。
【0042】
次にこの発明のステンレス鋼の好適な製造方法の一例について説明する。
まず、上記鋼成分組成に調整した溶鋼を、転炉または電気炉等の通常公知の溶製炉にて溶製したのち、真空脱ガス法(RH法)、VOD法、AOD法等の公知の精錬方法で精錬し、ついで連続鋳造法あるいは造塊法でスラブ等に鋳造して、鋼素材とするのが好適である。
【0043】
次いで、鋼素材は加熱され、熱間圧延工程により熱延鋼板とされる。熱間圧延工程における加熱温度は特に限定されないが、加熱温度が高すぎると結晶粒の粗大化を招き、靱性、加工性を劣化させるので、加熱温度は1300℃以下とするのが好ましい。
【0044】
また、熱間圧延工程では所望の板厚の熱延鋼板とすることができればよく、熱間圧延条件は特に限定されないが、熱間圧延の仕上げ温度は 700℃以上とすることが、強度及び靱性を確保する点から好ましい。
【0045】
しかしながら、加工性や延性、さらには良好な表面性状が要求される場合には、熱間圧延における仕上げ温度は 820℃以上、1000℃以下とするのが好ましい。
【0046】
また、巻き取り温度は、500 〜800 ℃の範囲にするのが好ましい。
【0047】
熱間圧延終了後に、軟質化のために熱延板焼鈍を施すのが好ましい。この熱延板焼鈍は、焼鈍温度:600 〜1100℃、保持時間:0.01〜20hとするのが、軟質化のみならず、加工性の改善及び延性の確保の観点から好ましい。
【0048】
尚、熱延板にマルテンサイト組織が生成する場合には、熱延板焼鈍後、 600〜730 ℃の温度範囲を50℃/h以下の冷却速度で徐冷するのが、軟質化の面でより好ましい。
【0049】
その後、酸洗等によりスケールを除去し、さらに必要に応じて、アルカリ洗浄脱脂、水洗及び乾燥を行った後、ブラシ、ショットブラストまたはダルロール等を用いて鋼表面の改質処理を行い、鋼表面の粗さと鋼表層に導入する歪みを適正に制御した後、塗装を施すことが好ましい。塗装は、例えば 180〜300 ℃の温度範囲で15秒〜3分の焼き付け塗装であり、焼き付け塗装としては、例えばウレタン変性エポキシ樹脂に酸化チタン、防錆顔料等を含有した塗料にさらに平均粒径3μmのリン化鉄粉末を不揮発分比で30%程度含有した塗料などを代表にあげることができる。
【0050】
【実施例】
表1に示す組成の溶鋼を、転炉−2次精錬工程で溶製し、連続鋳造法でスラブとした後、1150〜1250℃に再加熱し、最終粗圧延の圧下率を30〜45%とする6パスの粗圧延を施した後、最終仕上温度が840 〜990 ℃となる7パスの仕上げ圧延により、4.2mm の熱延鋼板とし、次いで、通常工程の熱延板焼鈍−酸洗処理を施した後、鋼板表面に、ショットプラストまたはダルロールにより表面改質処理を行い、表面粗さを種々に変化させるとともに、残留圧縮応力を板厚方向に種々に変化させたステンレス鋼板を作製した。
【0051】
【表1】

Figure 0004378853
【0052】
作製した各種ステンレス鋼板は、板面における残留圧縮応力を測定し、次いで、触針法(JIS B 0601)によって表面粗さを測定するとともに、疲労試験を行って疲労強度を測定した。
【0053】
前記残留圧縮応力の測定は、X線回折要論(著者B.D.CULLITY 、松村源太郎訳、アグネ(株)、昭和46年、第9版、p435 −458 )に準拠した一般的なX線回折法(条件:θ−2θ法、CoKα線使用、電圧46kV、電流150 mA、理学電機(株)社製のRINT1500のX線回折装置を使用)によって、板面から行った。ただし、この場合、サンプルの調整には十分注意が必要である。すなわち、X線回折法を用いる場合、表面の凹凸がX線の反射に大きな影響を及ぼすので、表面の凹凸を除去しなくてはいけない。ここでは細心の注意を払い、鋼板の表層をまずはメカニカルに細かなエメリー紙(♯800 〜1200)で丁寧に削り取り、その後、5%過塩素酸酢酸(10℃)を用いて表層を電解研磨して、メカニカルな研磨による歪みを除去してから測定に用いた。
【0054】
表面粗さの測定は、JIS B 0601に準拠した触触法により行った。
【0055】
疲労強度の測定は、JIS Z 2273に準拠することによって行った。尚、ここで測定した疲労強度は、106 回に対する疲労強度を意味する。
【0056】
また、上記各種ステンレス鋼板の塗膜密着性を評価するため、アルカリ洗浄脱脂後、水洗するとともに乾燥させ、さらにCr付着量が30〜35mg/m2 となるようにクロメート処理を行った後、ウレタン変性エポキシ樹脂に酸化チタン、防錆顔料等を含有した塗料にさらに平均粒径3μmのリン化鉄粉末を不揮発分比で30%程度含有した塗料(商品名:ウエルカラーP)を用い、乾燥目付け量が17.5mg/m2 となるように、280 ℃で60秒の加熱塗装条件で加熱塗装を行うことによって、塗装鋼板を製造した。その後、各塗装鋼板は、その表面にクロスカットを入れてから5mass%塩酸(28℃)に96時間浸漬した後に水洗・乾燥した後、セロテープで剥離試験を行った。そして、塗膜密着性の評価は、クロスカット部で剥離した塗装の最大幅(mm)を測定し、この測定値によって行った。尚、この発明では、塗膜剥離幅が5mm以上の場合に塗膜密着性を不合格とした。
【0057】
上記した方法で測定した、鋼板表層の残留応力(MPa )、鋼板の表面粗さ(μm)、疲労強度(MPa )及び塗膜密着性(剥離幅:mm)の結果を表2に示す。尚、表 2中の残留応力の数値は、正の値が残留圧縮応力、負の値が残留引張り応力であることを意味する。
【0058】
【表2】
Figure 0004378853
【0059】
表2に示す結果から、発明例はいずれも、大きな疲労強度を有するとともに、塗膜密着性に優れているのがわかる。
また、同一の鋼No. 内で比べた場合には、残留圧縮応力が大きい鋼板の方が小さい鋼板よりも疲労強度が大きいことがわかる。尚、同一の鋼No. 内で疲労強度の低いものについては表2中にアンダーラインを付して比較例とした。さらに、表面粗さが0.2 μm未満である鋼板は、塗膜の剥離幅が大きく、塗膜密着性が劣ることがわかる。
【0060】
【発明の効果】
この発明によれば、鋼組成の適正化を図った上で、鋼板表面の算術平均粗さRaと鋼板表層の残留圧縮応力の適正化を図ることによって、疲労特性と塗膜密着性に優れた土木・建築構造用ステンレス鋼の提供が可能になった。
【図面の簡単な説明】
【図1】 鋼板表層に残留圧縮応力を導入した場合と導入しない場合のS−N線図である。[0001]
[Industrial application fields]
The present invention relates to a stainless steel for civil engineering and building structures having excellent fatigue properties and coating film adhesion.
[0002]
[Prior art]
Conventionally, ordinary steels such as SS400, high-strength steels such as SM490, and materials obtained by painting or plating these steels have been used as civil engineering and building construction materials.
However, in recent years, with the diversification of design, utilization of various materials has begun to be studied.
[0003]
Among them, stainless steel having excellent corrosion resistance and design properties requires very little maintenance cost for firing, and can be said to be an extremely attractive material from the viewpoint of life cycle cost (LCC).
[0004]
In particular, buildings constructed in the coastal area have problems such as short life and increased maintenance costs for controlling corrosion. We also have weldability and corrosion resistance in promoting waterfront development. In particular, the role of stainless steel as a corrosion-resistant functional material for civil engineering and building structures having excellent initial rust resistance is greatly expected.
[0005]
Stainless steels are ferritic stainless steel represented by SUS430, martensitic stainless steel represented by SUS410 steel, austenitic stainless steel represented by SUS304, and duplex stainless steel represented by SUS329 steel. It is roughly classified into precipitation hardened stainless steel represented by steel and SUS630.
[0006]
Among these various stainless steels, what has been studied as a material for civil engineering and building structures has been the most used, including material strength, corrosion resistance, ease of welding, weld toughness and versatility. Austenitic stainless steel.
[0007]
Austenitic stainless steel has properties that sufficiently satisfy properties required for civil engineering and building materials such as strength, corrosion resistance, fire resistance, and weld toughness.
[0008]
However, this austenitic stainless steel
1) Because it contains a large amount of alloying elements such as Ni and Cr, it is much more expensive than ordinary steel.
2) causing stress corrosion cracking,
3) Since the coefficient of thermal expansion is larger than that of ordinary steel and the thermal conductivity is relatively small, distortion caused by the thermal effect during welding is likely to accumulate, making it difficult to apply to members that require precision. thing,
For this reason, it is difficult to apply to general-purpose structural materials in which ordinary steel or a material coated or plated is used, and there is a problem that the application range is limited.
[0009]
For this reason, recently, the application of low Cr content alloy steel with a Cr content of 15 mass% or less and its coated steel sheet to civil engineering and building steel as an alternative to ordinary steel that has been plated or painted has been studied.
[0010]
Here, when stainless steel is used for civil engineering and building structural materials, fatigue characteristics and coating film adhesion are also important selection factors.
[0011]
For example, Japanese Patent Application Laid-Open No. 6-235100 has proposed a method for producing stainless steel for resin coating in which anodic electrolysis is performed after bright annealing.
[0012]
However, in stainless steel for civil engineering and building structures, a technique for effectively improving both the fatigue characteristics and the coating film adhesion has not been clarified so far.
[0013]
[Problems to be solved by the invention]
An object of the present invention is to provide a stainless steel for civil engineering and building structures that solves the above-described problems in the prior art and effectively improves both fatigue properties and coating film adhesion.
[0014]
[Means for Solving the Problems]
The inventors have found that it is useful to improve the surface of a stainless steel plate by means of shot blasting, brushes, dull rolls, etc. as means for achieving the above-mentioned problems, and by performing this surface modification, stainless steel can be used. When the unevenness (roughness) and residual stress on the surface of the steel plate or steel strip were changed variously, as long as both the surface roughness and the residual stress on the surface layer were properly controlled after setting the steel composition appropriately, It has been found that both fatigue characteristics and coating film adhesion can be effectively improved without changing the heat treatment conditions, and the present invention has been completed.
[0015]
That is, the gist configuration of the present invention is as follows.
1. Cr: Exceeding 8 mass%, less than 15 mass% C: Exceeding 0.0025 mass%, less than 0.03 mass% N: Exceeding 0.0025 mass%, less than 0.03 mass% S: Less than 0.03 mass%
Mn: More than 0.5 mass%, less than 3.0 mass%
Al: Less than 0.5 mass% P: Less than 0.04 mass%
Si: contains more than 0.1 mass% and less than 2.0 mass%, the balance is the composition of Fe and inevitable impurities, and the arithmetic average roughness (Ra) of the surface is 0.2 to 50 μm, and the surface layer is 0.01 Stainless steel for civil engineering and building structures with excellent fatigue characteristics and coating film adhesion characterized by introducing strain that generates residual compressive stress of ~ 50MPa.
[0016]
2. In 1 above,
Cu: less than 3.0 mass%,
Mo: less than 3.0 mass% and
Ni: Stainless steel for civil engineering and building structures with excellent fatigue properties and coating film adhesion characterized by a composition containing one or more selected from less than 3.0 mass%.
[0017]
3. In 1 or 2 above,
Co: 0.01 mass% or more, less than 0.5 mass%,
V: 0.01 mass% or more, less than 0.5 mass%, and W: 0.001 mass% or more, less than 0.05 mass%, a fatigue property and a coating film characterized by containing one or more kinds selected from Stainless steel for civil engineering and building structures with excellent adhesion.
[0018]
4). A stainless steel for civil engineering and building structures excellent in fatigue characteristics and coating film adhesion, characterized in that the composition further contains B: 0.0002 to 0.002 mass% in the above 1, 2 or 3.
[0019]
5. In any one of the above 1-4,
Ti: Less than 0.7 mass%,
Nb: Less than 0.7 mass%,
Ta: Less than 0.7 mass% and
Zr: Stainless steel for civil engineering and building structures with excellent fatigue characteristics and coating film adhesion, characterized by containing one or more selected from less than 0.5 mass%.
[0020]
DETAILED DESCRIPTION OF THE INVENTION
Next, in the present invention, the reason why the chemical composition of stainless steel is limited to the above-described gist configuration will be described.
[0021]
Cr: Over 8 mass%, less than 15 mass%
Cr is an element effective for improving corrosion resistance, but if its content is 8 mass% or less, it is difficult to ensure sufficient corrosion resistance. In addition, since Cr is a ferrite phase (α phase) stabilizing element, addition of 15 mass% or more not only causes a decrease in workability, but also reduces the stability of the austenite phase (γ phase) Since a predetermined amount of martensite phase cannot be secured during quenching, the weld strength is reduced.
Therefore, in this invention, the Cr content is set to exceed 8 mass% and less than 15 mass%. In addition, the range of especially preferable Cr content is 10.0-13.5 mass% in order to combine rust resistance, workability, and weldability.
[0022]
C and N: both exceeding 0.0025 mass% and less than 0.03 mass% As previously known, reduction of C and N is effective in improving the toughness and workability of the weld heat-affected zone and preventing weld cracking. C and N not only greatly affect the hardness of the martensite phase, but also (Fe, Cr) 23 C 6 , (Fe, Cr) 7 C 3 , (Fe, Cr) 3 C, (Fe , Cr) 2 N, Fe—Cr carbides and nitrides such as (Fe, Cr) are formed, which also causes corrosion resistance deterioration due to the Cr-deficient phase, and each of the contents of C and N Since the formation of carbides and the like becomes remarkable when the content is 0.03 mass% or more, the contents of C and N are both less than 0.03 mass%. However, in the steel composition range of the present invention, the reduction of the C and N contents is effective in improving the welded part properties, workability, corrosion resistance, etc., but the C and N contents are each 0.0025 mass% or less. Since this increases the refining load, the C and N contents are both more than 0.0025 mass% and less than 0.03 mass%. The C and N contents are more preferably 0.005 to 0.02 mass%.
[0023]
S: Less than 0.03 mass% S combines with Mn to form MnS, and becomes an initial rusting start point. S is also a harmful element that segregates at the grain boundaries and promotes embrittlement of the grain boundaries, so it is preferably reduced as much as possible. In particular, when the S content is 0.03 mass% or more, the adverse effect becomes remarkable. Therefore, the S content is suppressed to less than 0.03 mass%, more preferably 0.006 mass% or less.
[0024]
Mn: Over 0.5 mass%, 3.0 mass% or less
Mn is an austenite phase (γ phase) stabilizing element and effectively contributes to the improvement of weld toughness with the weld heat affected zone structure being a martensite structure. In addition, Mn is an element useful as a deoxidizer, as is Si, and if the Mn content is 0.5 mass% or less, an effect as a sufficient deoxidizer cannot be obtained, so the Mn content is 0.5 The mass was exceeded. On the other hand, excessive addition exceeding 3.0 mass% leads to deterioration of workability and corrosion resistance due to formation of MnS, so the Mn content is limited to 3.0 mass% or less. The Mn content is more preferably in the range of 0.7 to 1.5 mass%.
[0025]
Al: Less than 0.5 mass%
Al is not only an element useful as a deoxidizer, but also contributes to improving the toughness of welds. However, when its content exceeds 0.5 mass%, inclusions increase and mechanical properties deteriorate. Therefore, the Al content is limited to less than 0.5 mass%. Al may not be contained in the steel.
[0026]
P: Less than 0.04 mass% P is an element harmful not only to hot workability, formability and toughness, but also to corrosion resistance. Especially when the P content is 0.04 mass% or more, its effect Therefore, the P content is suppressed to less than 0.04 mass%. The P content is more preferably 0.025 mass% or less.
[0027]
Si: More than 0.1 mass%, less than 2.0 mass%
Si is a useful element as a deoxidizer, but if its content is less than 0.1 mass%, a sufficient deoxidation effect cannot be obtained. On the other hand, excessive addition of 2.0 mass% or more will reduce toughness and workability. Therefore, the Si content exceeds 0.1 mass% and is less than 2.0 mass%. The Si content is more preferably 0.3 to 0.5 mass%.
[0028]
As described above, the essential components contained in the stainless steel according to the present invention have been described. However, in the present invention, various elements described below can be appropriately contained.
[0029]
Cu: Less than 3.0 mass%
Cu is an austenite stabilizing element, and is an element effective in improving toughness by improving corrosion resistance, forming an austenite phase, suppressing grain growth in the weld heat affected zone. However, when the Cu content is 3.0 mass% or more, the embrittlement, particularly the sensitivity to hot cracking, tends to increase, so the Cu content is preferably in the range of less than 3.0 mass%. In addition, it is more preferable that the Cu content has a lower limit of 0.1 mass% at which the corrosion resistance improving effect is remarkably exhibited and an upper limit of 0.6 mass% at which hot cracking susceptibility tends to increase.
[0030]
Mo: less than 3.0 mass%
Mo, as well as Cu, is an element effective for improving corrosion resistance. However, if the Mo content is 3.0 mass% or more, the stability of the austenite phase tends to decrease, and the toughness and workability tend to decrease. Therefore, the Mo content is preferably in the range of less than 3.0 mass%. . From the viewpoint of balance between corrosion resistance and workability, the Mo content is more preferably in the range of 0.1 to 0.5 mass%.
[0031]
Ni: Less than 3.0 mass%
Ni is an element that improves ductility and toughness, and is preferably added particularly when it is necessary to improve the toughness of the weld heat affected zone. However, if the Ni content is 3.0 mass% or more, the material tends to harden and the effect tends to be reduced, so the Ni content is preferably in the range of less than 3.0 mass%. Moreover, when it is necessary to make the rust resistance improving effect remarkably exhibited, the Ni content is preferably set to 0.1 mass% or more.
[0032]
Co: 0.01 mass% or more, less than 0.5 mass%, V: 0.01 mass% or more, less than 0.5 mass%, W: 0.001 mass% or more, less than 0.05 mass%
Co, V and W are effective elements for improving the initial rust resistance of steel without adding a large amount of expensive Cr, Ni, Mo or the like or extremely reducing C and N. It can be added appropriately as necessary. The contents of Co, V, and W are preferably set to 0.01 mass%, 0.01 mass%, and 0.001 mass%, respectively, at which the above improvement effect becomes apparent. In addition, when the contents of V and W are 0.5 mass% or more and 0.05 mass% or more respectively, since the material tends to be hardened due to the precipitation of carbide, less than 0.5 mass% and 0.05 mass%, respectively. It is preferable to limit to less than 0.5 mass%, and if the Co content is 0.5 mass% or more, the steel may be hardened, so it is preferable to limit to less than 0.5 mass%. More preferably, the Co content is 0.03 to 0.2 mass%, the V content is 0.05 to 0.2 mass%, and the W content is 0.005 to 0.02 mass%.
[0033]
B: 0.0002 to 0.002 mass%
B is an element effective for improving the hardenability of steel. However, if the B content is less than 0.0002 mass%, the above-mentioned improvement effect cannot be obtained sufficiently, and if it exceeds 0.002 mass%, the material becomes harder and the toughness and workability tend to be impaired. The content is preferably 0.0002 to 0.002 mass%. The B content is more preferably 0.0005 to 0.001 mass%.
[0034]
Ti: Less than 0.7 mass%, Nb: Less than 0.7 mass%, Ta: Less than 0.7 mass%, Zr: Less than 0.5 mass%
Ti, Nb, Ta, and Zr are all carbonitride-forming elements, and effectively suppress the grain boundary precipitation of Cr carbonitride during welding or heat treatment, thereby effectively acting to improve corrosion resistance. Further, Ti is an element effective for improving hardenability. However, when the Ti, Nb, Ta content is 0.7 mass% or more and the Zr content is 0.5 mass% or more, the material tends to harden, so the contents of Ti, Nb and Ta are all 0.7 mass. % And the Zr content are preferably less than 0.5 mass%. In addition, the suitable range of content of Ti, Nb, Ta, and Zr is 0.01-0.3 mass% in all.
[0035]
Remaining Fe and Inevitable Impurities The remainder other than the steel composition components described above is Fe and inevitable impurities. As an inevitable impurity, for example, it is accepted that the O content is in the range of 0.010 mass% or less.
[0036]
The main structural features of the present invention are limited to the above steel composition, the arithmetic mean roughness Ra of the steel surface is set to 0.2 to 50 μm, and the steel surface layer corresponds to a residual compressive stress of 0.01 to 50 MPa. Is to introduce distortion.
[0037]
Arithmetic mean roughness Ra of steel surface: 0.2-50μm
The arithmetic average roughness Ra of the steel surface has a great influence on the adhesion of the coating film, so it is set to 0.2 to 50 μm. That is, if the arithmetic average roughness Ra of the steel surface is less than 0.2 μm, sufficient coating film adhesion cannot be obtained, and if it exceeds 50 μm, the unevenness of the surface becomes severe and the adhesion is rather poor. This is because the color tone and unevenness of the painted surface become conspicuous as it decreases.
Here, the arithmetic surface roughness Ra means the arithmetic average roughness Ra specified in JIS B0601.
[0038]
Introducing strain in which a residual compressive stress of 0.01 to 50 MPa is introduced into the steel surface layer Introducing strain in which a residual compressive stress of 0.01 to 50 MPa is introduced into the steel surface layer is the most important feature in the configuration of the present invention.
[0039]
The inventors have studied to improve fatigue characteristics, especially fatigue strength. Using a brush, shot blast, dull roll, etc., a strain corresponding to a residual compressive stress of 0.01 to 50 MPa is applied to the steel surface layer in the thickness direction. It has been found that the fatigue strength is remarkably improved by the introduction. That is, fatigue fracture occurs when tensile stress is applied, starting from the stress concentration part, but by introducing strain corresponding to residual compressive stress of 0.01 to 50 MPa into the steel surface layer, stress concentration is relaxed, They found that the fatigue strength increased and succeeded in completing the present invention. The reason why the residual compressive stress is limited to 0.01 to 50 MPa is that if the residual compressive stress is less than 0.01 MPa, the stress concentration cannot be sufficiently relaxed and the effect of increasing fatigue strength is not remarkable. In addition, if the residual compressive stress is larger than 50 MPa, the material is markedly cured. Further, the “steel surface layer” herein means a value when measured from the plate surface by the X-ray diffraction method, and is specifically considered to be a layer having a thickness of about 200 μm including from the steel surface. .
The X-ray diffraction method was performed using a RINT1500 X-ray diffractometer manufactured by Rigaku Denki Co., Ltd., using CoKα rays and a θ-2θ method under conditions of a voltage of 46 kV and a current of 150 mA.
[0040]
FIG. 1 shows a diagram in which a fatigue test is performed on a stainless steel plate having a steel composition according to the present invention, and the relationship between the cyclic stress (MPa) and the number of cycles until fatigue failure is plotted, that is, an SN diagram. In FIG. 1, “●” is data in the case of a stainless steel plate introduced with a strain corresponding to a residual compressive stress of 0.80 MPa by performing shot blasting, and “◯” is shot blasting. The data is for a stainless steel plate (residual compressive stress: 0.002 MPa) that is not treated.
[0041]
As is apparent from FIG. 1, it can be seen that the fatigue characteristics of the stainless steel plate into which the residual compressive stress is introduced are remarkably improved.
[0042]
Next, an example of a preferred method for producing the stainless steel of the present invention will be described.
First, the molten steel adjusted to the above steel component composition is melted in a generally known melting furnace such as a converter or an electric furnace, and then a known method such as a vacuum degassing method (RH method), VOD method, AOD method or the like. It is preferable that the steel material is refined by a refining method and then cast into a slab or the like by a continuous casting method or an ingot forming method.
[0043]
Next, the steel material is heated and made into a hot-rolled steel sheet by a hot rolling process. The heating temperature in the hot rolling process is not particularly limited, but if the heating temperature is too high, crystal grains become coarse and the toughness and workability deteriorate, so the heating temperature is preferably 1300 ° C. or lower.
[0044]
In addition, it is sufficient that the hot-rolled steel sheet has a desired thickness in the hot-rolling process, and the hot-rolling conditions are not particularly limited. However, the hot rolling finishing temperature should be 700 ° C or higher. It is preferable from the viewpoint of ensuring.
[0045]
However, when workability, ductility, and even good surface properties are required, the finishing temperature in hot rolling is preferably 820 ° C or higher and 1000 ° C or lower.
[0046]
The winding temperature is preferably in the range of 500 to 800 ° C.
[0047]
After the hot rolling is completed, it is preferable to perform hot-rolled sheet annealing for softening. In this hot-rolled sheet annealing, it is preferable to set the annealing temperature: 600 to 1100 ° C. and the holding time: 0.01 to 20 h from the viewpoint of improving workability and securing ductility as well as softening.
[0048]
When a martensitic structure is formed on a hot-rolled sheet, after annealing the hot-rolled sheet, the temperature range of 600 to 730 ° C is gradually cooled at a cooling rate of 50 ° C / h or less in terms of softening. More preferred.
[0049]
Thereafter, the scale is removed by pickling, etc., and further, if necessary, after alkaline degreasing, water washing and drying, the steel surface is reformed using a brush, shot blast or dull roll, etc. It is preferable to apply the coating after appropriately controlling the roughness and the strain introduced into the steel surface layer. The coating is, for example, a baking coating for 15 seconds to 3 minutes in a temperature range of 180 to 300 ° C. The baking coating is, for example, a paint containing a urethane-modified epoxy resin containing titanium oxide, an anticorrosive pigment, and the like. A representative example is a paint containing about 30% of a 3 μm iron phosphide powder in a nonvolatile content ratio.
[0050]
【Example】
Molten steel having the composition shown in Table 1 is melted in the converter-secondary refining process and made into a slab by the continuous casting method, and then reheated to 1150 to 1250 ° C., and the rolling reduction of the final rough rolling is 30 to 45%. After the 6-pass rough rolling, a final rolling temperature of 840 to 990 ° C is used for 7-pass finish rolling to obtain a 4.2 mm hot-rolled steel sheet, and then the normal process of hot-rolled sheet annealing-pickling treatment Then, the steel sheet surface was subjected to surface modification treatment with shot plast or dull roll to produce a stainless steel sheet with various changes in surface roughness and various changes in residual compressive stress in the thickness direction.
[0051]
[Table 1]
Figure 0004378853
[0052]
The various stainless steel plates thus prepared were measured for residual compressive stress on the plate surface, then measured for surface roughness by the stylus method (JIS B 0601) and subjected to a fatigue test to measure fatigue strength.
[0053]
The measurement of the residual compressive stress is based on a general X-ray diffraction method (conditions) based on the X-ray diffraction theory (author BDCULLITY, translated by Gentaro Matsumura, Agne Co., Ltd., 1971, 9th edition, p435-458). : Θ-2θ method, using CoKα ray, voltage 46 kV, current 150 mA, using RINT 1500 X-ray diffractometer manufactured by Rigaku Corporation. In this case, however, it is necessary to be careful when adjusting the sample. That is, when the X-ray diffraction method is used, the surface unevenness has a great influence on the X-ray reflection, and thus the surface unevenness must be removed. Careful attention was paid here, and the surface layer of the steel sheet was first mechanically carefully scraped with fine emery paper (# 800-1200), then electropolished with 5% perchloric acid acetic acid (10 ° C). Then, the distortion caused by mechanical polishing was removed before use in the measurement.
[0054]
The surface roughness was measured by a touch method based on JIS B 0601.
[0055]
The fatigue strength was measured according to JIS Z 2273. The fatigue strength measured here means the fatigue strength for 10 6 times.
[0056]
In addition, in order to evaluate the coating film adhesion of the above various stainless steel plates, after washing with alkali and degreasing, washing with water and drying, and further performing chromate treatment so that the Cr adhesion amount is 30 to 35 mg / m 2 , urethane Using a paint containing titanium oxide, rust-preventive pigment, etc. in a modified epoxy resin and further containing about 30% of iron phosphide powder with an average particle size of 3 μm in a non-volatile content ratio (trade name: Well Color P) A coated steel sheet was manufactured by performing heat coating at 280 ° C. for 60 seconds so that the amount was 17.5 mg / m 2 . Thereafter, each coated steel sheet was cross-cut on the surface, immersed in 5 mass% hydrochloric acid (28 ° C.) for 96 hours, washed with water and dried, and then subjected to a peeling test using a cello tape. The coating film adhesion was evaluated by measuring the maximum width (mm) of the coating peeled off at the cross-cut portion. In the present invention, the coating film adhesion was rejected when the coating film peeling width was 5 mm or more.
[0057]
Table 2 shows the results of the residual stress (MPa), the surface roughness (μm), the fatigue strength (MPa), and the coating film adhesion (peeling width: mm) of the steel sheet surface layer measured by the method described above. In Table 2, the values of residual stress mean that the positive value is the residual compressive stress and the negative value is the residual tensile stress.
[0058]
[Table 2]
Figure 0004378853
[0059]
From the results shown in Table 2, it can be seen that all of the inventive examples have high fatigue strength and excellent coating film adhesion.
Moreover, when compared in the same steel No., it turns out that the fatigue strength of the steel plate with a large residual compressive stress is larger than the steel plate with a small residual compressive stress. In addition, about the thing with low fatigue strength within the same steel No., the underline was attached in Table 2 and it was set as the comparative example. Furthermore, it can be seen that a steel sheet having a surface roughness of less than 0.2 μm has a large peeling width of the coating film and is poor in coating film adhesion.
[0060]
【The invention's effect】
According to the present invention, after optimizing the steel composition, the arithmetic mean roughness Ra of the steel sheet surface and the residual compressive stress of the steel sheet surface layer are optimized to provide excellent fatigue characteristics and coating film adhesion. It is now possible to provide stainless steel for civil engineering and building structures.
[Brief description of the drawings]
FIG. 1 is an SN diagram when residual compressive stress is introduced into a steel sheet surface layer and when it is not introduced.

Claims (5)

Cr:8mass%超え、15mass%未満
C:0.0025mass%超え、0.03mass%未満
N:0.0025mass%超え、0.03mass%未満
S:0.03mass%未満
Mn:0.5mass %超え、3.0mass%以下
Al:0.5mass %未満
P:0.04mass%未満
Si:0.1mass%超え、2.0mass%未満
を含有し、残部Feおよび不可避的不純物の組成になり、かつ、表面の算術平均粗さ(Ra)が0.2〜50μmであり、しかも、表層に0.01〜50MPaの残留圧縮応力が生じる歪みを導入したことを特徴とする疲労特性および塗膜密着性に優れた土木・建築構造用ステンレス鋼。
Cr: Exceeding 8 mass%, less than 15 mass% C: Exceeding 0.0025 mass%, less than 0.03 mass% N: Exceeding 0.0025 mass%, less than 0.03 mass% S: Less than 0.03 mass%
Mn: More than 0.5 mass%, less than 3.0 mass%
Al: Less than 0.5 mass% P: Less than 0.04 mass%
Si: contains more than 0.1 mass% and less than 2.0 mass%, the balance is the composition of Fe and inevitable impurities, and the arithmetic average roughness (Ra) of the surface is 0.2 to 50 μm, and the surface layer is 0.01 Stainless steel for civil engineering and building structures with excellent fatigue characteristics and coating film adhesion, characterized by introducing strain that generates residual compressive stress of ~ 50MPa.
請求項1において、さらに
Cu:3.0 mass%未満、
Mo:3.0 mass%未満および
Ni:3.0 mass%未満
のうちから選んだ1種または2種以上を含有する組成になることを特徴とする疲労特性および塗膜密着性に優れた土木・建築構造用ステンレス鋼。
In claim 1, further
Cu: less than 3.0 mass%,
Mo: less than 3.0 mass% and
Ni: Stainless steel for civil engineering and building structures with excellent fatigue properties and coating film adhesion characterized by a composition containing one or more selected from less than 3.0 mass%.
請求項1または2において、さらに
Co:0.01mass%以上、0.5 mass%未満、
V:0.01mass%以上、0.5 mass%未満および
W:0.001 mass%以上、0.05mass%未満
のうちから選んだ1種または2種以上を含有する組成になることを特徴とする疲労特性および塗膜密着性に優れた土木・建築構造用ステンレス鋼。
In claim 1 or 2, further
Co: 0.01 mass% or more, less than 0.5 mass%,
V: 0.01 mass% or more, less than 0.5 mass%, and W: 0.001 mass% or more, less than 0.05 mass%, a fatigue property and a coating film characterized by containing one or more kinds selected from Stainless steel for civil engineering and building structures with excellent adhesion.
請求項1、2または3において、さらに
B:0.0002〜0.002 mass%を含有する組成になることを特徴とする疲労特性および塗膜密着性に優れた土木・建築構造用ステンレス鋼。
4. The stainless steel for civil engineering and building structure according to claim 1, wherein the composition further contains B: 0.0002 to 0.002 mass%, and is excellent in fatigue characteristics and coating film adhesion.
請求項1〜4のいずれか1項において、さらに
Ti:0.7 mass%未満、
Nb:0.7 mass%未満、
Ta:0.7 mass%未満および
Zr:0.5 mass%未満
のうちから選んだ1種または2種以上を含有する組成になることを特徴とする疲労特性および塗膜密着性に優れた土木・建築構造用ステンレス鋼。
In any one of Claims 1-4, Furthermore,
Ti: Less than 0.7 mass%,
Nb: Less than 0.7 mass%,
Ta: Less than 0.7 mass% and
Zr: Stainless steel for civil engineering and building structures with excellent fatigue characteristics and coating film adhesion, characterized by containing one or more selected from less than 0.5 mass%.
JP2000165566A 2000-06-02 2000-06-02 Stainless steel for civil engineering and building structures with excellent fatigue characteristics and paint film adhesion Expired - Fee Related JP4378853B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000165566A JP4378853B2 (en) 2000-06-02 2000-06-02 Stainless steel for civil engineering and building structures with excellent fatigue characteristics and paint film adhesion

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000165566A JP4378853B2 (en) 2000-06-02 2000-06-02 Stainless steel for civil engineering and building structures with excellent fatigue characteristics and paint film adhesion

Publications (2)

Publication Number Publication Date
JP2001342548A JP2001342548A (en) 2001-12-14
JP4378853B2 true JP4378853B2 (en) 2009-12-09

Family

ID=18669021

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000165566A Expired - Fee Related JP4378853B2 (en) 2000-06-02 2000-06-02 Stainless steel for civil engineering and building structures with excellent fatigue characteristics and paint film adhesion

Country Status (1)

Country Link
JP (1) JP4378853B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3933020B2 (en) * 2001-09-28 2007-06-20 Jfeスチール株式会社 Stainless steel with excellent fatigue characteristics and toughness of fillet welded joints when forming fillet welded joints
JP4805005B2 (en) * 2006-04-24 2011-11-02 中央発條株式会社 Colored wire rope and colored wire rope manufacturing method
JP2008291974A (en) * 2007-05-28 2008-12-04 Advics:Kk Manufacturing method of pressure container, manufacturing method of accumulator for automobile, and accumulator for automobile
CN104018091B (en) * 2014-06-18 2016-11-23 江苏省沙钢钢铁研究院有限公司 A kind of reinforcing bar and preparation method thereof
JP6107892B2 (en) * 2015-06-29 2017-04-05 新日鐵住金株式会社 Steel member and method for manufacturing steel member

Also Published As

Publication number Publication date
JP2001342548A (en) 2001-12-14

Similar Documents

Publication Publication Date Title
JP5418047B2 (en) High strength steel plate and manufacturing method thereof
JP5315956B2 (en) High-strength hot-dip galvanized steel sheet with excellent formability and method for producing the same
JP5365112B2 (en) High strength steel plate and manufacturing method thereof
JP5884714B2 (en) Hot-dip galvanized steel sheet and manufacturing method thereof
JP5047649B2 (en) High-strength hot-rolled steel sheet and galvanized steel sheet excellent in stretch flangeability and their production method
JP5194841B2 (en) High-strength hot-dip galvanized steel sheet with excellent formability and manufacturing method thereof
JP5786318B2 (en) High-strength hot-dip galvanized steel sheet with excellent fatigue characteristics and hole expansibility and method for producing the same
JP2010065272A (en) High-strength steel sheet and method for manufacturing the same
JP5504737B2 (en) High-strength hot-dip galvanized steel strip excellent in formability with small variations in material within the steel strip and method for producing the same
WO2009099079A1 (en) High-strength hot-dip galvanized steel sheet with excellent processability and process for producing the same
WO2008123267A1 (en) High-strength hot dip zinc plated steel sheet having excellent moldability, and method for production thereof
JP3680829B2 (en) Ferritic stainless steel sheet excellent in deep drawability, secondary work brittleness resistance and corrosion resistance, and method for producing the same
JP7216932B2 (en) Cold-rolled steel sheet and manufacturing method thereof
KR20070011007A (en) Hot dip galvanized steel sheets of trip steels which have good adhesion property and excellent formability and the method of developing those steels
JP3788311B2 (en) Ferritic stainless steel sheet and manufacturing method thereof
JP4378853B2 (en) Stainless steel for civil engineering and building structures with excellent fatigue characteristics and paint film adhesion
JP5141232B2 (en) High-strength hot-dip galvanized steel sheet with excellent formability and manufacturing method thereof
WO2004022808A1 (en) Cr STEEL FOR STRUCTURAL USE AND METHOD FOR PRODUCING THE SAME
WO2008123336A1 (en) Ultra-thin cold-rolled steel sheet for building material and process for production of the same
JP4465805B2 (en) Hot-rolled steel sheet excellent in room temperature aging resistance and strain aging characteristics and method for producing the same
JP4148235B2 (en) Steel plate with excellent workability and shape freezing property and its manufacturing method
KR20220108810A (en) Hot-rolled steel sheet and its manufacturing method
JP3027011B2 (en) Chromium-containing steel sheet with excellent corrosion resistance and workability
JP3508698B2 (en) Stainless steel hot rolled steel strip for civil and building structures with excellent initial rust resistance
US6737018B2 (en) Corrosion-resistant chromium steel for architectural and civil engineering structural elements

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070330

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20070330

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090526

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090602

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090731

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090825

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090907

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121002

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4378853

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121002

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131002

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees