JP2001342548A - Stainless steel for civil and building construction excellent in fatigue property and adhesion property of coating film - Google Patents

Stainless steel for civil and building construction excellent in fatigue property and adhesion property of coating film

Info

Publication number
JP2001342548A
JP2001342548A JP2000165566A JP2000165566A JP2001342548A JP 2001342548 A JP2001342548 A JP 2001342548A JP 2000165566 A JP2000165566 A JP 2000165566A JP 2000165566 A JP2000165566 A JP 2000165566A JP 2001342548 A JP2001342548 A JP 2001342548A
Authority
JP
Japan
Prior art keywords
mass
less
stainless steel
steel
coating film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000165566A
Other languages
Japanese (ja)
Other versions
JP4378853B2 (en
Inventor
Yoshihiro Yazawa
好弘 矢沢
Takumi Ugi
工 宇城
Susumu Sato
佐藤  進
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP2000165566A priority Critical patent/JP4378853B2/en
Publication of JP2001342548A publication Critical patent/JP2001342548A/en
Application granted granted Critical
Publication of JP4378853B2 publication Critical patent/JP4378853B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a stainless steel for civil and building construction, effectively improved in both fatigue property and adhesion property of coating film. SOLUTION: The stainless steel is characterized in that it is composed of Cr: 8 mass% over and 15 mass% below, C: 0.0025 mass% over and 0.03 mass% below, N:0.0025 mass% over and 0.03 mass% below, S: 0.03 mass% below, Mn: 0.5 mass% over and 3.0 mass% below, Al: 0.5 mass% below, P: 0.04 mass or below, Si: 0.1 mass% over and 2.0 mass% or below, and the balance Fe with inevitably impurities, and furthermore, the arithmetic mean roughness Ra of the surface is 0.2-50 μm and a strain generating the residual compressive stress of 0.01-50 MPa on the outer layer, is also introduced.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】この発明は、疲労特性と塗膜密着
性に優れた土木・建築構造用ステンレス鋼に関するもの
である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a stainless steel for civil engineering and architectural structures which is excellent in fatigue characteristics and coating film adhesion.

【0002】[0002]

【従来の技術】土木・建築構造用材料としては、従来、
主に SS400等の普通鋼、SM490 等の高張力鋼およびこれ
らの鋼材に塗装やめっきを施した材料が使用されてき
た。しかしながら、近年、設計の多様化に伴い、各種材
料の利用が検討され始めている。
2. Description of the Related Art Conventionally, as materials for civil engineering and building structures,
Mainly, ordinary steel such as SS400, high-strength steel such as SM490, and materials obtained by painting or plating these steels have been used. However, in recent years, with the diversification of designs, utilization of various materials has begun to be considered.

【0003】なかでも、耐食性や意匠性に優れたステン
レス鋼は、発銹に対する保守費用がほとんど必要ないた
め、ライフサイクルコスト(LCC)の観点から見る
と、極めて魅力的な材料といえる。
[0003] Above all, stainless steel excellent in corrosion resistance and design is hardly required to maintain rust, and is therefore a very attractive material from the viewpoint of life cycle cost (LCC).

【0004】特に、海岸地帯に建設される建築物は、短
寿命なことに加え、腐食抑制のための保守費用が増大す
るという問題を抱えており、またウォーターフロント開
発を推進する上でも、溶接性と耐食性、特に耐初期発錆
性に優れた土木・建築構造用耐食性機能材としてのステ
ンレス鋼の役割が大いに期待されている。
[0004] In particular, buildings constructed in coastal areas have problems that, in addition to having a short life, maintenance costs for controlling corrosion are increased, and welding is also required in promoting waterfront development. The role of stainless steel as a corrosion-resistant functional material for civil engineering and architectural structures with excellent resistance and corrosion resistance, especially initial rust resistance, is greatly expected.

【0005】ステンレス鋼は、その金属組織から、SUS4
30に代表されるフェライト系ステンレス鋼、SUS410鋼に
代表されるマルテンサイト系ステンレス鋼、SUS304に代
表されるオーステナイト系ステンレス鋼、SUS329鋼に代
表される2相ステンレス鋼およびSUS630に代表される析
出硬化型ステンレス鋼に大別される。
[0005] Stainless steel is made of SUS4
Precipitation hardening represented by ferritic stainless steel represented by 30, martensitic stainless steel represented by SUS410 steel, austenitic stainless steel represented by SUS304, duplex stainless steel represented by SUS329 steel, and SUS630 Broadly classified into type stainless steel.

【0006】このような各種ステンレス鋼の中で、従来
から土木・建築構造用材料として検討されてきたのは、
材料強度、耐食性、溶接の容易さ、溶接部靱性および汎
用性を含めて使用実績が最も多い、オーステナイト系ス
テンレス鋼である。
Among such various stainless steels, those which have been conventionally studied as materials for civil engineering and building structures are as follows:
It is an austenitic stainless steel with the highest use record including material strength, corrosion resistance, ease of welding, weld toughness and versatility.

【0007】オーステナイト系ステンレス鋼は、強度、
耐食性、耐火性および溶接部靱性等の土木・建築用材料
に要求される特性を十分に満足する特性を有している。
Austenitic stainless steel has strength,
It has properties that sufficiently satisfy the properties required for civil engineering and building materials, such as corrosion resistance, fire resistance, and weld toughness.

【0008】しかしながら、このオーステナイト系ステ
ンレス鋼は、 1) NiやCr等の合金元素を多量に含有しているために、
普通鋼に比べると格段に高価であること、 2) 応力腐食割れを生じること、 3) 熱膨張率が普通鋼に比べて大きく、また熱伝導度が
比較的小さいために、溶接時の熱影響に起因した歪みが
蓄積し易く、精度を要求される部材等には適用が難しい
こと、 などのため、普通鋼やこれに塗装やめっきを施した材料
が使用されていた汎用構造材への適用は難しく、適用範
囲が制限されるという問題があった。
However, this austenitic stainless steel 1) contains a large amount of alloying elements such as Ni and Cr.
It is much more expensive than ordinary steel, 2) causes stress corrosion cracking, and 3) has a larger coefficient of thermal expansion than ordinary steel, and has relatively low thermal conductivity, so it has a thermal effect during welding. Because it is easy to accumulate the strain due to the material and it is difficult to apply it to members requiring accuracy, etc., it is applied to general-purpose structural materials that used ordinary steel and painted or plated materials Is difficult and the range of application is limited.

【0009】このため、最近では、めっきや塗装を施し
た普通鋼の代替として、Cr含有量が15mass%以下の低Cr
含有合金鋼及びその塗装鋼板の土木・建築用鋼材への適
用が検討されつつある。
For this reason, recently, as a substitute for plated or painted ordinary steel, low Cr having a Cr content of 15 mass% or less has been used.
The application of alloy steel containing steel and its coated steel sheet to steel materials for civil engineering and construction is being studied.

【0010】ここで、土木・建築構造材用途にステンレ
ス鋼を使用する場合、疲労特性や塗膜密着性も重要な選
定因子となる。
[0010] When stainless steel is used for civil engineering and building structural materials, fatigue characteristics and coating film adhesion are also important selection factors.

【0011】ステンレス鋼の塗膜密着性を改善したもの
として、例えば、特開平6−235100号公報に、光輝焼鈍
後、陽極電解をする樹脂塗装用ステンレス鋼の製造方法
が提案されている。
As a method for improving the coating adhesion of stainless steel, for example, Japanese Patent Application Laid-Open No. Hei 6-235100 proposes a method for producing stainless steel for resin coating in which anodic electrolysis is performed after bright annealing.

【0012】しかしながら、土木・建築構造物用のステ
ンレス鋼において、その疲労特性と塗膜密着性の双方を
有効に改善する技術についてはこれまで明らかにされて
いなかった。
However, in stainless steel for civil engineering and architectural structures, no technique has been disclosed so far for effectively improving both fatigue characteristics and coating film adhesion.

【0013】[0013]

【発明が解決しようとする課題】この発明は、上記した
ような従来技術における問題点を解決し、疲労特性と塗
膜密着性の双方を有効に改善した土木・建築構造用ステ
ンレス鋼を提供することにある。
SUMMARY OF THE INVENTION The present invention solves the above-mentioned problems in the prior art, and provides a stainless steel for civil engineering and building structures in which both fatigue characteristics and coating film adhesion are effectively improved. It is in.

【0014】[0014]

【課題を解決するための手段】発明者らは、上記した課
題を達成するための手段として、ショットブラストやブ
ラシ、ダルロール等によってステンレス鋼板の表面改質
を図ることが有用であること、及びこの表面改質を行う
ことによって、ステンレス鋼板または鋼帯表面の凹凸
〈粗さ)および残留応力を種々変化させたところ、鋼組
成を適正に設定した上で、表面粗さおよび表層の残留応
力の双方を適正に制御しさえすれば、熱処理条件を変更
することなく、疲労特性と塗膜密着性の双方を有効に改
善できることを見出し、この発明を完成したものであ
る。
Means for Solving the Problems The inventors have found that it is useful to improve the surface of a stainless steel plate by shot blasting, brushing, dull roll or the like as means for achieving the above-mentioned object. By performing surface modification, the unevenness (roughness) and residual stress of the surface of the stainless steel plate or steel strip were changed in various ways. After properly setting the steel composition, both the surface roughness and the residual stress of the surface layer were changed. It has been found that, as long as it is properly controlled, both fatigue characteristics and coating film adhesion can be effectively improved without changing the heat treatment conditions, and the present invention has been completed.

【0015】すなわち、この発明の要旨構成は次のとお
りである。 1. Cr:8mass%超え、15mass%未満 C: 0.0025 mass%超え、0.03mass%未満 N: 0.0025 mass%超え、0.03mass%未満 S: 0.03 mass%未満 Mn: 0.5 mass %超え、3.0mass%以下 Al: 0.5 mass %未満 P: 0.04 mass%未満 Si: 0.1mass%超え、2.0 mass%未満 を含有し、残部は実質的にFeおよび不可避的不純物の組
成になり、かつ、表面の算術平均粗さ(Ra)が0.2 〜50μ
mであり、しかも、表層に0.01〜50MPa の残留圧縮応力
が生ずる歪みを導入したことを特徴とする疲労特性およ
び塗膜密着性に優れた土木・建築構造用ステンレス鋼。
That is, the gist of the present invention is as follows. 1. Cr: more than 8 mass%, less than 15 mass% C: more than 0.0025 mass%, less than 0.03 mass% N: more than 0.0025 mass%, less than 0.03 mass% S: less than 0.03 mass% Mn: more than 0.5 mass%, less than 3.0 mass% Al: Less than 0.5% by mass P: Less than 0.04% by mass Si: More than 0.1% by mass and less than 2.0% by mass, and the balance substantially has a composition of Fe and inevitable impurities, and the arithmetic mean roughness (Ra ) Is 0.2 to 50μ
m, and a stainless steel for civil engineering and building structures excellent in fatigue properties and coating film adhesion characterized by introducing a strain that generates a residual compressive stress of 0.01 to 50 MPa in the surface layer.

【0016】2.上記1において、さらに Cu:3.0 mass%未満、 Mo:3.0 mass%未満および Ni:3.0 mass%未満 のうちから選んだ1種または2種以上を含有する組成に
なることを特徴とする疲労特性および塗膜密着性に優れ
た土木・建築構造用ステンレス鋼。
2. In the above item 1, the composition may further comprise a composition containing one or more selected from Cu: less than 3.0 mass%, Mo: less than 3.0 mass%, and Ni: less than 3.0 mass%. Stainless steel for civil engineering and building structures with excellent paint film adhesion.

【0017】3.上記1または2において、さらに Co:0.01mass%以上、0.5 mass%未満、 V:0.01mass%以上、0.5 mass%未満および W:0.001 mass%以上、0.05mass%未満 のうちから選んだ1種または2種以上を含有する組成に
なることを特徴とする疲労特性および塗膜密着性に優れ
た土木・建築構造用ステンレス鋼。
3. In 1 or 2 above, one or more selected from Co: 0.01 mass% or more and less than 0.5 mass%, V: 0.01 mass% or more and less than 0.5 mass%, and W: 0.001 mass% or more and less than 0.05 mass% A stainless steel for civil engineering and building structures having excellent fatigue properties and coating film adhesion, characterized in that the composition contains two or more types.

【0018】4.上記1、2または3において、さらに
B:0.0002〜0.002 mass%を含有する組成になることを
特徴とする疲労特性および塗膜密着性に優れた土木・建
築構造用ステンレス鋼。
4. In the above 1, 2, or 3, a stainless steel for civil engineering / building structure excellent in fatigue characteristics and coating film adhesion, characterized in that the composition further contains B: 0.0002 to 0.002 mass%.

【0019】5.上記1〜4のいずれか1項において、
さらに Ti:0.7 mass%未満、 Nb:0.7 mass%未満、 Ta:0.7 mass%未満および Zr:0.5 mass%未満 のうちから選んだ1種または2種以上を含有する組成に
なることを特徴とする疲労特性および塗膜密着性に優れ
た土木・建築構造用ステンレス鋼。
5. In any one of the above items 1 to 4,
Further, the composition is characterized by containing one or more selected from Ti: less than 0.7 mass%, Nb: less than 0.7 mass%, Ta: less than 0.7 mass%, and Zr: less than 0.5 mass%. Stainless steel for civil engineering and building structures with excellent fatigue properties and coating adhesion.

【0020】[0020]

【発明の実施の形態】次に、この発明において、ステン
レス鋼の化学組成を上記要旨構成の通りに限定した理由
について説明する。
Next, the reason why the chemical composition of stainless steel according to the present invention is limited to the above-mentioned configuration will be described.

【0021】Cr:8mass%超え、15mass%未満 Crは、耐食性の改善に有効な元素であるが、その含有量
が8mass%以下では十分な耐食性の確保が難しい。ま
た、Crはフェライト相(α相)安定化元素であるため、
15mass%以上の添加は加工性の低下を招くだけでなく、
オーステナイト相(γ相)の安定性を低下させることに
なって、焼入れ時に所定量のマルテンサイト相を確保で
きなくなるため、溶接部強度が低下する。従って、この
発明では、Cr含有量は、8mass%超え、15mass%未満と
した。尚、耐錆性、加工性及び溶接性を兼備する上で特
に好ましいCr含有量の範囲は10.0〜13.5mass%である。
Cr: more than 8 mass% and less than 15 mass% Cr is an element effective for improving corrosion resistance. However, if its content is 8 mass% or less, it is difficult to secure sufficient corrosion resistance. Since Cr is a ferrite phase (α phase) stabilizing element,
Addition of 15 mass% or more not only causes a decrease in workability,
Since the stability of the austenite phase (γ phase) is reduced and a predetermined amount of martensite phase cannot be secured at the time of quenching, the strength of the welded portion decreases. Therefore, in the present invention, the Cr content is set to be more than 8 mass% and less than 15 mass%. In addition, the range of the Cr content that is particularly preferable for having both rust resistance, workability, and weldability is 10.0 to 13.5 mass%.

【0022】C及びN:ともに 0.0025 mass%超え、0.
03mass%未満 溶接熱影響部の靱性および加工性の改善および溶接割れ
防止には、従来から知られているとおり、C,Nの低減
が有効である。またC,Nは、マルテンサイト相の硬さ
にも大きな影響を及ぼすだけでなく、(Fe,Cr)23C6 ,(F
e,Cr)7C3 ,(Fe,Cr)3C ,(Fe,Cr)2N ,(Fe,Cr)などのよう
なFe−Cr系の炭化物や窒化物を形成し、Cr欠乏相に伴う
耐食性劣化の原因にもなり、C及びNの含有量のそれぞ
れが0.03mass%以上の場合に炭化物等の形成が顕著にな
ることから、C及びNの含有量は、いずれも0.03mass%
未満とした。ただし、この発明の鋼組成範囲において、
C及びN含有量の低減は溶接部特性や加工性、耐食性等
の改善には有効ではあるが、C及びNの含有量をそれぞ
れ0.0025mass%以下にすることは、精錬負荷を増大させ
ることになるため、従って、C及びNの含有量は、いず
れも0.0025mass%超え、0.03mass%未満とした。尚、C
及びNの含有量は、いずれも 0.005〜0.02mass%とする
ことがより好適である。
C and N: Both exceed 0.0025 mass%, and
Less than 03 mass% To improve the toughness and workability of the heat-affected zone and to prevent weld cracking, it is effective to reduce C and N as conventionally known. Further, C and N not only have a great effect on the hardness of the martensite phase, but also (Fe, Cr) 23 C 6 , (F
(Fe, Cr) 7 C 3 , (Fe, Cr) 3 C, (Fe, Cr) 2 N, (Fe, Cr) and other Fe-Cr-based carbides and nitrides are formed, and in the Cr-deficient phase Since the formation of carbides and the like becomes remarkable when each of the contents of C and N is 0.03 mass% or more, the contents of C and N are each 0.03 mass%.
Less than. However, in the steel composition range of the present invention,
Although the reduction of C and N contents is effective for improving the properties of welds, workability, corrosion resistance, etc., reducing the contents of C and N to 0.0025 mass% or less increases the refining load. Therefore, the contents of C and N are set to be more than 0.0025 mass% and less than 0.03 mass%, respectively. Note that C
And the content of N is more preferably 0.005 to 0.02 mass%.

【0023】S: 0.03 mass%未満 Sは、Mnと結合してMnSを形成し、初期発錆起点とな
る。またSは、結晶粒界に偏析して粒界脆化を促進する
有害元素でもあるので、極力低減することが好ましい。
特にS含有量が0.03mass%以上になると、その悪影響が
顕著になるので、Sの含有量は0.03mass%未満、より好
ましくは 0.006mass%以下に抑制するものとした。
S: less than 0.03 mass% S combines with Mn to form MnS, and serves as an initial rusting starting point. In addition, S is a harmful element that segregates at crystal grain boundaries and promotes grain boundary embrittlement, so that it is preferable to reduce S as much as possible.
In particular, when the S content is 0.03 mass% or more, the adverse effect becomes remarkable. Therefore, the S content is suppressed to less than 0.03 mass%, and more preferably 0.006 mass% or less.

【0024】Mn: 0.5 mass %超え、3.0 mass%以下 Mnは、オーステナイト相(γ相)安定化元素であり、溶
接熱影響部組織をマルテンサイト組織として溶接部靱性
の改善に有効に寄与する。また、Mnは、Siと同様、脱酸
剤としても有用な元素であり、Mn含有量が 0.5mass%以
下だと、十分な脱酸剤としての効果が得られないので、
Mn含有量は0.5mass %超えとした。一方、 3.0mass%を
超える過剰の添加は、加工性の低下やMnS の形成による
耐食性の低下を招くので、Mn含有量は 3.0mass%以下に
制限した。尚、Mn含有量は、0.7〜1.5 mass%の範囲に
することがより好適である。
Mn: more than 0.5 mass% and not more than 3.0 mass% Mn is an austenite phase (γ phase) stabilizing element, and effectively contributes to improvement of weld toughness by changing the structure of the heat affected zone to a martensite structure. Also, Mn is a useful element as a deoxidizing agent like Si, and if the Mn content is 0.5 mass% or less, a sufficient effect as a deoxidizing agent cannot be obtained.
The Mn content was set to exceed 0.5% by mass. On the other hand, an excessive addition exceeding 3.0 mass% causes a reduction in workability and a reduction in corrosion resistance due to the formation of MnS, so the Mn content was limited to 3.0 mass% or less. It is more preferable that the Mn content be in the range of 0.7 to 1.5 mass%.

【0025】Al: 0.5 mass %未満 Alは、脱酸剤として有用な元素であるばかりでなく、溶
接部の靱性向上にも有効に寄与するが、その含有量が
0.5mass%以上となると介在物が多くなって機械的性質
の劣化を招くので、Al含有量は 0.5mass%未満に限定し
た。尚、Alは特に鋼中に含有されていなくてもよい。
Al: less than 0.5 mass% Al is not only a useful element as a deoxidizing agent, but also effectively contributes to improving the toughness of the welded portion.
If the content is 0.5 mass% or more, the amount of inclusions increases and mechanical properties deteriorate, so the Al content is limited to less than 0.5 mass%. In addition, Al does not need to be particularly contained in steel.

【0026】P: 0.04 mass%未満 Pは、熱間加工性、成形性及び靱性を低下させるだけで
なく、耐食性に対しても有害な元素であり、特にP含有
量が0.04mass%以上になると、その影響が顕著になるの
で、P含有量は0.04mass%未満に抑制するものとした。
尚、P含有量は0.025mass %以下にすることがより好適
である。
P: less than 0.04% by mass P not only reduces the hot workability, formability and toughness, but also is a harmful element to the corrosion resistance. Particularly, when the P content is 0.04% by mass or more. Since the effect becomes remarkable, the P content is controlled to be less than 0.04 mass%.
It is more preferable that the P content be 0.025 mass% or less.

【0027】Si: 0.1mass%超え、2.0 mass%未満 Siは、脱酸剤として有用な元素であるが、その含有量が
0.1mass%以下では十分な脱酸効果が得られず、一方、
2.0mass%以上の過剰添加は靱性や加工性の低下を招く
ので、Si含有量は 0.1 mass %超え、2.0 mass%未満と
した。尚、Si含有量は、0.3 〜0.5 mass%とすることが
より好適である。
Si: more than 0.1 mass% and less than 2.0 mass% Si is a useful element as a deoxidizing agent, but its content is
If the content is less than 0.1 mass%, a sufficient deoxidizing effect cannot be obtained.
Since excessive addition of 2.0 mass% or more causes reduction in toughness and workability, the Si content is set to exceed 0.1 mass% and less than 2.0 mass%. It is more preferable that the Si content be 0.3 to 0.5 mass%.

【0028】以上、この発明に従うステンレス鋼中に含
有する必須成分について説明したが、この発明では、そ
の他にも以下に述べる各種元素を適宜含有させることが
できる。
As described above, the essential components contained in the stainless steel according to the present invention have been described. In the present invention, other various elements described below can be appropriately contained.

【0029】Cu:3.0 mass%未満 Cuは、オーステナイト安定化元素であり、耐食性を向上
させるとともに、オーステナイト相を形成させ、溶接熱
影響部での粒成長を抑制し、靭性改善に有効な元素であ
る。ただし、Cu含有量が3.0 mass%以上になると、脆
化、特に熱間割れの感受性が強くなる傾向があることか
ら、Cu含有量は3.0mass%未満の範囲にすることが好ま
しい。尚、Cu含有量は、耐食性改善効果を顕著に発揮す
るようになる0.1 mass%を下限とし、熱間割れ感受性が
強くなる傾向がある0.6 mass%を上限とすることがより
好適である。
Cu: less than 3.0 mass% Cu is an austenite stabilizing element, and is an element that improves corrosion resistance, forms an austenite phase, suppresses grain growth in the heat affected zone, and is effective in improving toughness. is there. However, when the Cu content is 3.0 mass% or more, the susceptibility to embrittlement, particularly hot cracking, tends to increase. Therefore, the Cu content is preferably set to a range of less than 3.0 mass%. It is more preferable that the lower limit of the Cu content is 0.1 mass% at which the effect of improving the corrosion resistance is remarkably exhibited, and the upper limit is 0.6 mass% at which the sensitivity to hot cracking tends to increase.

【0030】Mo:3.0 mass%未満 Moも、Cuと同様に耐食性の改善に有効な元素である。し
かしながら、Mo含有量が3.0 mass%以上だと、オーステ
ナイト相の安定性が低下して、靱性や加工性が低下する
傾向があるので、Mo含有量は3.0 mass%未満の範囲にす
ることが好ましい。尚、耐食性と加工性のバランスとい
う観点からは、Mo含有量は 0.1〜0.5 mass%の範囲にす
ることがより好適である。
Mo: less than 3.0 mass% Mo is an element effective for improving the corrosion resistance like Cu. However, when the Mo content is 3.0 mass% or more, the stability of the austenite phase is reduced, and the toughness and workability tend to be reduced. Therefore, the Mo content is preferably set to a range of less than 3.0 mass%. . From the viewpoint of the balance between corrosion resistance and workability, it is more preferable that the Mo content be in the range of 0.1 to 0.5 mass%.

【0031】Ni:3.0 mass%未満 Niは、延性や靭性を向上させる元素であり、特に溶接熱
影響部の靭性を向上させる必要がある場合には添加する
ことが好ましい。ただし、Ni含有量が3.0 mass%以上に
なると、反対に素材を硬質化するとともにその効果が小
さくなる傾向があるため、Ni含有量は3.0 mass%未満の
範囲にすることが好ましい。また、耐錆性改善効果を顕
著に発揮させる必要がある場合には、Ni含有量は0.1 ma
ss%以上にすることが好ましい。
Ni: less than 3.0 mass% Ni is an element that improves ductility and toughness. It is particularly preferable to add Ni when it is necessary to improve the toughness of the heat affected zone. However, if the Ni content is 3.0 mass% or more, the material tends to be hardened and its effect tends to be reduced, so that the Ni content is preferably in the range of less than 3.0 mass%. If it is necessary to significantly improve the rust resistance improvement effect, the Ni content is 0.1 ma.
It is preferable that the content be ss% or more.

【0032】Co:0.01mass%以上、0.5 mass%未満、
V:0.01mass%以上、0.5 mass%未満、W:0.001 mass
%以上、0.05mass%未満 Co,及びWは、高価なCr,Ni,Mo等を多量に添加した
り、C,Nを極端に低減することなしに、鋼の耐初期発
錆性の改善に有効な元素であり、必要に応じて適宜添加
することができる。Co,及びWの含有量はそれぞれ、
上記改善効果が顕在化する0.01mass%, 0.01mass%,
0.001 mass %とすることが好ましい。また、V及びW
の含有量のそれぞれは、 0.5mass%以上及び 0.05mass
%以上になると、炭化物の析出によって素材の硬質化が
顕著になる傾向があるので、それぞれ 0.5mass%未満及
び0.05mass%未満に制限することが好ましく、Co含有量
は、0.5mass%以上だと、鋼の硬質化を招くおそれがあ
るため 0.5mass%未満に制限することが好ましい。尚、
より好適には、Co含有量が0.03〜0.2 mass%、含有量
が0.05〜0.2 mass%、そして、W含有量が0.005 〜0.02
mass%である。
Co: 0.01 mass% or more, less than 0.5 mass%
V: 0.01 mass% or more, less than 0.5 mass%, W: 0.001 mass
% Or more and less than 0.05 mass% Co and W are used to improve the initial rust resistance of steel without adding a large amount of expensive Cr, Ni, Mo, etc., or reducing C and N extremely. It is an effective element and can be added as needed. The contents of Co and W are respectively
0.01mass%, 0.01mass%, at which the above-mentioned improvement effect becomes apparent
It is preferably 0.001 mass%. V and W
The content of each is 0.5mass% or more and 0.05mass%
% Or more, the hardening of the material tends to be remarkable due to the precipitation of carbides, so it is preferable to limit the content to less than 0.5 mass% and less than 0.05 mass%, respectively, and the Co content is 0.5 mass% or more. However, it is preferable to limit the amount to less than 0.5 mass% because of the possibility of hardening the steel. still,
More preferably, the Co content is 0.03-0.2 mass%, the content is 0.05-0.2 mass%, and the W content is 0.005-0.02 mass%.
mass%.

【0033】B:0.0002〜0.002 mass% Bは、鋼の焼入れ性改善に有効な元素である。しかしな
がら、B含有量が0.0002mass%未満では十分な上記改善
効果が得られず、また、0.002 mass%を超える場合に
は、却って素材が硬くなり、靭性や加工性を損なう傾向
があるため、B含有量は0.0002〜0.002 mass%とするこ
とが好ましい。尚、B含有量は0.0005〜0.001mass %で
あることがより好適である。
B: 0.0002 to 0.002 mass% B is an element effective for improving the hardenability of steel. However, if the B content is less than 0.0002 mass%, the above-mentioned improvement effect cannot be sufficiently obtained, and if the B content exceeds 0.002 mass%, the material tends to be hardened and the toughness and workability tend to be impaired. The content is preferably 0.0002 to 0.002 mass%. It is more preferable that the B content is 0.0005 to 0.001 mass%.

【0034】Ti:0.7 mass%未満、Nb:0.7 mass%未
満、Ta:0.7 mass%未満、Zr:0.5 mass%未満 Ti、Nb、Ta及びZrはいずれも、炭窒化物形成元素であ
り、溶接時や熱処理時にCr炭窒化物の粒界析出を抑制し
て、耐食性の向上に有効に作用する。また、Tiは、焼入
れ性の改善にも有効な元素である。しかしながら、Ti,
Nb,Ta含有量は 0.7mass%以上、またZr含有量は 0.5ma
ss%以上になると、素材が硬質化する傾向があるため、
Ti、Nb及びTaの含有量はいずれも0.7 mass%未満、Zr含
有量は0.5mass%未満とすることが好ましい。尚、Ti、N
b、Ta及びZrの含有量の好適範囲は、いずれも0.01〜0.3
mass%である。
Ti: less than 0.7 mass%, Nb: less than 0.7 mass%, Ta: less than 0.7 mass%, Zr: less than 0.5 mass% Ti, Nb, Ta and Zr are all carbonitride forming elements and It suppresses grain boundary precipitation of Cr carbonitride during heat treatment and heat treatment, and effectively acts to improve corrosion resistance. Also, Ti is an element effective for improving hardenability. However, Ti,
Nb and Ta content is 0.7mass% or more, and Zr content is 0.5ma
If ss% or more, the material tends to harden,
Preferably, the contents of Ti, Nb and Ta are all less than 0.7 mass%, and the Zr content is less than 0.5 mass%. In addition, Ti, N
The preferred ranges of the contents of b, Ta and Zr are all 0.01 to 0.3.
mass%.

【0035】残部Feおよび不可避的不純物 上述した鋼組成成分以外の残部は、Feおよび不可避的不
純物である。不可避的不純物としては、例えばO含有量
が0.010 mass%以下の範囲であることが容認される。
The balance Fe and unavoidable impurities The balance other than the above-described steel composition components is Fe and unavoidable impurities. As the inevitable impurities, for example, it is accepted that the O content is in a range of 0.010 mass% or less.

【0036】また、この発明の構成上の主な特徴は、上
記鋼組成に限定した上で、鋼表面の算術平均粗さRaを0.
2 〜50μmとするとともに、鋼表層に0.01〜50MPa の残
留圧縮応力に相当する歪みを導入することにある。
The main feature of the constitution of the present invention is that the arithmetic mean roughness Ra of the steel surface is set to 0.
The purpose is to introduce a strain corresponding to a residual compressive stress of 0.01 to 50 MPa into the steel surface layer in addition to 2 to 50 μm.

【0037】鋼表面の算術平均粗さRa:0.2 〜50μm 鋼表面の算術平均粗さRaは、特に塗膜密着性に大きな影
響を及ぼすことから、0.2 〜50μmとする。すなわち、
鋼表面の算術平均粗さRaが0.2 μm未満だと、十分な塗
膜密着性が得られなくなるからであり、また、50μmを
超えると、表面の凹凸が激しくなって、却って密着性が
低下するとともに塗装面の色調や凹凸が目立つようにな
るからである。尚、ここでいう算術表面粗さRaとは、JI
S B0601に規定された算術平均粗さRaを意味する。
Arithmetic mean roughness Ra of the steel surface: 0.2 to 50 μm Since the arithmetic mean roughness Ra of the steel surface has a particularly large effect on coating film adhesion, it is set to 0.2 to 50 μm. That is,
If the arithmetic average roughness Ra of the steel surface is less than 0.2 μm, sufficient coating adhesion cannot be obtained, and if it exceeds 50 μm, the unevenness of the surface becomes severe and the adhesion deteriorates. At the same time, the color tone and unevenness of the painted surface become conspicuous. The arithmetic surface roughness Ra here is JI
It means the arithmetic average roughness Ra defined in SB0601.

【0038】鋼表層に0.01〜50MPa の残留圧縮応力が生
ずる歪みを導入すること 鋼表層に0.01〜50MPa の残留圧縮応力が生じる歪みを導
入することは、この発明の構成上で最も重要な特徴であ
る。
Introducing a strain that causes a residual compressive stress of 0.01 to 50 MPa to the steel surface layer Introducing a strain that causes a residual compressive stress of 0.01 to 50 MPa to the steel surface layer is the most important feature in the structure of the present invention. is there.

【0039】発明者らが疲労特性、特に疲労強度を向上
させるための検討を行ったところ、ブラシやショットブ
ラスト、ダルロール等を用い、板厚方向に0.01〜50MPa
の残留圧縮応力に相当する歪みを鋼表層に導入すること
によって、疲労強度が格段に向上することを見出した。
すなわち、疲労破壊は、引張り応力が加わった時に、応
力集中部分が起点となって生じるが、鋼表層に0.01〜50
MPa の残留圧縮応力に相当する歪みを導入することで、
応力集中が緩和され、疲労強度が増大することを見出
し、この発明を完成させることに成功したのである。
尚、前記残留圧縮応力を0.01〜50MPa に限定したのは、
前記残留圧縮応力が0.01MPa 未満だと、十分に応力集中
を緩和することができなくなり、疲労強度の増大効果が
顕著ではなくなるからであり、また、前記残留圧縮応力
が50MPa よりも大きくなると、著しく素材が硬化するか
らである。また、ここでいう「鋼表層」とは、X線回折
法により板面から測定したときの値を意味し、具体的に
は、鋼表面からを含む厚さ200μm程度の層であると考
えられる。尚、上記X線回折法は、理学電機(株)社製
のRINT1500のX線回折装置を用い、CoKα線を使用し、
θ−2θ法により、電圧46kV、電流150 mAの条件で
行った。
[0039] The inventors of the present invention have studied to improve the fatigue characteristics, particularly the fatigue strength, and found that the thickness of the plate is 0.01 to 50 MPa in the thickness direction by using a brush, shot blast, dull roll, or the like.
It has been found that by introducing a strain corresponding to the residual compressive stress of steel into the steel surface layer, the fatigue strength is remarkably improved.
That is, the fatigue fracture occurs when a tensile stress is applied, and the stress concentration portion starts as a starting point.
By introducing a strain equivalent to the residual compressive stress of MPa,
They found that stress concentration was reduced and fatigue strength increased, and they succeeded in completing the present invention.
The reason for limiting the residual compressive stress to 0.01 to 50 MPa is as follows.
If the residual compressive stress is less than 0.01 MPa, the stress concentration cannot be sufficiently reduced, and the effect of increasing the fatigue strength will not be remarkable, and if the residual compressive stress is greater than 50 MPa, it will be extremely large. This is because the material hardens. Further, the “steel surface layer” here means a value measured from the plate surface by the X-ray diffraction method, and specifically, it is considered to be a layer having a thickness of about 200 μm including from the steel surface. . Note that the X-ray diffraction method uses a RINT1500 X-ray diffractometer manufactured by Rigaku Denki Co., Ltd., and uses CoKα radiation,
The measurement was performed by the θ-2θ method under the conditions of a voltage of 46 kV and a current of 150 mA.

【0040】図1は、この発明に従う鋼組成を有するス
テンレス鋼板について疲労試験を行い、繰返し応力(MP
a )と疲労破壊までの繰返し数(回)の関係をプロット
した図、即ち、S−N線図を示したものの一例であり、
図1中の、「●」はショットブラスト処理を行うことに
よって0.80MPa の残留圧縮応力に相当する歪みを導入し
たステンレス鋼板の場合のデータであり、「○」はショ
ットブラスト処理を行わない)ステンレス鋼板(残留圧
縮応力:0.002MPa)の場合のデータである。
FIG. 1 shows a fatigue test performed on a stainless steel sheet having a steel composition according to the present invention, and a cyclic stress (MP
a) is a diagram plotting the relationship between the number of repetitions (times) until fatigue fracture, that is, an example showing an SN diagram,
In FIG. 1, "●" indicates data for a stainless steel sheet in which a strain equivalent to a residual compressive stress of 0.80 MPa was introduced by performing shot blasting, and "○" indicates that shot blasting was not performed. The data is for a steel plate (residual compressive stress: 0.002 MPa).

【0041】図1から明らかなように、残留圧縮応力を
導入したステンレス鋼板は、疲労特性が格段に向上して
いることが分かる。
As is clear from FIG. 1, the fatigue properties of the stainless steel sheet into which the residual compressive stress has been introduced are remarkably improved.

【0042】次にこの発明のステンレス鋼の好適な製造
方法の一例について説明する。まず、上記鋼成分組成に
調整した溶鋼を、転炉または電気炉等の通常公知の溶製
炉にて溶製したのち、真空脱ガス法(RH法)、VOD
法、AOD法等の公知の精錬方法で精錬し、ついで連続
鋳造法あるいは造塊法でスラブ等に鋳造して、鋼素材と
するのが好適である。
Next, an example of a preferred method for producing the stainless steel of the present invention will be described. First, molten steel adjusted to the above-mentioned steel component composition is smelted in a commonly known smelting furnace such as a converter or an electric furnace, and then subjected to a vacuum degassing method (RH method) and a VOD method.
It is preferable that the steel material is refined by a known refining method such as an AOD method, and then cast into a slab or the like by a continuous casting method or an ingot-making method.

【0043】次いで、鋼素材は加熱され、熱間圧延工程
により熱延鋼板とされる。熱間圧延工程における加熱温
度は特に限定されないが、加熱温度が高すぎると結晶粒
の粗大化を招き、靱性、加工性を劣化させるので、加熱
温度は1300℃以下とするのが好ましい。
Next, the steel material is heated and turned into a hot-rolled steel sheet by a hot rolling process. The heating temperature in the hot rolling step is not particularly limited, but if the heating temperature is too high, the crystal grains become coarse and the toughness and workability deteriorate, so the heating temperature is preferably 1300 ° C. or lower.

【0044】また、熱間圧延工程では所望の板厚の熱延
鋼板とすることができればよく、熱間圧延条件は特に限
定されないが、熱間圧延の仕上げ温度は 700℃以上とす
ることが、強度及び靱性を確保する点から好ましい。
In the hot rolling step, it is sufficient that a hot-rolled steel sheet having a desired thickness can be obtained, and the conditions for the hot rolling are not particularly limited. It is preferable from the viewpoint of securing strength and toughness.

【0045】しかしながら、加工性や延性、さらには良
好な表面性状が要求される場合には、熱間圧延における
仕上げ温度は 820℃以上、1000℃以下とするのが好まし
い。
However, when workability, ductility, and good surface properties are required, the finishing temperature in hot rolling is preferably 820 ° C. or more and 1000 ° C. or less.

【0046】また、巻き取り温度は、500 〜800 ℃の範
囲にするのが好ましい。
The winding temperature is preferably in the range of 500 to 800 ° C.

【0047】熱間圧延終了後に、軟質化のために熱延板
焼鈍を施すのが好ましい。この熱延板焼鈍は、焼鈍温
度:600 〜1100℃、保持時間:0.01〜20hとするのが、
軟質化のみならず、加工性の改善及び延性の確保の観点
から好ましい。
After the end of the hot rolling, it is preferable to perform hot-rolled sheet annealing for softening. This hot rolled sheet annealing is performed at an annealing temperature of 600 to 1100 ° C. and a holding time of 0.01 to 20 hours.
It is preferable from the viewpoint of not only softening but also improving workability and securing ductility.

【0048】尚、熱延板にマルテンサイト組織が生成す
る場合には、熱延板焼鈍後、 600〜730 ℃の温度範囲を
50℃/h以下の冷却速度で徐冷するのが、軟質化の面でよ
り好ましい。
In the case where a martensite structure is formed in the hot-rolled sheet, the temperature range of 600 to 730 ° C. after the hot-rolled sheet is annealed.
Slow cooling at a cooling rate of 50 ° C./h or less is more preferable from the viewpoint of softening.

【0049】その後、酸洗等によりスケールを除去し、
さらに必要に応じて、アルカリ洗浄脱脂、水洗及び乾燥
を行った後、ブラシ、ショットブラストまたはダルロー
ル等を用いて鋼表面の改質処理を行い、鋼表面の粗さと
鋼表層に導入する歪みを適正に制御した後、塗装を施す
ことが好ましい。塗装は、例えば 180〜300 ℃の温度範
囲で15秒〜3分の焼き付け塗装であり、焼き付け塗装と
しては、例えばウレタン変性エポキシ樹脂に酸化チタ
ン、防錆顔料等を含有した塗料にさらに平均粒径3μm
のリン化鉄粉末を不揮発分比で30%程度含有した塗料な
どを代表にあげることができる。
Thereafter, the scale is removed by pickling or the like,
Further, if necessary, after performing alkali washing, degreasing, washing and drying, the surface of the steel is modified using a brush, shot blast or dull roll, etc., and the roughness of the steel surface and the strain introduced into the steel surface layer are adjusted appropriately. It is preferable to apply the coating after controlling the temperature. The coating is, for example, a baking coating at a temperature range of 180 to 300 ° C. for 15 seconds to 3 minutes. The baking coating includes, for example, a coating containing urethane-modified epoxy resin containing titanium oxide, a rust preventive pigment, etc. 3 μm
Paints containing about 30% of iron phosphide powder in a non-volatile content ratio.

【0050】[0050]

【実施例】表1に示す組成の溶鋼を、転炉−2次精錬工
程で溶製し、連続鋳造法でスラブとした後、1150〜1250
℃に再加熱し、最終粗圧延の圧下率を30〜45%とする6
パスの粗圧延を施した後、最終仕上温度が840 〜990 ℃
となる7パスの仕上げ圧延により、4.2mm の熱延鋼板と
し、次いで、通常工程の熱延板焼鈍−酸洗処理を施した
後、鋼板表面に、ショットプラストまたはダルロールに
より表面改質処理を行い、表面粗さを種々に変化させる
とともに、残留圧縮応力を板厚方向に種々に変化させた
ステンレス鋼板を作製した。
EXAMPLE A molten steel having the composition shown in Table 1 was smelted in a converter-secondary refining process and formed into a slab by a continuous casting method.
Re-heated to 30 ° C to make the rolling reduction of the final rough rolling 30 to 45%.
After rough pass rolling, final finishing temperature is 840 ~ 990 ℃
After a 7-pass finish rolling, a 4.2 mm hot-rolled steel sheet is formed. Then, the hot-rolled sheet is annealed and pickled in a normal process, and then the surface of the steel sheet is subjected to a surface modification treatment using shot blast or dull roll. In addition, stainless steel sheets were manufactured in which the surface roughness was changed variously and the residual compressive stress was changed variously in the thickness direction.

【0051】[0051]

【表1】 [Table 1]

【0052】作製した各種ステンレス鋼板は、板面にお
ける残留圧縮応力を測定し、次いで、触針法(JIS B 06
01)によって表面粗さを測定するとともに、疲労試験を
行って疲労強度を測定した。
For each of the prepared stainless steel plates, the residual compressive stress on the plate surface was measured, and then the stylus method (JIS B 06
01), the surface roughness was measured, and a fatigue test was performed to measure the fatigue strength.

【0053】前記残留圧縮応力の測定は、X線回折要論
(著者B.D.CULLITY 、松村源太郎訳、アグネ(株)、昭
和46年、第9版、p435 −458 )に準拠した一般的なX
線回折法(条件:θ−2θ法、CoKα線使用、電圧46k
V、電流150 mA、理学電機(株)社製のRINT1500のX
線回折装置を使用)によって、板面から行った。ただ
し、この場合、サンプルの調整には十分注意が必要であ
る。すなわち、X線回折法を用いる場合、表面の凹凸が
X線の反射に大きな影響を及ぼすので、表面の凹凸を除
去しなくてはいけない。ここでは細心の注意を払い、鋼
板の表層をまずはメカニカルに細かなエメリー紙(♯80
0 〜1200)で丁寧に削り取り、その後、5%過塩素酸酢
酸(10℃)を用いて表層を電解研磨して、メカニカルな
研磨による歪みを除去してから測定に用いた。
The measurement of the residual compressive stress was carried out by a general X-ray diffraction method (author BDCULLITY, translated by Gentaro Matsumura, Agne Co., Ltd., 1976, ninth edition, p. 435-458).
Line diffraction method (conditions: θ-2θ method, using CoKα ray, voltage 46k
V, current 150mA, RINT1500 X manufactured by Rigaku Corporation
Using a line diffractometer) from the plate surface. However, in this case, sufficient care must be taken in adjusting the sample. That is, when the X-ray diffraction method is used, the unevenness on the surface has a great effect on the reflection of X-rays, so that the unevenness on the surface must be removed. Careful attention was paid here, and the surface layer of the steel sheet was first mechanically fine emery paper (♯80
0 to 1200), and the surface layer was electrolytically polished with 5% perchloric acetic acid (10 ° C.) to remove distortion due to mechanical polishing, and then used for measurement.

【0054】表面粗さの測定は、JIS B 0601に準拠した
触触法により行った。
The measurement of the surface roughness was carried out by a contact method according to JIS B 0601.

【0055】疲労強度の測定は、JIS Z 2273に準拠する
ことによって行った。尚、ここで測定した疲労強度は、
106 回に対する疲労強度を意味する。
The measurement of the fatigue strength was performed according to JIS Z 2273. The fatigue strength measured here is
It means the fatigue strength for 10 6 times.

【0056】また、上記各種ステンレス鋼板の塗膜密着
性を評価するため、アルカリ洗浄脱脂後、水洗するとと
もに乾燥させ、さらにCr付着量が30〜35mg/m2 となる
ようにクロメート処理を行った後、ウレタン変性エポキ
シ樹脂に酸化チタン、防錆顔料等を含有した塗料にさら
に平均粒径3μmのリン化鉄粉末を不揮発分比で30%程
度含有した塗料(商品名:ウエルカラーP)を用い、乾
燥目付け量が17.5mg/m2 となるように、280 ℃で60秒
の加熱塗装条件で加熱塗装を行うことによって、塗装鋼
板を製造した。その後、各塗装鋼板は、その表面にクロ
スカットを入れてから5mass%塩酸(28℃)に96時間浸
漬した後に水洗・乾燥した後、セロテープで剥離試験を
行った。そして、塗膜密着性の評価は、クロスカット部
で剥離した塗装の最大幅(mm)を測定し、この測定値に
よって行った。尚、この発明では、塗膜剥離幅が5mm以
上の場合に塗膜密着性を不合格とした。
In order to evaluate the coating adhesion of the various stainless steel plates, after washing with alkali and degreasing, they were washed with water and dried, and further subjected to a chromate treatment so that the Cr adhesion amount was 30 to 35 mg / m 2 . Thereafter, a paint (trade name: Wellcolor P) further containing about 30% of iron phosphide powder having an average particle diameter of 3 μm in a nonvolatile content ratio in addition to a paint containing urethane-modified epoxy resin containing titanium oxide, rust preventive pigment, and the like. A coated steel sheet was manufactured by performing heat coating under a heating coating condition of 280 ° C. for 60 seconds so that the dry basis weight was 17.5 mg / m 2 . Thereafter, each coated steel sheet was cross-cut on its surface, immersed in 5 mass% hydrochloric acid (28 ° C.) for 96 hours, washed with water and dried, and then subjected to a peeling test with cellophane tape. The coating film adhesion was evaluated by measuring the maximum width (mm) of the coating peeled off at the cross-cut portion and using the measured value. In the present invention, when the peeling width of the coating film was 5 mm or more, the coating film adhesion was rejected.

【0057】上記した方法で測定した、鋼板表層の残留
応力(MPa )、鋼板の表面粗さ(μm)、疲労強度(MP
a )及び塗膜密着性(剥離幅:mm)の結果を表2に示
す。尚、表 2中の残留応力の数値は、正の値が残留圧縮
応力、負の値が残留引張り応力であることを意味する。
The residual stress (MPa) of the surface layer of the steel sheet, the surface roughness (μm) of the steel sheet, and the fatigue strength (MPa) measured by the methods described above
Table 2 shows the results of a) and coating film adhesion (peel width: mm). The numerical values of the residual stress in Table 2 mean that a positive value is a residual compressive stress and a negative value is a residual tensile stress.

【0058】[0058]

【表2】 [Table 2]

【0059】表2に示す結果から、発明例はいずれも、
大きな疲労強度を有するとともに、塗膜密着性に優れて
いるのがわかる。また、同一の鋼No. 内で比べた場合に
は、残留圧縮応力が大きい鋼板の方が小さい鋼板よりも
疲労強度が大きいことがわかる。尚、同一の鋼No. 内で
疲労強度の低いものについては表2中にアンダーライン
を付して比較例とした。さらに、表面粗さが0.2 μm未
満である鋼板は、塗膜の剥離幅が大きく、塗膜密着性が
劣ることがわかる。
From the results shown in Table 2, the invention examples were all
It can be seen that it has great fatigue strength and excellent coating film adhesion. In addition, when compared within the same steel No., it can be seen that the steel sheet having a larger residual compressive stress has a higher fatigue strength than the steel sheet having a smaller residual compressive stress. Incidentally, the same steel No. having a low fatigue strength was underlined in Table 2 to make a comparative example. Further, it can be seen that a steel sheet having a surface roughness of less than 0.2 μm has a large peeling width of the coating film and poor coating film adhesion.

【0060】[0060]

【発明の効果】この発明によれば、鋼組成の適正化を図
った上で、鋼板表面の算術平均粗さRaと鋼板表層の残留
圧縮応力の適正化を図ることによって、疲労特性と塗膜
密着性に優れた土木・建築構造用ステンレス鋼の提供が
可能になった。
According to the present invention, after optimizing the steel composition, the arithmetic average roughness Ra of the steel sheet surface and the residual compressive stress of the steel sheet surface are optimized, whereby the fatigue characteristics and the coating film are improved. It has become possible to provide stainless steel for civil engineering and building structures with excellent adhesion.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 鋼板表層に残留圧縮応力を導入した場合と導
入しない場合のS−N線図である。
FIG. 1 is an SN diagram when a residual compressive stress is introduced into a surface layer of a steel sheet and when it is not introduced.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 佐藤 進 千葉県千葉市中央区川崎町1番地 川崎製 鉄株式会社技術研究所内 ────────────────────────────────────────────────── ─── Continued on the front page (72) Inventor Susumu Sato 1 Kawasaki-cho, Chuo-ku, Chiba-shi, Chiba

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】Cr:8mass%超え、15mass%未満 C: 0.0025 mass%超え、0.03mass%未満 N: 0.0025 mass%超え、0.03mass%未満 S: 0.03 mass%未満 Mn: 0.5 mass %超え、3.0mass%以下 Al: 0.5 mass %未満 P: 0.04 mass%未満 Si: 0.1mass%超え、2.0 mass%未満 を含有し、残部は実質的にFeおよび不可避的不純物の組
成になり、かつ、表面の算術平均粗さ(Ra)が0.2 〜50μ
mであり、しかも、表層に0.01〜50MPa の残留圧縮応力
が生じる歪みを導入したことを特徴とする疲労特性およ
び塗膜密着性に優れた土木・建築構造用ステンレス鋼。
1. Cr: more than 8 mass%, less than 15 mass% C: more than 0.0025 mass%, less than 0.03 mass% N: more than 0.0025 mass%, less than 0.03 mass% S: less than 0.03 mass% Mn: more than 0.5 mass%, 3.0 mass% or less Al: less than 0.5 mass% P: less than 0.04 mass% Si: contains more than 0.1 mass% and less than 2.0 mass%, with the balance being substantially the composition of Fe and unavoidable impurities, and arithmetic of the surface Average roughness (Ra) 0.2 to 50μ
m, and a stainless steel for civil engineering and building structures excellent in fatigue characteristics and coating film adhesion characterized by introducing a strain that causes a residual compressive stress of 0.01 to 50 MPa to the surface layer.
【請求項2】 請求項1において、さらに Cu:3.0 mass%未満、 Mo:3.0 mass%未満および Ni:3.0 mass%未満 のうちから選んだ1種または2種以上を含有する組成に
なることを特徴とする疲労特性および塗膜密着性に優れ
た土木・建築構造用ステンレス鋼。
2. The composition according to claim 1, further comprising one or more selected from Cu: less than 3.0 mass%, Mo: less than 3.0 mass%, and Ni: less than 3.0 mass%. Stainless steel for civil engineering and building structures with excellent fatigue characteristics and excellent coating film adhesion.
【請求項3】 請求項1または2において、さらに Co:0.01mass%以上、0.5 mass%未満、 V:0.01mass%以上、0.5 mass%未満および W:0.001 mass%以上、0.05mass%未満 のうちから選んだ1種または2種以上を含有する組成に
なることを特徴とする疲労特性および塗膜密着性に優れ
た土木・建築構造用ステンレス鋼。
3. The method according to claim 1, further comprising: Co: 0.01 mass% or more and less than 0.5 mass%, V: 0.01 mass% or more and less than 0.5 mass%, and W: 0.001 mass% or more and less than 0.05 mass%. A stainless steel for civil engineering and architectural use having excellent fatigue properties and coating film adhesion, characterized in that it has a composition containing one or more selected from the group consisting of:
【請求項4】 請求項1、2または3において、さらに
B:0.0002〜0.002 mass%を含有する組成になることを
特徴とする疲労特性および塗膜密着性に優れた土木・建
築構造用ステンレス鋼。
4. The stainless steel for civil engineering and building structure according to claim 1, wherein the composition further contains B: 0.0002 to 0.002 mass%, and has excellent fatigue characteristics and coating film adhesion. .
【請求項5】 請求項1〜4のいずれか1項において、
さらに Ti:0.7 mass%未満、 Nb:0.7 mass%未満、 Ta:0.7 mass%未満および Zr:0.5 mass%未満 のうちから選んだ1種または2種以上を含有する組成に
なることを特徴とする疲労特性および塗膜密着性に優れ
た土木・建築構造用ステンレス鋼。
5. The method according to claim 1, wherein:
Further, the composition is characterized by containing one or more selected from Ti: less than 0.7 mass%, Nb: less than 0.7 mass%, Ta: less than 0.7 mass%, and Zr: less than 0.5 mass%. Stainless steel for civil engineering and building structures with excellent fatigue properties and coating adhesion.
JP2000165566A 2000-06-02 2000-06-02 Stainless steel for civil engineering and building structures with excellent fatigue characteristics and paint film adhesion Expired - Fee Related JP4378853B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000165566A JP4378853B2 (en) 2000-06-02 2000-06-02 Stainless steel for civil engineering and building structures with excellent fatigue characteristics and paint film adhesion

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000165566A JP4378853B2 (en) 2000-06-02 2000-06-02 Stainless steel for civil engineering and building structures with excellent fatigue characteristics and paint film adhesion

Publications (2)

Publication Number Publication Date
JP2001342548A true JP2001342548A (en) 2001-12-14
JP4378853B2 JP4378853B2 (en) 2009-12-09

Family

ID=18669021

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000165566A Expired - Fee Related JP4378853B2 (en) 2000-06-02 2000-06-02 Stainless steel for civil engineering and building structures with excellent fatigue characteristics and paint film adhesion

Country Status (1)

Country Link
JP (1) JP4378853B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003183784A (en) * 2001-09-28 2003-07-03 Jfe Steel Kk Stainless steel having superior fatigue characteristics and toughness in fillet weld joint when the fillet welded joint is formed
JP2007291554A (en) * 2006-04-24 2007-11-08 Chuo Spring Co Ltd Colored wire rope and method for producing colored wire rope
JP2008291974A (en) * 2007-05-28 2008-12-04 Advics:Kk Manufacturing method of pressure container, manufacturing method of accumulator for automobile, and accumulator for automobile
JP2015214753A (en) * 2015-06-29 2015-12-03 新日鐵住金株式会社 Steel member and method of manufacturing steel member
WO2015192391A1 (en) * 2014-06-18 2015-12-23 江苏省沙钢钢铁研究院有限公司 Rebar and preparation method thereof

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003183784A (en) * 2001-09-28 2003-07-03 Jfe Steel Kk Stainless steel having superior fatigue characteristics and toughness in fillet weld joint when the fillet welded joint is formed
JP2007291554A (en) * 2006-04-24 2007-11-08 Chuo Spring Co Ltd Colored wire rope and method for producing colored wire rope
JP2008291974A (en) * 2007-05-28 2008-12-04 Advics:Kk Manufacturing method of pressure container, manufacturing method of accumulator for automobile, and accumulator for automobile
WO2015192391A1 (en) * 2014-06-18 2015-12-23 江苏省沙钢钢铁研究院有限公司 Rebar and preparation method thereof
EP3159424A4 (en) * 2014-06-18 2017-11-15 Institute Of Research Of Iron And Steel Jiangsu Province Rebar and preparation method thereof
JP2015214753A (en) * 2015-06-29 2015-12-03 新日鐵住金株式会社 Steel member and method of manufacturing steel member

Also Published As

Publication number Publication date
JP4378853B2 (en) 2009-12-09

Similar Documents

Publication Publication Date Title
JP5047649B2 (en) High-strength hot-rolled steel sheet and galvanized steel sheet excellent in stretch flangeability and their production method
JP5315956B2 (en) High-strength hot-dip galvanized steel sheet with excellent formability and method for producing the same
JP5194841B2 (en) High-strength hot-dip galvanized steel sheet with excellent formability and manufacturing method thereof
WO2010030021A1 (en) High-strength steel sheet and method for production thereof
JP2010065272A (en) High-strength steel sheet and method for manufacturing the same
JP5504737B2 (en) High-strength hot-dip galvanized steel strip excellent in formability with small variations in material within the steel strip and method for producing the same
JPWO2016021197A1 (en) High strength steel plate and method for producing the same, and method for producing high strength galvanized steel plate
JPWO2010137317A1 (en) High-strength steel sheet, hot-dip galvanized steel sheet, alloyed hot-dip galvanized steel sheet having excellent fatigue characteristics and elongation and impact characteristics, and methods for producing them
JP3680829B2 (en) Ferritic stainless steel sheet excellent in deep drawability, secondary work brittleness resistance and corrosion resistance, and method for producing the same
TW201319267A (en) Alloyed hot-dip galvanized steel sheet
JP7268182B2 (en) Ferritic stainless steel sheet, manufacturing method thereof, and ferritic stainless steel member
JP2013241636A (en) Low yield ratio type high strength hot dip galvanized steel sheet, low yield ratio type high strength alloying hot dip galvannealed steel sheet, method for manufacturing low yield ratio type high strength hot dip galvanized steel sheet, and method for manufacturing low yield ratio type high strength alloying hot dip galvannealed steel sheet
JP4887818B2 (en) Manufacturing method of continuous cast slab and manufacturing method of high-tensile hot-rolled steel sheet, high-tensile cold-rolled steel sheet, and high-tensile galvanized steel sheet
JP2006219738A (en) High tensile strength cold rolled steel sheet having excellent forming workability and weldability, and its production method
JP2001164334A (en) Steel for structure purpose excellent in corrosion resistance and corrosion fatigue resistance and producing method therefor
JP4378853B2 (en) Stainless steel for civil engineering and building structures with excellent fatigue characteristics and paint film adhesion
JP2011236496A (en) Steel excellent in coated film peeling resistance
WO2008123336A1 (en) Ultra-thin cold-rolled steel sheet for building material and process for production of the same
JP3267324B2 (en) Manufacturing method of high tensile galvanized steel sheet for fire resistance
WO2021153746A1 (en) Hot rolled steel sheet and production method thereof
JP3508698B2 (en) Stainless steel hot rolled steel strip for civil and building structures with excellent initial rust resistance
JP2003138349A (en) Ferritic stainless steel sheet having excellent deep drawability, and production method therefor
JP3491625B2 (en) Fe-Cr alloy with excellent initial rust resistance, workability and weldability
US6737018B2 (en) Corrosion-resistant chromium steel for architectural and civil engineering structural elements
JP3347152B2 (en) Method for producing cold-rolled high-strength hot-dip galvanized steel sheet with excellent resistance to pitting corrosion

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070330

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20070330

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090526

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090602

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090731

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090825

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090907

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121002

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4378853

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121002

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131002

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees