JP4887818B2 - Manufacturing method of continuous cast slab and manufacturing method of high-tensile hot-rolled steel sheet, high-tensile cold-rolled steel sheet, and high-tensile galvanized steel sheet - Google Patents

Manufacturing method of continuous cast slab and manufacturing method of high-tensile hot-rolled steel sheet, high-tensile cold-rolled steel sheet, and high-tensile galvanized steel sheet Download PDF

Info

Publication number
JP4887818B2
JP4887818B2 JP2006037702A JP2006037702A JP4887818B2 JP 4887818 B2 JP4887818 B2 JP 4887818B2 JP 2006037702 A JP2006037702 A JP 2006037702A JP 2006037702 A JP2006037702 A JP 2006037702A JP 4887818 B2 JP4887818 B2 JP 4887818B2
Authority
JP
Japan
Prior art keywords
steel sheet
hot
mass
slab
tensile
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006037702A
Other languages
Japanese (ja)
Other versions
JP2007216247A (en
Inventor
総人 北野
才二 松岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2006037702A priority Critical patent/JP4887818B2/en
Publication of JP2007216247A publication Critical patent/JP2007216247A/en
Application granted granted Critical
Publication of JP4887818B2 publication Critical patent/JP4887818B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Metal Rolling (AREA)
  • Continuous Casting (AREA)
  • Coating With Molten Metal (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Description

本発明は、自動車の構造部材や補強部材などの内板部品に使用される高張力鋼板の素材である連続鋳造スラブの製造方法、並びに、このスラブを用いた高張力鋼板の製造方法に関するものである。   The present invention relates to a method for producing a continuous cast slab that is a material of a high-strength steel plate used for inner plate parts such as structural members and reinforcing members of automobiles, and a method for producing a high-tensile steel plate using this slab. is there.

自動車の車体軽量化及び衝突安全性の観点から、自動車の各種構造部材や補強部材に高張力鋼板の適用拡大が進められている。この高張力鋼板の適用に際しては、プレス成形性、溶接性が困難となることから、このような実用課題を解決するための材料開発が進められている。また、鋼板の製造工程においても、製品材質の変動幅の低減、表面品質の向上などの課題を有しており、製造技術の改善が進められている。   From the viewpoint of weight reduction and collision safety of automobiles, the application of high-tensile steel plates to various structural members and reinforcing members of automobiles is being promoted. When this high-tensile steel sheet is applied, press formability and weldability become difficult, and therefore, development of materials for solving such practical problems has been advanced. Further, in the manufacturing process of steel sheets, there are problems such as reduction of fluctuation range of product material and improvement of surface quality, and improvement of manufacturing technology is being promoted.

中でも、表面品質に関しては特に改善が進められている。これは、高張力鋼は高強度化のための合金成分が多く添加されていることから、連続鋳造工程においてはスラブの表面割れが発生しやすく、表面割れの発生により、鋳造段階や熱間圧延段階において生成された酸化スケールが鋼板の表層付近に埋め込まれ易くなり、このようにして、スケールが埋め込まれた状態で熱延鋼板や冷延鋼板及び溶融亜鉛めっき鋼板が製造されると、表面外観が著しく劣化するからである。表面性状が低下する場合には、プレス製品への適用が困難となって歩留りが低下するばかりか、プレス成形時には金型損傷の原因となり得ることから、良好な表面品質が望まれている。   Above all, the surface quality is particularly improved. This is because high-strength steel contains many alloying components to increase the strength, so slab surface cracks are likely to occur in the continuous casting process. When the oxide scale generated in the stage is easily embedded in the vicinity of the surface layer of the steel sheet, and the hot-rolled steel sheet, cold-rolled steel sheet and hot-dip galvanized steel sheet are manufactured with the scale embedded in this way, the surface appearance This is because the quality deteriorates significantly. When the surface properties are lowered, application to a press product becomes difficult and the yield is lowered, and a mold can be damaged at the time of press molding. Therefore, good surface quality is desired.

そのために、スラブの鋳造段階における表面品質の改善に関して、これまでに種々の製造技術が開示されている。例えば、特許文献1には、B添加鋼において、鋼中のB量、N量、Ti量に応じて鋳造速度を所定の範囲に制御することにより、BNのオーステナイト粒界への析出を抑制し、オーステナイト粒界脆化に起因するスラブ表面割れを回避する鋳造技術が開示されている。特許文献1によれば、引張強度が297〜565MPaの鋼板(熱延鋼板、冷延鋼板、電気めっき鋼板、亜鉛めっき鋼板)を、スラブの割れに起因した表面欠陥を発生することなく、安定して製造可能としている。   For this purpose, various manufacturing techniques have been disclosed so far for improving the surface quality in the casting stage of the slab. For example, in Patent Document 1, in B-added steel, the precipitation of BN on austenite grain boundaries is suppressed by controlling the casting speed within a predetermined range in accordance with the B content, N content, and Ti content in the steel. A casting technique for avoiding slab surface cracking due to austenite grain boundary embrittlement is disclosed. According to Patent Document 1, a steel plate (hot rolled steel plate, cold rolled steel plate, electroplated steel plate, galvanized steel plate) having a tensile strength of 297 to 565 MPa can be stabilized without generating surface defects due to slab cracking. Can be manufactured.

特許文献2には、湾曲型または垂直曲げ型の連続鋳造機でAl及びNbを含有する鋼を連続鋳造するに当り、スラブを曲げ矯正する前にスラブの表面温度をオーステナイト+フェライト2相域まで低下させ、その後、再度オーステナイト域まで復熱させて矯正することにより、オーステナイト粒界脆化の原因となるAl、Nb炭窒化物の粒界析出を低減し、表面割れのないAl、Nb添加鋼を鋳造する技術が開示されている。   In Patent Document 2, in continuous casting of steel containing Al and Nb with a curved or vertical bending type continuous casting machine, the surface temperature of the slab is adjusted to the austenite + ferrite two-phase region before bending the slab. After that, by reheating again to the austenite region and correcting it, the grain boundary precipitation of Al and Nb carbonitrides causing the austenite grain boundary embrittlement is reduced, and there is no surface cracking Al and Nb added steel A technique for casting is disclosed.

特許文献3には、650〜950℃の温度において鋳片表層部に加工歪を付与することにより、AlN、NbCなどの炭窒化物の粗大化を図るとともに、オーステナイト→フェライト→オーステナイト変態によるオーステナイト粒の細粒化を図り、粒界脆性に起因する表面割れを抑止する鋳造技術が開示されている。
特開2002−20836号公報 特開平11−33688号公報 特開昭60−56453号公報
In Patent Document 3, the surface of the slab is imparted with processing strain at a temperature of 650 to 950 ° C., thereby coarsening carbonitrides such as AlN and NbC, and austenite grains by austenite → ferrite → austenite transformation. A casting technique for reducing the surface cracking caused by grain boundary brittleness is disclosed.
JP 2002-20836 A JP-A-11-33688 JP 60-56453 A

しかしながら、上記従来技術には以下の問題点がある。   However, the above prior art has the following problems.

即ち、特許文献1で開示された技術では、鋳造速度の調整によりスラブの冷却速度の制御を意図しているが、高温のスラブ表面を所定の温度まで冷却する際には、鋳造速度が増すほど冷却強度を高める必要があることから、冷却条件の適正化をしないまま鋳造速度の調整のみでBNが析出しない温度制御を安定して実施するのは極めて困難と考えられる。また、鋳造中に鋳造速度を増減させることは、鋳型内湯面変動の助長によるスラブ表面品質の低下や生産性の低下をもたらし、好ましい鋳造形態とはいえない。更に、本技術では590MPa以上の引張強度を有する製品は得られていない。   That is, the technique disclosed in Patent Document 1 intends to control the cooling rate of the slab by adjusting the casting speed. However, when the high-temperature slab surface is cooled to a predetermined temperature, the casting speed increases. Since it is necessary to increase the cooling strength, it is considered extremely difficult to stably carry out temperature control in which BN does not precipitate only by adjusting the casting speed without optimizing the cooling conditions. In addition, increasing or decreasing the casting speed during casting brings about a decrease in slab surface quality and productivity due to the promotion of the mold surface fluctuation in the mold, and is not a preferable casting form. Furthermore, a product having a tensile strength of 590 MPa or more has not been obtained with this technology.

特許文献2で開示された技術では、垂直曲げ型の連続鋳造機を用いた場合には鋳型出口から上部矯正帯までの距離が短く、この短い距離の中でスラブ表面をオーステナイト+フェライト2相域まで低下させるためのスラブ急冷設備が必要となる。また、矯正する前までに、2相域まで冷却した後にオーステナイト域まで復熱させる必要があり、復熱を短時間で行う必要があることから、内部の未凝固相による復熱だけではオーステナイト域まで安定して復熱させることは難しく、加熱設備の導入も必要となる。更に、本技術は、冷延鋼板や亜鉛めっき鋼板などの最終製品の高強度化を意図していないため、本技術によって590MPa以上の強度を有する鋼板を得ることは難しい。   In the technique disclosed in Patent Document 2, when a vertical bending type continuous casting machine is used, the distance from the mold outlet to the upper straightening zone is short, and within this short distance, the slab surface is austenite + ferrite two-phase region. A slab quenching facility is required to reduce the temperature. In addition, it is necessary to reheat to the austenite region after cooling to the two-phase region before correction, and it is necessary to perform recuperation in a short time. It is difficult to recover the heat stably and it is necessary to introduce heating equipment. Furthermore, since this technique is not intended to increase the strength of final products such as cold-rolled steel sheets and galvanized steel sheets, it is difficult to obtain a steel sheet having a strength of 590 MPa or more by this technique.

特許文献3で開示された技術では、ショットブラストやエアーハンマーなどの衝撃力をスラブに付与する設備の導入が必要であり、設備コストが高価になるばかりか、鋳型出口から数mの距離の中で650〜950℃まで冷却し且つ表面加工するためには、実施例に示されるように、鋳造速度を0.8m/minまで低速化する必要があり、生産効率が極めて低い。また、本技術では、スラブ表面に衝撃力が付与されるので、スラブ表面に軽微な疵を発生させる可能性がある。このような微小な疵は、スラブの矯正時には顕著な割れとならなくても、熱間圧延時のスラブ加熱段階において、酸素供給が低くなるために地鉄中の選択酸化元素(Si,Mn,Alなど)による粒状酸化物の生成によって熱間延性の低下を伴い、熱間割れを助長させ、この熱間割れによるスケール欠陥を起こす恐れがある。このため、最終製品となる熱延鋼板や冷延鋼板及び亜鉛めっき鋼板では良好な表面品質を得ることは難しいと考えられる。   In the technique disclosed in Patent Document 3, it is necessary to introduce equipment that applies impact force such as shot blasting and air hammer to the slab, which not only increases the equipment cost but also within a few meters from the mold outlet. In order to cool to 650 to 950 ° C. and perform surface processing, it is necessary to reduce the casting speed to 0.8 m / min as shown in the examples, and the production efficiency is extremely low. Moreover, in this technique, since an impact force is applied to the slab surface, there is a possibility that slight wrinkles are generated on the slab surface. Even if such fine wrinkles are not markedly cracked during slab correction, the oxygen supply is reduced during the slab heating stage during hot rolling, so that the selective oxidation elements (Si, Mn, The production of granular oxides by Al or the like) causes a reduction in hot ductility, promotes hot cracking, and may cause scale defects due to the hot cracking. For this reason, it is thought that it is difficult to obtain a good surface quality with a hot rolled steel sheet, a cold rolled steel sheet, and a galvanized steel sheet as the final product.

以上説明したように、上記の従来技術では、連続鋳造機への新たな付帯設備の導入によりコストアップを招いたり、スラブの鋳造速度を高めることができずに生産性を低下させたりするなどの問題点があるのが実情であった。また、得られる製品の引張強度は何れも590MPa未満であり、590MPa以上の鋼板を製造する方法ではなかった。   As described above, in the above-described conventional technology, the introduction of new incidental equipment to the continuous casting machine leads to an increase in cost, or the productivity of the slab cannot be increased and the productivity is reduced. The fact was that there was a problem. Moreover, the tensile strength of the product obtained was less than 590 MPa, and it was not a method for producing a steel plate of 590 MPa or more.

本発明は上記事情に鑑みてなされたもので、その目的とするところは、連続鋳造機に新たな付帯設備を設置しなくても、高い生産性で、且つ表面割れを発生することなく、590MPa以上の引張強度を有する高張力鋼板(熱延鋼板、冷延鋼板、亜鉛めっき鋼板)の素材である連続鋳造スラブを製造する方法を提供すると同時に、この連続鋳造スラブを用いて表面性状に優れる高張力熱延鋼板、高張力冷延鋼板及び高張力亜鉛めっき鋼板を製造する方法を提供することである。   The present invention has been made in view of the above circumstances, and the object of the present invention is to achieve 590 MPa with high productivity and without occurrence of surface cracks without installing a new incidental equipment in a continuous casting machine. A method for producing a continuous cast slab that is a material of a high-tensile steel sheet (hot rolled steel sheet, cold rolled steel sheet, galvanized steel sheet) having the above-described tensile strength, and at the same time, using this continuous cast slab, has excellent surface properties. It is to provide a method for producing a tensile hot-rolled steel sheet, a high-tensile cold-rolled steel sheet, and a high-tensile galvanized steel sheet.

上記課題を解決するための第1の発明に係る連続鋳造スラブの製造方法は、質量%で、C:0.03〜0.10%、Si:1.0%以下、Mn:0.5〜3.0%、P:0.1%以下、S:0.02%以下、Al:0.2%以下、N:0.006%以下を含有し、Al含有量及びN含有量で規定される(14/27)×(%Al/%N)が50以下であり、残部がFe及び不可避的不純物よりなる溶鋼を、前記Al含有量及びN含有量で規定される下記の(1)式を満足する鋳造速度で鋳造するとともに、該鋳造速度で規定される下記の(2)式を満足する比水量で二次冷却帯をスプレー冷却することを特徴とするものである。但し、(1)式及び(2)式において、Vcは鋳造速度(m/min)、Qは二次冷却帯における比水量(リットル/kg)、%Alは溶鋼のAl含有量、%Nは溶鋼のN含有量である。   The manufacturing method of the continuous casting slab based on 1st invention for solving the said subject is the mass%, C: 0.03-0.10%, Si: 1.0% or less, Mn: 0.5- 3.0%, P: 0.1% or less, S: 0.02% or less, Al: 0.2% or less, N: 0.006% or less, specified by Al content and N content (14/27) × (% Al /% N) is 50 or less, and the remaining steel is composed of Fe and inevitable impurities. The following formula (1) defined by the Al content and the N content: The secondary cooling zone is spray-cooled with a specific water amount satisfying the following formula (2) defined by the casting speed. However, in the formulas (1) and (2), Vc is the casting speed (m / min), Q is the specific water amount in the secondary cooling zone (liter / kg),% Al is the Al content of the molten steel, and% N is It is N content of molten steel.

Figure 0004887818
Figure 0004887818

第2の発明に係る連続鋳造スラブの製造方法は、第1の発明において、前記溶鋼は、更に、質量%で、Cr:0.02〜1.5%、V:0.003〜0.1%、Mo:0.05〜0.5%、Nb:0.01〜0.08%、Ti:0.01〜0.08%、B:0.0002〜0.003%の群から選ばれる1種または2種以上を含有することを特徴とするものである。   The manufacturing method of the continuous casting slab which concerns on 2nd invention is 1st invention. WHEREIN: The said molten steel is further mass%, Cr: 0.02-1.5%, V: 0.003-0.1 %, Mo: 0.05-0.5%, Nb: 0.01-0.08%, Ti: 0.01-0.08%, B: 0.0002-0.003% It is characterized by containing 1 type (s) or 2 or more types.

第3の発明に係る高張力熱延鋼板の製造方法は、第1または第2の発明に記載の連続鋳造スラブの製造方法で製造された連続鋳造スラブを熱間圧延し、700℃以下の温度で巻取る熱間圧延工程を有することを特徴とするものである。   The method for producing a high-tensile hot-rolled steel sheet according to the third invention is a method of hot rolling a continuous cast slab produced by the method for producing a continuous cast slab according to the first or second invention, and a temperature of 700 ° C. or lower. It has the hot rolling process wound up by.

第4の発明に係る高張力亜鉛めっき鋼板の製造方法は、第1または第2の発明に記載の連続鋳造スラブの製造方法で製造された連続鋳造スラブを熱間圧延し、700℃以下の温度で巻取る熱間圧延工程と、前記熱間圧延工程により得られた熱間圧延鋼板を酸洗する酸洗工程と、該酸洗工程により得られた酸洗鋼板の表面に亜鉛系めっき皮膜をするめっき工程を有することを特徴とするものである。   The method for producing a high-tensile galvanized steel sheet according to the fourth invention comprises hot rolling the continuous cast slab produced by the method for producing a continuous cast slab according to the first or second invention, and a temperature of 700 ° C. or lower. A hot-rolling step of winding the steel plate, a pickling step of pickling the hot-rolled steel plate obtained by the hot rolling step, and a zinc-based plating film on the surface of the pickled steel plate obtained by the pickling step It has the plating process to perform.

第5の発明に係る高張力冷延鋼板の製造方法は、第1または第2の発明に記載の連続鋳造スラブの製造方法で製造された連続鋳造スラブを熱間圧延する熱間圧延工程と、該熱間圧延工程により得られた熱間圧延鋼板を酸洗する酸洗工程と、該酸洗工程により得られた酸洗鋼板を冷間圧延する冷間圧延工程と、該冷間圧延工程により得られた冷間圧延鋼板を再結晶温度以上の温度で連続焼鈍する連続焼鈍工程と、を有することを特徴とするものである。   The manufacturing method of the high-tensile cold-rolled steel sheet according to the fifth invention includes a hot rolling step of hot rolling the continuous cast slab manufactured by the continuous cast slab manufacturing method according to the first or second invention, According to the pickling process for pickling the hot rolled steel sheet obtained by the hot rolling process, the cold rolling process for cold rolling the pickled steel sheet obtained by the pickling process, and the cold rolling process. A continuous annealing step in which the obtained cold-rolled steel sheet is continuously annealed at a temperature equal to or higher than the recrystallization temperature.

第6の発明に係る高張力亜鉛めっき鋼板の製造方法は、第1または第2の発明に記載の連続鋳造スラブの製造方法で製造された連続鋳造スラブを熱間圧延する熱間圧延工程と、該熱間圧延工程により得られた熱間圧延鋼板を酸洗する酸洗工程と、該酸洗工程により得られた酸洗鋼板を冷間圧延する冷間圧延工程と、該冷間圧延工程により得られた冷間圧延鋼板を再結晶温度以上の温度で連続焼鈍する連続焼鈍工程と、該連続焼鈍工程により得られた鋼板の表面に亜鉛系めっき皮膜をするめっき工程と、を有することを特徴とするものである。   The manufacturing method of the high-tensile galvanized steel sheet according to the sixth invention includes a hot rolling step of hot rolling the continuous cast slab manufactured by the continuous cast slab manufacturing method according to the first or second invention, According to the pickling process for pickling the hot rolled steel sheet obtained by the hot rolling process, the cold rolling process for cold rolling the pickled steel sheet obtained by the pickling process, and the cold rolling process. A continuous annealing step in which the obtained cold-rolled steel plate is continuously annealed at a temperature equal to or higher than a recrystallization temperature, and a plating step in which a zinc-based plating film is formed on the surface of the steel plate obtained by the continuous annealing step. It is what.

本発明によれば、鋼の化学成分、並びに、連続鋳造工程における鋳造速度及び冷却条件を適正制御することにより、高張力鋼板の素材である連続鋳造スラブを高い生産性で且つ表面割れを発生することなく、安定して製造することが可能となる。その結果、自動車内板部品などの材料に求められる表面品質に優れた高張力鋼板を安定して製造することが可能となり、本発明の自動車、鉄鋼産業界における利用価値は極めて大きい。   According to the present invention, by appropriately controlling the chemical composition of steel, and the casting speed and cooling conditions in the continuous casting process, the continuous cast slab, which is a material of the high-tensile steel plate, is produced with high productivity and surface cracks. It is possible to manufacture stably without this. As a result, it is possible to stably produce a high-tensile steel plate excellent in surface quality required for materials such as automobile interior plate parts, and the utility value of the present invention in the automobile and steel industry is extremely large.

本発明者等は、低炭素鋼におけるスケール性表面欠陥の発生要因について鋭意検討を重ねた。その結果、スラブの鋳造時に鋼中のAlとNとの結合により生成されるAlNのオーステナイト粒界への微細析出による粒界脆化に起因して、スラブの表面割れ感受性が高くなるために、熱間圧延時にスケールが鋼板表層部に喰い込み易くなり、スケール性表面欠陥が発生し易くなることが分かった。   The inventors of the present invention have made extensive studies on the cause of scale surface defects in low-carbon steel. As a result, due to grain boundary embrittlement due to fine precipitation on the austenite grain boundaries of AlN produced by the combination of Al and N in the steel during casting of the slab, the surface cracking sensitivity of the slab is increased. It was found that the scale easily bites into the surface layer portion of the steel sheet during hot rolling, and scale surface defects are likely to occur.

また、このような表面欠陥の低減には、連続鋳造時のスラブ表層部におけるAlNの微細析出を制御することが重要と考えられることから、スラブ表面品質に及ぼすAl含有量、N含有量及び鋳造条件の影響を調査した。その結果、スラブの表面品質は、Al含有量とN含有量との比(質量%Al/質量%N)に大きく左右されるとともに、この比(質量%Al/質量%N)に応じて適正な鋳造速度範囲が存在し、適正な鋳造速度範囲を外れると表面品質が悪化すること、更に、適正な鋳造速度に応じて二次冷却水量を適正値に制御する必要のあることが分かった。   In addition, since it is considered important to control the fine precipitation of AlN in the slab surface layer during continuous casting for reducing such surface defects, the Al content, the N content and the casting effect on the slab surface quality. The effect of conditions was investigated. As a result, the surface quality of the slab largely depends on the ratio of Al content and N content (mass% Al / mass% N) and is appropriate according to this ratio (mass% Al / mass% N). Thus, it has been found that the surface quality deteriorates when the casting speed range is outside the proper casting speed range, and that the secondary cooling water amount needs to be controlled to an appropriate value according to the proper casting speed.

以下にその内容を説明する。先ず、鋼中のAl含有量とN含有量との比(質量%Al/質量%N)及び鋳造速度が表面性状に及ぼす影響について説明する。   The contents will be described below. First, the influence of the ratio of Al content to N content in steel (mass% Al / mass% N) and the casting speed on the surface properties will be described.

C:0.075〜0.090質量%、Si:0.2〜0.3質量%、Mn:1.7〜2.1質量%、P:0.02〜0.03質量%、S:0.002〜0.005質量%、Cr:0.01〜0.3質量%、V:0.002〜0.06質量%、Al:0.02〜0.15質量%、N:0.0008〜0.0055質量%を含有し、残部がFe及び不可避不純物よりなる成分の溶鋼を溶製し、この溶鋼を、垂直曲げ型のスラブ連続鋳造機で、鋳造速度を1.0〜4.5m/minの範囲とし、二次冷却帯における冷却水量の比水量を2.0リットル/kgの一定条件として連続鋳造した。ここで、比水量とは、鋳型直下から連続鋳造機の機端に至るまでの二次冷却帯で、二次冷却帯を通過したスラブの1kg当たりを冷却するのに使用された冷却水量(リットル(以下、「L」と表示する))である。前述した比水量が2.0L/kgの一定条件とは、鋳造速度に比例して二次冷却帯の冷却水量を増減させ、比水量を一定値に保持するという意味である。   C: 0.075-0.090 mass%, Si: 0.2-0.3 mass%, Mn: 1.7-2.1 mass%, P: 0.02-0.03 mass%, S: 0.002 to 0.005 mass%, Cr: 0.01 to 0.3 mass%, V: 0.002 to 0.06 mass%, Al: 0.02 to 0.15 mass%, N: 0.00. A molten steel containing 0008 to 0.0055% by mass and the balance of Fe and inevitable impurities is melted, and this molten steel is cast in a vertical bending slab continuous casting machine at a casting speed of 1.0 to 4. Continuous casting was carried out under the condition of 5 m / min and the specific amount of cooling water in the secondary cooling zone at a constant condition of 2.0 liters / kg. Here, the specific water amount is the secondary cooling zone from directly under the mold to the end of the continuous casting machine, and the amount of cooling water used for cooling per kg of the slab that has passed through the secondary cooling zone (liters). (Hereinafter referred to as “L”)). The above-mentioned constant condition that the specific water amount is 2.0 L / kg means that the amount of cooling water in the secondary cooling zone is increased or decreased in proportion to the casting speed, and the specific water amount is maintained at a constant value.

鋳造したスラブは常温まで冷却した後、スラブ表面を浸透探傷法により検査し、割れの発生状況(個数及び長さ)に応じて、「良好」、「許容」、「劣化」、「不良」の4水準にスラブ表面を評価した。スラブ表面に割れが存在する場合には、熱間圧延時に鋼板表層部へのスケールの噛み込みが助長され、鋼板における表面欠陥が懸念されることから、このように判定した。尚、「良好」とは割れが検出されないもの、「許容」とは割れが検出されるものの極めて少ないもの、「劣化」とは軽微な割れが検出されたもの、「不良」とは多数の割れが検出されたものである。   After the cast slab is cooled to room temperature, the surface of the slab is inspected by the penetrant flaw detection method. The slab surface was evaluated at 4 levels. When cracks exist on the surface of the slab, it was determined in this way because the scale biting into the surface layer of the steel sheet was promoted during hot rolling, and there was concern about surface defects in the steel sheet. “Good” means that no cracks are detected, “Permitted” means that very few cracks are detected, “Deterioration” means that minor cracks are detected, and “Bad” means many cracks. Is detected.

表面検査の終了したスラブを、表面疵を残したまま加熱して熱間圧延(加熱温度:1250℃、仕上温度:860℃、巻取温度:550℃)し、熱間圧延により得られた熱間圧延鋼板を酸洗し、酸洗した鋼板を冷間圧延し、冷間圧延により得られた冷間圧延鋼板を連続焼鈍(焼鈍温度:830℃)した後、連続溶融亜鉛めっき(亜鉛めっき:460℃、めっき合金化処理:500℃)を実施して得られた板厚1.4mmの亜鉛めっき鋼板について、単位表面積当りの表面欠陥の個数及び引張特性を調査した。   The slab whose surface inspection was completed was heated and hot-rolled (heating temperature: 1250 ° C., finishing temperature: 860 ° C., winding temperature: 550 ° C.) while leaving the surface defects, and the heat obtained by hot rolling. After pickling the cold-rolled steel sheet, cold-rolling the pickled steel sheet, and continuously annealing the cold-rolled steel sheet obtained by cold rolling (annealing temperature: 830 ° C.), continuous hot-dip galvanizing (zinc plating: The number of surface defects per unit surface area and the tensile properties of the galvanized steel sheet having a thickness of 1.4 mm obtained by carrying out 460 ° C. and plating alloying treatment: 500 ° C. were investigated.

亜鉛めっき鋼板の表面欠陥は、亜鉛めっき鋼板の表裏面に認められた長さ2mm以上の表面欠陥の個数を測定して板面の単位面積当りの個数(個/m2 )(以下、「表面欠陥個数」と呼ぶ)を算出し、この表面欠陥個数で評価した。表面欠陥個数が0.3個/m2より多い場合には、プレス成形時の金型への損傷が懸念され、また自動車内板部品への適用は困難であることから、0.3個/m2 以下を目標とした。また、亜鉛めっき鋼板の引張特性は、JIS 5号引張試験片を用いて、引張速度10mm/minにて引張試験を実施し、引張特性を測定した。何れの鋼板も600〜615MPaの引張強度、30.5〜31.7%の伸びを有していることが確認できた。 The surface defects of the galvanized steel sheet are determined by measuring the number of surface defects with a length of 2 mm or more found on the front and back surfaces of the galvanized steel sheet (number / m 2 ) per unit area of the plate surface (hereinafter referred to as “surface The number of defects ”is calculated, and the number of surface defects is evaluated. When the number of surface defects is more than 0.3 / m 2 , there is a concern about damage to the mold during press molding, and it is difficult to apply to automobile inner plate parts. The target was m 2 or less. Moreover, the tensile characteristic of the galvanized steel sheet was measured by conducting a tensile test using a JIS No. 5 tensile test piece at a tensile speed of 10 mm / min. It was confirmed that all the steel plates had a tensile strength of 600 to 615 MPa and an elongation of 30.5 to 31.7%.

図1に、調査したスラブの表面性状と、スラブ中Al含有量及びN含有量と、連続鋳造工程における鋳造速度との3者の関係を示す。図1では、スラブ中に含まれるAlとNとの原子当量比である「(14/27)×(質量%Al/質量%N)」の値を用いてAl及びNの表面性状に及ぼす影響を捉えている。   FIG. 1 shows a three-way relationship between the surface properties of the investigated slab, the Al content and N content in the slab, and the casting speed in the continuous casting process. In FIG. 1, the influence on the surface properties of Al and N using the value of “(14/27) × (mass% Al / mass% N)”, which is the atomic equivalent ratio of Al and N contained in the slab. Is captured.

図1では、4水準に評価したスラブ表面判定のうちで、「良好」を○印で表し、「許容」を△印で表し、「劣化」を●で表し、「不良」を×で表している。尚、本発明者等は、スラブ表面判定が「良好」と判定されたスラブから得られた亜鉛めっき鋼板の表面欠陥個数は0.15個/m2 以下であり、スラブ表面判定が「許容」と判定されたスラブから得られた亜鉛めっき鋼板の表面欠陥個数は0.15個/m2を超えて0.3個/m2 以下であり、スラブ表面判定が「劣化」と判定されたスラブから得られた亜鉛めっき鋼板の表面欠陥個数は0.3個/m2を超えて0.5個/m2 以下であり、また、スラブ表面判定が「不良」と判定されたスラブから得られた亜鉛めっき鋼板の表面欠陥個数は0.5個/m2を超えることを確認している。つまり、スラブの表面判定結果と鋼板の表面欠陥個数とは強い相関があることを確認している。 In FIG. 1, among the slab surface evaluations evaluated to four levels, “good” is represented by a circle, “acceptable” is represented by a Δ, “deterioration” is represented by ●, and “bad” is represented by an x. Yes. The inventors of the present invention found that the number of surface defects of a galvanized steel sheet obtained from a slab whose slab surface determination was determined to be “good” was 0.15 / m 2 or less, and the slab surface determination was “acceptable”. The number of surface defects of the galvanized steel sheet obtained from the slab determined to be more than 0.15 / m 2 and not more than 0.3 / m 2 and the slab surface determination was determined as “deteriorated” The number of surface defects of the galvanized steel sheet obtained from the above is more than 0.3 / m 2 and less than 0.5 / m 2 , and the slab surface judgment is obtained from the slab judged as “bad”. It has been confirmed that the number of surface defects in the galvanized steel sheet exceeds 0.5 / m 2 . That is, it has been confirmed that there is a strong correlation between the surface determination result of the slab and the number of surface defects of the steel plate.

図1に示すように、良好なスラブ表面性状を有し、亜鉛めっき鋼板において低い表面欠陥率を得るには、「(14/27)×(質量%Al/質量%N)」値、及び、鋳造速度の適正範囲が存在することが分かった。   As shown in FIG. 1, in order to obtain a low surface defect rate in a galvanized steel sheet having good slab surface properties, a “(14/27) × (mass% Al / mass% N)” value, and It has been found that there is an appropriate range of casting speeds.

つまり、「(14/27)×(質量%Al/質量%N)」値が50を超える範囲では、鋳造速度の如何に拘わらず、スラブ表面性状は「劣化」判定または「不良」判定のみで、亜鉛めっき鋼板の表面欠陥個数は何れも0.3個/m2 を超えており、また、鋳造速度が増加するほど表面性状は悪化した。これは、「(14/27)×(質量%Al/質量%N)」値が大きいことにより、鋳造時にオーステナイト粒界へ微細析出するAlN量が増加し、AlNの析出量の増加に伴う粒界脆化により、スラブ表面の割れ感受性が高くなり、熱間圧延時にスケールが表層部に噛み込んだためと考えられる。また、鋳造速度の増加に伴って表面性状が悪化した理由は、鋳造速度の増加によってスラブの冷却速度が不均一化し、不均一冷却に伴うスラブ表面の熱歪や表層付近に析出するAlNの析出量が不均一となることから、表面割れ感受性が助長されたと考えられる。 That is, in the range where the “(14/27) × (mass% Al / mass% N)” value exceeds 50, the slab surface properties can be determined only as “deterioration” or “defect” regardless of the casting speed. The number of surface defects in the galvanized steel sheet exceeded 0.3 / m 2 , and the surface properties deteriorated as the casting speed increased. This is because the “(14/27) × (mass% Al / mass% N)” value is large, so that the amount of AlN finely precipitated at the austenite grain boundary during casting increases, and the grains accompanying the increase in the amount of precipitated AlN. This is thought to be because the slab surface is more susceptible to cracking due to interfacial embrittlement and the scale bites into the surface layer during hot rolling. The reason why the surface properties deteriorated as the casting speed increased was that the slab cooling rate became non-uniform due to the increase in casting speed, and the thermal strain on the slab surface due to non-uniform cooling and precipitation of AlN deposited near the surface layer. It is considered that the surface cracking sensitivity was promoted because the amount became non-uniform.

「(14/27)×(質量%Al/質量%N)」値が50以下で、且つ鋳造速度が1.5m/min未満の範囲も、スラブ表面性状は「劣化」判定のみであった。これは、鋳造速度が低い場合、鋳片表層部は低い歪速度で変形を受けるため、AlNが歪誘起析出し、スラブ表面の割れ感受性が上昇したことによると推定される。   Even in the range where the “(14/27) × (mass% Al / mass% N)” value was 50 or less and the casting speed was less than 1.5 m / min, the slab surface properties were only “deteriorated”. This is presumably because when the casting speed is low, the slab surface layer is deformed at a low strain rate, so that AlN is strain-induced and the crack sensitivity on the slab surface is increased.

また、「(14/27)×(質量%Al/質量%N)」値が50以下で、且つ鋳造速度が「4.0−0.68× log[(14/27)×(質量%Al/質量%N)]」m/minを超える範囲でも、スラブ表面性状は「劣化」判定または「不良」判定であり、亜鉛めっき鋼板の表面欠陥個数は何れも0.3個/m2より多く、表面品質は低下した。これは、鋳造速度の増加に伴うスラブ冷却速度の不均一化により、不均一冷却時のスラブ表面の熱歪や表層部に析出するAlNの析出量が不均一となり、スラブの表面割れ感受性が上昇したためと考えられる。尚、上記の鋳造速度の境界線:「4.0−0.68× log[(14/27)×(質量%Al/質量%N)]」は、図1における△印と●印との境界を近似した近似直線である。 Further, the “(14/27) × (mass% Al / mass% N)” value is 50 or less, and the casting speed is “4.0-0.68 × log [(14/27) × (mass% Al). / Mass% N)] ”Even in a range exceeding m / min, the slab surface property is“ deterioration ”or“ defect ”determination, and the number of surface defects in the galvanized steel sheet is more than 0.3 / m 2. The surface quality was degraded. This is because the slab cooling rate becomes non-uniform as the casting speed increases, and the thermal strain on the surface of the slab during non-uniform cooling and the amount of AlN deposited on the surface layer become non-uniform, increasing the surface cracking susceptibility of the slab. It is thought that it was because. In addition, the boundary line of the above casting speed: “4.0-0.68 × log [(14/27) × (mass% Al / mass% N)]” is the difference between Δ mark and ● mark in FIG. It is an approximate line that approximates the boundary.

これに対して、「(14/27)×(質量%Al/質量%N)」値が50以下で、且つ鋳造速度が1.5m/min以上、「4.0−0.68× log[(14/27)×(質量%Al/質量%N)]」m/min以下の範囲では、スラブ表面判定は「良好」及び「許容」のみであり、スラブ表面性状は向上し、亜鉛めっき鋼板の表面欠陥個数は0.3個/m2以下となり、表面品質に優れることが分かった。また、鋳造速度が2.0m/min以上、「3.5−0.68× log[(14/27)×(質量%Al/質量%N)]」m/min以下の場合には、スラブ表面判定は全て「良好」となり、亜鉛めっき鋼板の表面欠陥個数は0.15個/m2以下にまで低減され、より良好な表面品質が得られることが分かった。これは、この範囲では微細AlNのオーステナイト粒界への析出が少なく、これによる粒界脆化の低減とスラブ表面の熱歪の低減とにより、スラブ表面割れ感受性が低下したことに起因すると考えられる。尚、上記の鋳造速度の境界線:「3.5−0.68× log[(14/27)×(質量%Al/質量%N)]」は、図1における○印と△印との境界を近似した近似直線である。 On the other hand, the “(14/27) × (mass% Al / mass% N)” value is 50 or less and the casting speed is 1.5 m / min or more, “4.0-0.68 × log [ In the range of (14/27) × (mass% Al / mass% N)] m / min or less, the slab surface judgment is only “good” and “acceptable”, the slab surface properties are improved, and the galvanized steel sheet The number of surface defects was 0.3 / m 2 or less, and it was found that the surface quality was excellent. When the casting speed is 2.0 m / min or more and “3.5-0.68 × log [(14/27) × (mass% Al / mass% N)]” m / min or less, the slab All the surface determinations were “good”, and it was found that the number of surface defects of the galvanized steel sheet was reduced to 0.15 / m 2 or less, and better surface quality was obtained. This is considered to be because the precipitation of fine AlN to the austenite grain boundaries is small in this range, and the slab surface cracking susceptibility is reduced due to the reduction of grain boundary embrittlement and the reduction of thermal strain on the slab surface. . In addition, the boundary line of the above casting speed: “3.5-0.68 × log [(14/27) × (mass% Al / mass% N)]” It is an approximate line that approximates the boundary.

このように、良好な表面品質を得るには、鋼組成の「(14/27)×(質量%Al/質量%N)」値を50以下とするとともに、鋳造速度を1.5m/min以上、「4.0−0.68× log[(14/27)×(質量%Al/質量%N)]」m/min以下にする必要があり、望ましくは、鋳造速度を2.0m/min以上、「3.5−0.68× log[(14/27)×(質量%Al/質量%N)]」m/min以下にすることが好ましいことが分かった。   Thus, in order to obtain a good surface quality, the “(14/27) × (mass% Al / mass% N)” value of the steel composition is set to 50 or less, and the casting speed is set to 1.5 m / min or more. , “4.0-0.68 × log [(14/27) × (mass% Al / mass% N)]” m / min or less, preferably, the casting speed is 2.0 m / min. As mentioned above, it turned out that it is preferable to set it as "3.5-0.68xlog [(14/27) x (mass% Al / mass% N)]" m / min or less.

次に、二次冷却帯での冷却水量及び鋳造速度の表面性状に及ぼす影響について説明する。二次冷却帯の冷却水量は比水量で評価した。   Next, the influence of the cooling water amount and casting speed on the surface properties in the secondary cooling zone will be described. The amount of cooling water in the secondary cooling zone was evaluated by the specific water amount.

C:0.060〜0.075質量%、Si:0.02〜0.05質量%、Mn:1.9〜2.0質量%、P:0.01〜0.02質量%、S:0.003〜0.005質量%、Al:0.05質量%、N:0.005質量%、Mo:0.1〜0.15質量%を含有し、残部がFe及び不可避不純物よりなる成分の溶鋼を溶製し、この溶鋼を、垂直曲げ型のスラブ連続鋳造機で、鋳造速度を2.2〜3.0m/minの範囲とし、二次冷却帯における比水量を0.5〜7.5L/kgの範囲に変化させて連続鋳造した。   C: 0.060-0.075 mass%, Si: 0.02-0.05 mass%, Mn: 1.9-2.0 mass%, P: 0.01-0.02 mass%, S: A component containing 0.003 to 0.005% by mass, Al: 0.05% by mass, N: 0.005% by mass, Mo: 0.1 to 0.15% by mass, the balance being Fe and inevitable impurities The molten steel was melted in a vertical bend type slab continuous casting machine, the casting speed was in the range of 2.2 to 3.0 m / min, and the specific water amount in the secondary cooling zone was 0.5 to 7 Continuous casting was carried out at a range of 5 L / kg.

鋳造したスラブは常温まで冷却した後、スラブ表面を浸透探傷法により検査し、上記と同様に、割れの発生状況(個数及び長さ)に応じて、「良好」、「許容」、「劣化」、「不良」の4水準にスラブ表面を評価した。評価基準も上記と同一である。   After the cast slab is cooled to room temperature, the surface of the slab is inspected by a penetrant flaw detection method, and, as described above, “good”, “acceptable”, “deteriorated” depending on the occurrence of cracks (number and length) The slab surface was evaluated to 4 levels of “bad”. The evaluation criteria are the same as above.

表面検査の終了したスラブを、表面疵を残したまま加熱して熱間圧延(加熱温度:1250℃、仕上温度:850℃、巻取温度:550℃)し、熱間圧延により得られた熱間圧延鋼板を酸洗し、酸洗した鋼板を冷間圧延し、冷間圧延により得られた冷間圧延鋼板を連続焼鈍(焼鈍温度:840℃)した後、連続溶融亜鉛めっき(亜鉛めっき:460℃、めっき合金化処理:550℃)を実施し、得られた板厚1.4mmの亜鉛めっき鋼板について、表面欠陥個数及び引張特性を調査した。表面欠陥個数及び引張特性の調査方法は上記と同一である。何れの鋼板も600〜620MPaの引張強度、30.7〜31.5%の伸びを有していることが確認できた。   Heat obtained by hot rolling by heating the slab after the surface inspection while leaving the surface flaws and hot rolling (heating temperature: 1250 ° C., finishing temperature: 850 ° C., winding temperature: 550 ° C.) After pickling the cold-rolled steel sheet, cold-rolling the pickled steel sheet, and continuously annealing the cold-rolled steel sheet obtained by cold rolling (annealing temperature: 840 ° C.), continuous hot-dip galvanizing (zinc plating: 460 ° C., plating alloying treatment: 550 ° C.), and the obtained galvanized steel sheet having a thickness of 1.4 mm was examined for the number of surface defects and tensile properties. The method for investigating the number of surface defects and tensile properties is the same as described above. It was confirmed that all the steel plates had a tensile strength of 600 to 620 MPa and an elongation of 30.7 to 31.5%.

図2に、調査したスラブの表面性状と鋳造速度と比水量との3者の関係を示す。図2の各符号は図1と同一である。つまり、スラブ表面判定の「良好」を○印で、「許容」を△印で、「劣化」を●で、「不良」を×で表している。図2に示すように、良好なスラブ表面性状を有し、亜鉛めっき鋼板において低い表面欠陥率を得るには、鋳造速度に応じて比水量を適正な範囲に制御する必要のあることが分かった。   FIG. 2 shows a three-way relationship between the surface properties of the investigated slab, the casting speed, and the specific water amount. 2 are the same as those in FIG. That is, “good” in the slab surface determination is indicated by a circle, “acceptable” is indicated by a Δ, “deterioration” is indicated by ●, and “bad” is indicated by ×. As shown in FIG. 2, it was found that it was necessary to control the specific water amount within an appropriate range in accordance with the casting speed in order to obtain a good slab surface property and to obtain a low surface defect rate in the galvanized steel sheet. .

つまり、比水量が1.0L/kg未満では、鋳造速度の如何に拘わらず、スラブ表面性状は「劣化」判定のみで、亜鉛めっき鋼板の表面欠陥個数は何れも0.3個/m2 を超えていた。これは、スラブの冷却不足により表層オーステナイト粒の粗大化が起こり、粗大化することによって粒界が脆化し、スラブの表面割れ感受性が高くなったためと考えられる。 In other words, when the specific water amount is less than 1.0 L / kg, the slab surface property is only “degraded” regardless of the casting speed, and the number of surface defects of the galvanized steel sheet is 0.3 / m 2 . It was over. This is presumably because the surface austenite grains become coarse due to insufficient cooling of the slab, the grain boundaries become brittle due to the coarsening, and the surface cracking susceptibility of the slab increases.

また、鋳造速度をVc(m/min)としたときに比水量が「2.5+Vc/1.5」L/kgを超える範囲も、スラブ表面性状は「劣化」判定または「不良」判定のみで、亜鉛めっき鋼板の表面欠陥個数も0.3個/m2 を超えていた。これは、比水量の増加に伴ってスラブ表面の冷却速度が不均一になり易く、スラブ表面の熱歪や表層部のオーステナイト粒界に微細析出するAlN量が不均一となり、表面割れ感受性が上昇したためと考えられる。尚、上記の比水量の境界線:「2.5+Vc/1.5」は、図2における△印と●印との境界を近似した近似直線である。 In addition, when the casting speed is Vc (m / min), the slab surface property is only determined as “deterioration” or “defect” even when the specific water amount exceeds “2.5 + Vc / 1.5” L / kg. The number of surface defects of the galvanized steel sheet also exceeded 0.3 / m 2 . This is because the cooling rate of the slab surface tends to be non-uniform as the specific water amount increases, and the thermal strain on the slab surface and the amount of AlN finely precipitated at the austenite grain boundaries in the surface layer become non-uniform, increasing the surface cracking susceptibility. It is thought that it was because. The boundary line of the specific water amount: “2.5 + Vc / 1.5” is an approximate straight line that approximates the boundary between the Δ mark and the ● mark in FIG.

これに対して、比水量が1.0L/kg以上で、「2.5+Vc/1.5」L/kg以下の範囲においては、スラブ表面判定は「良好」及び「許容」であり、亜鉛めっき鋼板の表面欠陥個数は0.3個/m2 以下に低減することが分かった。これは、スラブ表面の熱歪の均一化及びAlNの不均一析出の抑制によるスラブ表面割れ感受性の低減によると推定される。また、比水量が1.5L/kg以上で、「2.0+Vc/1.5」L/kg以下の範囲では、スラブ表面判定は全て「良好」となり、亜鉛めっき鋼板の表面欠陥個数は0.15個/m2以下にまで低減され、より良好な表面品質が得られることが分かった。尚、上記の比水量の境界線:「2.0+Vc/1.5」は、図2における○印と△印との境界を近似した近似直線である。 On the other hand, when the specific water amount is 1.0 L / kg or more and “2.5 + Vc / 1.5” L / kg or less, the slab surface judgment is “good” and “acceptable”, and galvanization It was found that the number of surface defects in the steel sheet was reduced to 0.3 / m 2 or less. This is presumed to be due to the reduction in slab surface cracking susceptibility due to uniform thermal strain on the slab surface and suppression of non-uniform precipitation of AlN. Further, when the specific water amount is 1.5 L / kg or more and “2.0 + Vc / 1.5” L / kg or less, the slab surface judgment is all “good”, and the number of surface defects of the galvanized steel sheet is 0.8. It was found that the surface quality was reduced to 15 / m 2 or less, and better surface quality was obtained. The boundary line of the specific water amount: “2.0 + Vc / 1.5” is an approximate line that approximates the boundary between the circles and the triangles in FIG.

以上の結果から、連続鋳造スラブを圧延して引張強度が590MPa以上を有する高張力鋼板を製造するに当たり、良好な表面品質を得るには、鋼組成のAl含有量及びN含有量から定められる「(14/27)×(質量%Al/質量%N)」値を50以下とし、且つ、連続鋳造工程における鋳造速度(Vc)を、鋼組成の「(14/27)×(質量%Al/質量%N)」値に応じて、1.5m/min以上で、「4.0−0.68× log[(14/27)×(質量%Al/質量%N)]」m/min以下とし、更に、連続鋳造工程の二次冷却帯の比水量を、鋳造速度(Vc)に応じて、1.0L/kg以上で、「2.5+Vc/1.5」L/kg以下にする必要のあることが分かった。   From the above results, in producing a high strength steel sheet having a tensile strength of 590 MPa or more by rolling a continuously cast slab, in order to obtain a good surface quality, it is determined from the Al content and N content of the steel composition. The (14/27) × (mass% Al / mass% N) ”value is 50 or less, and the casting speed (Vc) in the continuous casting process is“ (14/27) × (mass% Al / According to the value of “mass% N)”, it is 1.5 m / min or more and “4.0−0.68 × log [(14/27) × (mass% Al / mass% N)]” m / min or less. Furthermore, the specific water amount in the secondary cooling zone in the continuous casting process needs to be 1.0 L / kg or more and “2.5 + Vc / 1.5” L / kg or less depending on the casting speed (Vc). I found out that

以上の知見に基づき、自動車用内板部品などに適用される高張力鋼板において、良好な表面品質を有する高張力鋼板を安定して製造する技術を発明するに至った。以下に、本発明の成分添加理由、成分限定理由および製造条件の限定理由について説明する。   Based on the above knowledge, the present inventors have invented a technique for stably producing a high-tensile steel sheet having a good surface quality in a high-tensile steel sheet applied to an automotive inner plate part or the like. Below, the reason for component addition of the present invention, the reason for component limitation, and the reason for limitation of production conditions will be described.

(1)化学成分範囲
C:0.03〜0.10質量%
Cは鋼の強化に有効であるが、添加量が0.03質量%未満では安定して590MPa以上の引張り強度が得られない。また、C量が0.10質量%を超えると、連続鋳造時に溶鋼の凝固殻の厚みが不均一になり易く、殻の薄い部分への凝固収縮の熱応力の集中により、スラブ表面割れが著しくなる。このようなスラブ表面割れが発生すると、鋳造段階、熱間圧延段階に生成する酸化スケールが熱間圧延により表層部に噛み込み易くなり、最終製品の表面欠陥となる。このため、C量は0.03〜0.10質量%の範囲とする。尚、C量の好ましい範囲は、0.04〜0.085質量%、より好ましくは0.05〜0.075質量%である。
(1) Chemical component range C: 0.03 to 0.10% by mass
C is effective for strengthening steel, but if the addition amount is less than 0.03% by mass, a tensile strength of 590 MPa or more cannot be obtained stably. If the C content exceeds 0.10% by mass, the thickness of the solidified shell of the molten steel tends to be non-uniform during continuous casting, and the slab surface cracks are remarkably caused by the concentration of thermal stress due to solidification shrinkage on the thin portion of the shell. Become. When such a slab surface crack occurs, the oxide scale generated in the casting stage and the hot rolling stage is likely to bite into the surface layer portion by hot rolling, resulting in a surface defect of the final product. For this reason, C amount shall be 0.03-0.10 mass%. In addition, the preferable range of C amount is 0.04-0.085 mass%, More preferably, it is 0.05-0.075 mass%.

Si:1.0質量%以下
Siは鋼板の強化に有効な元素であり、適宜添加することができる。鋼の強化のためにSiを添加する場合、0.03質量%以上添加するのが好ましい。より好ましいSi量は0.08質量%以上である。しかし、Siの添加量が1.0質量%を超えると、鋳造時にスラブ表面にSi酸化物の生成量が多くなり、スラブ曲げ矯正時に表面割れが発生する。また、熱間圧延の際にファイヤライト生成に起因した赤スケールの発生が顕著となり、鋼板の表面性状が劣化する。このため、Si量は1.0質量%以下とする。また、鋼板に溶融亜鉛めっき処理を施す際には、不めっきやめっき密着性の低下が懸念されるため、Si量は0.7質量%以下とするのが好ましい。より好ましいSi量は0.5質量%以下である。
Si: 1.0% by mass or less Si is an element effective for strengthening a steel sheet, and can be appropriately added. When adding Si for strengthening steel, it is preferable to add 0.03% by mass or more. A more preferable amount of Si is 0.08% by mass or more. However, if the addition amount of Si exceeds 1.0 mass%, the amount of Si oxide generated on the slab surface during casting increases, and surface cracks occur during slab bending correction. In addition, the occurrence of red scale due to the formation of firelite becomes significant during hot rolling, and the surface properties of the steel sheet deteriorate. For this reason, the amount of Si shall be 1.0 mass% or less. Further, when hot dip galvanizing treatment is performed on a steel sheet, there is a concern about non-plating or a decrease in plating adhesion, and therefore the Si content is preferably 0.7% by mass or less. A more preferable amount of Si is 0.5% by mass or less.

Mn:0.5〜3.0質量%
Mnは鋼板の強化に有効な元素であるが、添加量が0.5質量%未満では590MPa以上の引張強度が安定して得られない。一方、Mn量が3.0質量%を超えると、鋳造時の偏析によりスラブの割れ感受性が上昇する。また、熱間圧延時に鋼板表面に形成される酸化スケールの剥離性が著しく低下し、スケール性表面欠陥の発生率が高まる。また、鋳造時のMnの偏析により、伸びの低下が顕著となる。このため、Mn量は0.5〜3.0質量%の範囲とする。尚、Mn量の好ましい範囲は1.0〜2.3質量%である。
Mn: 0.5 to 3.0% by mass
Mn is an element effective for strengthening the steel sheet, but if the addition amount is less than 0.5% by mass, a tensile strength of 590 MPa or more cannot be stably obtained. On the other hand, when the amount of Mn exceeds 3.0 mass%, the slab cracking sensitivity increases due to segregation during casting. Moreover, the peelability of the oxide scale formed on the surface of the steel sheet during hot rolling is remarkably reduced, and the occurrence rate of scale surface defects is increased. Further, the decrease in elongation becomes significant due to segregation of Mn during casting. For this reason, the amount of Mn shall be 0.5-3.0 mass%. In addition, the preferable range of the amount of Mn is 1.0-2.3 mass%.

P:0.1質量%以下
Pは鋼板の強化に有効な元素であり、また熱間圧延時にスケール剥離性にも好ましい元素であるため、適宜添加することができる。Pを添加する場合、P量は0.01質量%以上とするのが好ましい。しかし、P量が0.1質量%を超えると、鋳造時のオーステナイト粒界へのP偏析に伴う粒界脆化によりスラブに表面割れが発生する。このため、P量は0.1質量%以下とする。
P: 0.1% by mass or less P is an element effective for strengthening the steel sheet, and is also an element preferable for scale peelability during hot rolling, and therefore can be added as appropriate. When adding P, it is preferable that the amount of P shall be 0.01 mass% or more. However, when the amount of P exceeds 0.1% by mass, surface cracks occur in the slab due to grain boundary embrittlement accompanying P segregation to the austenite grain boundaries during casting. For this reason, the amount of P shall be 0.1 mass% or less.

S:0.02質量%以下
S量が0.02質量%を超えると、熱間脆性を引き起こし、スケール表面欠陥の発生を助長する。このため、S量は0.02質量%以下とする。また、スケールの剥離性の観点から、Sは0.001質量%以上が好ましい。
S: 0.02 mass% or less When the amount of S exceeds 0.02 mass%, hot brittleness is caused and the generation of scale surface defects is promoted. For this reason, S amount shall be 0.02 mass% or less. Further, from the viewpoint of scale peelability, S is preferably 0.001% by mass or more.

Al:0.2質量%以下
AlとNとが結合して形成される窒化物は鋳造時にオーステナイト粒界上に微細析出し、粒界脆化させるため、スラブ曲げ矯正の際にスラブコーナー部に表面割れを引き起こす。スラブの表面割れにより、鋳造時及び熱間圧延時に形成された酸化スケールが熱間圧延時に表層部に埋め込まれ易くなる。スケールが埋め込まれた状態で冷延鋼板、亜鉛めっき鋼板まで製造されると、その部分はスケール性表面欠陥となり、プレス成形への適用はできなくなる。このような表面性状の低下を抑制するために、Al量は0.2質量%以下とする。
Al: 0.2% by mass or less Nitride formed by combining Al and N precipitates finely on the austenite grain boundary during casting and causes embrittlement at the grain boundary. Causes surface cracking. Due to the surface crack of the slab, the oxide scale formed during casting and hot rolling is easily embedded in the surface layer portion during hot rolling. If a cold-rolled steel sheet and a galvanized steel sheet are manufactured in a state where the scale is embedded, the portion becomes a scale surface defect and cannot be applied to press forming. In order to suppress such deterioration of the surface properties, the Al content is 0.2% by mass or less.

N:0.006質量%以下
NとAlとが結合して形成される窒化物は、上記のように表面性状に悪影響を及ぼす。N量が0.006質量%を超えると、Al窒化物による表面性状の低下が大きくなり、また、固溶Nの増加による伸びの低下が著しい。このため、N量は0.006質量%以下とする。
N: 0.006% by mass or less Nitride formed by combining N and Al adversely affects the surface properties as described above. When the amount of N exceeds 0.006% by mass, the surface property is greatly reduced by the Al nitride, and the elongation is significantly reduced due to the increase in the solid solution N. For this reason, N amount shall be 0.006 mass% or less.

「(14/27)×(質量%Al/質量%N)」値:50以下
Al含有量及びN含有量で規定される「(14/27)×(質量%Al/質量%N)」値は、表面性状に影響を与える窒化物の形態を制御する重要なパラメータであり、前述した図1に示すように、「(14/27)×(質量%Al/質量%N)」値が50を超える場合には、鋳造時にオーステナイト粒界へのAlNの析出量が多くなり、粒界脆化に起因したスラブ表面割れにより、鋼板の表面品質が著しく低下する。このため、「(14/27)×(質量%Al/質量%N)」値は50以下とする。
“(14/27) × (mass% Al / mass% N)” value: 50 or less “(14/27) × (mass% Al / mass% N)” value defined by Al content and N content Is an important parameter for controlling the form of nitride affecting the surface properties, and as shown in FIG. 1 described above, the value of “(14/27) × (mass% Al / mass% N)” is 50 In the case of exceeding, the amount of precipitation of AlN on the austenite grain boundary increases during casting, and the surface quality of the steel sheet is remarkably deteriorated due to slab surface cracking caused by grain boundary embrittlement. For this reason, the “(14/27) × (mass% Al / mass% N)” value is 50 or less.

本発明では上記の合金元素の外に、高張力鋼板の強度特性に応じて、Cr、V、Mo、Nb、Ti、Bの群から選択された1種または2種以上を含有させることができる。以下にその成分の限定理由を述べる。   In the present invention, in addition to the above alloy elements, one or more selected from the group of Cr, V, Mo, Nb, Ti, and B can be contained according to the strength characteristics of the high-tensile steel plate. . The reasons for limiting the components will be described below.

Cr:0.02〜1.5質量%
Crは鋼板の強化に有効であり、必要に応じて添加してもよい。添加量が0.02質量%未満では強化能が小さい。また、添加量が1.5質量%を超えると、連続焼鈍時に鋼板表面にCr酸化物の生成が促進されるため、鋼板の化成処理性が著しく低下する。このため、Cr量は添加する場合には、0.02〜1.5質量%とする。また、鋼の強化の観点から、Cr量の下限は0.05質量%とするのが望ましく、化成処理性の観点から、Cr量の上限は1.2質量%とするのが好ましい。
Cr: 0.02-1.5 mass%
Cr is effective for strengthening the steel sheet and may be added as necessary. When the addition amount is less than 0.02% by mass, the strengthening ability is small. Moreover, since the production | generation of Cr oxide will be accelerated | stimulated on the steel plate surface at the time of continuous annealing when the addition amount exceeds 1.5 mass%, the chemical conversion property of a steel plate will fall remarkably. For this reason, when adding Cr, it is 0.02-1.5 mass%. From the viewpoint of strengthening the steel, the lower limit of the Cr content is desirably 0.05% by mass, and from the viewpoint of chemical conversion properties, the upper limit of the Cr content is preferably 1.2% by mass.

V:0.003〜0.1質量%
VとCとが結合して形成される微細炭化物は鋼板の強化に有効であり、Vを必要に応じて添加してもよい。V量が0.003質量%未満では効果が小さい。また、V量が0.1質量%を超えると、スラブの鋳造時にオーステナイト粒界への微細炭化物の形成が促進されてオーステナイト粒界脆化によるスラブ表面割れが顕著となる。このため、V量は添加する場合には0.003〜0.1質量%とする。また、鋼の強化の観点から、V量の下限は0.01質量%とするのが望ましく、表面性状の観点から、V量の上限は0.07質量%とするのが好ましい。
V: 0.003-0.1% by mass
The fine carbide formed by combining V and C is effective for strengthening the steel sheet, and V may be added as necessary. If the amount of V is less than 0.003 mass%, the effect is small. On the other hand, if the amount of V exceeds 0.1% by mass, the formation of fine carbides at the austenite grain boundaries is promoted during slab casting, and slab surface cracks due to austenite grain boundary embrittlement become prominent. For this reason, when adding V, it is set as 0.003-0.1 mass%. From the viewpoint of strengthening the steel, the lower limit of the V amount is desirably 0.01% by mass, and from the viewpoint of surface properties, the upper limit of the V amount is preferably 0.07% by mass.

Mo:0.05〜0.5質量%
Moは鋼板の強化に有効であり、必要に応じて添加してもよい。添加量が0.05質量%未満では強化能は小さい。また、Mo量が0.5質量%を超えると、連続焼鈍時に鋼板表面にMo酸化物の形成が促進され、鋼板の化成処理性が著しく低下する。このため、Mo量は添加する場合には0.05〜0.5質量%とする。また、化成処理性の観点から、Mo量の上限は0.3質量%とするのが好ましい。
Mo: 0.05-0.5 mass%
Mo is effective for strengthening the steel sheet and may be added as necessary. When the addition amount is less than 0.05% by mass, the strengthening ability is small. Moreover, when Mo amount exceeds 0.5 mass%, formation of Mo oxide will be accelerated | stimulated on the steel plate surface at the time of continuous annealing, and the chemical conversion property of a steel plate will fall remarkably. For this reason, when adding Mo, it is 0.05-0.5 mass%. Moreover, it is preferable that the upper limit of the amount of Mo shall be 0.3 mass% from a viewpoint of chemical conversion property.

Nb:0.01〜0.08質量%
NbとCとが結合して形成される炭化物は、鋼板の強化に寄与するので、Nbを必要に応じて添加してもよい。Nbの添加量が0.01質量%未満では効果が小さい。また、Nb量が0.08質量%を超えると、過剰な炭化物の生成により、鋼板の伸びが著しく低下する。このため、Nb量は添加する場合には0.01〜0.08質量%の範囲とする。強度と伸びの観点から、Nb量の好ましい範囲は0.02〜0.06質量%である。
Nb: 0.01-0.08 mass%
Since the carbide formed by combining Nb and C contributes to strengthening of the steel sheet, Nb may be added as necessary. When the amount of Nb added is less than 0.01% by mass, the effect is small. On the other hand, when the Nb content exceeds 0.08 mass%, the elongation of the steel sheet is remarkably reduced due to the generation of excess carbides. For this reason, when adding Nb, it is set as the range of 0.01-0.08 mass%. From the viewpoint of strength and elongation, the preferable range of the amount of Nb is 0.02 to 0.06% by mass.

Ti:0.01〜0.08質量%
TiとCとが結合して形成される炭化物は鋼板の強化に有効であるので、Tiを必要に応じて添加してもよい。Ti量が0.01質量%未満では効果は小さい。また、Ti量が0.08質量%を超えると、炭化物の生成量が多くなり、鋼板の伸びの低下が顕著となる。このため、Ti量は添加する場合には0.01〜0.08質量%とする。また、強度と伸びの観点から、Ti量は0.02〜0.06質量%の範囲が好ましい。
Ti: 0.01-0.08 mass%
Since the carbide formed by combining Ti and C is effective for strengthening the steel sheet, Ti may be added as necessary. If the amount of Ti is less than 0.01% by mass, the effect is small. Moreover, when the amount of Ti exceeds 0.08 mass%, the amount of carbides generated increases, and the reduction in the elongation of the steel sheet becomes significant. For this reason, when adding Ti, it is 0.01-0.08 mass%. From the viewpoint of strength and elongation, the Ti content is preferably in the range of 0.02 to 0.06% by mass.

B:0.0002〜0.003質量%
Bは連続焼鈍における加熱時にオーステナイト粒界に偏析し、冷却時にオーステナイトからのフェライト変態を抑制して、マルテンサイトの形成を促進させるため、鋼板の強化に有効であり、必要に応じて添加してもよい。B量が0.0002質量%未満では、この効果は小さい。また、B量が0.003質量%を超えると、この効果は飽和するばかりか、溶融亜鉛めっきへの適用に際し、めっきの合金化速度を著しく低下させ、めっき密着不良を引き起こす。このため、B量は添加する場合には0.0002〜0.003質量%とする。また、B量の好ましい範囲は0.0005〜0.002質量%である。
B: 0.0002 to 0.003 mass%
B segregates at the austenite grain boundaries during heating in continuous annealing, suppresses ferrite transformation from austenite during cooling, and promotes the formation of martensite. Therefore, B is effective for strengthening steel sheets, and is added as necessary. Also good. When the amount of B is less than 0.0002% by mass, this effect is small. Moreover, when the amount of B exceeds 0.003 mass%, this effect is not only saturated, but also when applied to hot dip galvanizing, the alloying rate of the plating is remarkably reduced, resulting in poor plating adhesion. For this reason, when adding B, it is 0.0002 to 0.003 mass%. Moreover, the preferable range of B amount is 0.0005 to 0.002 mass%.

上記の鋼成分以外の化学成分については、過剰に添加しなければ本発明の効果を損なうことはない。例えば、Ni、Cuは0.2質量%以下であれば本発明の目的とする特性に悪影響を及ぼさない。つまり、その他の合金元素についても、本発明の目的とする特性に悪影響を及ぼさない限り、含有しても構わない。   About chemical components other than said steel component, the effect of this invention will not be impaired unless it adds excessively. For example, if Ni and Cu are 0.2 mass% or less, the target characteristics of the present invention are not adversely affected. That is, other alloy elements may be contained as long as they do not adversely affect the target characteristics of the present invention.

(2)連続鋳造スラブの製造方法及び鋼板の製造方法
上記(1)で述べた化学成分の溶鋼を溶製し、この溶鋼を連続鋳造する。連続鋳造の際、スラブの表面割れ感受性の増大に起因したスケール表面欠陥の発生を低減させるために、前述した図1に示すように、溶鋼の「(14/27)×(質量%Al/質量%N)」値に応じて、鋳造速度を1.5m/min以上で、「4.0−0.68× log[(14/27)×(質量%Al/質量%N)]m/min以下の範囲に制御する。好ましくは鋳造速度を2.0m/min以上で、「3.5−0.68× log[(14/27)×(質量%Al/質量%N)]m/min以下の範囲とする。また、鋳造速度(Vc)に応じて、二次冷却帯の冷却水の比水量を1.0L/kg以上で、「2.5+Vc/1.5」L/kg以下の範囲とする。好ましくは、比水量を1.5L/kg以上で、「2.0+Vc/1.5」L/kg以下の範囲とする。
(2) Manufacturing method of continuous casting slab and manufacturing method of steel plate Molten steel having the chemical components described in the above (1) is melted, and this molten steel is continuously cast. In order to reduce the occurrence of scale surface defects due to increased slab surface cracking susceptibility during continuous casting, as shown in FIG. 1 described above, “(14/27) × (mass% Al / mass of molten steel) % N) ”value, the casting speed is 1.5 m / min or more, and“ 4.0-0.68 × log [(14/27) × (mass% Al / mass% N)] m / min ”. Preferably, the casting speed is 2.0 m / min or more, and “3.5-0.68 × log [(14/27) × (mass% Al / mass% N)] m / min”. Further, the specific water amount of the cooling water in the secondary cooling zone is 1.0 L / kg or more and “2.5 + Vc / 1.5” L / kg or less depending on the casting speed (Vc). Range. Preferably, the specific water amount is 1.5 L / kg or more and “2.0 + Vc / 1.5” L / kg or less.

連続鋳造されたスラブは、熱片のまま熱間圧延を施してもよいし、加熱した後熱間圧延してもよい。表層一次スケールの生成促進によるスケール剥離量の増大によって表面性状を改善させる場合には、1100℃以上でスラブを加熱した方が好ましい。粗圧延した後、仕上圧延し、コイルに巻き取る。仕上圧延の際、Ar3点未満の温度で圧延を終了すると、鋼板形状が劣化するため、仕上温度はAr3点以上が好ましい。 The continuously cast slab may be hot-rolled as a hot piece, or may be hot-rolled after being heated. When the surface properties are improved by increasing the amount of scale peeling by promoting the generation of the surface primary scale, it is preferable to heat the slab at 1100 ° C. or higher. After rough rolling, finish rolling and winding into a coil. At the time of finish rolling, when the rolling is finished at a temperature lower than the Ar 3 point, the shape of the steel sheet is deteriorated. Therefore, the finishing temperature is preferably an Ar 3 point or higher.

熱延鋼板を最終製品とする場合、巻取温度が700℃を超えると、590MPa以上の強度を安定して得るのが困難となるばかりか、鋼板表層部において組織が粗大化し易くなり、靭性の低下が大きくなる。これを防止するために、巻取温度は700℃以下とする。また、コイル巻取時の鋼板形状性の観点から、巻取温度は室温以上が好ましい。より好ましい巻取温度は100〜650℃である。酸洗工程を施す場合、スケールの剥離性の観点から巻取温度は700℃以下とするのが好ましく、続いて冷間圧延する場合、圧延負荷低減のため、巻取温度を400℃以上とするのが望ましい。この場合のより好ましい巻取温度は450〜650℃である。   When a hot-rolled steel sheet is used as a final product, when the coiling temperature exceeds 700 ° C., it becomes difficult to stably obtain a strength of 590 MPa or more, and the structure tends to coarsen in the surface layer portion of the steel sheet. Decrease increases. In order to prevent this, the coiling temperature is set to 700 ° C. or lower. Further, from the viewpoint of the shape of the steel sheet during coil winding, the winding temperature is preferably room temperature or higher. A more preferable winding temperature is 100 to 650 ° C. When the pickling step is performed, the winding temperature is preferably 700 ° C. or lower from the viewpoint of the peelability of the scale. When cold rolling is subsequently performed, the winding temperature is 400 ° C. or higher in order to reduce rolling load. Is desirable. A more preferable winding temperature in this case is 450 to 650 ° C.

冷延鋼板とする場合、冷間圧延率は、90%を超えると圧延負荷の増大が顕著となり、一方、圧延率が30%未満では焼鈍時のフェライトの再結晶化促進に好ましくない。このため、冷間圧延率は30〜90%が好ましい。より好ましくは40〜80%の圧延率にて冷間圧延する。   When a cold rolled steel sheet is used, if the cold rolling rate exceeds 90%, an increase in the rolling load becomes remarkable. On the other hand, if the rolling rate is less than 30%, it is not preferable for promoting recrystallization of ferrite during annealing. For this reason, the cold rolling rate is preferably 30 to 90%. More preferably, cold rolling is performed at a rolling rate of 40 to 80%.

冷間圧延後に、鋼板に良好な延性を付与することを目的として、フェライトの再結晶温度以上の温度で連続焼鈍する。この場合、900℃を超える温度で焼鈍すると、フェライトの粗粒化により、鋼板の靭性低下が懸念される。このため、焼鈍温度は900℃以下とするのが好ましく、より好ましくは焼鈍温度を880℃以下とする。   After cold rolling, continuous annealing is performed at a temperature equal to or higher than the recrystallization temperature of ferrite for the purpose of imparting good ductility to the steel sheet. In this case, if annealing is performed at a temperature exceeding 900 ° C., there is a concern that the toughness of the steel sheet is reduced due to the coarsening of ferrite. For this reason, it is preferable that an annealing temperature shall be 900 degrees C or less, More preferably, an annealing temperature shall be 880 degrees C or less.

本発明において得られた熱延鋼板及び冷延鋼板に、亜鉛系のめっき皮膜処理することもできる。この場合、連続溶融亜鉛めっき処理、電気亜鉛めっき処理の何れでもよく、また、めっきの種類は純亜鉛めっき、合金化亜鉛めっき、亜鉛+ニッケル合金めっき、亜鉛+アルミ合金めっきでもよい。熱延鋼板を下地とした溶融亜鉛めっき鋼板を製造する場合には、酸洗後の熱延鋼板を600〜900℃、より好ましくは、700〜880℃の温度で連続焼鈍した後に、所定のめっき処理を施せばよい。冷延鋼板を下地とした亜鉛めっき鋼板を製造する場合には、焼鈍後の冷延鋼板に所定のめっき処理を施せばよい。   The hot-rolled steel sheet and cold-rolled steel sheet obtained in the present invention can be treated with a zinc-based plating film. In this case, either continuous hot dip galvanizing or electrogalvanizing may be used, and the type of plating may be pure galvanizing, alloying galvanizing, zinc + nickel alloy plating, or zinc + aluminum alloy plating. In the case of producing a hot-dip galvanized steel sheet based on a hot-rolled steel sheet, the hot-rolled steel sheet after pickling is subjected to continuous annealing at a temperature of 600 to 900 ° C., more preferably 700 to 880 ° C., and then predetermined plating is performed. What is necessary is just to process. When producing a galvanized steel sheet based on a cold-rolled steel sheet, a predetermined plating treatment may be applied to the annealed cold-rolled steel sheet.

更に、このようにして得られた熱延鋼板、冷延鋼板、亜鉛系めっき熱延鋼板、亜鉛系めっき冷延鋼板に対して、化成処理、有機系皮膜処理などの表面処理を施しても本発明の目的とする特性を損なうことはない。   Further, even if the hot-rolled steel sheet, cold-rolled steel sheet, zinc-plated hot-rolled steel sheet, and zinc-plated cold-rolled steel sheet thus obtained are subjected to surface treatment such as chemical conversion treatment or organic coating treatment The intended characteristics of the invention are not impaired.

以上説明したように本発明によれば、鋼の化学成分、並びに、連続鋳造工程における鋳造速度及び冷却条件を適正制御することにより、高張力鋼板の素材である連続鋳造スラブを高い生産性で且つ表面割れを発生することなく、安定して製造することが可能となり、その結果、自動車内板部品などの材料に求められる表面品質に優れた高張力鋼板を安定して製造することが達成される。   As described above, according to the present invention, by appropriately controlling the chemical composition of steel and the casting speed and cooling conditions in the continuous casting process, the continuous cast slab, which is the material of the high-tensile steel plate, can be produced with high productivity. It becomes possible to produce stably without generating surface cracks, and as a result, it is possible to stably produce high-tensile steel sheets with excellent surface quality required for materials such as automotive interior plate parts. .

表1に示す成分の溶鋼(No.1〜3,6〜14:本発明鋼、No.4,5,15〜21:比較鋼)を溶製し、この溶鋼を垂直曲げ型のスラブ連続鋳造機を用いて、鋳造速度を2.5m/min、二次冷却帯冷却水の比水量を2.5L/kgの条件でスプレー冷却してスラブに鋳造した。鋳造したスラブは常温まで冷却した後、浸透探傷法によりスラブの表面性状を検査し評価した。尚、鋳造速度が2.5m/minで、且つ二次冷却帯の比水量が2.5L/kgである鋳造条件は、前述した図1及び図2からも明らかなように、本発明の範囲内の鋳造条件である。   Molten steel of the components shown in Table 1 (No. 1-3, 6-14: Steel of the present invention, No. 4, 5, 15-21: Comparative steel) is melted, and this molten steel is continuously bent into a slab of vertical bending type. The slab was cast by spray cooling using a machine under the conditions of a casting speed of 2.5 m / min and a specific amount of secondary cooling zone cooling water of 2.5 L / kg. The cast slab was cooled to room temperature, and then the surface property of the slab was inspected and evaluated by the penetration flaw detection method. The casting conditions in which the casting speed is 2.5 m / min and the specific water amount in the secondary cooling zone is 2.5 L / kg are within the scope of the present invention, as is apparent from FIGS. 1 and 2 described above. This is the casting condition.

Figure 0004887818
Figure 0004887818

スラブ表面を浸透探傷法により検査し、割れの発生状況(個数及び長さ)に応じて、「良好」、「許容」、「劣化」、「不良」の4水準にスラブ表面を評価した。ここで、「良好」とは割れが検出されないもの、「許容」とは割れが検出されるものの極めて少ないもの、「劣化」とは軽微な割れが検出されたもの、「不良」とは多数の割れが検出されたものである。表2に鋳造したヒート別に調査したスラブ表面性状を示す。   The slab surface was inspected by the penetrant flaw detection method, and the slab surface was evaluated according to four levels of “good”, “acceptable”, “deteriorated”, and “bad” according to the occurrence state (number and length) of cracks. Here, “good” means that no cracks are detected, “allowable” means that very few cracks are detected, “deterioration” means that minor cracks are detected, and “bad” means many A crack was detected. Table 2 shows the slab surface properties examined for each heat cast.

Figure 0004887818
Figure 0004887818

表2に示すように、鋼組成が本発明成分範囲内のヒートでは、スラブ表面の判定は全て「良好」であったが、鋼組成が本発明成分範囲外のヒートでは、鋳造条件が同一であってもスラブ表面の判定は「劣化」及び「不良」のみであった。   As shown in Table 2, in the heat whose steel composition is within the range of the present invention, the determination of the slab surface was all “good”, but in the heat whose steel composition was outside the range of the present invention, the casting conditions were the same. Even if it was, the judgment of the slab surface was only “deterioration” and “defect”.

スラブの表面手入れを実施することなく、これらのスラブを熱間圧延工程に搬送し、加熱温度1250℃、仕上温度860℃、巻取温度550℃にて熱間圧延し、板厚2.8mmの熱延鋼板を製造した。   Without carrying out surface care of the slab, these slabs are conveyed to a hot rolling step, hot-rolled at a heating temperature of 1250 ° C., a finishing temperature of 860 ° C., and a winding temperature of 550 ° C. A hot-rolled steel sheet was produced.

ヒートNo.1〜5は熱延鋼板ままの特性(表面性状、引張特性)を調査し、また、ヒートNo.6〜21は、冷延鋼板、冷延下地の溶融亜鉛めっき鋼板、熱延下地の溶融亜鉛めっき鋼板を製造し、各鋼板の特性(表面性状、引張特性)を評価した。   Heat Nos. 1-5 investigated the properties (surface properties, tensile properties) of the hot-rolled steel sheet, and Heat Nos. 6-21 were cold-rolled steel sheets, hot-dip galvanized steel sheets, hot-rolled bases. Hot-dip galvanized steel sheets were manufactured, and the characteristics (surface properties, tensile characteristics) of each steel sheet were evaluated.

冷延鋼板及び冷延下地の溶融亜鉛めっき鋼板は、熱延鋼板を酸洗し、板厚1.4mmまで冷間圧延(圧延率50%)した後、連続焼鈍または連続溶融亜鉛めっきをして製造した。また、熱延下地の溶融亜鉛めっき鋼板は、酸洗後の熱延鋼板に連続溶融亜鉛めっきを施して製造した。連続焼鈍または連続溶融亜鉛めっき処理において、焼鈍温度は何れも820℃とし、連続溶融亜鉛めっき処理では、焼鈍後の冷却段階において、460℃で亜鉛めっきをし、550℃まで加熱してめっきの合金化処理を施した後、室温まで冷却した。このようにして得られた鋼板に0.5%の調質圧延を施した後、特性を調査した。   Cold-rolled steel sheets and cold-rolled base hot-dip galvanized steel sheets are pickled hot-rolled steel sheets, cold-rolled to a thickness of 1.4 mm (rolling rate 50%), and then subjected to continuous annealing or continuous hot-dip galvanizing. Manufactured. The hot-rolled base hot-dip galvanized steel sheet was produced by subjecting the hot-rolled steel sheet after pickling to continuous hot-dip galvanizing. In continuous annealing or continuous hot dip galvanizing, the annealing temperature is 820 ° C., and in continuous hot dip galvanizing, zinc is plated at 460 ° C. and heated to 550 ° C. in the cooling stage after annealing. After the crystallization treatment, it was cooled to room temperature. The steel sheet thus obtained was subjected to temper rolling of 0.5%, and then the characteristics were investigated.

鋼板の表面性状は表裏面に認められた長さ2mm以上の表面欠陥の個数を測定して板面の単位面積当りの個数(個/m2 )を算出し、つまり表面欠陥個数を求め、求めた表面欠陥個数が0.3個/m2より大きい場合にはプレス成形への適用は困難と判定した。また、引張特性はJIS 5号引張試験片を用いて、引張速度10mm/minにて引張試験を実施し、引張特性を求めた。表3に各鋼板の使用ヒート番号、分類、引張試験値、表面欠陥個数の調査結果を示す。尚、表3にはスラブの表面判定結果も併せて示している。 The surface properties of the steel sheet are obtained by measuring the number of surface defects with a length of 2 mm or more found on the front and back surfaces and calculating the number of the surface area per unit area (pieces / m 2 ). When the number of surface defects was greater than 0.3 / m 2, it was determined that application to press molding was difficult. In addition, the tensile properties were obtained by conducting a tensile test using a JIS No. 5 tensile test piece at a tensile speed of 10 mm / min. Table 3 shows the survey results of the heat numbers used, the classification, the tensile test values, and the number of surface defects of each steel plate. Table 3 also shows the slab surface determination results.

Figure 0004887818
Figure 0004887818

表3に示すように、鋼組成が本発明成分範囲内である鋼板No.1〜3,6〜32では、スラブ段階において良好な表面性状が得られており、最終製品である熱延鋼板(Hot )、冷延鋼板(Cold)、冷延下地溶融亜鉛めっき鋼板(CG(Cold))、熱延下地溶融亜鉛めっき鋼板(CG (Hot))の表面欠陥個数は、それぞれ0.10〜0.13個/m2 、0.008〜0.012個/m2 、0.006〜0.013個/m2、0.007〜0.012個/m2 と少なく、何れも良好な表面品質を有していた。また、鋼板No.1〜3、鋼板No.6〜29、鋼板No.30〜32は、それぞれ615〜620MPaの引張強度と27.5〜28.3%の伸び、592〜620MPaの引張強度と26.9〜31.8%の伸び、785〜820MPaの引張強度と21.5〜22.5%の伸びを有していた。 As shown in Table 3, in steel plates No. 1 to 3 and 6 to 32 whose steel composition is within the range of the present invention, good surface properties are obtained in the slab stage, and the hot rolled steel plate (the final product) Hot), cold-rolled steel sheet (Cold), cold-rolled base hot-dip galvanized steel sheet (CG (Cold)), and hot-rolled base hot-dip galvanized steel sheet (CG (Hot)) have 0.10-0. 13 / m 2 , 0.008 to 0.012 / m 2 , 0.006 to 0.013 / m 2 , and 0.007 to 0.012 / m 2 , all having good surface quality Had. Steel plates No. 1 to 3, Steel plates No. 6 to 29, and Steel plates No. 30 to 32 have a tensile strength of 615 to 620 MPa, an elongation of 27.5 to 28.3%, and a tensile strength of 592 to 620 MPa, respectively. It had an elongation of 26.9-31.8%, a tensile strength of 785-820 MPa, and an elongation of 21.5-22.5%.

一方、鋼組成が本発明成分範囲外の鋼板No.4,5,33〜53では、何れも590MPa以上の引張強度を有しているが、スラブ表面性状は悪化し、最終製品において良好な表面品質は得られなかった。即ち、鋼板No.4,5、鋼板No.33〜41、鋼板No.48〜50は、それぞれ0.34〜0.51個/m2、0.35〜0.60個/m2 、0.52〜0.54個/m2 と表面欠陥個数が多い。また、鋼板No.42〜44の表面欠陥個数は0.62〜0.65個/m2と多く、また溶融亜鉛めっき処理した鋼板No.43,44では不めっきが発生している。更に、鋼板No.45〜47,51〜53は表面性状が劣化しているとともに、鋼板の伸びも低下していた。 On the other hand, in steel plates No. 4, 5, 33 to 53 whose steel composition is outside the range of the present invention, all have a tensile strength of 590 MPa or more, but the slab surface properties deteriorate and a good surface in the final product. Quality was not obtained. That is, the steel plates No. 4 and 5, steel plates No. 33 to 41, and steel plates No. 48 to 50 are 0.34 to 0.51 pieces / m 2 , 0.35 to 0.60 pieces / m 2 , 0, respectively. .52 to 0.54 / m 2 and the number of surface defects is large. Further, the number of surface defects of the steel plates No. 42 to 44 is as large as 0.62 to 0.65 / m 2, and the non-plating occurs in the hot dip galvanized steel plates No. 43 and 44. Furthermore, the steel sheets No. 45 to 47 and 51 to 53 had deteriorated surface properties, and the elongation of the steel sheets was also reduced.

前述した表1に示す鋼種No.12(本発明鋼)を溶製し、この溶鋼を垂直曲げ型のスラブ連続鋳造機を用いて、二次冷却帯の比水量を2.5L/kgの一定値として鋳造速度を1.0〜4.5m/minの範囲に変更した鋳造、及び、鋳造速度を2.5m/minの一定値として二次冷却帯の比水量を0.5〜5.5L/kgに変更した鋳造を合計19ヒート実施した。鋳造したスラブは室温まで冷却した後に実施例1と同一の方法で表面性状を判定した。   The steel type No. 12 (invention steel) shown in Table 1 described above was melted, and this molten steel was fixed at a constant water volume of 2.5 L / kg in the secondary cooling zone using a vertical bending slab continuous casting machine. The casting speed was changed to a range of 1.0 to 4.5 m / min as a value, and the specific water amount of the secondary cooling zone was 0.5 to 5.5 L with the casting speed being a constant value of 2.5 m / min. Casting changed to / kg was carried out for a total of 19 heats. The cast slab was cooled to room temperature, and then the surface property was determined by the same method as in Example 1.

次いで、実施例1と同様の製造条件により、熱間圧延、酸洗、冷間圧延を実施した後、焼鈍温度830℃で連続焼鈍または連続溶融亜鉛めっき処理(460℃で亜鉛めっきし、550℃でめっきの合金化を実施)をし、伸長率0.5%の調質圧延を施した。こうして得られた冷延鋼板、溶融亜鉛めっき鋼板の表面性状及び引張特性を、実施例1と同様の方法により調査した。表4に各鋼板の鋳造条件、スラブ表面判定結果、分類、引張試験値、表面欠陥個数の調査結果を示す。   Next, hot rolling, pickling and cold rolling were performed under the same production conditions as in Example 1, followed by continuous annealing or continuous hot dip galvanizing treatment at an annealing temperature of 830 ° C. (galvanizing at 460 ° C. and 550 ° C. And temper rolling with an elongation of 0.5%. The surface properties and tensile properties of the cold-rolled steel sheet and hot-dip galvanized steel sheet thus obtained were examined by the same method as in Example 1. Table 4 shows the examination results of the casting conditions, slab surface determination results, classification, tensile test values, and number of surface defects of each steel plate.

Figure 0004887818
Figure 0004887818

鋳造速度及び比水量が本発明範囲内にある鋼板No.56〜58,64〜68では、スラブ表面に割れは認められず、鋼板の表面欠陥個数はそれぞれ0.10〜0.14個/m2、0.09〜0.15個/m2 と低く、製品の表面品質は極めて良好であった。スラブ表面判定が「許容」であった鋼板No.55,59及び鋼板No.63,69では、スラブに若干の割れが発生したものの、鋼板の表面欠陥個数は、それぞれ0.20〜0.22個/m2、0.17〜0.24個/m2 であり、目標値の0.3個/m2 以下を達成していた。 In the steel plates No. 56 to 58 and 64 to 68 in which the casting speed and the specific water amount are within the range of the present invention, no cracks were observed on the slab surface, and the number of surface defects of the steel plates was 0.10 to 0.14 / m respectively. 2 and 0.09 to 0.15 / m 2, and the surface quality of the product was extremely good. In the steel plates No. 55 and 59 and the steel plates No. 63 and 69 in which the slab surface judgment was “acceptable”, although some cracks occurred in the slab, the number of surface defects of the steel plates was 0.20 to 0.22 respectively. Pieces / m 2 , 0.17 to 0.24 pieces / m 2 , and the target value of 0.3 pieces / m 2 or less was achieved.

これに対して、鋳造速度が本発明範囲外にある鋼板No.54,60,61、及び、比水量が本発明範囲外にある鋼板No.62,70〜72では、スラブ表面性状は悪く、鋼板の表面欠陥個数は、それぞれ0.32〜0.53個/m2、0.35〜0.43個/m2 と多く、表面品質は満足できるものではなかった。 On the other hand, the steel plate No. 54, 60, 61 whose casting speed is outside the scope of the present invention and the steel plate No. 62, 70-72 whose specific water content is outside the scope of the present invention have poor slab surface properties. surface defects number of steel sheets, each 0.32 to 0.53 pieces / m 2, more and 0.35 to 0.43 pieces / m 2, the surface quality was not satisfactory.

スラブ表面性状に及ぼすスラブ中のAl含有量とN含有量との比及び鋳造速度の影響を示す図である。It is a figure which shows the influence of ratio and casting speed of Al content and N content in a slab which have on slab surface property. スラブ表面性状に及ぼす鋳造速度及び比水量の影響を示す図である。It is a figure which shows the influence of the casting speed and specific water quantity which has on slab surface property.

Claims (6)

質量%で、C:0.03〜0.10%、Si:1.0%以下、Mn:0.5〜3.0%、P:0.1%以下、S:0.02%以下、Al:0.2%以下、N:0.006%以下を含有し、Al含有量及びN含有量で規定される(14/27)×(%Al/%N)が50以下であり、残部がFe及び不可避的不純物よりなる溶鋼を、前記Al含有量及びN含有量で規定される下記の(1)式を満足する鋳造速度で鋳造するとともに、該鋳造速度で規定される下記の(2)式を満足する比水量で二次冷却帯をスプレー冷却することを特徴とする、連続鋳造スラブの製造方法。
1.5≦Vc≦4.0-0.68×log[(14/27)×(%Al/%N)] …(1)
1.0≦Q≦2.5+Vc/1.5 …(2)
但し、(1)式及び(2)式において、Vcは鋳造速度(m/min)、Qは二次冷却帯における比水量(リットル/kg)、%Alは溶鋼のAl含有量、%Nは溶鋼のN含有量である。
In mass%, C: 0.03-0.10%, Si: 1.0% or less, Mn: 0.5-3.0%, P: 0.1% or less, S: 0.02% or less, Al: 0.2% or less, N: 0.006% or less, (14/27) × (% Al /% N) defined by Al content and N content is 50 or less, and the balance Is cast at a casting speed that satisfies the following formula (1) defined by the Al content and N content, and the following (2) defined by the casting speed: The method for producing a continuously cast slab, characterized in that the secondary cooling zone is spray-cooled with a specific water amount satisfying the above formula.
1.5 ≦ Vc ≦ 4.0-0.68 × log [(14/27) × (% Al /% N)]… (1)
1.0 ≦ Q ≦ 2.5 + Vc / 1.5… (2)
However, in the formulas (1) and (2), Vc is the casting speed (m / min), Q is the specific water amount in the secondary cooling zone (liter / kg),% Al is the Al content of the molten steel, and% N is It is N content of molten steel.
前記溶鋼は、更に、質量%で、Cr:0.02〜1.5%、V:0.003〜0.1%、Mo:0.05〜0.5%、Nb:0.01〜0.08%、Ti:0.01〜0.08%、B:0.0002〜0.003%の群から選ばれる1種または2種以上を含有することを特徴とする、請求項1に記載の連続鋳造スラブの製造方法。   The molten steel is further in mass%, Cr: 0.02-1.5%, V: 0.003-0.1%, Mo: 0.05-0.5%, Nb: 0.01-0. It contains 1 type (s) or 2 or more types chosen from the group of 0.08%, Ti: 0.01-0.08%, B: 0.0002-0.003%, It is characterized by the above-mentioned. Manufacturing method for continuous casting slabs. 請求項1または請求項2に記載の連続鋳造スラブの製造方法で製造された連続鋳造スラブを熱間圧延し、700℃以下の温度で巻取る熱間圧延工程を有することを特徴とする、高張力熱延鋼板の製造方法。   A continuous cast slab produced by the method for producing a continuously cast slab according to claim 1 or 2 is hot-rolled and wound at a temperature of 700 ° C or lower, and a high-temperature rolling process is provided. A method for producing a tension hot-rolled steel sheet. 請求項1または請求項2に記載の連続鋳造スラブの製造方法で製造された連続鋳造スラブを熱間圧延し、700℃以下の温度で巻取る熱間圧延工程と、前記熱間圧延工程により得られた熱間圧延鋼板を酸洗する酸洗工程と、該酸洗工程により得られた酸洗鋼板の表面に亜鉛系めっき皮膜をするめっき工程を有することを特徴とする、高張力亜鉛めっき鋼板の製造方法。   A continuous cast slab produced by the method for producing a continuous cast slab according to claim 1 or 2 is hot-rolled and wound at a temperature of 700 ° C. or less, and obtained by the hot-rolling step. A high-tensile galvanized steel sheet comprising a pickling process for pickling the hot-rolled steel sheet obtained, and a plating process for forming a zinc-based plating film on the surface of the pickled steel sheet obtained by the pickling process Manufacturing method. 請求項1または請求項2に記載の連続鋳造スラブの製造方法で製造された連続鋳造スラブを熱間圧延する熱間圧延工程と、該熱間圧延工程により得られた熱間圧延鋼板を酸洗する酸洗工程と、該酸洗工程により得られた酸洗鋼板を冷間圧延する冷間圧延工程と、該冷間圧延工程により得られた冷間圧延鋼板を再結晶温度以上の温度で連続焼鈍する連続焼鈍工程と、を有することを特徴とする、高張力冷延鋼板の製造方法。   A hot rolling step of hot rolling a continuous cast slab manufactured by the method for manufacturing a continuous cast slab according to claim 1 or claim 2, and pickling the hot rolled steel sheet obtained by the hot rolling step The pickling step, the cold rolling step for cold rolling the pickled steel plate obtained by the pickling step, and the cold rolled steel plate obtained by the cold rolling step at a temperature above the recrystallization temperature. A method for producing a high-tensile cold-rolled steel sheet, comprising: a continuous annealing step for annealing. 請求項1または請求項2に記載の連続鋳造スラブの製造方法で製造された連続鋳造スラブを熱間圧延する熱間圧延工程と、該熱間圧延工程により得られた熱間圧延鋼板を酸洗する酸洗工程と、該酸洗工程により得られた酸洗鋼板を冷間圧延する冷間圧延工程と、該冷間圧延工程により得られた冷間圧延鋼板を再結晶温度以上の温度で連続焼鈍する連続焼鈍工程と、該連続焼鈍工程により得られた鋼板の表面に亜鉛系めっき皮膜をするめっき工程と、を有することを特徴とする、高張力亜鉛めっき鋼板の製造方法。   A hot rolling step of hot rolling a continuous cast slab manufactured by the method for manufacturing a continuous cast slab according to claim 1 or claim 2, and pickling the hot rolled steel sheet obtained by the hot rolling step The pickling step, the cold rolling step for cold rolling the pickled steel plate obtained by the pickling step, and the cold rolled steel plate obtained by the cold rolling step at a temperature above the recrystallization temperature. A method for producing a high-tensile galvanized steel sheet, comprising: a continuous annealing process for annealing; and a plating process for forming a zinc-based plating film on the surface of the steel sheet obtained by the continuous annealing process.
JP2006037702A 2006-02-15 2006-02-15 Manufacturing method of continuous cast slab and manufacturing method of high-tensile hot-rolled steel sheet, high-tensile cold-rolled steel sheet, and high-tensile galvanized steel sheet Expired - Fee Related JP4887818B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006037702A JP4887818B2 (en) 2006-02-15 2006-02-15 Manufacturing method of continuous cast slab and manufacturing method of high-tensile hot-rolled steel sheet, high-tensile cold-rolled steel sheet, and high-tensile galvanized steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006037702A JP4887818B2 (en) 2006-02-15 2006-02-15 Manufacturing method of continuous cast slab and manufacturing method of high-tensile hot-rolled steel sheet, high-tensile cold-rolled steel sheet, and high-tensile galvanized steel sheet

Publications (2)

Publication Number Publication Date
JP2007216247A JP2007216247A (en) 2007-08-30
JP4887818B2 true JP4887818B2 (en) 2012-02-29

Family

ID=38494048

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006037702A Expired - Fee Related JP4887818B2 (en) 2006-02-15 2006-02-15 Manufacturing method of continuous cast slab and manufacturing method of high-tensile hot-rolled steel sheet, high-tensile cold-rolled steel sheet, and high-tensile galvanized steel sheet

Country Status (1)

Country Link
JP (1) JP4887818B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101259223B1 (en) * 2009-08-18 2013-04-29 주식회사 포스코 Manufacturing Method of Billet For Low Carbon Steel And Billet For Low Carbon Steel
KR101316412B1 (en) 2011-09-28 2013-10-08 주식회사 포스코 Method For Manufacturing Thin Slab
JP6213098B2 (en) * 2013-09-25 2017-10-18 新日鐵住金株式会社 High-strength hot-rolled steel sheet with excellent fatigue characteristics and method for producing the same
WO2015099222A1 (en) * 2013-12-26 2015-07-02 주식회사 포스코 Hot-rolled steel plate having excellent welding property and burring property and method for manufacturing same
CN115125434B (en) * 2021-03-29 2023-05-09 宝山钢铁股份有限公司 Low-carbon high-nitrogen tinned substrate and slab continuous casting production method thereof
CN114774776A (en) * 2022-03-25 2022-07-22 安阳钢铁集团有限责任公司 Cold-rolled low-alloy high-strength steel and production method thereof
CN115094343A (en) * 2022-05-26 2022-09-23 安阳钢铁集团有限责任公司 Ultrathin wide-width high-strength continuous hot-dip galvanized steel for household appliances and production method thereof
CN114959491B (en) * 2022-06-20 2023-05-02 武汉钢铁有限公司 350MPa grade high corrosion-resistant coated steel sheet produced by short process and method

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5187431A (en) * 1975-01-31 1976-07-31 Kawasaki Steel Co Hyomenwarenonai haganechuhennorenzokuchuzonyoruseizohoho
JPH1043848A (en) * 1996-07-31 1998-02-17 Kawasaki Steel Corp Cast slab internal crack prevention method in continuous casting
JP3180702B2 (en) * 1997-02-20 2001-06-25 住友金属工業株式会社 Continuous casting method
JP4240576B2 (en) * 1998-05-18 2009-03-18 住友金属工業株式会社 Steel sheet with excellent surface properties
JP3019859B1 (en) * 1999-06-11 2000-03-13 住友金属工業株式会社 Continuous casting method
JP3508668B2 (en) * 2000-01-14 2004-03-22 Jfeスチール株式会社 Cold rolled steel sheet and method for producing the same
JP4593006B2 (en) * 2001-05-22 2010-12-08 新日本製鐵株式会社 Method for producing a billet free from crack defects
JP3633515B2 (en) * 2001-06-12 2005-03-30 住友金属工業株式会社 Hot-rolled steel sheet having excellent resistance to hydrogen-induced cracking and method for producing the same
JP4222148B2 (en) * 2003-08-07 2009-02-12 住友金属工業株式会社 Steel continuous casting method

Also Published As

Publication number Publication date
JP2007216247A (en) 2007-08-30

Similar Documents

Publication Publication Date Title
EP3279363B1 (en) HIGH-STRENGTH COLD-ROLLED STEEL SHEET HAVING EXCELLENT WORKABILITY AND COLLISION CHARACTERISTICS AND HAVING TENSILE STRENGTH OF 980 MPa OR MORE, AND METHOD FOR PRODUCING SAME
EP2813595B1 (en) High-strength cold-rolled steel sheet and process for manufacturing same
JP4288138B2 (en) Steel sheet for hot forming
JP5884714B2 (en) Hot-dip galvanized steel sheet and manufacturing method thereof
JP5408314B2 (en) High-strength cold-rolled steel sheet excellent in deep drawability and material uniformity in the coil and method for producing the same
JP4887818B2 (en) Manufacturing method of continuous cast slab and manufacturing method of high-tensile hot-rolled steel sheet, high-tensile cold-rolled steel sheet, and high-tensile galvanized steel sheet
US20170211164A1 (en) High strength galvanized steel sheet and production method therefor
JP5532088B2 (en) High-strength hot-dip galvanized steel sheet excellent in deep drawability and manufacturing method thereof
JP5071173B2 (en) Hot-dip galvanized steel sheet and manufacturing method thereof
KR102058601B1 (en) Alloyed hot dip galvanized steel sheet and its manufacturing method
WO2012043420A1 (en) High-strength hot-dip galvanized steel sheet with excellent deep drawability and stretch flangeability, and process for producing same
JP6225604B2 (en) 440 MPa class high-strength galvannealed steel sheet excellent in deep drawability and method for producing the same
JP3812279B2 (en) High yield ratio type high-tensile hot dip galvanized steel sheet excellent in workability and strain age hardening characteristics and method for producing the same
WO2018142849A1 (en) High-strength molten zinc plating hot-rolled steel sheet, and production method therefor
CN113348259A (en) High-strength hot-dip galvanized steel sheet and method for producing same
JP6409916B2 (en) Manufacturing method of hot-rolled steel sheet and manufacturing method of cold-rolled full hard steel sheet
US10336037B2 (en) Galvanized steel sheet and method for producing the same
JP4687260B2 (en) Manufacturing method of deep drawing high tensile cold-rolled steel sheet with excellent surface properties
JP5817805B2 (en) High strength steel sheet with small in-plane anisotropy of elongation and method for producing the same
JP2003313636A (en) Hot-dipped steel sheet with high ductility and high strength, and manufacturing method therefor
CN110268084B (en) Cold-rolled steel sheet and method for producing same
JP3646538B2 (en) Manufacturing method of hot-dip galvanized high-tensile steel sheet with excellent workability
JP4622187B2 (en) Cold-rolled steel sheet, cold-rolled steel sheet having excellent strain age hardening characteristics and no room temperature aging deterioration, and methods for producing them
JP7311808B2 (en) Steel plate and its manufacturing method
JP2004218018A (en) High-strength cold-rolled steel sheet which is excellent in workability and strain age-hardening property, high-strength plated steel sheet and their production methods

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080925

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110628

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110802

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111115

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111128

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141222

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees