JP4222148B2 - Steel continuous casting method - Google Patents

Steel continuous casting method Download PDF

Info

Publication number
JP4222148B2
JP4222148B2 JP2003288991A JP2003288991A JP4222148B2 JP 4222148 B2 JP4222148 B2 JP 4222148B2 JP 2003288991 A JP2003288991 A JP 2003288991A JP 2003288991 A JP2003288991 A JP 2003288991A JP 4222148 B2 JP4222148 B2 JP 4222148B2
Authority
JP
Japan
Prior art keywords
slab
roundness
continuous casting
round
mold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003288991A
Other languages
Japanese (ja)
Other versions
JP2005052881A (en
Inventor
学 足立
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP2003288991A priority Critical patent/JP4222148B2/en
Publication of JP2005052881A publication Critical patent/JP2005052881A/en
Application granted granted Critical
Publication of JP4222148B2 publication Critical patent/JP4222148B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Continuous Casting (AREA)

Description

本発明は、鋼の丸鋳片の連続鋳造において鋳片断面形状を真円状に保ち、鋳片表面割れを低減する連続鋳造方法に関する。   The present invention relates to a continuous casting method for maintaining a slab cross-sectional shape in a perfect circle in continuous casting of steel round slabs and reducing slab surface cracks.

従来にあっても、丸鋳片の連続鋳造はすでに行われており、その際に連続鋳造丸鋳片の断面形状 (真円度) が悪化すると、次工程の圧延工程において設備破損など操業トラブルを誘発する。また、丸鋳片に表面割れが発生している場合は下工程の圧延工程において表面欠陥となり歩留の悪化および工程阻害を引き起こす。   Even in the past, continuous casting of round slabs has already been performed, and if the cross-sectional shape (roundness) of continuous cast slabs deteriorates at that time, operational troubles such as equipment breakage occur in the next rolling process. To trigger. Moreover, when the surface crack has generate | occur | produced in the round slab, it becomes a surface defect in the rolling process of a lower process, and causes the deterioration of a yield and process inhibition.

例えば、特許文献1および特許文献2では、鋳片を成形ロールで圧下して真円度を保つ技術が開示されているが、ピンチロールの他に圧下設備が必要となり、かなりの設備費がかかる。   For example, Patent Document 1 and Patent Document 2 disclose a technique for maintaining the roundness by pressing a slab with a forming roll. However, in addition to a pinch roll, a reduction facility is required, which requires considerable equipment costs. .

また、特許文献3には鋳型上端の断面形状を多角形とし、鋳型下端を円形にすることで真円度を保つ技術が開示されているが、成形ロールを用いて円形に矯正しなければ、真円度の仕様外れが発生する場合がある。   Further, Patent Document 3 discloses a technique for maintaining the roundness by making the cross-sectional shape of the upper end of the mold into a polygon and making the lower end of the mold circular, but if it is not corrected to a circle using a molding roll, The roundness may be out of specification.

引用文献2の表3および図5には、鋳込丸鋳片の内部品質と、丸鋳片の真円度とが開示されているが、これは未凝固圧下技術に関連したものであり、丸鋳片を一旦偏平にしてから凝固後圧下ロールによって縮径して丸鋳片に成形した場合であって、鋳込みままの状態での丸鋳片の真円度と表面品質との関係について開示するものではない。
特開平9−201602号公報 特開平11−309552号公報 特開平6−269903号公報
In Table 3 of FIG. 2 and FIG. 5, the internal quality of the cast slab and the roundness of the slab are disclosed, which is related to the unsolidified reduction technology, Disclosure of the relationship between roundness and surface quality of round cast slabs in the as-cast state when the round cast slabs are flattened and then reduced in diameter by a rolling roll after solidification. Not what you want.
JP-A-9-201602 Japanese Patent Laid-Open No. 11-309552 JP-A-6-269903

したがって、本発明の課題は、コスト悪化を極力抑制した簡便な手段でもって、鋳込みままの状態での丸鋳片の真円度悪化防止と鋳片表面割れ防止を実現できる鋼の連続鋳造方法を提供することである。   Accordingly, an object of the present invention is to provide a continuous casting method of steel that can prevent roundness deterioration of a round slab and prevent slab surface cracking in an as-cast state with a simple means that suppresses cost deterioration as much as possible. Is to provide.

本発明者らは、上述の課題を解決すべく、種々検討を重ねた結果、真円度と二次冷却水量の関係に着目し、真円度を確保するとともに、それに伴う鋳片表面割れ防止技術を確立し、本発明に至った。   As a result of various studies to solve the above-mentioned problems, the present inventors have paid attention to the relationship between the roundness and the amount of secondary cooling water, and ensure the roundness and prevent slab surface cracks associated therewith. The technology has been established and the present invention has been achieved.

なお、本明細書において、「真円度」とは、鋳込みままの状態でのそれを言い、凝固後圧下などの加工後の丸鋳片の真円度とは区別される。   In this specification, “roundness” refers to that in an as-cast state, and is distinguished from roundness of a round cast piece after processing such as reduction after solidification.

ここに、本発明は次の通りである。   Here, the present invention is as follows.

(1)炭素鋼および低合金鋼の丸鋳片を湾曲型または垂直曲型連続鋳造機で製造するにあたり、連続鋳造鋳型に注入される溶鋼成分の[Al%]および[N%]を[Al%]×[N%]≦2×10−4に調整するとともに、鋳造速度を1.4m/min以下として鋳造し、鋳型から引き抜かれた丸鋳片を、二次冷却比水量0.4L/kg以上、1.0 L/kg未満で二次冷却することを特徴とする連続鋳造方法。 (1) When manufacturing round slabs of carbon steel and low alloy steel with a curved type or vertical curved type continuous casting machine, [Al%] and [N%] of the molten steel components injected into the continuous casting mold are set to [Al %] × [N%] ≦ 2 × 10 −4 , casting was performed at a casting speed of 1.4 m / min or less, and the round slab drawn from the mold was subjected to a secondary cooling specific water amount of 0.4 L / A continuous casting method, wherein secondary cooling is performed at a rate of not less than kg and less than 1.0 L / kg .

(2) 前記丸鋳片の鋳片径が300mm 以上である上記(1) 記載の連続鋳造方法。   (2) The continuous casting method according to the above (1), wherein a slab diameter of the round slab is 300 mm or more.

本発明によれば、丸鋳片を連続鋳造するにあたり、鋳込みままの状態での真円度と鋳片表面割れ防止を両立できるのであって、特に問題の多かった径300mm 以上の大型丸鋳片において真円度を確保でき表面割れが見られないということから、本発明の実用上の意義は大きい。   According to the present invention, when round cast pieces are continuously cast, roundness in an as-cast state and prevention of cracks on the cast piece surface can be achieved at the same time. Since the roundness can be secured and no surface cracks are observed, the practical significance of the present invention is great.

次に、本発明において真円度を確保するために上述のように連続鋳造条件を規定した理由について、その実施例を挙げて説明する。   Next, the reason why the continuous casting conditions are defined as described above in order to ensure the roundness in the present invention will be described with reference to examples.

図1に真円度の定義およびスペックを示す。図中、丸鋳片の鋳片断面を天側、地側を上下において示すが、図面で云う縦断面長さを天地径aと言い、横断面長さをオーバル径bと言い、そのときの真円度は、 (b−a)/b で定義され、 (b−a)/b ≦0.03が要求される真円度仕様である。したがって、本明細書においても、上記範囲を満足するとき真円度が良好であると云う。   FIG. 1 shows the definition and specifications of roundness. In the figure, the slab cross-section of the round slab is shown on the top side and the ground side on the top and bottom. The vertical cross-sectional length in the drawing is called the top-and-bottom diameter a, and the cross-sectional length is called the oval diameter b. The roundness is defined by (ba) / b, and is a roundness specification that requires (ba) /b≦0.03. Therefore, also in this specification, it is said that the roundness is good when the above range is satisfied.

ここに、真円度の悪化とはピンチロールで鋳片を引抜く際に鋳片を圧下するために、天地径が短くなり、オーバル径が長くなる現象である。   Here, the deterioration of roundness is a phenomenon in which the top diameter is shortened and the oval diameter is lengthened in order to reduce the slab when the slab is pulled out with a pinch roll.

真円度が0.03より悪化した場合は、次工程の圧延時に噛み込み不良等の操業トラブルの発生する可能性が高くなることから、鋳片を格下げにする必要があり、歩留まり悪化となる。かかる真円度の悪化に対しては、従来からピンチロールの鋳片押付圧力の低下による改善を試みていたが、鋳片滑落が発生し、現実的な対策ではなかった。   When the roundness deteriorates from 0.03, there is a high possibility that an operation trouble such as a biting failure occurs at the time of rolling in the next process, so that it is necessary to downgrade the slab and the yield deteriorates. For the deterioration of the roundness, attempts have been made to improve the slab pressing pressure of the pinch rolls, but slab slipping has occurred, which is not a practical measure.

図2は、二次冷却と真円度との関係を示すグラフである。図2からも分かるように、真円度には鋳片の強度が大きな因子であり、二次冷却比水量を0.4L/kg 以上とすることで真円度は良好となる。     FIG. 2 is a graph showing the relationship between secondary cooling and roundness. As can be seen from FIG. 2, the strength of the slab is a major factor in the roundness, and the roundness is improved by setting the secondary cooling specific water amount to 0.4 L / kg or more.

しかし、真円度を確保するために比水量を増加させると鋳片表面に微小な表面割れが発生する場合が認められる。   However, when the specific water amount is increased in order to ensure the roundness, there are cases where minute surface cracks occur on the surface of the slab.

図3は、このときの表面割れの形態の模式的説明図である。   FIG. 3 is a schematic explanatory view of the form of surface cracking at this time.

かかる表面割れは、いわゆるひび割れであると推定される。湾曲型または垂直曲げ型連続鋳造機で鋼を連続鋳造する場合、ピンチロールで鋳片を矯正する時に鋳片の天側面に表面割れが発生する。   Such surface cracks are presumed to be so-called cracks. When continuously casting steel with a curved or vertical bending type continuous casting machine, surface cracks occur on the top side of the slab when the slab is straightened with a pinch roll.

この割れは鋳片矯正時の歪によって発生する表面割れであり、矯正歪は鋳片厚みが大きい程大きくなり表面割れは発生し易くなる。また、この割れはγ粒界割れであり、粒界に析出するAlN によって助長されると推定される。   This crack is a surface crack generated by distortion during slab correction. The correction distortion becomes larger as the slab thickness increases, and surface cracks are more likely to occur. In addition, this crack is a γ grain boundary crack and is presumed to be promoted by AlN precipitated at the grain boundary.

図4は、このときの関係を模式的図であり、図4aに示すように、γ相の粒界を構成するα相にはAlN が析出しており、これがロール矯正を受けると、図4bに示すように、このAlN を起点として粒界割れが生じるのである。   FIG. 4 is a schematic diagram showing the relationship at this time. As shown in FIG. 4a, AlN is precipitated in the α phase constituting the grain boundary of the γ phase. As shown in Fig. 2, grain boundary cracking occurs starting from this AlN.

図5に示すように、一般に鋼には脆化温度範囲がありこの温度範囲で鋳片を矯正した場合に表面割れは発生し易い。従来から矯正時の鋳片表面温度を脆化温度より高温側もしくは低温側に回避することで表面割れを防止していた。   As shown in FIG. 5, generally, steel has an embrittlement temperature range, and surface cracks are likely to occur when a slab is corrected within this temperature range. Conventionally, surface cracks have been prevented by avoiding the slab surface temperature during straightening to be higher or lower than the embrittlement temperature.

ここに、図5は、C:0.06%の鋼を1600℃で溶融し、10℃/sで1250℃まで冷却した後、600 〜950 ℃の温度領域で引張試験を行ったときの引張温度と減面率(RA)との関係を示すグラフである。減面率が小さいことは脆化が生じていることを意味し、その温度領域では鋳片矯正の際にも表面割れが生じる可能性が大きい。   Here, FIG. 5 shows the tensile temperature when C: 0.06% steel is melted at 1600 ° C. and cooled to 1250 ° C. at 10 ° C./s, and then a tensile test is performed in the temperature range of 600 to 950 ° C. It is a graph which shows the relationship with an area reduction rate (RA). A small area reduction means that embrittlement has occurred. In that temperature range, there is a high possibility that surface cracks will also occur during slab correction.

鋳片厚みが大きい場合、矯正温度を脆化温度より高温に回避しようとすると、連続鋳造機の機長限界により鋳造速度を高くできないため不可能な場合がある。二次冷却水量を低下させ鋳片表面温度を上昇させることは可能であるが、先に述べたように丸鋳片の場合には、二次冷却水量を低下させると真円度が悪化し、圧延工程での操業トラブルが発生する。逆に脆化温度より低温に回避しようとすると、鋳造速度を低下させる必要があり、生産性が著しく悪化する。特に、このような傾向は鋳片径300mm 以上の大径丸鋳片に顕著である。   If the slab thickness is large, trying to avoid the correction temperature to be higher than the embrittlement temperature may not be possible because the casting speed cannot be increased due to the length limit of the continuous casting machine. Although it is possible to reduce the secondary cooling water amount and raise the slab surface temperature, as described above, in the case of a round slab, roundness deteriorates when the secondary cooling water amount is reduced, Operation troubles occur in the rolling process. On the other hand, when trying to avoid a temperature lower than the embrittlement temperature, it is necessary to lower the casting speed, and the productivity is significantly deteriorated. In particular, such a tendency is conspicuous in large-diameter round slabs having a slab diameter of 300 mm or more.

また、丸鋳片を連結冶具で繋げて操業を実施する場合には、繋ぎ目の矯正ができずに鋳片の反りが発生し操業を継続することが不可能となる。   Further, when the operation is carried out by connecting the round slabs with a connecting jig, the joint cannot be corrected and the slab is warped, and the operation cannot be continued.

また、鋳込初期、末期のいわゆる非定常部では鋳造条件を厳格に規定することが難しく、脆化域を高温側にも低温側にも回避できなく鋳片表面割れの発生頻度が高い。   Further, it is difficult to strictly define the casting conditions at the so-called unsteady part at the beginning and the end of casting, and the embrittlement region cannot be avoided both on the high temperature side and the low temperature side, and the occurrence frequency of slab surface cracks is high.

上述のように鋳造条件により鋳片表面割れを防止しようとすると様々なデメリットが発生する。   As described above, various demerits occur when trying to prevent slab surface cracking depending on casting conditions.

したがって、本発明にあっては、溶鋼のAl含有量およびN 含有量を規定することで、その解決を図る。   Therefore, in this invention, the solution is aimed at by prescribing the Al content and N content of the molten steel.

図6に[Al]×[N] によるAlN の析出量の計算結果を示したが、 [Al] ×[N] が低下するに伴い、AlN 析出量が低減することがわかる。   FIG. 6 shows the calculation result of the precipitation amount of AlN by [Al] × [N]. It can be seen that the precipitation amount of AlN decreases as [Al] × [N] decreases.

Al+N=AlN ・・・(1)
K=aAl×aN・・・(2)
aAl:溶鋼中Alの活量、aN:溶鋼中のNの活量
すなわち、本発明によれば、表面割れを助長するAlN の粒界への析出量を減少させることで割れを防止するのである。 AlNの平衡反応式は(1) 式で表され、平衡定数Kは(2) 式で表される。つまり、溶鋼中のAlとNを低下させることでAlN を低減できる。ここで、管理指標を簡単にするために、溶鋼中のAl濃度(mass%:[Al])とN濃度(mass%:[N]) の積を採用した。
Al + N = AlN (1)
K = aAl × aN (2)
aAl: Activity of Al in molten steel, aN: Activity of N in molten steel That is, according to the present invention, cracking is prevented by reducing the amount of precipitation of AlN at the grain boundary that promotes surface cracking. . The equilibrium reaction formula of AlN is expressed by equation (1), and the equilibrium constant K is expressed by equation (2). That is, AlN can be reduced by reducing Al and N in the molten steel. Here, in order to simplify the management index, the product of Al concentration (mass%: [Al]) and N concentration (mass%: [N]) in molten steel was adopted.

次に、鋳片表面割れ発生状況を把握するために、丸ビレット鋳造−継目無鋼管プロセスで鋳片起因かつモールドパウダー起因以外のパイプの外面不良率を調査したところ鋳型サイズが大きい程表面検査で不良率が高いことがわかった (図7) 。   Next, in order to ascertain the occurrence of cracks on the slab surface, we investigated the external surface defect rate of pipes other than those caused by slab and mold powder in the round billet casting-seamless steel pipe process. It was found that the defect rate was high (Fig. 7).

図7は、鋳型サイズとパイプの表面不良率の関係を示すグラフであり、これは矯正時の鋳片表面割れが原因である裏付けである。   FIG. 7 is a graph showing the relationship between the mold size and the surface defect rate of the pipe, and this is a backing that is caused by a slab surface crack during correction.

直径191mm 、直径225mm では鋳片厚が小さいために矯正歪が小さく、表面割れは発生しにくい。そこで、鋳片径≧300mm で[Al]×[N] とパイプの表面不良率を調査したところ、 [Al] ×[N] の増加に伴いパイプの表面不良率が増加した。代表として直径360mm での調査結果を図8に示した。   When the diameter is 191 mm and the diameter is 225 mm, the slab thickness is small, so the correction distortion is small and surface cracks are unlikely to occur. Therefore, when [Al] × [N] and the surface defect rate of the pipe were investigated with a slab diameter ≧ 300mm, the surface defect rate of the pipe increased with the increase of [Al] × [N]. As a representative, the results of a survey at a diameter of 360 mm are shown in FIG.

上記結果より、鋳片径により溶鋼成分の[Al]×[N] を規制することでコスト悪化と鋳片表面割れを抑制することを考えた。つまり、鋳片径<300mm では表面割れは発生しないため、コスト悪化抑制の観点から[Al]×[N] を制約しない。鋳片径≧300mm のみ[Al]×[N] ≦2000×10-7に規制する。 From the above results, it was considered that the cost deterioration and slab surface cracking were suppressed by regulating the molten steel component [Al] × [N] by the slab diameter. In other words, surface cracks do not occur at slab diameters <300 mm, so [Al] × [N] is not constrained from the viewpoint of suppressing cost deterioration. Only slab diameter ≧ 300mm is restricted to [Al] × [N] ≦ 2000 × 10 -7 .

本発明において、鋼の化学組成には特に制限されないが、その好適態様にあっては、次のような化学組成を備えた鋼種に本発明を適用することが、その効果をより確実に発揮させる上で好ましい。   In the present invention, the chemical composition of the steel is not particularly limited. However, in the preferred embodiment, application of the present invention to a steel type having the following chemical composition more reliably exhibits its effect. Preferred above.

C: 0.05〜0.20%
Mn: 0.3 〜1.5 %
Si: 0.15〜0.35%
P 、S: 0.03%以下
N: 0.015 %以下
Al: 0.05%以下
その他、必要に応じて、Cr、Ni、Mo、Nb、V等の合金元素を適宜配合することができる。
C: 0.05-0.20%
Mn: 0.3-1.5%
Si: 0.15-0.35%
P, S: 0.03% or less N: 0.015% or less
Al: 0.05% or less In addition, alloy elements such as Cr, Ni, Mo, Nb, and V can be appropriately blended as necessary.

ここで、本発明にかかる連続鋳造方法についてその操作を具体的に説明すると次の通りである。   Here, the operation of the continuous casting method according to the present invention will be specifically described as follows.

予め本発明にしたがってAl、N含有量を規定された溶鋼は、連続的に鋳型に注入されるが、本発明において使用する連続鋳造装置としては、湾曲型、垂直曲げ型のいずれでもよいが、断面均一に冷却が行われることが望ましい。本発明において用いる鋳型は断面丸型であり、丸鋳片径として300mm 以上に限定するが、これはそれよりも小さい径の場合には、特に問題が少ないからであり、それよりも小さい径の丸鋳片の製造に本発明を用いることも可能である。   Although the molten steel whose Al and N contents are prescribed in advance according to the present invention is continuously poured into the mold, the continuous casting apparatus used in the present invention may be either a curved type or a vertical bending type, It is desirable that the cross-section be cooled uniformly. The mold used in the present invention has a round cross-section and is limited to a round cast slab diameter of 300 mm or more. This is because there are particularly few problems when the diameter is smaller than that, and a smaller diameter than that. It is also possible to use the present invention for the production of round slabs.

鋳型に鋳込まれた溶鋼は、鋳型を通して一次冷却され、次いで鋳型から引き抜いてからさらに水冷却される。これを二次冷却という。二次冷却領域は、通常は、鋳型直下〜ローラーエプロン帯出側までを言うが、本発明の場合には、鋳型直下〜矯正帯入側までの領域を言い、したがって、二次冷却水量も、鋳型直下〜矯正帯入側の領域での合計冷却水量を云う。   The molten steel cast into the mold is primarily cooled through the mold and then withdrawn from the mold and further water-cooled. This is called secondary cooling. The secondary cooling region usually refers to the region immediately below the mold to the roller apron exit side, but in the case of the present invention, it refers to the region immediately below the mold to the correction belt entry side. This refers to the total amount of cooling water in the region immediately below to the correction belt entry side.

かくして本発明によれば、成形ロールによる圧下を行うことなく、鋳込みままの状態で良好な真円度が得られ、また表面割れが効果的に防止できることから、高価な成形ロールを多数設ける必要がなく、設備自体も簡便化される、等の効果が得られる。   Thus, according to the present invention, it is necessary to provide a large number of expensive forming rolls because good roundness can be obtained in an as-cast state without being reduced by a forming roll, and surface cracks can be effectively prevented. In addition, it is possible to obtain an effect that the equipment itself is simplified.

次に、実施例によって本発明の作用効果をさらに具体的に説明する。   Next, the effects of the present invention will be described more specifically with reference to examples.

表1に示した成分の炭素鋼および低合金鋼を、それぞれ断面丸形の鋳型寸法が、直径310 mm、直径360 mmの曲率半径10.6メートルの湾曲型連続鋳造機で連続鋳造を実施した。   Carbon steel and low alloy steel having the components shown in Table 1 were continuously cast by a curved continuous casting machine having a round mold in cross section and a diameter of 310 mm and a diameter of 360 mm and a radius of curvature of 10.6 meters.

このときの真円度の評価は先に述べた方法で行い、鋳片表面割れの評価は鋳片天側のスケールをグラインダーで除去後浸透探傷試験で評価した。   The roundness at this time was evaluated by the method described above, and the slab surface crack was evaluated by a penetrant flaw test after removing the scale on the slab top side with a grinder.

その結果、比水量≧0.40L/kgで真円度不良は発生しなかった。ただし、比水量=1.OL/kg では鋳片連結部に反りが発生したため、比水量<l.OL/kg が望ましい。 [Al] ×[N] ≦2000×10-7で表面割れは防止可能であった。 As a result, no roundness defect occurred at a specific water amount of ≧ 0.40 L / kg. However, when the specific water volume is 1.OL / kg, warpage occurs at the slab joint, so it is desirable that the specific water volume is <l.OL / kg. Surface cracking could be prevented when [Al] × [N] ≦ 2000 × 10 −7 .

表2にこれらの結果をまとめて示す。   Table 2 summarizes these results.

図9は、このとき得られた真円度と表面割れの関係を示すグラフであり、本発明の規定する範囲において真円度が良好で、かつ表面割れも見られない。図中、白丸で示す。   FIG. 9 is a graph showing the relationship between the roundness and surface cracks obtained at this time. The roundness is good and no surface cracks are observed within the range defined by the present invention. In the figure, it is indicated by a white circle.

Figure 0004222148
Figure 0004222148

Figure 0004222148
Figure 0004222148

これらの結果からも分かるように、二次冷却の比水量が0.4 L/kg以上のときに、良好な真円度が確保できる。しかし、このときの比水量が1.OL/kg では鋳片の反りが見られ、望ましくは、比水量は、l.OL/kg 未満である。   As can be seen from these results, a good roundness can be secured when the secondary cooling specific water amount is 0.4 L / kg or more. However, when the specific water amount at this time is 1.OL / kg, the slab is warped. Preferably, the specific water amount is less than l.OL / kg.

また、[Al]×[N] ≦2000×10-7を満足するときに、表面割れ防止が図られが、比較例7〜9に示すように、[Al]×[N] ≦2000×10-7を外れると、丸鋳片径≧300mm では、矯正歪が大きいため表面割れが発生する。 Further, when [Al] × [N] ≦ 2000 × 10 −7 is satisfied, surface cracking is prevented, but as shown in Comparative Examples 7 to 9, [Al] × [N] ≦ 2000 × 10 If -7 is deviated, surface cracks will occur if the round slab diameter is ≥300 mm because of the large straightening distortion.

真円度の定義および要求される仕様を示す図である。It is a figure which shows the definition and required specification of roundness. 二次冷却比水量と真円度の関係を示すグラフであるIt is a graph which shows the relationship between secondary cooling specific water amount and roundness 鋳片表面割れ発生状況を示す模式的説明図である。It is typical explanatory drawing which shows the slab surface crack generation | occurrence | production situation. 図4aおよびbは、表面割れ発生機構の模式的説明図である。4A and 4B are schematic explanatory views of a surface crack generation mechanism. 鋼の高温引張り試験結果を示すグラフである。It is a graph which shows the high temperature tension test result of steel. AlN 析出量計算結果を示すグラフである。It is a graph which shows the AlN precipitation amount calculation result. 鋳型サイズとパイプの表面不良率の関係を示すグラフである。It is a graph which shows the relationship between mold size and the surface defect rate of a pipe. [Al]×[N] とパイプの表面不良率の関係を示すグラフである。It is a graph which shows the relationship between [Al] x [N] and the surface defect rate of a pipe. 真円度と表面割れの関係を示すグラフである。It is a graph which shows the relationship between roundness and a surface crack.

Claims (2)

炭素鋼および低合金鋼の丸鋳片を湾曲型または垂直曲型連続鋳造機で製造するにあたり、連続鋳造鋳型に注入される溶鋼成分の[Al%]および[N%]を[Al%]×[N%]≦2×10−4に調整するとともに、鋳造速度を1.4m/min以下として鋳造し、鋳型から引き抜かれた丸鋳片を、二次冷却比水量0.4L/kg以上、1.0 L/kg未満で二次冷却することを特徴とする連続鋳造方法。 When producing a round slab of carbon steel and low alloy steel by a curved type or vertical curved type continuous casting machine, [Al%] and [N%] of the molten steel component injected into the continuous casting mold are set to [Al%] × [N%] ≦ 2 × 10 −4 While adjusting the casting speed to 1.4 m / min or less and casting the round slab drawn from the mold, the secondary cooling specific water amount is 0.4 L / kg or more , A continuous casting method characterized by secondary cooling at less than 1.0 L / kg . 前記丸鋳片の鋳片径が300mm以上である請求項1記載の連続鋳造方法。   The continuous casting method according to claim 1, wherein a slab diameter of the round slab is 300 mm or more.
JP2003288991A 2003-08-07 2003-08-07 Steel continuous casting method Expired - Fee Related JP4222148B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003288991A JP4222148B2 (en) 2003-08-07 2003-08-07 Steel continuous casting method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003288991A JP4222148B2 (en) 2003-08-07 2003-08-07 Steel continuous casting method

Publications (2)

Publication Number Publication Date
JP2005052881A JP2005052881A (en) 2005-03-03
JP4222148B2 true JP4222148B2 (en) 2009-02-12

Family

ID=34367466

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003288991A Expired - Fee Related JP4222148B2 (en) 2003-08-07 2003-08-07 Steel continuous casting method

Country Status (1)

Country Link
JP (1) JP4222148B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4887818B2 (en) * 2006-02-15 2012-02-29 Jfeスチール株式会社 Manufacturing method of continuous cast slab and manufacturing method of high-tensile hot-rolled steel sheet, high-tensile cold-rolled steel sheet, and high-tensile galvanized steel sheet
EP2263816A1 (en) * 2009-06-03 2010-12-22 Concast Ag Method and apparatus for guiding and straightening a strand in a continuous acsting machine for round billets of large cross-section
KR101247459B1 (en) * 2009-07-07 2013-03-25 신닛테츠스미킨 카부시키카이샤 Mold flux for continuously casting steel and method of continuously casting steel using the same
JP5299702B2 (en) * 2009-12-28 2013-09-25 新日鐵住金株式会社 Continuous casting method of Cr-containing alloy steel round slab
JP5370929B2 (en) * 2010-01-22 2013-12-18 新日鐵住金株式会社 Mold flux for continuous casting of steel
CN106180611A (en) * 2016-07-08 2016-12-07 江苏联峰能源装备有限公司 It is applicable to process the continuous cast round billets production technology of ring-like forging

Also Published As

Publication number Publication date
JP2005052881A (en) 2005-03-03

Similar Documents

Publication Publication Date Title
JP6484716B2 (en) Lean duplex stainless steel and manufacturing method thereof
JP4222148B2 (en) Steel continuous casting method
JP6269543B2 (en) Steel continuous casting method
JP4600436B2 (en) Continuous casting method for slabs
JP2005103604A (en) Continuous casting method, continuous casting cast slab, and steel plate
JP2012110898A (en) Continuous casting method of round cast billet for making 13cr seamless steel pipe
JP7147477B2 (en) Continuous casting method for billet slab
JP4684204B2 (en) How to end continuous casting
JP4407481B2 (en) Continuous casting method for medium carbon steel
JP2001191158A (en) Continuous casting method of steel
JP5343746B2 (en) Continuous casting method of round slabs for seamless steel pipes
JPH07204811A (en) Continuous casting method
JP5896067B1 (en) Method for producing slabs using a continuous casting machine
JP4561755B2 (en) Method for continuous casting of steel containing B and N
JP4723451B2 (en) Continuous casting method of high carbon steel related to internal cracks derived from recuperation
JP4692164B2 (en) Continuous casting method of high carbon steel
JP4364852B2 (en) Continuous casting equipment and continuous casting method for slab slabs
JP6589096B2 (en) Continuous casting method of Ni-containing steel
JP5195636B2 (en) Manufacturing method of continuous cast slab
JP3994852B2 (en) Continuous casting method using vertical bending die continuous casting machine and cast slab produced thereby
JPH11197797A (en) Method for continuously casting steel
TW201809316A (en) Method of producing high nickel-based alloy billet and application thereof
JP6402533B2 (en) Continuous casting method of Ni-containing steel
JP2022189395A (en) Method for continuous casting of slab
JP2005211916A (en) High speed continuous casting method for carbon steel

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050819

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070515

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070712

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070918

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071112

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081028

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081110

R150 Certificate of patent or registration of utility model

Ref document number: 4222148

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111128

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121128

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131128

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131128

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131128

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees