JPS6048584B2 - Ultra-low carbon/nitrogen ferrite stainless steel with excellent weld toughness and workability - Google Patents

Ultra-low carbon/nitrogen ferrite stainless steel with excellent weld toughness and workability

Info

Publication number
JPS6048584B2
JPS6048584B2 JP6393977A JP6393977A JPS6048584B2 JP S6048584 B2 JPS6048584 B2 JP S6048584B2 JP 6393977 A JP6393977 A JP 6393977A JP 6393977 A JP6393977 A JP 6393977A JP S6048584 B2 JPS6048584 B2 JP S6048584B2
Authority
JP
Japan
Prior art keywords
workability
toughness
stainless steel
less
welded
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP6393977A
Other languages
Japanese (ja)
Other versions
JPS53149111A (en
Inventor
啓一 吉岡
元彦 竹田
寛 小野
延夫 大橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP6393977A priority Critical patent/JPS6048584B2/en
Publication of JPS53149111A publication Critical patent/JPS53149111A/en
Publication of JPS6048584B2 publication Critical patent/JPS6048584B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Arc Welding In General (AREA)

Description

【発明の詳細な説明】 この発明は溶接部のじん性および加工性に優れた極低炭
素・窒素フェライト系ステンレス鋼に関するものである
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an ultra-low carbon/nitrogen ferritic stainless steel that has excellent welded part toughness and workability.

フェライト系ステンレス鋼は種々の腐食環境においても
応力腐食割れが起りにくくNiを含む高価なオーステナ
イト系ステンレス鋼に較べ顕著な利点を有しているが溶
接部のじん性および加工性に劣るので、おのずとその使
用範囲が限定され、・薄物でしかも溶接部のじん性およ
び加工性が問題とならないような用途で主に使用されて
きた。
Although ferritic stainless steel has a remarkable advantage over expensive austenitic stainless steel that contains Ni in that it is less prone to stress corrosion cracking in various corrosive environments, it is inferior in weld toughness and workability, so it is naturally Its range of use is limited, and it has been mainly used for thin products where the toughness and workability of welded parts are not a problem.

従来、フェライト系ステンレス鋼の溶接部のじん性およ
び加工性を向上させるために、安定化元素Nb、Tiを
添加したり、あるいはMn量を1.0%−(重量%、以
下%表示について同じ)程度又はより多くする等の手段
が知られているが、それはC、Nがそれぞれ200pμ
m前後と高いために溶接部のじん性向上にも限度がある
上に、Tiを添加したものではTi酸化物に起因した表
面きずが多フいなどの問題があり、実用上改善すべき点
が残されていた。一方、近年VODその他の新しい設備
による製鋼技術の進歩によつてCおよびNをそれぞれ1
0および20pμm程度まで減少させることが可能とな
り、それによつて母材のじん性や加工性を向上させるこ
とができるようになつてきた。
Conventionally, in order to improve the toughness and workability of welded parts of ferritic stainless steel, stabilizing elements Nb and Ti have been added, or the amount of Mn has been increased by 1.0% - (weight%, hereinafter the same applies to percentages). ) or more, but it is known that C and N are each 200 pμ.
There is a limit to the improvement of the toughness of welded joints due to the high value of around m, and in addition, there are problems such as many surface flaws caused by Ti oxides in products with added Ti, which should be improved in practical terms. was left behind. On the other hand, in recent years, advances in steelmaking technology using VOD and other new equipment have enabled C and N to be reduced to 1
It has become possible to reduce the particle size to about 0 or 20 pμm, thereby improving the toughness and workability of the base material.

さらにこのように減少させた(C+N)量に応じてMn
量を適正に制御することにより溶接部のじん性および加
工性を著しく向上させうることも明らかになり、この知
見に基づいて発明者らはさきに超極低炭素・窒素、Ti
含有フェライト系ステンレス鋼を関発した。発明者らは
さらに進んでこのような極低C,Nフェライト系ステン
レス鋼の溶接部特性の改善に フついて一層広範な研究
を実施したところ、そのじん性および加工性がとくに溶
接する際の雰囲気によつて著しく影響を受けることを見
出した。
Furthermore, depending on the amount of (C+N) reduced in this way, Mn
It has also become clear that the toughness and workability of welded parts can be significantly improved by appropriately controlling the amount of Ti
Contains ferritic stainless steel. The inventors went further and conducted more extensive research into improving the properties of welded parts of ultra-low C, N ferritic stainless steel, and found that its toughness and workability were particularly good in the welding atmosphere. was found to be significantly affected by

すなわち、実際の溶接施工では溶接部をArなどの不活
性ガスで完全にシールできない楊合が多々あり、たとえ
ば溶接の表側面はシールできても裏面は大気にさらして
溶接せざるを得ないようなときには溶着鋼中に大気から
浸窒が起り、溶接部のじん性および加工性が著しく劣化
するわけであり、したがつて、この点を克服できる鋼を
開発できれは実用上きわめて意義があるといえる。発明
者らは、かかる事情にかんがみ種々の開発研究を行なつ
た結果、大気環境に一部さらされる状況で溶接しても溶
接部のじん性および加工性がが極めて優れた極低炭素・
窒素フェライト系ステンレス鋼の改良に成功したもので
ある。この発明は、0.20−1.5%のA1と、0.
05〜0.4%のTiNO.O5〜0.3%のNbのう
ち一種又は二種とを、それぞれ0.010%以下に低減
したCおよびNとともに含み、MnO.5%以下、Si
O.5%以下、そし.てCrll.5%〜20.0%を
含有し、さらに場合によつてはMO4.O%以下を含有
し、残部は鉄および不可避の不純物から成るフェライト
系ステンレス鋼組成において上述した溶接部におけるじ
ん性および加工性の順著な改善を究明したものである。
In other words, in actual welding, there are many cases in which the weld cannot be completely sealed with an inert gas such as Ar. For example, even if the front side of the weld can be sealed, the back side must be welded while being exposed to the atmosphere. In some cases, nitrification occurs in the welded steel from the atmosphere, significantly deteriorating the toughness and workability of the welded part.Therefore, it would be of great practical significance if we could develop a steel that can overcome this problem. It can be said. In view of these circumstances, the inventors conducted various research and development efforts, and as a result, the inventors have developed an ultra-low carbon fiber that has extremely excellent weld toughness and workability even when welded in conditions partially exposed to the atmospheric environment.
This is a successful improvement of nitrogen ferritic stainless steel. This invention contains 0.20-1.5% A1 and 0.20-1.5% A1.
05-0.4% TiNO. MnO. 5% or less, Si
O. 5% or less, then. Crll. 5% to 20.0%, and in some cases MO4. It was found that the above-mentioned significant improvement in the toughness and workability of the welded zone was found in a ferritic stainless steel composition containing 0% or less, with the remainder consisting of iron and unavoidable impurities.

この発明においてMOは、腐食環境に応じて選 (択的
に使用される。次にこの発明では、上記のように合金成
分の組成範囲が限定され、その技術的な意義内容は次の
1とおりである。
In this invention, MO is selectively used depending on the corrosive environment.Next, in this invention, the composition range of the alloy components is limited as described above, and its technical significance is as follows. It is.

4 』 まずCは溶接部のじん性、加工性に対しそして耐食性に
も、もつとも有害な元素であり、低くす (れは低いほ
どそれらの性質は改善される。
4 First, carbon is an element that is harmful to the toughness, workability, and corrosion resistance of welded parts, and should be lowered (the lower the carbon content, the better these properties will be).

第1図は極低NでTiとNを含む17%Crステンレス
鋼の2−厚の板の表裏両面を完全にArシールしてTI
G溶接したとき、その溶接部のシャルピーVノッチ衝撃
試験による延性−ぜい性遷移温度および0.777Z7
7I厚の同鋼板のArシールTIG溶接部に関するエリ
クセン値とC量の関係を示す。Cが0.010%を越え
ると遷環温度が−60℃以上、そしてエリクセン値が8
.57TUn以下となり、じん性および加工性が劣化す
る。従来の経験によれば、この種のフェライト系ステン
レス鋼薄板を用いて作製した溶接部(たとえばTIG法
)が十分なじん性をもつためには、このシャルピーVノ
ッチ衝撃試験の延性−ぜい性遷移温度が約−60℃より
も低いことが望ましく、また、苛酷な塑性加工に際して
溶接部の加工性を確保するという点から、0.7Tn1
n厚の板の場合、溶接部のエリクセン値として8.5T
wt以上が必要である。
Figure 1 shows a 2-thick plate of 17% Cr stainless steel containing Ti and N with extremely low N, completely sealed with Ar on both the front and back sides.
When G-welded, the ductility-brittle transition temperature and 0.777Z7 by Charpy V-notch impact test of the welded part
The relationship between the Erichsen value and the amount of C for an Ar-sealed TIG welded part of the same steel plate with a thickness of 7I is shown. When C exceeds 0.010%, the ring transition temperature is -60℃ or higher and the Erichsen value is 8.
.. It becomes 57 TUn or less, and the toughness and workability deteriorate. According to conventional experience, in order for welds made using this type of ferritic stainless steel sheet (for example, by the TIG method) to have sufficient toughness, the ductility-brittle transition in the Charpy V-notch impact test must be It is desirable that the temperature is lower than about -60°C, and from the viewpoint of ensuring workability of the welded part during severe plastic working, 0.7Tn1
In the case of a plate of n thickness, the Erichsen value of the weld is 8.5T.
wt or more is required.

したがつて、これらの観点から評価するとCは0.01
0%を上限とする必要があり、これより低ければ低いほ
ど溶接部のじん性および加工性は良好といえる。
Therefore, when evaluated from these viewpoints, C is 0.01
It is necessary to set the upper limit to 0%, and it can be said that the lower it is, the better the toughness and workability of the welded part.

また、第2図に示すとおり、極低C(7)Ti,Al添
加17%Cr鋼においてNが0.010%を越えるとA
rシール溶接部の延性−ぜい性遷移温度が−60℃以上
に急上昇し、また溶接部のエリクセン値が8.5−以下
と低下し、じん性と加工性が劣化するので、NもまたC
と同様に0.010%を上限とする。
Furthermore, as shown in Figure 2, when N exceeds 0.010% in ultra-low C(7) Ti and Al-added 17% Cr steel, A
The ductility-brittle transition temperature of the r-seal weld increases rapidly to over -60°C, and the Erichsen value of the weld decreases to below 8.5, deteriorating the toughness and workability. C
Similarly, the upper limit is 0.010%.

Nはこれよりも低ければ低いほどこれらの性質は良好に
なる。Alはこの発明の効果を発揮させるためにとくに
重要な成分である。
The lower N is, the better these properties will be. Al is a particularly important component for achieving the effects of this invention.

第3図は極低C,NTi添加17%Cr鋼の2.077
Z77!厚および0.7Tf!:111厚鋼板のTIG
溶接部の延性−ぜい性遷移温度およびエリクセン値とN
含有量との関係を示す。溶接時に表裏両面を完全にAr
シールした場合の溶接部のじん性および加工性はA1は
1.5%を越えると劣化するが、1.5%以下ではAl
量の大小によつてほとんど影響を受けず良好である。
Figure 3 shows ultra-low C, 17% Cr steel with NTi addition of 2.077
Z77! Thickness and 0.7Tf! : TIG of 111 thick steel plate
Ductility-brittle transition temperature and Erichsen value of weld zone and N
Shows the relationship with content. Completely Ar on both sides during welding
The toughness and workability of the welded part when sealed deteriorates when A1 exceeds 1.5%, but below 1.5% Al
It is almost unaffected by the size of the amount and is good.

一方、板の表面をAr、裏面円大気にさらして溶接した
楊合、0.2〜1.50%N含有鋼の溶接部のじん性お
よび加工性は両面Arでシールした場合のそれらの性質
と大差なくその延性−せい性遷移温度は約−90℃、エ
リクセン値は10wn程度とほぼ同一である。これに較
べ、A1が0.2%未満または1.5%を越えると延性
−せい性遷移温度は−60℃以上、エリクセン値は8.
5Twt以下と劣化する。この場合の0.2%以上のA
1添加によるじん性および加工性の向上の原因は、おそ
らく溶着鋼の溶融時においてその表面にA1酸化物の薄
い膜が形成されることにより大気からの浸室を防ぐこと
にあると考えられ、また1.5%A1以上の添加による
じん性および加工性の劣化はAI自身の固溶硬化による
ものと考えられる。この観点から評価するとAlの下限
は0.20%、上限は1.50%と規定する必要がある
。このように0.20〜1.50%のA1を添加するこ
とにより、溶接裏面を大気にさらしTIG溶接した場合
の溶接部の諸特性が、完全にArシールした場合のそれ
と同程度になることが第3図より明白であり、このAl
含有はまた、従来溶接部じん性を確保するため少くとも
1.0%をこえるMnが必要とされ、その故に溶接中溶
着銅の湯流れ悪化による溶接作業性低下か、板の成形加
工性の劣化とともに余儀なくされるような不利のない、
0.5%以下のMn含有量の下で、溶接部のじん性と成
形性の著しい改善を遂げることができる。MΠは0.5
%を越えると上記の如き板の成形性劣化ならびに溶着鋼
の湯流れ咀害に由来した溶接作業性の低下を来す不利が
あり、それ故溶接部のじん性と加工性を問題とするこの
発明てはMnの上限を0.5%と規定する。
On the other hand, the toughness and workability of the welded part of steel containing 0.2 to 1.50% N are the same when the front surface of the plate is sealed with Ar and the back side is exposed to a circular atmosphere. The ductility-ductility transition temperature is about -90°C, and the Erichsen value is about 10wn, which is almost the same. In comparison, when A1 is less than 0.2% or more than 1.5%, the ductile-ductility transition temperature is -60°C or higher, and the Erichsen value is 8.
It deteriorates below 5Twt. In this case, 0.2% or more of A
The reason for the improvement in toughness and workability due to the addition of A1 is probably due to the formation of a thin film of A1 oxide on the surface of the welded steel during melting, which prevents immersion from the atmosphere. Furthermore, the deterioration in toughness and workability due to addition of 1.5% Al or more is considered to be due to solid solution hardening of AI itself. When evaluated from this point of view, it is necessary to specify the lower limit of Al as 0.20% and the upper limit as 1.50%. By adding 0.20 to 1.50% A1 in this way, the various properties of the welded part when TIG welding is performed with the back side of the weld exposed to the atmosphere are comparable to those when the weld is completely sealed with Ar. is clear from Fig. 3, and this Al
Conventionally, Mn content exceeds at least 1.0% to ensure the toughness of the welded part, and therefore, it may be that the welding workability is reduced due to poor flow of the deposited copper during welding, or that the formability of the plate is affected. without the disadvantages that are inevitable with deterioration,
At a Mn content of 0.5% or less, significant improvements in weld toughness and formability can be achieved. MΠ is 0.5
%, there are disadvantages such as deterioration of formability of the plate as described above and reduction of welding workability due to melt flow chewing of the welded steel. In the invention, the upper limit of Mn is defined as 0.5%.

T1およびNbは、溶接部のじん性、加工性および耐食
性向上に対しともに有効な同効成分であり、それらの1
種または2種の添加がこの発明で不可欠てある。
T1 and Nb are both effective components for improving the toughness, workability, and corrosion resistance of welded parts, and one of them is
The addition of a species or two is essential to this invention.

第4図および第5図は2.0TfUrL厚および0.7
TmTt厚鋼板のTIG溶接部の延性−ぜい性遷移温度
およびエリクセン値とTiならびにNb量との関係を示
す。T1は0.05%未満あるいは0.4%を越えると
溶接部のじん性および加工性が劣化し、一方Nbは0.
05%未満あるいは0.30%を越えると溶3接部のじ
ん性および加工性が劣化する。したがつて、T1および
Nb量の上限はそれぞれ0.4%および0.3%、下限
はいずれも0.05%に規定し、この範囲でTiおよび
Nbを単独かまたは複合添加することが望ましい。Si
はステンレス鋼の精錬時に不可避的に混入する元素であ
り、Si量が増大すると溶着鋼の湯流れが良好となる反
面、溶接部のじん性が若干劣化するが、この発明の目的
を達成するためには0.5%以下に制限すればよい。
Figures 4 and 5 show 2.0TfUrL thickness and 0.7TfUrL thickness.
The relationship between the ductility-brittle transition temperature and Erichsen value of a TIG welded part of a TmTt thick steel plate and the amounts of Ti and Nb is shown. If T1 is less than 0.05% or exceeds 0.4%, the toughness and workability of the weld will deteriorate, while Nb will be less than 0.05% or more than 0.4%.
If it is less than 0.05% or more than 0.30%, the toughness and workability of the welded portion will deteriorate. Therefore, the upper limits of T1 and Nb amounts are set at 0.4% and 0.3%, respectively, and the lower limits are set at 0.05%, and it is desirable to add Ti and Nb alone or in combination within this range. . Si
is an element that is inevitably mixed in when refining stainless steel, and while increasing the amount of Si improves the flow of the melt in the welded steel, it slightly deteriorates the toughness of the welded part, but in order to achieve the purpose of this invention. It is sufficient to limit the content to 0.5% or less.

Crはフェライト系ステンレス鋼において耐食性および
耐酸化性を付与するための必須の基本成分であり、住5
%未満では上記両性質ともに急激に劣化するが、一方2
0%を越えると溶接部のじん性および加工性が劣化する
ようになるためこの発明の目的とするとこにおいてCr
量の範囲は11.5〜20.0%に限定される。
Cr is an essential basic component for imparting corrosion resistance and oxidation resistance to ferritic stainless steel.
%, both of the above properties deteriorate rapidly;
If it exceeds 0%, the toughness and workability of the welded part will deteriorate, so in the purpose of this invention, Cr
The amount range is limited to 11.5-20.0%.

最後にMOは耐食性とくに耐孔食性および耐隙間腐食性
を向上させるために有効な元素である。
Finally, MO is an effective element for improving corrosion resistance, particularly pitting corrosion resistance and crevice corrosion resistance.

したがつて、弱腐食環境下で使用する場合はMOを添加
する必要はないが、C「イオンを含むような苛酷な腐食
環境下で使用されることが予想される用途に適合させる
場合はMOを添加することにより耐孔食ならびに耐隙間
腐食性を改善する効果がこの発明の上述効果につけ加わ
る。しかしMOは4.0%を越えて添加してもその効果
はほとんど飽和しコストの上昇を招くのみなのでMOの
上限を4.0%と定め、これ以下の範囲で使用環境に適
する量を必要に応じて添加すればよい。この発明におい
て上に説明した主要成分の他、不純物として銅組成中に
含有される元素の中の主ノたるものとして、PおよびS
は通常のJISにおけると同様にそれぞれ0.040%
以下および0.030%以下、また製鋼原料から混入す
るN1は0.5%以下が許容される。
Therefore, it is not necessary to add MO when used in a mildly corrosive environment, but when adapting to applications that are expected to be used in a severe corrosive environment containing C By adding MO, the effect of improving pitting corrosion resistance and crevice corrosion resistance is added to the above-mentioned effects of this invention. However, even if MO is added in an amount exceeding 4.0%, the effect is almost saturated and the cost increases. Therefore, the upper limit of MO is set at 4.0%, and an amount suitable for the usage environment can be added as needed within this range.In addition to the main components explained above, in this invention, copper composition is added as an impurity. P and S are the main elements contained in
are 0.040% each as in normal JIS
0.030% or less, and 0.5% or less of N1 mixed from steelmaking raw materials are allowed.

第1表に示す1〜16まての各成分の鋼を10k9高フ
周波小型溶解炉で溶製し、これらを公知の条件で熱間圧
延し4wt厚の熱延板を作製した。
Steels having components 1 to 16 shown in Table 1 were melted in a 10k9 high frequency small melting furnace, and hot rolled under known conditions to produce hot rolled sheets with a thickness of 4wt.

その後900゜C×5Tr$t焼なまししたのち、冷延
、仕上げ焼なまし(850℃×37W1空冷)を行ない
、−0.7TffXLおよび2.0wL厚の冷延焼鈍板
を作製した。
Thereafter, it was annealed at 900°C x 5Tr$t, followed by cold rolling and final annealing (850°C x 37W1 air cooling) to produce a cold rolled annealed plate with -0.7TffXL and 2.0wL thickness.

2Twt厚の冷延焼なまし板を幅90wrm×長さ30
0m771に切断し、突合せ継手によるTIG溶接を行
なつた。
2Twt thick cold rolled annealed board 90wrm wide x 30mm long
It was cut to a length of 0m771 and TIG welded using a butt joint.

この場合の溶接条件は溶接電流85A)溶接電圧IOV
)速度150Wf1/ −、タングステン電極1.6T
wt.φ、トーチからのシールドArガス151’/T
WLであり、裏面はArガス71/w$tでしたものと
、大気のままとしたものである。溶接後、溶接部の余盛
を除去せす溶着鋼断面に切欠を入れたJISZ22O2
の4号衝撃試験片を作製し、シャルピー衝撃試験;を行
なつた。また、JIGGO575によるStrauss
腐食試験も行なつた。また、これとは別に0.7Tm厚
の冷延焼鈍板を幅45Tr1:1rL×長さ3凹一に切
断し、溶接電流40A)溶接電圧8V)速度350TW
L/Wm、タングステン電極16mmφ、トーチからの
シールドArガス1.51?/Wrln)裏面はArガ
ス71/WLでのシルードあるいは大気のままの条件で
突台せ溶接した。この試験片についてエリクセン試験を
行なつた。また、0.77nm厚の冷延焼なまし板自身
についてはJISl3号B試験片での引張試験およびそ
の他の成形性試験を行なつた。第2表は2771771
厚の板のTIG溶接部のシャルピー衝撃試験およびSt
rauss腐食試験結果を示す。
The welding conditions in this case are welding current 85A) welding voltage IOV
) Speed 150Wf1/-, tungsten electrode 1.6T
wt. φ, shielding Ar gas 151'/T from torch
WL, and the back side was exposed to Ar gas 71/w$t and the back side was left in the atmosphere. JIS Z22O2 with a notch in the cross section of the welded steel to remove excess buildup from the weld after welding
A No. 4 impact test piece was prepared and subjected to a Charpy impact test. Also, Strauss by JIGGO575
Corrosion tests were also conducted. Separately, a cold rolled annealed plate with a thickness of 0.7Tm was cut into width 45Tr1:1rL x length 3 concavities, welding current 40A) welding voltage 8V) speed 350TW.
L/Wm, tungsten electrode 16mmφ, shield Ar gas from torch 1.51? /Wrln) The back side was welded under a shield with Ar gas 71/WL or under atmospheric conditions. An Erichsen test was conducted on this test piece. Further, the cold rolled annealed plate itself having a thickness of 0.77 nm was subjected to a tensile test using a JIS No. 3 B test piece and other formability tests. Table 2 is 2771771
Charpy impact test of TIG welded part of thick plate and St
The results of the Rauss corrosion test are shown.

裏面を大気にさらして溶接した場合の比較鋼のTIG溶
接部の延性−ぜい性遷移温度はいずれも−35゜〜20
℃と高いのに対し、発明鋼のそれはいずれも溶接部を両
面Arシールした場合とほぼ同一で−70℃以下と低く
、じん性が極めて良好てあつた。また、発明銅のTIG
溶接部はすべて粒界腐食惑受性をまつたく示さす耐食性
も良好であつた。第3表は0.7T!r!11厚の銅板
の材料特性とその溶接部のエリクセン値を示す。裏面を
大気にさらして溶接した場合の比較鋼のエリクセン値は
6.0〜7.Cymmと低いのに対し、発明銅のそれは
いずれも溶接部を両面Arシールした場合とほぼ同一て
9.0TWL以上と大きく加工性は良好であつた。
The ductility-brittleness transition temperature of the TIG welded parts of comparative steels when welded with the back side exposed to the atmosphere is -35° to 20°.
℃, while that of the invention steel was low at -70℃ or less, which is almost the same as when the welded parts were sealed with Ar on both sides, and the toughness was extremely good. In addition, the invention copper TIG
All of the welds had good corrosion resistance, showing good intergranular corrosion resistance. Table 3 is 0.7T! r! The material properties of a 11-thick copper plate and the Erichsen value of its welded part are shown. The Erichsen value of comparative steel when welded with the back side exposed to the atmosphere is 6.0 to 7. Cymm was low, whereas that of the invented copper was 9.0 TWL or more, which is almost the same as when both sides of the welded part were sealed with Ar, and the workability was good.

また、この発明による薄鋼板の材料特性は、CとNが極
低量なので降状応力および引張り強さがそれぞれ約23
および42k9/一程度と低く、また全伸びはいずれも
40%を越える極軟性となつている。
In addition, the material properties of the thin steel sheet according to the present invention include extremely low amounts of C and N, so that the descending stress and tensile strength are approximately 23% each.
and 42k9/1, which is low, and the total elongation exceeds 40%, making it extremely soft.

又r値、CCVおよびエリクセン値はそれぞれ1.6,
26.5および10.0w1程度と成形性は良好であり
、苛酷な塑性加工に対して十分耐えることができる。か
くしてこの発明によれはC,Nの鋼中含有量を低減させ
た上、適量のMn,SiとともにAIO.2〜1.5%
を添加し、さらに有効量TjおよびNbを1種または2
種含有させることにより溶接時に特別な.ガスシールド
を行なうことなく大気中で溶接しても溶接部のじん性と
耐食性が劣化しない11.5〜20%Crフェライト系
ステンレス鋼が製造できまた適量のMOを含有させれば
耐食性とくに耐孔食性および耐隙間腐食性が著しく向上
した鋼とするこ.とができるわけで、その工業的意義は
著しく大きいといえる。
Also, the r value, CCV, and Erichsen value are each 1.6,
The moldability is good at about 26.5 and 10.0 w1, and can sufficiently withstand severe plastic working. Thus, according to the present invention, the content of C and N in the steel is reduced, and AIO. 2-1.5%
is added, and one or two effective amounts of Tj and Nb are added.
By including seeds, special properties can be created during welding. It is possible to produce 11.5-20% Cr ferritic stainless steel that does not deteriorate the toughness and corrosion resistance of the welded part even when welded in the atmosphere without gas shielding.Additionally, if an appropriate amount of MO is added, corrosion resistance, especially porosity resistance, can be produced. The steel should have significantly improved corrosion resistance and crevice corrosion resistance. Therefore, it can be said that its industrial significance is extremely large.

【図面の簡単な説明】 第1図は極低N,Al,Tl含有17%Cr鋼板(2.
0−厚)のTIG溶接部(Arシールド)の衝撃特性お
よび同0.7wr1n厚銅板のTIG溶接部のエリクセ
ン値とC含有量の関係を示すグラフ、第2図は極低C,
Al,Ti含有17%Cr鋼板(2.0−厚)のTIG
溶接部(Arシールド)および同0.7TWL厚鋼板の
TIG溶接部のエリクセン値とN含有量との関係を示す
グラフ、第3図はAl含有量を変化させた極低C,N,
Tl含有17%Cr鋼板(2.0TK1Tt厚)のTI
G溶接部の衝撃特性および同0.7Twt厚鋼板のTI
G溶接部のエリクセン値とA1含有量ならびに溶接雰囲
気の関係を示すグラフ、第4図は極低C,N,N含有1
7%Cr鋼板(2.0−厚)のTIG溶接部(Arシー
ルド)の衝撃特性および同0.7TW1厚鋼板のTIG
溶接部のエリクセン値とTi含有量の関係を示すグラフ
てあり、第5図は極低C,N,Al含有17%Cr鋼板
(2.0−厚)のTIG溶接部(Arシールド)の衝撃
特性および同0.7TWL厚鋼板のTIG溶接部のエリ
クセン値とNb含有量の関係を示すグラフである。
[Brief explanation of the drawings] Figure 1 shows a 17% Cr steel plate containing ultra-low N, Al, and Tl (2.
A graph showing the impact characteristics of a TIG weld (Ar shield) of a TIG weld (0-thickness) and the relationship between the Erichsen value and C content of a TIG weld of a 0.7 wr 1n thick copper plate.
TIG of 17% Cr steel plate (2.0-thickness) containing Al and Ti
A graph showing the relationship between the Erichsen value and the N content of the welded part (Ar shield) and the TIG welded part of the same 0.7 TWL thick steel plate.
TI of 17% Cr steel plate containing Tl (2.0TK1Tt thickness)
Impact characteristics of G-welded part and TI of 0.7Twt thick steel plate
A graph showing the relationship between the Erichsen value of the G weld, the A1 content, and the welding atmosphere. Figure 4 shows the extremely low C, N, N content 1.
Impact characteristics of TIG welded part (Ar shield) of 7% Cr steel plate (2.0-thickness) and TIG of 0.7TW1-thick steel plate
There is a graph showing the relationship between the Erichsen value and Ti content of the weld, and Figure 5 shows the impact of a TIG weld (Ar shield) of a 17% Cr steel plate (2.0-thick) containing extremely low C, N, and Al. It is a graph showing the characteristics and the relationship between the Erichsen value and Nb content of the TIG welded part of the same 0.7 TWL thick steel plate.

Claims (1)

【特許請求の範囲】 1 C:0.010重量%以下 Si:0.5重量%以下 Mn:0.5重量%以下 Cr:11.5〜20.0重量% Al:0.20〜1.50重量%および N:0.010重量%以下 を含みかつ、0.05〜0.40重量%のTiおよび0
.05〜0.30重量%のNbのうち1種又は2種を含
有し、残部は鉄および不可避的不純物からなる、溶接部
のじん性および加工性に優れる極低炭素・窒素フェライ
ト系ステンレス鋼。 2 C:0.010重量%以下 Si:0.5重量%以下 Mn:0.5重量%以下 Cr:11.5〜20.0重量% Mo:4.0重量%以下 Al:0.20〜1.50重量%および N:0.010重量%以下 を含みかつ、0.05〜0.40重量%のTiおよび0
.05〜0.30重量%のNbのうち1種又は2種を含
有し、残部は鉄および不可避的不純物からなる、溶接部
のじん性および加工性に優れる極低炭素・窒素フェライ
ト系ステンレス鋼。
[Claims] 1 C: 0.010% by weight or less Si: 0.5% by weight or less Mn: 0.5% by weight or less Cr: 11.5-20.0% by weight Al: 0.20-1. 50 wt% and N: 0.010 wt% or less, and 0.05 to 0.40 wt% Ti and 0
.. An ultra-low carbon/nitrogen ferritic stainless steel containing one or two types of Nb in an amount of 05 to 0.30% by weight, with the remainder consisting of iron and unavoidable impurities, and has excellent welded part toughness and workability. 2 C: 0.010 wt% or less Si: 0.5 wt% or less Mn: 0.5 wt% or less Cr: 11.5 to 20.0 wt% Mo: 4.0 wt% or less Al: 0.20 to 1.50 wt% and N: 0.010 wt% or less, and 0.05 to 0.40 wt% Ti and 0
.. An ultra-low carbon/nitrogen ferritic stainless steel containing one or two types of Nb in an amount of 05 to 0.30% by weight, with the remainder consisting of iron and unavoidable impurities, and has excellent welded part toughness and workability.
JP6393977A 1977-06-02 1977-06-02 Ultra-low carbon/nitrogen ferrite stainless steel with excellent weld toughness and workability Expired JPS6048584B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6393977A JPS6048584B2 (en) 1977-06-02 1977-06-02 Ultra-low carbon/nitrogen ferrite stainless steel with excellent weld toughness and workability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6393977A JPS6048584B2 (en) 1977-06-02 1977-06-02 Ultra-low carbon/nitrogen ferrite stainless steel with excellent weld toughness and workability

Publications (2)

Publication Number Publication Date
JPS53149111A JPS53149111A (en) 1978-12-26
JPS6048584B2 true JPS6048584B2 (en) 1985-10-28

Family

ID=13243811

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6393977A Expired JPS6048584B2 (en) 1977-06-02 1977-06-02 Ultra-low carbon/nitrogen ferrite stainless steel with excellent weld toughness and workability

Country Status (1)

Country Link
JP (1) JPS6048584B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57126954A (en) * 1981-01-29 1982-08-06 Nisshin Steel Co Ltd Corrosion-resistant ferritic stainless steel
JPS61276955A (en) * 1985-05-31 1986-12-06 Nippon Steel Corp Ferrite single phase stainless steel which does not generate surface flaw
JPS644458A (en) * 1987-06-26 1989-01-09 Nippon Yakin Kogyo Co Ltd Ferrite stainless steel quenched thin strip having excellent toughness
JP2739531B2 (en) * 1991-09-17 1998-04-15 日新製鋼株式会社 Ferritic stainless steel with excellent weld corrosion resistance
JP3706428B2 (en) * 1996-03-15 2005-10-12 新日鐵住金ステンレス株式会社 Ferritic stainless steel for automotive exhaust system equipment
JP4831256B2 (en) * 2010-01-28 2011-12-07 Jfeスチール株式会社 High corrosion resistance ferritic stainless hot rolled steel sheet with excellent toughness
JP6417146B2 (en) * 2014-08-05 2018-10-31 日新製鋼株式会社 Ferritic stainless steel welded structure and heat resistant member for solid oxide fuel cell

Also Published As

Publication number Publication date
JPS53149111A (en) 1978-12-26

Similar Documents

Publication Publication Date Title
JP4478059B2 (en) Gas shielded arc welding wire for refractory structural steel.
US20080099455A1 (en) Flux-cored wire for gas shielded arc welding for creep-resisting steels
US20030015257A1 (en) Flux cored wire for gas shielded arc welding of high tensile strength steel
CA2259826C (en) Welding material for high-cr steels
US4436554A (en) High strength and high toughness welding material
JPS6048584B2 (en) Ultra-low carbon/nitrogen ferrite stainless steel with excellent weld toughness and workability
JP2857318B2 (en) Welding wire for high tensile steel
JP3894703B2 (en) Gas shielded arc welding wire
JPH0813432B2 (en) Flux-cored wire for carbon dioxide shield arc welding for Cr-Mo steel
JP2742201B2 (en) TIG welding wire for high strength Cr-Mo steel
JPH0561036B2 (en)
JP3217567B2 (en) Covered arc welding rod for high Cr ferritic heat resistant steel
JP2930772B2 (en) High manganese ultra-high strength steel with excellent toughness of weld heat affected zone
JPH09225680A (en) Welding wire for ferritic stainless steel
JP3194207B2 (en) Covered arc welding rod for high Cr ferritic heat resistant steel
JP2534942B2 (en) Gas shield arc welding method for pipes
JPH09122972A (en) Coated electrode for high-cr ferrite heat resisting steel
JPS60261690A (en) Coated electrode for cr-mo low alloy steel
JP2543801B2 (en) Coated arc welding rod for high Cr ferritic heat resistant steel
WO2022124274A1 (en) Ferrite-based stainless steel welding wire
JPS5911659B2 (en) Ultra-low carbon/nitrogen ferrite stainless steel with excellent weld toughness and workability
JP3270541B2 (en) How to prevent local corrosion in welds
JPS61147990A (en) Submerged arc welding wire for high tension steel
JPH04313488A (en) Tig welding wire for high tension steel
JP2892295B2 (en) Welding method for stainless steel with excellent nitric acid corrosion resistance