JP3734742B2 - Welded joint with excellent toughness - Google Patents

Welded joint with excellent toughness Download PDF

Info

Publication number
JP3734742B2
JP3734742B2 JP2001352644A JP2001352644A JP3734742B2 JP 3734742 B2 JP3734742 B2 JP 3734742B2 JP 2001352644 A JP2001352644 A JP 2001352644A JP 2001352644 A JP2001352644 A JP 2001352644A JP 3734742 B2 JP3734742 B2 JP 3734742B2
Authority
JP
Japan
Prior art keywords
less
weld metal
toughness
steel material
welded joint
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001352644A
Other languages
Japanese (ja)
Other versions
JP2003155539A (en
Inventor
喜臣 岡崎
等 畑野
敏晃 高木
裕之 武田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2001352644A priority Critical patent/JP3734742B2/en
Publication of JP2003155539A publication Critical patent/JP2003155539A/en
Application granted granted Critical
Publication of JP3734742B2 publication Critical patent/JP3734742B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明が属する技術分野】
本発明は建築構造物、機械構造物、船舶などにおける鋼材の溶接継手に関する。
【0002】
【従来の技術】
阪神大震災の教訓のもと、特に建築構造物の溶接継手の性能への注目が高まっており、とりわけ継手の靭性を向上させることが望まれている。
一方、近年、建築物が大型化(高層化)しており、それらを構成する構造用鋼材には一層の高強度化・大断面化(厚肉化)が要求されている。このような鋼材を溶接する際には、大入熱溶接が適用される傾向にあり、溶接継手の靭性を確保することは技術的に困難となりつつある。
【0003】
溶接継手の靭性を向上させる技術として、例えば特開2000−61687号公報には、溶接金属(溶着金属)として残留オーステナイトを1.5体積%以上含有する組成とすることが記載されているが、この技術は入熱20〜30kJ/cm程度の炭酸ガスシールドによる低入熱溶接に関するものであり、エレクトロスラグ溶接のような入熱200kJ/cm以上で溶接する大入熱溶接においては適用しがたいものである。
【0004】
大入熱溶接では溶接金属に粒界フェライトが生成しやすく、低入熱溶接に比較して、その強度・靭性を確保することが困難である。その主な理由として、以下の2つが考えられる。
粒界フエライトの抑制には、Bを活用することが有効とされているが、このBとは析出していないfreeB(固溶B)である。なお、本件発明では、以後、この析出していないBを固溶Bと表現する。固溶B量は鋼材中に添加したトータルB量から非水溶媒電解法によって分離定量したB量(すなわち析出したB量)を差し引いた量である。大入熱溶接では冷却速度が遅いためBの析出が促進され、固溶Bが減少する。これに対し、鋼材のB添加量を増加させれば必然的に固溶Bを確保することができるが、Bは一方で高温割れを助長するため、Bの添加には自ずから限度がある。
また、近年、鋼材の熱影響部(HAZ部)の脆化を抑制するためにC量を低下させた鋼材を活用することが主流となりつつある。このため、大入熱溶接時には鋼材による溶接金属の成分の希釈が一層大きくなり、溶接金属のC量が大きく低下するため、粒界フエライト生成が促進される傾向がある。なお、C、Mn、Bなどの安価でかつ焼入性を高める作用を持つ元素を活用すれば、溶接金属の強度を向上させることができるが、靭性を確保することができない。また、鋼材と溶接金属の強度分布が不均一になり、信頼性のある溶接継手を得ることができない。
【0005】
また、信頼性のある溶接構造物を形成するにあたっては、溶接金属のみならず、母材である鋼材のHAZ部をも適正に制御した溶接継手が必要であるが、大入熱溶接に対して、そこまで考慮されていないのが現状である。
【0006】
【発明が解決しようとする課題】
本発明はかかる問題に鑑みなされたものであり、入熱200kJ/cm以上の大入熱溶接においても、優れた靭性を有する溶接継手を提供することを目的とする。なお、上記大入熱溶接により形成された溶接継手の最終層の溶接まま組織の断面面積は通常6.5cm2以上である。
【0007】
【課題を解決するための手段】
本発明の溶接継手は、一方の鋼材と他方の鋼材とが入熱200KJ/cm以上の大入熱溶接により溶接金属を介して一体的に接合された溶接継手であって、前記鋼材はmass%でC:0.03〜0.12%、Si:1.0%以下、Mn:2.0%以下、Ni:0.10〜2.00%、Cr:0.10〜2.00%、B:0.0005〜0.0050%を含み、残部がFe及び不純物からなり、前記溶接金属はmass%でC:0.01〜0.12%、Si:0.10〜1.00%、Mn:1.40%以下、Cu:0.10〜1.00%、Ni:0.20〜1.00%、Cr:0.20〜1.00%、Ti:0.08%以下、B:0.0005〜0.0050%、固溶B:0.0003%以上を含み、残部がFe及び不純物からなるものである。前記溶接金属は、さらにNb:0.02%以下、Mo:0.5%以下の1種以上を含有することができる。
【0008】
上記溶接継手において、前記鋼材はさらにCu:0.10〜2.00%、Nb:0.001〜0.05%、Mo:0.5%以下の1種以上を含有することができる。
【0009】
また、上記溶接継手としては、ボンドから溶接金属側へ1mm隔てた位置から、ボンドから鋼材側へ10mm隔てた位置との間において、ビッカース硬度の最大値と最小値の差が40以下とすることが好ましい。
【0010】
【発明の実施の形態】
本発明者は大入熱溶接を実施した場合における溶接金属およびHAZのそれぞれの靭性について検討を重ねた結果、本発明を完成するに至った。まず、溶接金属の靭性向上手段について詳細に説明する。
本発明者は溶接金属の成分として、BにNiおよびCrを複合添加することにより、溶接金属中のB析出が抑制され、固溶Bが確保できることを見出した。溶接金属の成分は、鋼材成分、溶接ワイヤ成分およびフラックス成分によって決定され、鋼材成分からの希釈により含有させることも可能であるが、特に溶接ワイヤ等の溶材にNi、Cr、Bをともに含有させることが、溶接金属に固溶Bを残存させるのに効果的であることを知見した。溶接金属の生成は、極めて短時間の加熱、冷却現象である故に不明点も多く、溶材にNi、CrおよびBを併存させた場合に溶接金属に固溶Bが生成し易い理由は現時点では必ずしも明らかではないが、ワイヤから溶融したNi、Crの存在が高温域のTiの酸化、窒化に影響を及ぼし、窒化物として析出するB量が低減するためであると推測される。
【0011】
このようにして固溶Bの含有量が調整される溶接金属の成分限定理由について説明する。単位はmass%である。
C:0.01〜0.12%
Cは強度を確保するための必須成分であり、0.01%以上を必要とする。一方、過剰の添加は靭性を劣化させるので、上限を0.12%に止める。好ましくは0.03〜0.10%である。
【0012】
Si:0.10〜1.00%
Siは脱酸元素として含有され、0.10%以上を必要とする。一方、過剰の添加は島状マルテンサイトを増加させ、また固溶強化を過大にさせるので、上限を1.00%に止める。好ましくは0.10〜0.80%である。
【0013】
Mn:1.40%以下
Mnは固溶強化により溶接金属の強度を向上させる。一方、過剰に添加すると強度が過大になって靭性が損なわれるので、1.40%以下とされる。
【0014】
Cu:0.10〜1.00%
Cuは強度を向上させる作用を有し、0.10%以上を必要とする。一方、過剰の添加は強度が過大になり、靭性を劣化させるので、上限を1.00%とする。好ましくは、0.30〜0.80%である。
【0015】
Ni:0.20〜1.00%
Cr:0.20〜1.00%
NiおよびCrは複合添加によりBの析出を抑制し、固溶Bを生成させるのに有効であり、また各々焼き入れ性を高め、強度を向上させる作用を有する。0.20%未満ではかかる作用が過少であり、一方1.00%を超えると強度が過大となって返って靭性が劣化するようになる。好ましくは各々0.30〜0.80%である。
【0016】
Ti:0.08%以下
Tiは組織を微細なアシキュラーフェライトにし、靭性を向上させる作用を有する。また、溶接金属中の不純物であるNを固定して固溶Bの生成を促進させる。しかし、過多に添加すると、焼き入れ性が高まって靭性を劣化させるので、0.08%以下に止める。好ましくは、0.01〜0.05%である。
【0017】
B(全量):0.0005〜0.0050%、固溶B:0.0003%以上
Bは固溶Bを生成させるために必須の元素であり、所定量の固溶Bを確保するには最低0.0005%は必要である。一方、過多に添加すると高温割れが発生するようになるので、上限を0.0050%、好ましくは0.0040%とする。固溶Bは粒界フェライトの生成を抑制して靭性を改善するのに必須の元素であり、かかる作用を発揮させるには少なくとも0.0003%は必要であり、好ましくは0.0005%以上とするのがよい。
【0018】
本発明にかかる溶接金属は上記成分を含み、残部がFe及び不純物からなるものであるが、上記成分の作用効果を損なわない範囲で特性を向上させる成分の含有を妨げず、さらに下記の範囲でNb、Moを1種以上添加することができる。
【0019】
Nb:0.02%以下、Mo:0.5%以下
Nb、Moは析出強化により強度を向上させる作用を有する。しかし、過多の添加は強度が過大となり、返って靭性を劣化させるのでNb:0.02%以下、Mo:0.5%以下に止める。Nb量、Mo量の下限は特に規定されないが、Nb:0.001%以上、Mo:0.01%以上添加することが好ましい。
【0020】
上記溶接金属は、溶接ままで靭性に優れ、さらに比較的高強度であり、成分調整により容易に引張強さを570MPaとすることができる。近年、構造用鋼材においても高強度化が指向されているが、前記溶接金属によれば、溶接対象の鋼材(母材)が570MPa以上の高強度材に対しても好適である。
【0021】
なお、BとNiとを複合添加した溶接ワイヤは低温用鋼の溶接に、またBとCrとを複合添加した溶接ワイヤは耐熱鋼などの溶接に使用されているが、Ni、CrおよびBの3種を複合添加した溶接ワイヤは構造用鋼材の溶接、特に大入熱溶接に使用された例は見られない。
【0022】
次ぎに、母材を構成する鋼材について説明する。本発明の溶接継手においては、強度を確保しつつ、ボンド部における靭性の劣化を防止するため、C量を0.03〜0.12%にする必要があるが、本発明で用いる鋼材は引張強さが570MPa以上の高強度鋼材であり、その成分は以下のとおりである。
【0023】
本発明にかかる鋼材は、mass%でC:0.03〜0.12%、Si:1.0%以下、Mn:2.0%以下、Ni:0.10〜2.00%、Cr:0.10〜2.00%、B:0.0005〜0.0050%を含み、残部がFe及び不純物からなる。以下、成分限定理由を述べる。
【0024】
C:0.03〜0.12%
Cは強度を確保するために必要とされるが、過多に添加すると靭性が低下するようになり、特にボンド部での靭性の劣化が著しい。このため、下限を0.03%、好ましくは0.04%とし、上限を0.12%、好ましくは0.10%とする。
【0025】
Si:1.0%以下
Siは脱酸のために必要とされるが、過多に添加するとHAZの靭性を劣化させるようになる。このため、上限を1.0%、好ましくは0.80%とする。
【0026】
Mn:2.0%以下
MnはSiと同様に脱酸に寄与し、強度を向上させる。しかし、過多に添加すると焼き入れ性が高まって靭性を劣化させる。このため、上限を2.0%とする。好ましくは0.5〜1.5%とするのがよい。
【0027】
Ni:0.10〜2.00%
Niは焼き入れ性を高め、強度を向上させると共にマトリックスを強靱化する。また、溶接金属と同種の材質とすることによって継手全体としての均一性を向上させる。一方、過剰な添加は強度が過大となって返って靭性を劣化させる。このため、下限を0.10%、好ましくは0.20%とし、上限を2.00%、好ましくは1.80%とする。
【0028】
Cr:0.10〜2.00%
CrもNiと同様、焼き入れ性を高め、強度を向上させる。また、溶接金属と同種の材質とすることによって継手全体としての均一性を向上させる。一方、過剰な添加は強度が過大となって返って靭性を劣化させる。このため、下限を0.10%、好ましくは0.20%とし、上限を2.00%、好ましくは1.20%とする。
B(全量):0.0005〜0.0050%
Bは焼き入れ性を高め、強度の向上に寄与する。0.0005%未満ではかかる作用が過少である。一方、B0.0050%超では鋼材自体の靭性が劣化するので、0.0050%を上限とする。
【0029】
本発明にかかる鋼材は上記成分のほか、残部がFe及び不純物からなるものであるが、さらに特性を向上させる成分として、下記の範囲でCu、Nb、Moの1種以上の添加を妨げない。
【0030】
Cu:0.10〜2.00%、Nb:0.001〜0.05%以下、Mo:0.5%以下
これらの元素はともに焼き入れ性を高め、強度の向上に寄与する。各元素の下限未満ではかかる作用が過少である。Moも0.01%以上が好ましい。一方、Cu2.00%超では熱間割れのおそれが生じ、Nb0.05%超,Mo0.5%超ではHAZの靭性が劣化するので、これらの値を各元素の上限とする。鋼材の成分の種類は、溶接金属の構成成分と一致するように適宜選択使用することが継手全体の均一性からは好ましい。この意味で、Cuは必須成分とすることができる。
【0031】
次ぎに、鋼材のHAZ部と溶接金属との相互関係から溶接継手の靭性をさらに向上させる手段について説明する。
鋼材のHAZ部と溶接金属の硬さ分布が一定であれば、靭性の分布もまた−定になるため、安定的に良好な靭性を確保することができる。すなわち、本発明者の調査により、ボンド(溶接金属と鋼材のHAZ部との境界)から1mm溶接金属側に隔てた位置から、ボンドから鋼材側へ10mm隔てた位置との間における硬さのバラツキ(最大値と最小値との差)がビッカース硬度で40以下であるとき、溶接金属とボンドとHAZ部の全域に渡って良好な特性が得られることが見出された。
【0032】
前記硬度差は、溶接金属と鋼材の成分バランスを適切に制御することによって達成することができる。具体的には、溶接金属と鋼材のC含有量の差が0.03%以下、Ni含有量の差が0.5%以下、Cr含有量の差が0.3%以下、Cu含有量の差が0.25%以下、B含有量の差が0.0005%以下となるように制御すればよい。
【0033】
【実施例】
下記表1に示す鋼板、表2に示すワイヤを用い、下記に示す溶接条件でサブマージアーク溶接を実施し、溶接継手を作製した。フラックスは市振されている30%鉄粉−20%Si02−15%MgO−10%TiO2−15%Al23を用いた。得られた溶接継手の溶接金属部の表層部より試料を採取し、成分分析を実施した。分析結果を表3に示す。
・溶接条件
板厚25mm、レ型開先、電流:1500A、電圧:45V、
溶接速度15cm/min、溶接入熱270kJ/cm
【0034】
【表1】

Figure 0003734742
【0035】
【表2】
Figure 0003734742
【0036】
【表3】
Figure 0003734742
【0037】
また、図1に示すように、鋼板1,1の1/4板厚位置における溶接金属部2の中央部から、引張試験片およびJIS4号Vノッチシャルピー試験片3を採取し、引張試験および衝撃試験を実施した。また、溶接継手の鋼板側について、図2および図3に示すように、1/4板厚位置のボンド部(HAZ1位置)およびボンドから7mm鋼板側の位置(HAZ2位置)からJIS4号Vノッチシャルピー試験片3を採取し、衝撃試験を実施した。衝撃試験温度は−20℃とした。
また、図4に示すように、鋼板1の表面から1mmの位置について、ボンドから1mm溶接金属側の位置から、ボンドから10mm鋼板側まで0.5mm間隔で荷重5kgでビッカース硬度を測定し、その最大値と最小値の差をバラツキ(△Hv)として求めた。
【0038】
これらの測定結果を表4に併せて示す。靭性の評価は、吸収エネルギーvE-20が80J以上のものが合格レベルである。さらに上記の3本のシヤルピー衝撃値のバラツキ(最大値と最小値の差)が100J以下のものについては、安定して良好な特性が発現する。これより、総合評価として、吸収エネルギーが3カ所とも合格レベルにあり、かつ衝撃値のバラツキが100J以下のものを優(表中、◎)、吸収エネルギーが3カ所とも合格レベルにあるが、衝撃値のバラツキが100J超のものを良(表中、○)、吸収エネルギーが1カ所でも合格レベルに達していないものを不可(表中、−)で評価した。
【0039】
【表4】
Figure 0003734742
【0040】
表4より、実施例はいずれも溶接金属部およびHAZ部において良好な靭性が得られていることがわかる。ビッカース硬度のバラツキが40以下である実施例である試料 No. 8、9、10は靭性のバラツキも少なく、特に良好である。
これに対して、比較例である試料 No. 21は鋼板No. JのC量が本発明範囲超であるため、溶接金属は良好な特性を有しているものの、ボンド部での靭性が劣化して溶接継手としては不良である。また、比較例である試料 No. 22〜32は溶接金属の成分がいずれも本発明範囲外となっており、靭性値が抵い、あるいは割れが発生するなどの問題が生じた。また、比較例の試料 No. 32は溶接金属成分は固溶Bを除いて本発明成分を満足するが、Ni、Crを含有するものの、その量が過少なワイヤを用いたため、固溶Bを確保できておらず、溶接金属の靭性が劣化している。
【0041】
【発明の効果】
以上説明したように、本発明によれば、C量を0.03〜0.12%含む所定成分からなる高強度鋼材を入熱200KJ/cm以上の大入熱溶接の下で溶接した溶接継手でありながら、溶接金属を固溶Bを含む所定成分としたので、HAZ部の靭性の劣化を防止しつつ、溶接金属に優れた靭性を付与することができ、高強度鋼材を大入熱溶接したものでありながら溶接継手全体として優れた靭性を備える。
【図面の簡単な説明】
【図1】実施例の溶接継手の溶接金属における試験片採取位置を示す断面説明図である。
【図2】実施例の溶接継手のボンド部(HAZ1)における試験片採取位置を示す断面説明図である。
【図3】実施例の溶接継手のボンド部から鋼材側に離間した位置(HAZ2)における試験片採取位置を示す断面説明図である。
【図4】実施例の溶接継手の溶接金属周辺の硬度分布測定範囲を示す断面説明図である。[0001]
[Technical field to which the invention belongs]
The present invention relates to a welded joint of steel materials in a building structure, a mechanical structure, a ship, and the like.
[0002]
[Prior art]
Based on the lessons learned from the Great Hanshin Earthquake, attention has been focused especially on the performance of welded joints in building structures, and it is particularly desirable to improve the toughness of joints.
On the other hand, in recent years, buildings have become larger (higher), and structural steel materials constituting them have been required to have higher strength and larger cross-section (thickening). When welding such steel materials, high heat input welding tends to be applied, and it is technically difficult to ensure the toughness of the welded joint.
[0003]
As a technique for improving the toughness of a welded joint, for example, Japanese Patent Application Laid-Open No. 2000-61687 describes a composition containing 1.5 vol% or more of retained austenite as a weld metal (welded metal). This technique relates to low heat input welding with a carbon dioxide shield with a heat input of about 20 to 30 kJ / cm, and is difficult to apply to large heat input welding such as electroslag welding with a heat input of 200 kJ / cm or higher. Is.
[0004]
In high heat input welding, grain boundary ferrite is easily generated in the weld metal, and it is difficult to ensure its strength and toughness compared to low heat input welding. The main two reasons are as follows.
In order to suppress the grain boundary ferrite, it is considered effective to utilize B, but this B is free B (solid solution B) which is not precipitated. In the present invention, hereinafter, this non-precipitated B is expressed as solid solution B. The amount of solute B is an amount obtained by subtracting the amount of B separated (quantified by the nonaqueous solvent electrolysis method) (that is, the amount of precipitated B) from the total amount of B added to the steel material. In high heat input welding, since the cooling rate is slow, precipitation of B is promoted and solid solution B decreases. On the other hand, if the amount of B added to the steel material is increased, solute B can inevitably be secured. However, since B promotes hot cracking, the addition of B is naturally limited.
In recent years, it has become mainstream to use steel materials with a reduced C content in order to suppress embrittlement of the heat-affected zone (HAZ portion) of the steel materials. For this reason, at the time of high heat input welding, the dilution of the components of the weld metal by the steel material is further increased and the amount of C of the weld metal is greatly reduced, so that the generation of grain boundary ferrite tends to be promoted. In addition, if elements such as C, Mn, and B that are inexpensive and have an effect of improving hardenability can be used, the strength of the weld metal can be improved, but the toughness cannot be ensured. In addition, the strength distribution of the steel material and the weld metal becomes uneven, and a reliable welded joint cannot be obtained.
[0005]
In order to form a reliable welded structure, a welded joint that appropriately controls not only the weld metal but also the HAZ part of the base steel material is necessary. However, the situation is not considered so far.
[0006]
[Problems to be solved by the invention]
The present invention has been made in view of such a problem, and an object of the present invention is to provide a welded joint having excellent toughness even in high heat input welding with a heat input of 200 kJ / cm or more. The sectional area of the as-welded structure of the final layer of the welded joint formed by the high heat input welding is usually 6.5 cm 2 or more.
[0007]
[Means for Solving the Problems]
The welded joint of the present invention is a welded joint in which one steel material and the other steel material are integrally joined via a weld metal by high heat input welding with a heat input of 200 KJ / cm or more, and the steel material is mass%. And C: 0.03 to 0.12%, Si: 1.0% or less, Mn: 2.0% or less, Ni: 0.10 to 2.00%, Cr: 0.10 to 2.00% , B: 0.0005-0.0050% is included, the balance consists of Fe and impurities, the weld metal is mass% C: 0.01-0.12%, Si: 0.10-1.00%, Mn: 1.40% or less, Cu: 0.10 to 1.00%, Ni: 0.20 to 1.00%, Cr: 0.20 to 1.00%, Ti: 0.08% or less, B : 0.0005 to 0.0050%, solid solution B: 0.0003% or more, with the balance being Fe and impurities. The weld metal may further contain one or more of Nb: 0.02% or less and Mo: 0.5% or less.
[0008]
In the weld joint, the steel material may further contain one or more of Cu: 0.10 to 2.00%, Nb: 0.001 to 0.05%, and Mo: 0.5% or less.
[0009]
Moreover, as for the above-mentioned welded joint, the difference between the maximum value and the minimum value of the Vickers hardness should be 40 or less between the position 1 mm away from the bond to the weld metal side and the position 10 mm away from the bond to the steel material side. Is preferred.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
As a result of repeated investigations on the toughness of the weld metal and HAZ in the case where high heat input welding is performed, the present inventor has completed the present invention. First, the means for improving the toughness of weld metal will be described in detail.
The present inventor has found that by adding Ni and Cr to B as a component of the weld metal, precipitation of B in the weld metal is suppressed and solid solution B can be secured. The component of the weld metal is determined by the steel material component, the welding wire component, and the flux component, and can be contained by dilution from the steel material component. In particular, the molten material such as the welding wire contains Ni, Cr, and B together. Has been found to be effective in leaving solid solution B in the weld metal. Since the formation of weld metal is an extremely short time heating and cooling phenomenon, there are many unclear points, and the reason why solute B is likely to be generated in the weld metal when Ni, Cr and B coexist in the molten metal is not necessarily present. Although it is not clear, it is presumed that the presence of Ni and Cr melted from the wire affects the oxidation and nitridation of Ti in the high temperature range, and the amount of B precipitated as nitride is reduced.
[0011]
The reason for limiting the components of the weld metal for which the content of the solid solution B is adjusted in this way will be described. The unit is mass%.
C: 0.01 to 0.12%
C is an essential component for ensuring strength, and needs to be 0.01% or more. On the other hand, excessive addition degrades toughness, so the upper limit is limited to 0.12%. Preferably it is 0.03 to 0.10%.
[0012]
Si: 0.10 to 1.00%
Si is contained as a deoxidizing element and requires 0.10% or more. On the other hand, excessive addition increases island-like martensite and makes solid solution strengthening excessive, so the upper limit is limited to 1.00%. Preferably it is 0.10 to 0.80%.
[0013]
Mn: 1.40 % or less Mn improves the strength of the weld metal by solid solution strengthening. On the other hand, if added excessively, the strength becomes excessive and the toughness is impaired, so the content is made 1.40 % or less.
[0014]
Cu: 0.10 to 1.00%
Cu has the effect | action which improves an intensity | strength and requires 0.10% or more. On the other hand, excessive addition results in excessive strength and deteriorates toughness, so the upper limit is made 1.00%. Preferably, it is 0.30 to 0.80%.
[0015]
Ni: 0.20 to 1.00%
Cr: 0.20 to 1.00%
Ni and Cr are effective for suppressing the precipitation of B by composite addition and forming solid solution B, and also have the effect of increasing the hardenability and improving the strength. If it is less than 0.20%, such an action is insufficient. On the other hand, if it exceeds 1.00%, the strength is excessively increased and the toughness is deteriorated. Preferably each is 0.30 to 0.80%.
[0016]
Ti: 0.08% or less Ti has a function of making the structure fine acicular ferrite and improving toughness. Further, N, which is an impurity in the weld metal, is fixed to promote the formation of solute B. However, if added excessively, the hardenability is increased and the toughness is deteriorated, so it is limited to 0.08% or less. Preferably, it is 0.01 to 0.05%.
[0017]
B (total amount): 0.0005 to 0.0050%, solid solution B: 0.0003% or more B is an essential element for generating solid solution B. To secure a predetermined amount of solid solution B A minimum of 0.0005% is required. On the other hand, if added excessively, hot cracking will occur, so the upper limit is made 0.0050%, preferably 0.0040%. Solid solution B is an essential element for improving the toughness by suppressing the formation of intergranular ferrite, and at least 0.0003% is required to exert such an effect, preferably 0.0005% or more. It is good to do.
[0018]
The weld metal according to the present invention contains the above-mentioned components , and the balance consists of Fe and impurities, but does not hinder the inclusion of the components that improve the properties within the range that does not impair the effects of the above-described components , and further within the following ranges. One or more kinds of Nb and Mo can be added.
[0019]
Nb: 0.02% or less, Mo: 0.5% or less Nb and Mo have an effect of improving strength by precipitation strengthening. However, excessive addition results in excessive strength and deteriorates toughness, so Nb: 0.02% or less and Mo: 0.5% or less. The lower limits of the Nb amount and the Mo amount are not particularly defined, but it is preferable to add Nb: 0.001% or more and Mo: 0.01% or more.
[0020]
The weld metal is excellent in toughness as it is welded and has a relatively high strength, and the tensile strength can be easily adjusted to 570 MPa by adjusting the components. In recent years, structural steel materials are also aimed at increasing strength, but the weld metal is also suitable for high-strength materials in which the steel material (base material) to be welded is 570 MPa or more.
[0021]
In addition, the welding wire combined with B and Ni is used for welding low temperature steel, and the welding wire combined with B and Cr is used for welding heat resistant steel. Welding wires with a combination of the three types have not been used for welding structural steels, particularly high heat input welding.
[0022]
Next, the steel material constituting the base material will be described. In the welded joint of the present invention, while ensuring the strength, in order to prevent the toughness of deterioration in the bond portion, it is necessary to make the amount of C to 0.03 to 0.12 percent, steel used in the present invention the tensile It is a high-strength steel material having a strength of 570 MPa or more, and its components are as follows.
[0023]
The steel materials according to the present invention are mass% C: 0.03 to 0.12%, Si: 1.0% or less, Mn: 2.0% or less, Ni: 0.10 to 2.00%, Cr: It contains 0.10 to 2.00% , B: 0.0005 to 0.0050% , and the balance consists of Fe and impurities. Hereinafter, the reasons for limiting the components will be described.
[0024]
C: 0.03-0.12%
C is required for securing the strength, but if added excessively, the toughness will decrease, and the toughness particularly deteriorates at the bond part. Therefore, the lower limit is 0.03%, preferably 0.04%, and the upper limit is 0.12%, preferably 0.10%.
[0025]
Si: 1.0% or less Si is required for deoxidation, but if it is added excessively, the toughness of the HAZ is deteriorated. For this reason, the upper limit is made 1.0%, preferably 0.80%.
[0026]
Mn: 2.0% or less Mn contributes to deoxidation similarly to Si and improves strength. However, excessive addition increases the hardenability and degrades the toughness. For this reason, the upper limit is made 2.0%. Preferably it is 0.5 to 1.5%.
[0027]
Ni: 0.10 to 2.00%
Ni enhances hardenability, improves strength and toughens the matrix. Moreover, the uniformity as the whole joint is improved by using the same kind of material as the weld metal. On the other hand, excessive addition results in excessive strength and deteriorates toughness. Therefore, the lower limit is 0.10%, preferably 0.20%, and the upper limit is 2.00%, preferably 1.80%.
[0028]
Cr: 0.10 to 2.00%
Cr, like Ni, improves hardenability and improves strength. Moreover, the uniformity as the whole joint is improved by using the same kind of material as the weld metal. On the other hand, excessive addition results in excessive strength and deteriorates toughness. Therefore, the lower limit is 0.10%, preferably 0.20%, and the upper limit is 2.00%, preferably 1.20%.
B (total amount): 0.0005 to 0.0050%
B increases the hardenability and contributes to the improvement of strength. If it is less than 0.0005%, such an action is insufficient. On the other hand, if it exceeds B 0.0050%, the toughness of the steel material itself deteriorates, so 0.0050% is made the upper limit.
[0029]
The steel material according to the present invention is composed of Fe and impurities in addition to the above components, but does not prevent addition of one or more of Cu, Nb, and Mo within the following ranges as components for further improving the characteristics.
[0030]
Cu: 0.10 to 2.00%, Nb: 0.001 to 0.05% or less, Mo: 0.5% or less Both of these elements increase the hardenability and contribute to the improvement of strength. This effect is too small below the lower limit of each element. Mo is also preferably 0.01% or more. On the other hand, if Cu exceeds 2.00%, hot cracking may occur, and if Nb exceeds 0.05% and Mo exceeds 0.5%, the toughness of HAZ deteriorates, so these values are the upper limit of each element. It is preferable from the uniformity of the entire joint that the types of steel components are appropriately selected and used so as to match the constituent components of the weld metal. In this sense, Cu can be an essential component.
[0031]
Next, means for further improving the toughness of the welded joint from the mutual relationship between the HAZ portion of the steel material and the weld metal will be described.
If the hardness distribution of the HAZ part of the steel material and the weld metal is constant, the distribution of toughness is also constant, so that good toughness can be secured stably. That is, according to the investigation by the present inventor, hardness variation between a position separated from the bond (boundary between the weld metal and the HAZ part of the steel material) by 1 mm toward the weld metal side and a position separated from the bond by 10 mm from the steel material side. It was found that when the (difference between the maximum value and the minimum value) is 40 or less in terms of Vickers hardness, good characteristics can be obtained over the entire area of the weld metal, the bond, and the HAZ part.
[0032]
The hardness difference can be achieved by appropriately controlling the component balance between the weld metal and the steel material. Specifically, the difference in C content between the weld metal and the steel material is 0.03% or less, the difference in Ni content is 0.5% or less, the difference in Cr content is 0.3% or less, and the Cu content is What is necessary is just to control so that a difference may be 0.25% or less, and the difference of B content may be 0.0005% or less.
[0033]
【Example】
Using the steel plates shown in Table 1 and the wires shown in Table 2, submerged arc welding was performed under the welding conditions shown below to produce welded joints. Flux used was TiO 2 -15% Al 2 O 3 30% iron powder -20% Si0 2 -15% MgO- 10% being Ichiburi. A sample was taken from the surface layer portion of the weld metal portion of the obtained welded joint, and component analysis was performed. The analysis results are shown in Table 3.
-Welding conditions Plate thickness 25mm, ladle groove, current: 1500A, voltage: 45V,
Welding speed 15cm / min, welding heat input 270kJ / cm
[0034]
[Table 1]
Figure 0003734742
[0035]
[Table 2]
Figure 0003734742
[0036]
[Table 3]
Figure 0003734742
[0037]
Further, as shown in FIG. 1, a tensile test piece and a JIS No. 4 V-notch Charpy test piece 3 are sampled from the central portion of the weld metal portion 2 at the ¼ plate thickness position of the steel plates 1 and 1, and the tensile test and impact are taken. The test was conducted. Further, as shown in FIGS. 2 and 3, the steel plate side of the welded joint is JIS No. 4 V-notch Charpy from the bond part (HAZ1 position) at the 1/4 plate thickness position and the position 7 mm from the bond (HAZ2 position). A test piece 3 was collected and subjected to an impact test. The impact test temperature was −20 ° C.
In addition, as shown in FIG. 4, the Vickers hardness is measured at a load of 5 kg at a 0.5 mm interval from a position 1 mm from the bond to the 10 mm steel plate side from a position 1 mm from the bond to the position 1 mm from the surface of the steel plate 1. The difference between the maximum value and the minimum value was determined as variation (ΔHv).
[0038]
These measurement results are also shown in Table 4. Evaluation of toughness is acceptable when the absorbed energy vE- 20 is 80 J or more. Further, when the variation in the three SHARPpy impact values (difference between the maximum value and the minimum value) is 100 J or less, good characteristics are stably exhibited. From this, as a comprehensive evaluation, the absorbed energy is acceptable at all three locations and the variation in impact value is 100 J or less (優 in the table), and the absorbed energy is acceptable at all three locations. A value with a value variation of more than 100 J was evaluated as good (◯ in the table), and an absorption energy that did not reach the acceptable level even at one location was evaluated as unacceptable (-in the table).
[0039]
[Table 4]
Figure 0003734742
[0040]
It can be seen from Table 4 that good toughness is obtained in the weld metal part and the HAZ part in all the examples. Samples Nos. 8, 9, and 10, which are examples in which the variation in Vickers hardness is 40 or less, are particularly good because there is little variation in toughness.
On the other hand, in the sample No. 21 which is a comparative example, since the C amount of the steel plate No. J exceeds the range of the present invention, the weld metal has good characteristics, but the toughness at the bond portion deteriorates. Therefore, it is not good as a welded joint. Further, Sample Nos. 22 to 32, which are comparative examples, all have a weld metal component outside the scope of the present invention, resulting in problems such as poor toughness or cracking. Sample No. 32 of the comparative example satisfies the present invention components except for the solid solution B as the weld metal component , but it contains Ni and Cr , but the amount of the wire is too small. The toughness of the weld metal has deteriorated.
[0041]
【The invention's effect】
As described above, according to the present invention, a welded joint obtained by welding high-strength steel material having a predetermined component containing 0.03 to 0.12% of C under high heat input welding with a heat input of 200 KJ / cm or more. However, since the weld metal is a predetermined component containing the solute B, it is possible to impart excellent toughness to the weld metal while preventing toughness deterioration of the HAZ part, and high-strength steel is welded with high heat input. However, it has excellent toughness as a whole welded joint.
[Brief description of the drawings]
BRIEF DESCRIPTION OF DRAWINGS FIG. 1 is a cross-sectional explanatory view showing a specimen collection position in a weld metal of a weld joint of an example.
FIG. 2 is a cross-sectional explanatory view showing a specimen collection position in a bond part (HAZ1) of a welded joint of an example.
FIG. 3 is a cross-sectional explanatory view showing a specimen collection position at a position (HAZ2) spaced from the bond portion of the weld joint of the example to the steel material side.
FIG. 4 is an explanatory cross-sectional view showing a hardness distribution measurement range around a weld metal of a weld joint of an example.

Claims (4)

一方の鋼材と他方の鋼材とが入熱200KJ/cm以上の大入熱溶接により溶接金属を介して一体的に接合された溶接継手であって、
前記鋼材はmass%でC:0.03〜0.12%、Si:1.0%以下、Mn:2.0%以下、Ni:0.10〜2.00%、Cr:0.10〜2.00%、B:0.0005〜0.0050%を含み、残部がFe及び不純物からなり、
前記溶接金属はmass%でC:0.01〜0.12%、Si:0.10〜1.00%、Mn:1.40%以下、Cu:0.10〜1.00%、Ni:0.20〜1.00%、Cr:0.20〜1.00%、Ti:0.08%以下、B:0.0005〜0.0050%、固溶B:0.0003%以上を含み、残部がFe及び不純物からなる、靭性に優れた溶接継手。
A welded joint in which one steel material and the other steel material are integrally joined via a weld metal by high heat input welding with a heat input of 200 KJ / cm or more,
The steel material is mass% C: 0.03 to 0.12%, Si: 1.0% or less, Mn: 2.0% or less, Ni: 0.10 to 2.00%, Cr: 0.10 2.00% , B: 0.0005-0.0050% included, the balance consists of Fe and impurities,
The weld metal is mass%, C: 0.01 to 0.12%, Si: 0.10 to 1.00%, Mn: 1.40% or less, Cu: 0.10 to 1.00%, Ni: Including 0.20 to 1.00%, Cr: 0.20 to 1.00%, Ti: 0.08% or less, B: 0.0005 to 0.0050%, Solid solution B: 0.0003% or more A welded joint excellent in toughness with the balance being Fe and impurities.
前記溶接金属は、さらにNb:0.02%以下、Mo:0.5%以下の1種以上を含有する請求項1に記載した靭性に優れた溶接継手。  The weld joint having excellent toughness according to claim 1, wherein the weld metal further contains one or more of Nb: 0.02% or less and Mo: 0.5% or less. 前記鋼材は、さらにCu:0.10〜2.00%、Nb:0.001〜0.05%、Mo:0.5%以下の1種以上を含有する請求項1又は2に記載した靭性に優れた溶接継手。The steel is further Cu: 0.10~2.00%, Nb: 0.001~0.05 %, Mo: toughness according to claim 1 or 2 containing one or more than 0.5% Excellent welded joint. ボンドから溶接金属側へ1mm隔てた位置から、ボンドから鋼材側へ10mm隔てた位置との間において、ビッカース硬度の最大値と最小値の差が40以下である請求項1から3のいずれか1項に記載した靭性に優れた溶接継手。  The difference between the maximum value and the minimum value of Vickers hardness is 40 or less between a position 1 mm away from the bond to the weld metal side and a position 10 mm away from the bond to the steel material side. Welded joints with excellent toughness described in the section.
JP2001352644A 2001-11-19 2001-11-19 Welded joint with excellent toughness Expired - Fee Related JP3734742B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001352644A JP3734742B2 (en) 2001-11-19 2001-11-19 Welded joint with excellent toughness

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001352644A JP3734742B2 (en) 2001-11-19 2001-11-19 Welded joint with excellent toughness

Publications (2)

Publication Number Publication Date
JP2003155539A JP2003155539A (en) 2003-05-30
JP3734742B2 true JP3734742B2 (en) 2006-01-11

Family

ID=19164788

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001352644A Expired - Fee Related JP3734742B2 (en) 2001-11-19 2001-11-19 Welded joint with excellent toughness

Country Status (1)

Country Link
JP (1) JP3734742B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007075833A (en) * 2005-09-12 2007-03-29 Kobe Steel Ltd Wire for gas shielded arc welding and method of gas shielded arc welding
JP5000619B2 (en) * 2008-10-14 2012-08-15 新日本製鐵株式会社 One-pass large heat input welded joint with excellent weld metal toughness and manufacturing method thereof
CN105296875B (en) * 2015-11-17 2017-12-08 浙江盛达铁塔有限公司 A kind of SAW welding methods of weathering steel weld seam alloy and weathering steel
CN105537788A (en) * 2015-11-17 2016-05-04 浙江盛达铁塔有限公司 Welding seam alloy and welding method of weather-resistant steel

Also Published As

Publication number Publication date
JP2003155539A (en) 2003-05-30

Similar Documents

Publication Publication Date Title
JP4903918B1 (en) Ultra high strength welded joint and manufacturing method thereof
JP2011005531A (en) Flux-cored welding wire for high-tensile steel and method for manufacturing the same
JP5493659B2 (en) High strength steel with excellent toughness of heat affected zone
JP5696228B2 (en) Flux cored arc welding wire excellent in low temperature toughness and welding workability and welded joint using the same
JP2001001148A (en) GAS SHIELD ARC WELDING OF THICK HIGH TENSILE STRENGTH STEEL PLATE OF AT LEAST 900 MPa CLASS
JP4486529B2 (en) Electrogas welding joint with excellent toughness
JP3891039B2 (en) High heat input electroslag welding wire
JP3734742B2 (en) Welded joint with excellent toughness
JP3894703B2 (en) Gas shielded arc welding wire
JP4486528B2 (en) Electrogas arc welding method with excellent brittle fracture resistance of welds
JP3800330B2 (en) Large heat input electroslag welding method
JP5103037B2 (en) Thick steel plate with excellent toughness of base metal and weld heat affected zone
JP3860438B2 (en) Iron-based consumable welding materials and welded joints with excellent fatigue strength at welded joints
JP2007253163A (en) Solid wire for gas shielded arc welding
JP4127993B2 (en) Submerged arc welded joint
JP4427350B2 (en) Weld metal with excellent strength uniformity
JP2711071B2 (en) Bond flux for submerged arc welding
JP2005272900A (en) High-strength uoe steel pipe having excellent low-temperature toughness of seam weld metal
JP3481547B2 (en) Solid wire for gas shielded arc welding
JP4701619B2 (en) Large heat input electroslag welding method
JP3934863B2 (en) High heat input electroslag welding wire with excellent weld metal toughness
JP4464859B2 (en) Large heat input welded joint using low yield ratio steel sheet and welding method
JP4332064B2 (en) High HAZ toughness steel for high heat input welding with heat input of 20-100 kJ / mm
JPH06262388A (en) Coated electrode for heat-resisting steel of high cr ferrite
JP3972828B2 (en) 700MPa class non-heat treated thick steel plate and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040401

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050329

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050525

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050705

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050825

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051018

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051019

R150 Certificate of patent or registration of utility model

Ref document number: 3734742

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081028

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091028

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091028

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101028

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101028

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111028

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111028

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121028

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131028

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees