JP5449110B2 - Solid wire for Ar-CO2 mixed gas shielded arc welding - Google Patents

Solid wire for Ar-CO2 mixed gas shielded arc welding Download PDF

Info

Publication number
JP5449110B2
JP5449110B2 JP2010249897A JP2010249897A JP5449110B2 JP 5449110 B2 JP5449110 B2 JP 5449110B2 JP 2010249897 A JP2010249897 A JP 2010249897A JP 2010249897 A JP2010249897 A JP 2010249897A JP 5449110 B2 JP5449110 B2 JP 5449110B2
Authority
JP
Japan
Prior art keywords
wire
strength
welding
weld metal
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010249897A
Other languages
Japanese (ja)
Other versions
JP2012101234A (en
Inventor
勇 木本
大輔 大村
Original Assignee
日鐵住金溶接工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日鐵住金溶接工業株式会社 filed Critical 日鐵住金溶接工業株式会社
Priority to JP2010249897A priority Critical patent/JP5449110B2/en
Publication of JP2012101234A publication Critical patent/JP2012101234A/en
Application granted granted Critical
Publication of JP5449110B2 publication Critical patent/JP5449110B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Arc Welding In General (AREA)

Description

本発明は、690N/mm2級以上の高張力鋼の溶接に用いるAr−CO2混合ガスシールドアーク溶接用ソリッドワイヤに関し、生産性が良好で、特に多層盛溶接で溶接金属の強度および安定した低温靭性が確保でき、かつ、スパッタ発生量が極めて少ないなど良好な溶接作業性が得られるAr−CO2混合ガスシールドアーク溶接用ソリッドワイヤに係わるものである。 The present invention relates to a solid wire for arc-CO 2 mixed gas shielded arc welding used for welding high-strength steel of 690 N / mm 2 class or higher, and has good productivity, and particularly, the strength and stability of the weld metal in multi-layer welding. The present invention relates to a solid wire for Ar—CO 2 mixed gas shielded arc welding that can secure low-temperature toughness and can achieve good welding workability such as extremely low spatter generation.

近年、自動車分野、鉄骨・建築分野、産業・建設分野等において、高張力鋼の使用が多くなっている。高張力鋼の使用は、各分野ともに構造物の重量および使用鋼材重量の低減による環境負荷低減を主な目的としている。   In recent years, high-strength steel is increasingly used in the automobile field, steel frame / architecture field, industry / construction field, and the like. The use of high-strength steel is mainly aimed at reducing the environmental load by reducing the weight of the structure and the weight of steel used in each field.

高張力鋼のガスシールドアーク溶接は、シールドガスとしてCO2ガスを用いる場合と、Ar−CO2混合ガス(CO2:5〜25%)を用いる場合とがある。シールドガスにCO2ガスを用いた場合は、スパッタ発生量が多くなり母材鋼板表面へ付着して、またスラグ生成量が多くなりこれらの除去作業のために溶接能率を著しく損なうことになる。 Gas shield arc welding of high-strength steel has a case where CO 2 gas is used as a shield gas and a case where an Ar—CO 2 mixed gas (CO 2 : 5 to 25%) is used. When CO 2 gas is used as the shielding gas, the amount of spatter generated increases and adheres to the surface of the base steel plate, and the amount of slag generated increases, which significantly impairs the welding efficiency due to these removal operations.

スパッタ発生量およびスラグ生成量を格段に低減するためにはAr−CO2混合ガス(CO2:5〜25%)を用いることが有効である。従来からAr−CO2混合ガスを用いて高張力鋼の溶接を行う溶接用ソリッドワイヤが多く使用されている。例えば、特許文献1や特許文献2に、薄鋼板の付き合せ溶接や重ねすみ肉溶接に用いる溶接用ソリッドワイヤの提案がある。しかし、特許文献1および特許文献2に記載の溶接用ソリッドワイヤで多層盛溶接すると引張強さが不足したり、靭性が十分得られないという問題があった。 In order to significantly reduce the amount of spatter generated and the amount of slag generated, it is effective to use an Ar—CO 2 mixed gas (CO 2 : 5 to 25%). Conventionally, many welding solid wires for welding high-strength steel using Ar—CO 2 mixed gas have been used. For example, Patent Document 1 and Patent Document 2 propose a solid wire for welding used for butt welding of thin steel plates and lap fillet welding. However, when the multi-layer welding is performed with the solid wires for welding described in Patent Document 1 and Patent Document 2, there is a problem that the tensile strength is insufficient or sufficient toughness cannot be obtained.

また、特許文献3や特許文献4には、Ar−CO2混合ガスを用いて高張力鋼を多層盛溶接する技術の開示がある。しかし、特許文献3および特許文献4に記載の溶接用ソリッドワイヤは、NiおよびCrを含んでいるのでワイヤ自体が高強度となり、ワイヤ製造の伸線加工時に、加工硬化が加わりさらにワイヤが硬化する。ワイヤが硬化するとダイス磨耗や断線が多くなるので製造が困難となる。そこで、伸線途中で熱処理を行いワイヤの硬さを低下させるが、NiやCrを含むとワイヤの変態温度が低下するので、焼きなまし処理で軟化を行う場合は、高強度の組織に変態しやすい。したがって、硬化したワイヤを軟化するためには熱処理温度を低下して長時間の保持や除冷が必要となり、生産性が非常に悪いという問題があった。 Further, Patent Document 3 and Patent Document 4 disclose a technique for performing multi-layer welding of high-strength steel using Ar—CO 2 mixed gas. However, since the welding solid wire described in Patent Document 3 and Patent Document 4 contains Ni and Cr, the wire itself has high strength, and work hardening is added and the wire is further hardened during wire drawing in wire manufacturing. . When the wire is cured, die wear and wire breakage increase, making manufacturing difficult. Therefore, heat treatment is performed in the middle of wire drawing to reduce the hardness of the wire, but if Ni or Cr is included, the transformation temperature of the wire is lowered. . Therefore, in order to soften the hardened wire, it is necessary to lower the heat treatment temperature and to maintain it for a long time or to cool it down, resulting in a problem that productivity is very poor.

特開平7−96391号公報Japanese Patent Laid-Open No. 7-96391 特開平7−251292号公報Japanese Patent Laid-Open No. 7-251292 特開平3−221294号公報JP-A-3-221294 特開2000−301379号公報JP 2000-301379 A

本発明は、上記問題点に鑑み、690N/mm2級以上の高張力鋼用ガスシールドアーク溶接用ソリッドワイヤの生産性が良好で、特に多層盛溶接で溶接金属の強度および安定した低温靭性が確保でき、かつ、スパッタ発生量およびスラグ生成量が極めて少ないなど良好な溶接作業性が得られるAr−CO2混合ガスシールドアーク溶接用ソリッドワイヤを提供することを目的とする。 In view of the above problems, the present invention has a good productivity of solid wire for gas shielded arc welding for high strength steel of 690 N / mm 2 grade or higher, especially the strength of weld metal and stable low temperature toughness in multi-layer welding. An object of the present invention is to provide a solid wire for Ar—CO 2 mixed gas shielded arc welding which can be ensured and can provide good welding workability such as an extremely small amount of spatter generation and slag generation.

本発明者らは、上記課題を解決するために、生産性が良好で、特に多層盛溶接で溶接金属の強度および安定した低温靭性が得られ、かつ、スパッタ発生量およびスラグ生成量が少ない690N/mm2級以上の高張力鋼の溶接に用いるAr−CO2混合ガスシールドアーク溶接用ソリッドワイヤを開発すべく、種々の成分組成のソリッドワイヤを試作して研究した。 In order to solve the above-mentioned problems, the present inventors have good productivity, in particular, the weld metal strength and stable low temperature toughness can be obtained by multi-layer welding, and the amount of spatter generation and slag generation is small. In order to develop a solid wire for Ar-CO 2 mixed gas shielded arc welding used for welding high-strength steels of 2 mm / mm 2 or higher, we made and studied solid wires with various component compositions.

その結果、NiおよびCrの含有量を制限し、また、VおよびNbの含有量も制限し、そして、Si、Mn、MoおよびCuを適量含有させることによって多層盛溶接における溶接金属の強度を確保しつつ、ワイヤ製造の伸線時においても断線がなく生産性が良好で、Mn、TiおよびBを適量含有させるとともにP、SおよびNを低減することによって多層盛溶接における溶接金属の低温靭性が安定し、Alを適量含有させることによってアークが安定しスパッタ発生量が少なく、Si、MnおよびTiを適量含有させることによって溶接金属の強度および靭性を確保しつつスラグ生成量が少なくなることを見出し、本発明を完成した。   As a result, the content of Ni and Cr is limited, the content of V and Nb is also limited, and the strength of weld metal in multilayer welding is ensured by containing appropriate amounts of Si, Mn, Mo and Cu. However, there is no disconnection even at the time of wire production, and the productivity is good. By containing an appropriate amount of Mn, Ti and B, and reducing P, S and N, the low temperature toughness of the weld metal in multi-layer welding is achieved. It has been found that by containing an appropriate amount of Al, the arc is stabilized and the amount of spatter generated is small, and by adding Si, Mn and Ti in appropriate amounts, the amount of slag is reduced while ensuring the strength and toughness of the weld metal. The present invention has been completed.

本発明の要旨は、(1)CO2を5〜25%含むArガスを用いて690N/mm2以上の高張力鋼を溶接するAr−CO2混合ガスシールドアーク溶接用ソリッドワイヤにおいて、質量%で、C:0.02〜0.08%、Si:0.65〜1.10%、Mn:1.80〜2.20%、ただし、Si+Mn:2.55〜3.15%、Mo:0.10〜0.30%、Cu:0.15〜0.40%、Ti:0.05〜0.16%、B:0.0010〜0.0060%、Al:0.005〜0.02%、N:0.0060%以下、VおよびNbの1種で又は2種の合計を0.004〜0.15%を含有し、残部はFeおよび不可避不純物であることを特徴とするAr−CO2混合ガスシールドアーク溶接用ソリッドワイヤにある。
The gist of the present invention is as follows: (1) In an Ar—CO 2 mixed gas shielded arc welding solid wire for welding high-strength steel of 690 N / mm 2 or more using Ar gas containing 5 to 25% of CO 2 , C: 0.02 to 0.08%, Si: 0.65 to 1.10%, Mn: 1.80 to 2.20%, but Si + Mn: 2.55 to 3.15%, Mo: 0.10-0.30%, Cu: 0.15-0.40%, Ti: 0.05-0.16%, B: 0.0010-0.0060%, Al: 0.005-0. 02%, N: 0.0060% or less , one of V and Nb or a total of two contains 0.004 to 0.15% , the balance being Fe and inevitable impurities in -CO 2 mixed gas shielded arc welding solid wires.

また、(2)さらに、質量%で、NiおよびCrの1種又は2種の合計を0.15%以下にしたことも特徴とするAr−CO2混合ガスシールドアーク溶接用ソリッドワイヤにある。 Further, (2) the solid wire for Ar—CO 2 mixed gas shielded arc welding is characterized in that the total of one or two of Ni and Cr is 0.15% or less by mass%.

本発明のAr−CO2混合ガスシールドアーク溶接用ソリッドワイヤによれば、690N/mm2級以上の高張力鋼用ガスシールドアーク溶接用ソリッドワイヤの生産性が良好で、特に多層盛溶接で溶接金属の強度および安定した低温靭性が確保でき、かつ、スパッタ発生量およびスラグ生成量が極めて少ないなど良好な溶接作業性が得られるので、経済的で溶接能率の向上および溶接部の品質向上が図れる。 According to the solid wire for Ar—CO 2 mixed gas shielded arc welding of the present invention, the productivity of the solid wire for gas shielded arc welding for high-strength steel of 690 N / mm 2 class or higher is good. The metal strength and stable low-temperature toughness can be ensured, and good welding workability such as very little spatter generation and slag generation can be obtained, so it is economical and can improve welding efficiency and weld quality. .

本発明者らは、生産性が良好で、特に多層盛溶接で溶接金属の強度および安定した低温靭性が得られ、かつ、スパッタ発生量およびスラグ生成量が少ない690N/mm2級以上の高張力鋼の溶接に用いるAr−CO2混合ガスシールドアーク溶接用ソリッドワイヤとして、NiおよびCrの含有量、並びにVおよびNbの含有量を制限して、Si、Mn、MoおよびCuを適量含有させることによって多層盛溶接における溶接金属の強度を確保しつつ、ワイヤ製造の伸線時においても断線がなく生産性が良好で、Mn、TiおよびBを適量含有させるとともにP、SおよびNを低減することによって多層盛溶接における溶接金属の低温靭性が安定し、Alを適量含有させることによってアークが安定しスパッタ発生量が少なく、Si、MnおよびTiを適量含有させることによって溶接金属の強度および靭性を確保しつつスラグ生成量が少なくなることを見出し、Ar−CO2混合ガスシールドアーク溶接用ソリッドワイヤの成分設計を行った。 The inventors of the present invention have high productivity, particularly high strength of 690 N / mm 2 class or higher, in which weld metal strength and stable low-temperature toughness can be obtained by multi-layer welding, and spatter generation and slag generation are small. As a solid wire for Ar—CO 2 mixed gas shielded arc welding used for steel welding, the content of Ni and Cr, and the content of V and Nb are limited to contain appropriate amounts of Si, Mn, Mo and Cu. While ensuring the strength of the weld metal in multi-layer welding, there is no disconnection even during wire production, productivity is good, Mn, Ti and B are contained in appropriate amounts, and P, S and N are reduced This stabilizes the low temperature toughness of the weld metal in multi-layer welding, and by containing an appropriate amount of Al, the arc is stabilized and the amount of spatter generated is small. It was found that by containing an appropriate amount of Ti and Ti, the amount of slag generation was reduced while ensuring the strength and toughness of the weld metal, and the composition of the solid wire for Ar—CO 2 mixed gas shielded arc welding was designed.

以下、本発明のAr−CO2混合ガスシールドアーク溶接用ソリッドワイヤに含有される成分組成の限定理由について説明する。以下成分についての「%」は「質量%」である。 Hereinafter, the reason for limitation of the component composition contained in the solid wire for Ar—CO 2 mixed gas shielded arc welding of the present invention will be described. “%” For the following components is “% by mass”.

C:0.02〜0.08%
Cは、溶接金属の焼入れ性を高め、強度および靭性を確保するうえで重要な元素である。Cが0.02%未満であると、690N/mm2以上の強度が得られず靭性も低くなる。一方、Cが0.08%を超えると、溶接金属の割れ感受性が高くなる。したがって、Cは0.02〜0.08%とする。
C: 0.02 to 0.08%
C is an important element for enhancing the hardenability of the weld metal and ensuring strength and toughness. If C is less than 0.02%, a strength of 690 N / mm 2 or more cannot be obtained and the toughness is also lowered. On the other hand, if C exceeds 0.08%, the cracking sensitivity of the weld metal increases. Therefore, C is 0.02 to 0.08%.

Si:0.65〜1.10%
Siは、主要な脱酸剤で溶接金属の酸素量を低減して靭性を向上する。また、ワイヤ製造時の断線を招くことなく溶接金属の強度を確保するのに重要な元素である。Siが0.65%未満であると、690N/mm2以上の強度が得られず靭性も低くなる。一方、1.10%を超えると、ワイヤ製造時に断線が生じやすくなる。また、溶接金属の靭性が低下する。したがって、Siは0.65〜1.10%とする。
Si: 0.65 to 1.10%
Si is a main deoxidizer and reduces the oxygen content of the weld metal to improve toughness. Moreover, it is an important element for ensuring the strength of the weld metal without causing breakage during wire production. If Si is less than 0.65%, a strength of 690 N / mm 2 or more cannot be obtained, and the toughness is also lowered. On the other hand, if it exceeds 1.10%, disconnection is likely to occur during wire production. In addition, the toughness of the weld metal decreases. Therefore, Si is made 0.65 to 1.10%.

Mn:1.80〜2.20%
Mnは、溶接金属の焼入れ性を高め、強度および靭性を向上する。Mnが1.80%未満であると、690N/mm2以上の強度が得られず靭性も低くなる。一方、2.20%を超えると、ワイヤ製造時に断線が生じやすくなる。また、溶接金属の強度が高くなりすぎて靭性が低下する。したがって、Mnは1.80〜2.20%とする。
Mn: 1.80 to 2.20%
Mn increases the hardenability of the weld metal and improves the strength and toughness. When Mn is less than 1.80%, a strength of 690 N / mm 2 or more cannot be obtained, and the toughness is also lowered. On the other hand, if it exceeds 2.20%, disconnection is likely to occur during wire production. Moreover, the strength of the weld metal becomes too high and the toughness is lowered. Therefore, Mn is 1.80 to 2.20%.

Si+Mn:2.55〜3.15%
さらに、上記SiとMnは、強度、靭性を向上させる効果を有する元素であるが、両者の合計量によっても強度、靭性に影響を与える。このため、Si+Mnで2.55〜3.15%とする。Si+Mnが2.55%未満であると、690N/mm2以上の強度が得られず靭性も低くなる。一方、3.15%を超えると、ワイヤ製造時に断線が生じやすくなる。また、溶接金属の強度が高くなりすぎて靭性が低下する。さらに、Ar−CO2混合ガスをシールドガスとしても多層盛溶接するとスラグ生成量が多くなりスラグ除去作業が必要になる。
Si + Mn: 2.55 to 3.15%
Further, Si and Mn are elements having an effect of improving strength and toughness, but the total amount of both affects strength and toughness. For this reason, it is made into 2.55 to 3.15% by Si + Mn. When Si + Mn is less than 2.55%, a strength of 690 N / mm 2 or more cannot be obtained and the toughness is also lowered. On the other hand, if it exceeds 3.15%, disconnection is likely to occur during wire production. Moreover, the strength of the weld metal becomes too high and the toughness is lowered. Furthermore, even when Ar—CO 2 mixed gas is used as a shielding gas, when multi-layer welding is performed, the amount of slag generated increases and slag removal work is required.

Mo:0.10〜0.30%
Moは、溶接金属の強度を確保する。Moが0.10%未満であると、溶接金属の強度が690N/mm2以下となる。一方、0.30%を超えると、ワイヤ製造時に断線が生じやすくなる。また、溶接金属の強度が高くなりすぎて靭性が低下する。したがって、Moは0.10〜0.30%とする。
Mo: 0.10 to 0.30%
Mo secures the strength of the weld metal. When Mo is less than 0.10%, the strength of the weld metal is 690 N / mm 2 or less. On the other hand, if it exceeds 0.30%, disconnection is likely to occur during wire production. Moreover, the strength of the weld metal becomes too high and the toughness is lowered. Therefore, Mo is set to 0.10 to 0.30%.

Cu:0.15〜0.40%
CuもMoと同様に、溶接金属の強度を確保する。また、Cuはワイヤ表面に防錆、通電性およびワイヤ送給性のために施した銅めっきのCu分を主とすることによって、溶接時の通電性およびワイヤ送給性を良好にしてアークを安定にする。Cuが0.15%未満であると、溶接金属の強度が690N/mm2以下となる。また、必然的に銅めっき厚さが薄くなり通電性およびワイヤの送給性が不良となってスパッタ発生量が多くなる。一方、0.40%を超えると、ワイヤ製造時に断線が生じやすくなる。また、溶接金属の強度が高くなりすぎて靭性が低下する。したがって、Cuは0.15〜0.40%とする。
Cu: 0.15-0.40%
Cu, like Mo, ensures the strength of the weld metal. In addition, Cu is mainly used for the copper portion of the copper plating applied to the surface of the wire for rust prevention, electrical conductivity and wire feedability, thereby improving the electrical conductivity and wire feedability during welding. Make it stable. When Cu is less than 0.15%, the strength of the weld metal is 690 N / mm 2 or less. In addition, the copper plating thickness is inevitably reduced, and the electrical conductivity and wire feedability are poor, resulting in an increase in the amount of spatter generated. On the other hand, if it exceeds 0.40%, disconnection is likely to occur during wire manufacturing. Moreover, the strength of the weld metal becomes too high and the toughness is lowered. Therefore, Cu is 0.15 to 0.40%.

Ti:0.05〜0.16%
Tiは、強脱酸剤であり、溶接金属のミクロ組織を微細化して靭性を向上させる。また、アークを安定にする効果も有する。Tiが0.05%未満では靭性が低くなり、アークが不安定でスパッタ発生量もやや多くなる。一方、0.16%を超えると、スパッタ発生量が多くなる。また、多層盛溶接するとスラグ生成量が多くなりスラグ除去作業が必要になる。したがって、Tiは0.05〜0.16%とする。
Ti: 0.05 to 0.16%
Ti is a strong deoxidizer and refines the microstructure of the weld metal to improve toughness. It also has the effect of stabilizing the arc. If Ti is less than 0.05%, the toughness is lowered, the arc is unstable, and the amount of spatter generated is slightly increased. On the other hand, if it exceeds 0.16%, the amount of spatter generated increases. In addition, when multi-layer welding is performed, the amount of slag generated increases and slag removal work is required. Therefore, Ti is set to 0.05 to 0.16%.

B:0.0010〜0.0060%
Bは、Tiとの相乗効果により溶接金属の組織を改善して靭性を安定して向上させる。Bが0.0010%未満では、安定した靭性が得られない。一方、0.0060%を超えると、溶接割れ感受性が高くなり高温割れが生じ安くなる。したがって、Bは0.0010〜0.0060%とする。
B: 0.0010 to 0.0060%
B improves the structure of the weld metal by a synergistic effect with Ti and stably improves toughness. If B is less than 0.0010%, stable toughness cannot be obtained. On the other hand, if it exceeds 0.0060%, the weld cracking sensitivity becomes high and hot cracking occurs and becomes cheaper. Therefore, B is 0.0010 to 0.0060%.

Al:0.005〜0.02%
Alは、微量でアーク安定剤として作用する。Alが0.005%未満であると、アークが不安定となってスパッタ発生量が多くなる。一方、0.02%を超えると、溶滴の粘性を高めて溶滴の離脱を不連続にしてアークが不安定になりスパッタ発生量が多くなる。
Al: 0.005 to 0.02%
Al acts as an arc stabilizer in a trace amount. If Al is less than 0.005%, the arc becomes unstable and the amount of spatter generated increases. On the other hand, if it exceeds 0.02%, the viscosity of the droplet is increased, the separation of the droplet is discontinuous, the arc becomes unstable, and the amount of spatter generated increases.

N:0.0060%以下
溶接金属の靭性を安定して向上させるには、Nの低減が必須条件となるが、その限界量は0.0060%以下である。
N: 0.0060% or less In order to stably improve the toughness of the weld metal, reduction of N is an essential condition, but the limit amount is 0.0060% or less.

NiおよびCrの1種または2種の合計:0.15%以下
NiおよびCrは、溶接金属の強度を向上するが、ワイヤ自体が高強度となり、ワイヤ製造の伸線加工時にダイス磨耗や断線が多くなるので製造が困難となる。したがって、NiおよびCrの1種または2種の合計は0.15%以下とする。なお、下限は特に限定しなくても本発明の効果を損なうものではないが、NiおよびCrの1種または2種の合計は0.01%を下限とすることが好ましい。
Total of one or two of Ni and Cr: 0.15% or less Ni and Cr improve the strength of the weld metal, but the wire itself has high strength, and die wear and disconnection occur during wire manufacturing. Since it increases, manufacturing becomes difficult. Therefore, the total of one or two of Ni and Cr is 0.15% or less. Although the lower limit is not particularly limited, the effect of the present invention is not impaired, but the total of one or two of Ni and Cr is preferably 0.01%.

なお、不可避不純物中のPおよびSは、溶接金属の割れ感受性を高め、靭性を低下させる元素であるので、それぞれ0.020%以下とすることが好ましい。   In addition, since P and S in an inevitable impurity are elements which raise the crack sensitivity of a weld metal and reduce toughness, it is preferable to make each 0.020% or less.

また、VおよびNbは、Tiを添加するときに付随的に含有される成分であり、NiやCrと同様に溶接金属の強度を向上するが、ワイヤ自体が高強度となり、ワイヤ製造の伸線加工時にダイス磨耗や断線が多くなるので製造が困難となる。したがって、VおよびNbはできるだけ少なくすることが好ましく、VとNbの1種または2種の合計量の下限を実施例に示す0.004%に限定する。そして、VとNbの1種または2種の合計量で0.05%以下、好ましくは0.02%以下に制限する。
V and Nb are components that are incidentally added when Ti is added, and improve the strength of the weld metal in the same way as Ni and Cr, but the wire itself has high strength, and the wire is drawn for wire production. Manufacture becomes difficult due to increased die wear and disconnection during processing. Therefore, it is preferable to reduce V and Nb as much as possible , and the lower limit of the total amount of one or two of V and Nb is limited to 0.004% shown in the examples. Then, 0.05% by one or two of the total amount of V and Nb or less, preferably limited to 0.02% or less.

本発明におけるガスシールドアーク溶接用ワイヤは、Arを主体としてCO2を5〜25%混合したAr−CO2混合ガスを用いて溶接する。混合ガス中のCO2が5%未満であると、溶接金属にブローホールが生じる。一方、25%を超えると、溶滴が大粒化してアークが不安定になりスパッタ発生量が多くなる。また、スラグ生成量が多くなり作業能率が悪くなる。 The gas shielded arc welding wire in the present invention is welded using an Ar—CO 2 mixed gas in which 5 to 25% of CO 2 is mixed mainly with Ar. When CO 2 in the mixed gas is less than 5%, blowholes are formed in the weld metal. On the other hand, if it exceeds 25%, the droplets become large and the arc becomes unstable and the amount of spatter generated increases. Moreover, the amount of slag generation increases and work efficiency deteriorates.

原料鋼を溶解し、鍛造、5.5mm径まで圧延、3.0mmまで一次伸線し、700℃で焼鈍、酸洗そして銅めっきした後、1.2mm径まで仕上げ伸線して20kg巻きのスプール巻ワイヤとした。表1に試作した各種ワイヤの化学成分を示す。なお、表1に記載の化学成分以外は、Feおよび不可避不純物である。   Melting raw steel, forging, rolling to 5.5mm diameter, primary drawing to 3.0mm, annealing at 700 ° C, pickling and copper plating, then finishing drawing to 1.2mm diameter and winding 20kg A spool winding wire was used. Table 1 shows the chemical components of various types of wires that were prototyped. In addition, it is Fe and an inevitable impurity other than the chemical component of Table 1.

Figure 0005449110
Figure 0005449110

表1に示す各種成分の試作ワイヤは、ワイヤ表面に銅めっきを施した後、各3000kg仕上げ伸線して断線の回数を調査した。   The test wires of various components shown in Table 1 were subjected to copper plating on the wire surface, and then each 3000 kg finish wire was drawn and the number of breaks was investigated.

溶接試験は、表2に示す溶接条件で、JIS G3128 SHY685に規定される鋼板を用いてJIS Z3312に準拠して溶着金属試験を行った。   The welding test was a welding metal test in accordance with JIS Z3312, using a steel sheet specified in JIS G3128 SHY685 under the welding conditions shown in Table 2.

Figure 0005449110
Figure 0005449110

溶接作業性は、溶着金属試験の多層盛溶接時にアークの安定性、スラグ生成量および割れの有無を調べた。スラグ生成量は目視で行い最終層までスラグを除去せずに溶接できたものを少ないとした。   Welding workability was examined for arc stability, slag generation amount, and cracks during multi-layer welding in the weld metal test. The amount of slag produced was visually observed, and the amount that could be welded to the final layer without removing the slag was assumed to be small.

スパッタ発生量は、溶着金属試験とは別に銅製の補修箱を用いて、ビードオンプレート溶接により表2の溶接条件で3回(1回の溶接時間1.5min)して捕集した。スパッタ発生量は1g/min以下を良好とした。   The spatter generation amount was collected by using a copper repair box separately from the weld metal test and performing bead-on-plate welding three times under the welding conditions shown in Table 2 (one welding time 1.5 min). The amount of spatter generated was good at 1 g / min or less.

溶接金属の評価は、引張強さが690〜830N/mm2を合格とし、靭性は−20℃で各5本衝撃試験を行い、吸収エネルギーの最小値が70J以上を合格とした。それらの結果を表3にまとめて示す。 As for the evaluation of the weld metal, a tensile strength of 690 to 830 N / mm 2 was accepted, and a toughness of each was subjected to an impact test at −20 ° C., and a minimum value of absorbed energy was 70 J or more. The results are summarized in Table 3.

Figure 0005449110
Figure 0005449110

表1および表3中、ワイヤNo.1〜が本発明例、ワイヤNo.20は比較例である。
In Table 1 and Table 3, the wire No. 1 to 6 are examples of the present invention, wire Nos. 7 to 20 are comparative examples.

本発明例であるワイヤNo.1〜は、ワイヤ成分が適正であるので、伸線時に断線がなく生産性が良好で、アークが安定してスパッタの発生量およびスラグ生成量が少なく、割れも生じず、溶接金属の強度および吸収エネルギーともに良好な値が得られるなど、極めて満足な結果であった。
Wire No. which is an example of the present invention. In Nos. 1 to 6 , since the wire component is appropriate, there is no disconnection at the time of wire drawing, the productivity is good, the arc is stable, the amount of spatter generation and slag generation is small, no cracks occur, and the strength of the weld metal The results were extremely satisfactory, such as good values for both the absorbed energy and the absorption energy.

比較例中、ワイヤNo.は、Cが低いので、溶接金属の強度および吸収エネルギーが低値であった。また、Bが高いので、クレータに割れが生じた。
In the comparative examples, the wire No. In No. 7 , since C was low, the strength and absorbed energy of the weld metal were low. Moreover, since B was high, the crater was cracked.

ワイヤNo.は、Cが高いので、クレータに割れが生じた。また、Bが低いので、吸収エネルギーの最低値が低かった。
Wire No. Since No. 8 had high C, the crater cracked. Moreover, since B was low, the minimum value of absorbed energy was low.

ワイヤNo.は、Siが低いので、溶接金属の強度および吸収エネルギーが低値であった。また、Alが低いので、アークが不安定でスパッタ発生量が多かった。
Wire No. Since No. 9 had low Si, the strength and absorbed energy of the weld metal were low. Moreover, since Al was low, the arc was unstable and the amount of spatter generated was large.

ワイヤNo.10は、Siが高いので、伸線時に断線が生じ、溶接金属の吸収エネルギーも低値であった。また、Alが高いので、アークが不安定でスパッタ発生量が多かった。
Wire No. No. 10 was high in Si, so disconnection occurred during wire drawing, and the absorbed energy of the weld metal was also low. Further, since Al is high, the arc is unstable and the amount of spatter generated is large.

ワイヤNo.11はMnが低いので、ワイヤNo.13はSi+Mnが低いので、いずれも溶接金属の強度および吸収エネルギーが低値であった。
Wire No. No. 11 has a low Mn. Since No. 13 had a low Si + Mn, the strength and absorbed energy of the weld metal were both low.

ワイヤNo.12はMnが高いので、ワイヤNo.16はMoが高いので、ワイヤNo.18はCuが高いので、いずれも伸線時に断線が生じ、溶接金属の強度が高く吸収エネルギーは低値であった。
Wire No. No. 12 has a high Mn. No. 16 has a high Mo. Since No. 18 is high in Cu, breakage occurred at the time of wire drawing, the strength of the weld metal was high, and the absorbed energy was low.

ワイヤNo.14は、Si+Mnが高いので、伸線時に断線が生じ、溶接時にスラグ生成量も多かった。また、溶接金属の強度が高く吸収エネルギーは低値であった。
Wire No. No. 14 had high Si + Mn, so breakage occurred during wire drawing, and a large amount of slag was produced during welding. Moreover, the strength of the weld metal was high and the absorbed energy was low.

ワイヤNo.15は、Moが低いので、溶接金属の強度が低かった。また、Tiが多いので、スパッタ発生量およびスラグ生成量が多かった。
Wire No. No. 15 had low Mo, so the strength of the weld metal was low. In addition, since Ti is large, the amount of spatter generation and slag generation was large.

ワイヤNo.17は、Cuが低いので、アークがやや不安定でスパッタ発生量が多かった。また、溶接金属の強度が低かった。
Wire No. In No. 17 , since Cu was low, the arc was slightly unstable and the amount of spatter was large. Moreover, the strength of the weld metal was low.

ワイヤNo.19は、NiとCrの合計が高いので、伸線時に断線が生じた。また、Tiが低いので、アークがやや不安定でスパッタ発生量がやや多く、溶接金属の吸収エネルギーも低値であった。
Wire No. No. 19 had a high sum of Ni and Cr, and thus disconnection occurred during wire drawing. Further, since Ti is low, the arc is somewhat unstable, the amount of spatter generated is somewhat large, and the absorbed energy of the weld metal is also low.

ワイヤNo.20は、Nが高いので、吸収エネルギーの最低値が低かった。 Wire No. No. 20 had a low N value because the N value was high.

以上具体例に基づいて説明したように、本発明の要件を満たすAr−CO2混合ガスシールドアーク溶接用ソリッドワイヤによれば、伸線性が良好で、多層盛溶接で溶接金属の690N/mm2級以上の強度および安定した低温靭性が確保でき、かつ、スパッタ発生量およびスラグ生成量が極めて少ないなどの良好な溶接作業性が得られることがわかる。 As described above based on the specific examples, according to the solid wire for Ar—CO 2 mixed gas shielded arc welding satisfying the requirements of the present invention, the drawability is good, and 690 N / mm 2 of weld metal is obtained by multi-layer welding. It can be seen that good welding workability can be obtained, such as a strength higher than the grade and stable low temperature toughness, and a very small amount of spatter and slag.

Claims (2)

CO2を5〜25%含むArガスを用いて690N/mm2以上の高張力鋼を溶接するAr−CO2混合ガスシールドアーク溶接用ソリッドワイヤにおいて、質量%で、
C :0.02〜0.08%、
Si:0.65〜1.10%、
Mn:1.80〜2.20%、
ただし、Si+Mn:2.55〜3.15%、
Mo:0.10〜0.30%、
Cu:0.15〜0.40%、
Ti:0.05〜0.16%、
B :0.0010〜0.0060%、
Al:0.005〜0.02%、
VおよびNbの1種または2種を合計:0.004〜0.05%を含有し、
N :0.0060%以下で、残部はFeおよび不可避不純物であることを特徴とするAr−CO2混合ガスシールドアーク溶接用ソリッドワイヤ。
In Ar-CO 2 mixed gas shielded arc welding solid wires for welding 690n / mm 2 or more high tensile steel using Ar gas containing CO 2 5 to 25%, by mass%,
C: 0.02 to 0.08%,
Si: 0.65 to 1.10%,
Mn: 1.80 to 2.20%
However, Si + Mn: 2.55 to 3.15%,
Mo: 0.10 to 0.30%,
Cu: 0.15-0.40%,
Ti: 0.05 to 0.16%,
B: 0.0010 to 0.0060%,
Al: 0.005 to 0.02%,
One or two of V and Nb in total: 0.004 to 0.05% contained,
N: Solid wire for Ar—CO 2 mixed gas shielded arc welding, characterized in that it is 0.0060% or less and the balance is Fe and inevitable impurities.
さらに、質量%で、NiおよびCrの1種または2種を合計で0.15%以下含有することを特徴とする請求項1に記載のAr−CO2混合ガスシールドアーク溶接用ソリッドワイヤ。 2. The solid wire for Ar—CO 2 mixed gas shielded arc welding according to claim 1, further comprising, by mass%, one or two of Ni and Cr in total of 0.15% or less.
JP2010249897A 2010-11-08 2010-11-08 Solid wire for Ar-CO2 mixed gas shielded arc welding Expired - Fee Related JP5449110B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010249897A JP5449110B2 (en) 2010-11-08 2010-11-08 Solid wire for Ar-CO2 mixed gas shielded arc welding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010249897A JP5449110B2 (en) 2010-11-08 2010-11-08 Solid wire for Ar-CO2 mixed gas shielded arc welding

Publications (2)

Publication Number Publication Date
JP2012101234A JP2012101234A (en) 2012-05-31
JP5449110B2 true JP5449110B2 (en) 2014-03-19

Family

ID=46392287

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010249897A Expired - Fee Related JP5449110B2 (en) 2010-11-08 2010-11-08 Solid wire for Ar-CO2 mixed gas shielded arc welding

Country Status (1)

Country Link
JP (1) JP5449110B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107813071A (en) * 2016-09-12 2018-03-20 海宁瑞奥金属科技有限公司 A kind of big wall thickness cryogenic pipelines pipe fitting welding wire for submerged-arc welding of high intensity

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103008846B (en) * 2012-12-10 2016-01-06 南车四方车辆有限公司 The welding method of low-carbon high strength steel
JP2015167991A (en) * 2014-03-10 2015-09-28 日鐵住金溶接工業株式会社 Solid wire for carbon dioxide gas shielded arc welding
JP6771638B1 (en) * 2019-11-07 2020-10-21 株式会社神戸製鋼所 Gas shield arc welding wire
CN112846564B (en) * 2020-12-31 2024-02-02 江苏九洲新材料科技有限公司 Argon tungsten-arc stainless steel welding wire and preparation method thereof

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3523917B2 (en) * 1994-09-29 2004-04-26 大同特殊鋼株式会社 Gas shielded arc welding method
JP2005230906A (en) * 2004-02-23 2005-09-02 Jfe Steel Kk Gas shielded arc welding method
JP5038853B2 (en) * 2007-10-30 2012-10-03 日鐵住金溶接工業株式会社 Solid wire for carbon dioxide shielded arc welding
JP2010131637A (en) * 2008-12-04 2010-06-17 Kobe Steel Ltd Gas shielded arc welding method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107813071A (en) * 2016-09-12 2018-03-20 海宁瑞奥金属科技有限公司 A kind of big wall thickness cryogenic pipelines pipe fitting welding wire for submerged-arc welding of high intensity

Also Published As

Publication number Publication date
JP2012101234A (en) 2012-05-31

Similar Documents

Publication Publication Date Title
JP5157606B2 (en) TIG welding method of high strength steel using flux cored wire
JP4614226B2 (en) Solid wire for gas shielded arc welding
JP6573056B1 (en) Solid wire for gas shielded arc welding to thin steel plate
JP5005309B2 (en) Gas shielded arc welding flux cored wire for high strength steel
JP5768547B2 (en) High-strength steel flux cored wire for gas shielded arc welding
JP4502947B2 (en) Steel plate with excellent weldability
JP6447752B2 (en) Automotive parts having resistance welds
CN110382154B (en) Fillet welded joint and method for manufacturing same
JP5449110B2 (en) Solid wire for Ar-CO2 mixed gas shielded arc welding
WO2018203513A1 (en) Arc welding method and welding wire
JP4676940B2 (en) Manufacturing method of metal-based flux cored wire with low slag and high fatigue strength welded joint
JP5744816B2 (en) Bond flux for submerged arc welding
JP6155810B2 (en) High Ni flux cored wire for gas shielded arc welding
JP4427416B2 (en) Large heat input submerged arc welding method with excellent weld metal toughness.
CN112512742B (en) Solid welding wire and method for manufacturing welded joint
KR20140118901A (en) Flux cored wire for gas shielded arc welding
JP5386942B2 (en) Fillet arc welding method for thin steel sheet
JP5902970B2 (en) Solid wire for gas shielded arc welding of high strength steel
JP4625415B2 (en) Solid wire for gas shielded arc welding
JP6829111B2 (en) Filling material for TIG welding
JP5955166B2 (en) Ferritic stainless steel welding wire with excellent weldability, high heat resistance and high corrosion resistance
JP2015182094A (en) Gas shielded arc welding method
JP2011206828A (en) Flux-cored welding wire for fine diameter wire multiple electrode submerged arc welding
JP2010214466A (en) Method for welding high strength thin steel sheet
JP5670305B2 (en) Solid wire for gas shielded arc welding of high strength steel sheet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121112

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130827

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130903

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131030

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131224

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131224

R150 Certificate of patent or registration of utility model

Ref document number: 5449110

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees