JP2015167991A - Solid wire for carbon dioxide gas shielded arc welding - Google Patents

Solid wire for carbon dioxide gas shielded arc welding Download PDF

Info

Publication number
JP2015167991A
JP2015167991A JP2014046136A JP2014046136A JP2015167991A JP 2015167991 A JP2015167991 A JP 2015167991A JP 2014046136 A JP2014046136 A JP 2014046136A JP 2014046136 A JP2014046136 A JP 2014046136A JP 2015167991 A JP2015167991 A JP 2015167991A
Authority
JP
Japan
Prior art keywords
slag
welding
carbon dioxide
wire
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014046136A
Other languages
Japanese (ja)
Inventor
貴之 大塚
Takayuki Otsuka
貴之 大塚
木本 勇
Isamu Kimoto
勇 木本
雅哉 齋藤
Masaya Saito
雅哉 齋藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Welding and Engineering Co Ltd
Original Assignee
Nippon Steel and Sumikin Welding Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel and Sumikin Welding Co Ltd filed Critical Nippon Steel and Sumikin Welding Co Ltd
Priority to JP2014046136A priority Critical patent/JP2015167991A/en
Publication of JP2015167991A publication Critical patent/JP2015167991A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Arc Welding In General (AREA)
  • Nonmetallic Welding Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a solid wire for carbon dioxide gas-shielded arc welding which is excellent in slag releasability, welding workability and weld crack resistance, and further is capable of obtaining excellent strength and stable toughness of a weld deposit metal even when performing a continuous multi-layer build-up welding under a welding condition of high heat input and high interpass temperature.SOLUTION: A solid wire contains, by mass, 0.02-0.09% C, 0.65-1.2% Si, 1.85-2.2% Mn, 0.007-0.02% S, 0.34-0.54% Mo, 0.15-0.45% Cu, 0.05-0.15% Ti, 0.001-0.006% B and 0.020% or less Al, and Psc (slag crystallization index) shown by the expression: Psc=2Mn+145Ti+10Mo-10Si-600S-10Al-100B-2.6 is -8 to 12.

Description

本発明は、590N/mm級の高張力鋼に使用する炭酸ガスシールドアーク溶接用ソリッドワイヤに関し、特に大入熱および高パス間温度の溶接施工条件で連続多層盛溶接をしても、スラグ剥離性、溶接作業性および耐溶接割れ性が良好で、かつ溶着金属の機械的性質が優れた炭酸ガスシールドアーク溶接用ソリッドワイヤに係るものである。 The present invention relates to a solid wire for carbon dioxide shielded arc welding used for 590 N / mm grade 2 high-strength steel, and in particular, even if continuous multi-layer welding is carried out under welding conditions of high heat input and high pass-to-pass temperature. The present invention relates to a solid wire for carbon dioxide shielded arc welding having excellent peelability, welding workability and resistance to weld cracking, and excellent mechanical properties of the deposited metal.

近年、建築鉄骨分野において、溶接施工方法として炭酸ガスを使用したガスシールドアーク溶接が主として使用されている。その理由として、炭酸ガスシールドアーク溶接法は溶着効率が高いこと、アルゴンガスを使用した場合と比較すると炭酸ガスは安価であるという利点があるためである。   In recent years, gas shielded arc welding using carbon dioxide gas is mainly used as a welding method in the field of building steel frames. The reason is that the carbon dioxide shielded arc welding method has an advantage that the welding efficiency is high and carbon dioxide is less expensive than the case where argon gas is used.

溶接施工のさらなる能率向上を図るため、大入熱および高パス間温度の溶接施工条件に対応する炭酸ガスシールドアーク溶接用ソリッドワイヤが開発され、JIS Z3312 YGW18に規定されている。この炭酸ガスシールドアーク溶接用ソリッドワイヤを使用すると490N/mm級高張力鋼に対して、最大入熱が40kJ/cmでは最高パス間温度が350℃での溶接施工条件が許容される。また520N/mm級高張力鋼に対して、最大入熱が30kJ/cmでは最高パス間温度が250℃での溶接施工条件が許容される。さらに急速に普及している540N/mm級高張力鋼に対しても、大入熱・高パス間温度の溶接施工条件が許容される。 In order to further improve the efficiency of welding construction, a solid wire for carbon dioxide shielded arc welding corresponding to welding construction conditions of large heat input and high interpass temperature has been developed and defined in JIS Z3312 YGW18. When this solid wire for carbon dioxide shielded arc welding is used, welding conditions with a maximum heat input of 40 kJ / cm and a maximum interpass temperature of 350 ° C. are allowed for 490 N / mm 2 grade high strength steel. Further, for 520 N / mm 2 grade high strength steel, welding conditions with a maximum interpass temperature of 250 ° C. are allowed at a maximum heat input of 30 kJ / cm. Furthermore, welding conditions of large heat input and high pass temperature are allowed even for the 540 N / mm 2 grade high strength steel that is rapidly spreading.

従来、大入熱・高パス間温度対応の炭酸ガスシールドアーク溶接用ソリッドワイヤは、所定の機械的性質を有する溶着金属を得るために、相対的に多量の合金元素が添加されている。例えば、特開平10−230387号公報(特許文献1)、特開平11−90678号公報(特許文献2)、特開平11−104886号公報(特許文献3)、特開平11−239892号公報(特許文献4)および特開2001−287086号公報(特許文献5)に記載の炭酸ガスシールドアーク溶接用ソリッドワイヤは、Si、MnやTiの脱酸成分を従来の炭酸ガスシールドアーク溶接用ソリッドワイヤより多く含有し、またMo、B、Crなどを必要に応じて積極的に添加しているのが特徴である。   Conventionally, a solid wire for carbon dioxide shielded arc welding corresponding to high heat input and high inter-pass temperature has been added with a relatively large amount of alloying element in order to obtain a weld metal having predetermined mechanical properties. For example, JP-A-10-230387 (Patent Document 1), JP-A-11-90678 (Patent Document 2), JP-A-11-104886 (Patent Document 3), JP-A-11-239892 (Patent Document) The solid wire for carbon dioxide shielded arc welding described in Document 4) and Japanese Patent Application Laid-Open No. 2001-287086 (Patent Document 5) has a deoxidizing component of Si, Mn, and Ti in comparison with the conventional solid wire for carbon dioxide shielded arc welding. It is characterized by containing a large amount and actively adding Mo, B, Cr or the like as necessary.

しかしながら、前述の490N/mm級高張力鋼、520N/mm級高張力鋼または540N/mm級高張力鋼に対する溶接施工は、入熱管理およびパス間温度管理が困難であるため、溶接作業者が溶接機を使用することによる半自動溶接法が一般的であった。一方、省人力化、夜間および休日の無人運転化により、コストダウン、納期短縮などの能率向上を目的として、最近はロボットによる全自動溶接が急速に普及している。 However, the welding operation for the above-described 490 N / mm grade 2 high-strength steel, 520 N / mm grade 2 high-tensile steel, or 540 N / mm grade 2 high-strength steel is difficult to control heat input and temperature between passes. A semi-automatic welding method in which an operator uses a welding machine is common. On the other hand, full-automatic welding by robots has recently become widespread for the purpose of improving efficiency, such as cost reduction and shortening delivery time, by saving labor and making unattended operation at night and holidays.

また、従来の大入熱・高パス間温度溶接施工条件対応の炭酸ガスシールドアーク溶接用ソリッドワイヤは、所定の機械的性質を有する溶着金属を得ることのみを目的に開発されたため、ロボットによる全自動溶接に適用することを考慮して設計されていない。したがって、大入熱・高パス間温度溶接施工条件対応の炭酸ガスシールドアーク溶接用ソリッドワイヤは、スラグ生成元素であるSi、MnやTiなどの脱酸成分やMo、Bなどを多く含有しているため、スラグ生成量が多く、かつスラグが溶着金属表面から剥離しにくいという欠点がある。   In addition, the conventional solid wire for carbon dioxide shielded arc welding that meets the welding conditions for high heat input and high-pass temperature was developed only for the purpose of obtaining a weld metal having a predetermined mechanical property. It is not designed for application to automatic welding. Therefore, the solid wire for carbon dioxide shielded arc welding that supports high heat input and high-pass temperature welding conditions contains a large amount of deoxidizing components such as Si, Mn, Ti and Mo, B, etc., which are slag generating elements. Therefore, there are drawbacks in that the amount of slag produced is large and the slag is difficult to peel off from the surface of the deposited metal.

このような炭酸ガスシールドアーク溶接用ソリッドワイヤを使用してロボットによる全自動溶接を行い、溶着金属を積層していくと、溶着金属の表面上にスラグが堆積する。この堆積したスラグ上で、溶着金属の積層のために再アークスタートを行った場合、炭酸ガスシールドアーク溶接用ソリッドワイヤの先端と溶着金属との間での通電がスラグにより阻害されることがある。アークスタートができないとロボットがエラーと判定するため、溶接作業停止の原因となる。   When such a solid wire for carbon dioxide shielded arc welding is used to perform fully automatic welding by a robot and the deposited metal is laminated, slag accumulates on the surface of the deposited metal. When a re-arc start is performed on the deposited slag for laminating the weld metal, the current between the tip of the solid wire for carbon dioxide shielded arc welding and the weld metal may be hindered by the slag. . If the arc start is not possible, the robot determines that the error has occurred, causing the welding operation to stop.

また、多量に堆積したスラグの上に溶着金属の積層のために溶接を行った場合、アーク状態の不安定化、溶込み不足、スラグ巻込みによる溶接欠陥の原因となる。さらに、大入熱・高パス間温度の溶接施工条件で連続多層盛溶接を行った場合、溶接線の折返し位置などの溶込み深さが大幅に深くなる箇所では、高温割れが発生するという問題もあった。   In addition, when welding is performed for depositing a deposited metal on a large amount of accumulated slag, arcing becomes unstable, insufficient penetration, and welding defects due to slag entrainment occur. In addition, when continuous multi-layer welding is performed under welding conditions of high heat input and high-pass temperature, hot cracking occurs at locations where the penetration depth of the weld line is significantly deeper. There was also.

一方、特開2006−26643号公報(特許文献6)に大入熱および高パス間温度条件で溶接した場合にスラグ生成量が少なく、スラグ剥離性が良好なガスシールドアーク溶接用ソリッドワイヤの開示がある。しかし、特許文献6に記載のガスシールドアーク溶接用ワイヤは、スラグ剥離性は良好であるがMn量が少ないので溶着金属の安定した靭性が得られないという問題がある。   On the other hand, Japanese Patent Application Laid-Open No. 2006-26643 (Patent Document 6) discloses a solid wire for gas shielded arc welding that produces a small amount of slag and has good slag peelability when welded under conditions of large heat input and high pass temperature. There is. However, the gas shielded arc welding wire described in Patent Document 6 has good slag removability, but has a problem that the stable toughness of the deposited metal cannot be obtained because the amount of Mn is small.

特開平10−230387号公報JP-A-10-230387 特開平11−90678号公報Japanese Patent Laid-Open No. 11-90678 特開平11−104886号公報Japanese Patent Laid-Open No. 11-104886 特開平11−239892号公報Japanese Patent Laid-Open No. 11-239892 特開2001−287086号公報JP 2001-287086 A 特開2006−26643号公報JP 2006-26643 A

本発明は前記問題点に鑑みてなされたものであって、590N/mm級の高張力鋼に対して、大入熱・高パス間温度の溶接施工条件でロボットによる全自動溶接および連続多層盛溶接をしても、スラグ剥離性、溶接作業性および耐溶接割れ性が良好で、かつ溶着金属の強度が確保でき安定した靭性が得られる炭酸ガスシールドアーク溶接用ソリッドワイヤを提供することを目的とする。 The present invention has been made in view of the above-mentioned problems. For a high-tensile steel of 590 N / mm class 2 , fully automatic welding by a robot and continuous multilayers under welding conditions of high heat input and high-pass temperature. To provide a solid wire for carbon dioxide shielded arc welding that has good slag peelability, welding workability and weld cracking resistance, and can secure the strength of the deposited metal and obtain stable toughness even after prime welding. Objective.

本発明の要旨は、ワイヤ全質量に対する質量%で、C:0.02〜0.09%、Si:0.65〜1.2%、Mn:1.85〜2.2%、S:0.007〜0.02%、Mo:0.34〜0.54%、Cu:0.15〜0.45%、Ti:0.05〜0.15%、B:0.001〜0.006%、Al:0.020%以下を含有し、P:0.020%以下で、その他はFeおよび不可避的不純物からなり、かつS+10Bが0.07%以下、下記式で示すスラグ結晶化度指数Pscが−8〜12であることを特徴とする。
Psc=2Mn+145Ti+10Mo−10Si−600S−10Al−100B−2.6 ・・・(1)式
また、Nb、V、CrおよびNiから選択された1種または2種以上の合計で0.3%以下を更に含有することも特徴とする炭酸ガスシ−ルドアーク溶接用ソリッドワイヤにある。
The gist of the present invention is mass% with respect to the total mass of the wire, C: 0.02 to 0.09%, Si: 0.65 to 1.2%, Mn: 1.85 to 2.2%, S: 0 0.007 to 0.02%, Mo: 0.34 to 0.54%, Cu: 0.15 to 0.45%, Ti: 0.05 to 0.15%, B: 0.001 to 0.006 %, Al: 0.020% or less, P: 0.020% or less, the other is composed of Fe and inevitable impurities, and S + 10B is 0.07% or less. Slag crystallinity index represented by the following formula Psc is -8-12.
Psc = 2Mn + 145Ti + 10Mo-10Si-10S-100Al-100B-2.6 (1) Formula Also, 0.3% or less in total of one or more selected from Nb, V, Cr and Ni Further, the solid wire for carbon dioxide shielded arc welding is also characterized by containing.

本発明の炭酸ガスシ−ルドアーク溶接用ソリッドワイヤによれば、590N/mm級の高張力鋼の溶接において、大入熱・高パス間温度の溶接施工条件でロボットによる全自動溶接および連続多層盛溶接を行っても、スラグ剥離性、溶接作業性および耐溶接割れ性が良好で、かつ溶着金属の強度および安定した靭性を得ることができる。 According to the solid wire for carbon dioxide shielded arc welding of the present invention, in the welding of high-tensile steel of 590 N / mm class 2, fully automatic welding by a robot and continuous multi-layer welding under welding conditions of high heat input and high pass temperature. Even if welding is performed, the slag peelability, welding workability and weld crack resistance are good, and the strength and stable toughness of the deposited metal can be obtained.

本発明の実施例における溶着金属試験および溶接割れ試験の試験鋼板の開先形状を示した図である。It is the figure which showed the groove shape of the test steel plate of the weld metal test and the weld crack test in the Example of this invention.

本発明者等は、上記の問題点を解決するために、種々の成分を変化させた炭酸ガスシ−ルドアーク溶接用ソリッドワイヤを試作して溶接スラグに関する研究を重ね、スラグ剥離性に及ぼす影響および溶着金属の強度と靭性の安定化に及ぼす影響因子を明確にし、以下に示す知見を得た。   In order to solve the above-mentioned problems, the inventors have made a solid wire for carbon dioxide shielded arc welding with various components changed, and conducted research on the welding slag. The influencing factors on metal strength and toughness stabilization were clarified and the following findings were obtained.

溶接スラグの主成分はSiO、MnOおよびTiOから成る。すなわち炭酸ガスシ−ルドアーク溶接用ソリッドワイヤ中の強脱酸成分であるSi、MnおよびTiがスラグ生成量やスラグ剥離性に大きく影響する。スラグ剥離性は、溶着金属表面と溶融から凝固後までのスラグとの界面エネルギーすなわちスラグの密着性と、スラグの自己崩壊性とに密接な関係がある。 The main component of the welding slag is composed of SiO 2 , MnO and TiO 2 . That is, Si, Mn, and Ti, which are strong deoxidation components in the solid wire for carbon dioxide shielded arc welding, greatly affect the slag generation amount and slag peelability. The slag peelability is closely related to the interfacial energy between the surface of the deposited metal and the slag from melting to solidification, that is, the slag adhesion, and the slag self-disintegration.

溶着金属表面とスラグとの密着性はS含有量が大きく影響しており、S含有量が少ないとスラグと溶着金属の密着性が増加するため、スラグ剥離性が低下する。また、スラグの主成分であるSiO、MnOおよびTiOの比率によってスラグの物理的性質である表面張力、粘性、凝固温度およびスラグと溶着金属表面間のぬれ性の変化に影響するため、Si、MnおよびTiの添加および調整により、スラグ剥離性を良好にする効果を得ることを知見した。 The adhesion between the surface of the weld metal and the slag is greatly influenced by the S content. When the S content is small, the adhesion between the slag and the weld metal is increased, so that the slag peelability is lowered. Further, since the ratio of SiO 2 , MnO and TiO 2 which are the main components of slag affects the physical properties of the slag, such as surface tension, viscosity, solidification temperature, and wettability between the slag and the deposited metal surface, Si It has been found that by adding and adjusting Mn and Ti, the effect of improving the slag peelability is obtained.

また、スラグの結晶構造はMnO、SiO、TiSiOおよび非晶質(ガラス質)構造からなり、スラグ中の非晶質構造の割合がスラグの自己崩壊性に大きく関係している。スラグ中の結晶構造は、TiおよびS含有量が大きく影響しており、Tiの増加およびSの減少によりスラグの非晶質構造の割合が減少し、スラグの自己崩壊性が低下して、スラグ剥離性が低下するということを知見した。 The crystal structure of slag is composed of MnO, SiO 3 , TiSiO 3 and an amorphous (glassy) structure, and the ratio of the amorphous structure in the slag is greatly related to the self-destructive property of the slag. The crystal structure in the slag is greatly influenced by the Ti and S contents. The increase in Ti and the decrease in S decrease the proportion of the amorphous structure of the slag, lowering the self-degradability of the slag, It was found that the peelability was lowered.

さらに、AlおよびBは、スラグ中の非晶質構造の割合を増加させる傾向があるが、凝固温度および軟化温度を低下させるため、スラグと溶着金属の密着性が増加し、いわゆる焼き付きの状態となり、スラグ剥離性が低下することも知見した。従来の知見として得られている溶着金属表面の凹凸、ワイヤ送給の安定度などもスラグ剥離性への影響因子である。   Furthermore, Al and B tend to increase the proportion of the amorphous structure in the slag, but since the solidification temperature and softening temperature are lowered, the adhesion between the slag and the deposited metal is increased, resulting in a so-called seizure state. It was also found that the slag peelability was lowered. Concavities and convexities on the surface of the weld metal obtained as conventional knowledge, stability of wire feeding, and the like are also influential factors on slag peelability.

一方、大入熱・高パス間温度の溶接施工条件でのロボットによる全自動溶接および連続多層盛溶接における耐溶接割れ性および溶着金属の強度と安定した靭性を得ることについては、C、SおよびB含有量の増加により、高温割れを発生させる原因となること、また、溶着金属の強度と安定した靭性はC、Si、Mn、Ti、Mo、B、Nb、V、CrおよびNiの添加および調整により良好な効果を得ることができることを知見した。   On the other hand, for obtaining weld cracking resistance and weld metal strength and stable toughness in fully automatic welding and continuous multi-layer welding by robots under welding conditions of high heat input and high pass temperature, C, S and Increasing the B content causes hot cracking, and the strength and stable toughness of the deposited metal is the addition of C, Si, Mn, Ti, Mo, B, Nb, V, Cr and Ni. It has been found that a good effect can be obtained by adjustment.

さらに、炭酸ガスシールドアーク溶接の大入熱での溶接施工条件では、アーク状態の低下およびスパッタ発生量の増加という問題があり、これら溶接作業性はSiおよびTiの適量添加とワイヤ表面に銅めっきを施すことにより良好となることを見出した。   Furthermore, the welding conditions with large heat input of carbon dioxide shielded arc welding have the problem that the arc state is reduced and the amount of spatter generated is increased. The welding workability is improved by adding appropriate amounts of Si and Ti and copper plating on the wire surface. It has been found that it is improved by applying.

以下、本発明の炭酸ガスシールドアーク溶接用ワイヤに含有される成分組成の限定理由について説明する。なお、各成分の含有量は、めっきを含むワイヤ全質量に対する質量%で表わすこととし、その質量%を表わすときは単に%と記載して表すこととする。   Hereinafter, the reason for limiting the component composition contained in the carbon dioxide shielded arc welding wire of the present invention will be described. The content of each component is expressed by mass% with respect to the total mass of the wire including plating, and when expressing the mass%, it is simply expressed as%.

[C:0.02〜0.09%]
Cは、溶着金属の焼入れ性を高め、強度および靭性を確保する上で重要な元素である。Cが0.02%未満であると、溶着金属の必要な強度と靭性が得られない。一方、Cが0.09%を超えると、溶着金属の割れ感受性が高くなる。したがって、Cは0.02〜0.09%とする。
[C: 0.02 to 0.09%]
C is an important element for enhancing the hardenability of the weld metal and ensuring strength and toughness. If C is less than 0.02%, the required strength and toughness of the weld metal cannot be obtained. On the other hand, when C exceeds 0.09%, the cracking sensitivity of the deposited metal increases. Therefore, C is set to 0.02 to 0.09%.

[Si:0.65〜1.2%]
Siは、主要な脱酸元素であり、溶着金属の酸素量を低下させて靭性の向上に重要な元素である。しかしながら、多くなりすぎると大入熱・高パス間温度での溶接施工条件では溶着金属を脆化させる。また、大入熱・高パス間温度での溶接施工条件ではSiの消耗が多いが、それ以上のSiが溶着金属中に歩留まって強度を確保する上で必要である。Siが0.65%未満では、溶接金属の所定の強度が得られず靭性も低下する。また、アーク状態が不安定となってスパッタ発生量が多くなる。一方、Siが1.2%を超えると、溶着金属の靭性が悪くなる。したがって、Siは0.65〜1.2%とする。
[Si: 0.65 to 1.2%]
Si is a main deoxidizing element and is an important element for improving the toughness by reducing the oxygen content of the deposited metal. However, if the amount is too large, the weld metal is embrittled under welding conditions with high heat input and high interpass temperature. In addition, although there is a large amount of Si consumption under the welding conditions with large heat input and high pass temperature, more Si is required to secure the strength by yielding in the deposited metal. If Si is less than 0.65%, the predetermined strength of the weld metal cannot be obtained, and the toughness also decreases. Further, the arc state becomes unstable and the amount of spatter generated increases. On the other hand, when Si exceeds 1.2%, the toughness of the deposited metal is deteriorated. Therefore, Si is 0.65 to 1.2%.

[Mn:1.85〜2.2%]
Mnは、脱酸元素であり溶接金属のバラツキのない安定した靭性を得るために重要な元素である。また、強度面での改善にも有効な元素である。さらに、高融点のMnSを形成してFeSの粒界析出による溶着金属の割れを抑制する。反面、多くなりすぎると大入熱・高パス間温度での溶接施工条件では、Siと同様に溶着金属を脆化させる。Mnが1.85%未満では、溶接金属の所定の強度と安定した靱性が得られない。一方、Mnが2.2%を超えると、溶着金属の靭性が低下する。したがって、Mnは1.85〜2.2%とする。
[Mn: 1.85 to 2.2%]
Mn is a deoxidizing element and is an important element for obtaining stable toughness without variation of the weld metal. It is also an effective element for improving strength. Furthermore, high melting point MnS is formed to suppress cracking of the weld metal due to FeS grain boundary precipitation. On the other hand, if the amount is too large, the welding metal is embrittled in the same manner as Si under welding conditions with high heat input and high pass temperature. If Mn is less than 1.85%, the predetermined strength and stable toughness of the weld metal cannot be obtained. On the other hand, if Mn exceeds 2.2%, the toughness of the deposited metal decreases. Therefore, Mn is 1.85 to 2.2%.

[S:0.007〜0.02%]
Sは、スラグの溶着金属表面からの剥離を促進する作用と、スラグの結晶化度を低下する作用があり、スラグ剥離性を向上させる元素である。Sが0.007%未満では、その効果は不十分である。しかしながら、Sが0.02%を超えると、溶着金属に割れが発生し、また溶着金属の靭性を低下させる傾向がある。したがって、Sは0.007〜0.02%とする。
[S: 0.007 to 0.02%]
S is an element that has an action of promoting the peeling of the slag from the surface of the deposited metal and an action of reducing the crystallinity of the slag, and improves the slag peelability. If S is less than 0.007%, the effect is insufficient. However, if S exceeds 0.02%, cracks occur in the weld metal and the toughness of the weld metal tends to be reduced. Therefore, S is set to 0.007 to 0.02%.

[Mo:0.34〜0.54%]
Moは、溶着金属の焼入れ性を高める元素である。特に大入熱・高パス間温度での溶接施工条件では、溶着金属の焼入れ性が不足するので、強度を確保する上で必須の元素である。Moが0.34%未満であると、溶接金属の必要な強度が得られない。一方、Moが0.54%を超えると、溶接金属の強度が高くなりすぎて靭性が低下する。したがって、Moは0.34〜0.54%とする。
[Mo: 0.34 to 0.54%]
Mo is an element that enhances the hardenability of the weld metal. In particular, it is an indispensable element for securing the strength because the hardenability of the deposited metal is insufficient under the welding conditions with high heat input and high interpass temperature. If Mo is less than 0.34%, the required strength of the weld metal cannot be obtained. On the other hand, if Mo exceeds 0.54%, the strength of the weld metal becomes too high and the toughness is lowered. Therefore, Mo is 0.34 to 0.54%.

[Cu:0.15〜0.45%]
Cuは、鋼中に不可避的不純物として0.02%程度含有されるるが、本発明のCuは主としてワイヤ表面に施した銅めっきをいう。通常、銅めっきはワイヤ送給性と通電性を安定化するのに極めて重要な表面処理方法である。特に大入熱・高パス間温度での溶接施工条件では、銅めっき厚が薄いと溶接中のチップ磨耗が激しくなり、溶接中にワイヤ送給性と通電性が劣化し、その結果、満足に溶接ができなくなる。Cuが0.15%未満であると、必要なワイヤ送給性と通電性が得られない。一方、Cuが0.45%を超えると、溶接割れ感受性が高くなる。したがって、Cuは0.15〜0.45%とする。なお、ワイヤ表面の銅めっき厚さは0.2〜1.0μmであることが耐チップ磨耗性から好ましい。
[Cu: 0.15-0.45%]
Cu is contained in steel in an amount of about 0.02% as an unavoidable impurity, but Cu of the present invention mainly refers to copper plating applied to the wire surface. In general, copper plating is a surface treatment method that is extremely important for stabilizing the wire feeding property and the current carrying property. Especially under welding conditions with high heat input and high pass temperature, if the copper plating thickness is thin, chip wear during welding becomes severe and wire feedability and electrical conductivity deteriorate during welding, resulting in satisfactory results. It becomes impossible to weld. If the Cu content is less than 0.15%, the required wire feedability and electrical conductivity cannot be obtained. On the other hand, when Cu exceeds 0.45%, the weld cracking sensitivity becomes high. Therefore, Cu is made 0.15 to 0.45%. In addition, it is preferable from the chip abrasion resistance that the copper plating thickness of the wire surface is 0.2-1.0 micrometer.

[Ti:0.05〜0.15%]
Tiは、高電流域での炭酸ガスシールドアーク溶接において、アーク状態を向上させる効果がある。Tiが0.05%未満では、スラグの粘性が高まることと表面張力が大きくなることから、スラグが局部的に厚くなるため、連続多層盛溶接ではスラグの再溶融が完全にはできなくなる。このためアークが不安定でスパッタ発生量が多く、スラグ剥離性も悪く、スラグ巻込み欠陥を発生させる場合があり、さらには溶接金属の靭性も低下する。一方、Tiは、強力な脱酸元素として作用し、かつその酸化物が溶着金属中に含有することで組織改善に効果がある。強力な脱酸元素であるがゆえに、ほとんどのTiがTiOとしてスラグの主成分となる。Tiが0.15%を超えると、スラグの非晶質構造の割合が減少することにより、スラグの自己崩壊性が低下し、スラグ剥離性が低下する。したがって、Tiは0.05〜0.15%とする。
[Ti: 0.05 to 0.15%]
Ti has an effect of improving the arc state in carbon dioxide shielded arc welding in a high current region. If Ti is less than 0.05%, the viscosity of the slag increases and the surface tension increases, so the slag locally thickens, so that continuous multi-layer welding cannot completely remelt the slag. For this reason, the arc is unstable, the amount of spatter generated is large, the slag releasability is poor, slag entrainment defects may be generated, and the toughness of the weld metal also decreases. On the other hand, Ti acts as a powerful deoxidizing element, and its oxide is contained in the deposited metal, and is effective in improving the structure. Because it is a strong deoxidizing element, most Ti becomes the main component of slag as TiO 2 . When Ti exceeds 0.15%, the ratio of the amorphous structure of the slag decreases, so that the self-collapse property of the slag is lowered and the slag peelability is lowered. Therefore, Ti is set to 0.05 to 0.15%.

[B:0.001〜0.006%]
Bは、Tiとの相乗効果により大入熱・高パス間温度の溶接施工条件での溶着金属の組織を改善して靭性向上に効果がある。Bが0.001%未満では、その効果は不十分である。一方、Bが0.006%を超えると、大入熱・高パス間温度の溶接施工条件での溶接割れ感受性が高くなるため、特に連続多層盛溶接を行った場合、溶接線の折返し位置などの溶込み深さが大幅に深くなる箇所では、高温割れが発生することがある。また、Bにはスラグの非晶質構造の割合を増加させる傾向があるが、スラグの軟化温度を低下させるため、スラグと溶着金属表面との密着性を高めてスラグ剥離性を低下させる。したがって、Bは0.001〜0.006%とする。
[B: 0.001 to 0.006%]
B is effective in improving the toughness by improving the structure of the deposited metal under the welding conditions of high heat input and high pass temperature due to a synergistic effect with Ti. If B is less than 0.001%, the effect is insufficient. On the other hand, if B exceeds 0.006%, the weld cracking susceptibility increases under welding conditions of high heat input and high pass temperature. Hot cracks may occur at locations where the penetration depth of becomes significantly deeper. Further, B has a tendency to increase the ratio of the amorphous structure of the slag. However, since the softening temperature of the slag is lowered, the adhesion between the slag and the surface of the weld metal is increased to reduce the slag peelability. Therefore, B is 0.001 to 0.006%.

[Al:0.020%以下]
Alは、微量の添加で強力な脱酸元素として作用して溶着金属の靭性を向上させる。また、スラグの非晶質構造の割合を増加させる傾向がある。しかし、Alが0.020%を超えると、スラグの軟化温度を低下させるため、スラグと溶着金属表面の密着性を高め、スラグ剥離性を低下させる。したがって、Alは0.020%以下とする。好ましくは0.002〜0.015%である。
[Al: 0.020% or less]
Al acts as a powerful deoxidizing element with a small amount of addition, and improves the toughness of the deposited metal. There is also a tendency to increase the proportion of the amorphous structure of the slag. However, if Al exceeds 0.020%, the softening temperature of the slag is lowered, so the adhesion between the slag and the weld metal surface is improved and the slag peelability is lowered. Therefore, Al is made 0.020% or less. Preferably it is 0.002 to 0.015%.

[P:0.020%以下]
Pは、溶着金属の割れ感受性を高める元素であり、0.020%を超えると高温割れをおこす可能性がある。したがって、Pは0.020%以下とする。
[P: 0.020% or less]
P is an element that increases the cracking susceptibility of the deposited metal, and if it exceeds 0.020%, it may cause hot cracking. Therefore, P is set to 0.020% or less.

[S+10B:0.07%以下]
前述のようにSは、スラグ剥離性を向上させるために必須であるが、Bの含有量によっては高温割れを助長させる。したがって、それらの含有量をS+10Bで0.07%以下にする必要がある。
[S + 10B: 0.07% or less]
As described above, S is essential for improving the slag removability, but depending on the B content, promotes hot cracking. Therefore, the content thereof needs to be 0.07% or less in S + 10B.

[スラグ結晶化度指数Psc:−8〜12]
スラグの組織はMnO、SiO、TiSiOなどの結晶構造および非晶質構造からなり、スラグ中の非晶質構造の割合がスラグの自己崩壊性、すなわちスラグ剥離性に大きく関係している。スラグ中の結晶構造であるMnSiOおよびTiSiOの割合、すなわち結晶化度が少なければ、スラグが自己崩壊するため、スラグ剥離性が良好となる。逆に、結晶化度が多ければ、スラグが自己崩壊しないため、スラグ剥離性が不良となる。
[Slag crystallinity index Psc: -8 to 12]
The structure of the slag is composed of a crystal structure such as MnO, SiO 3 , TiSiO 3, and an amorphous structure, and the ratio of the amorphous structure in the slag is greatly related to the slag self-degradability, that is, the slag peelability. If the ratio of MnSiO 3 and TiSiO 3 that are crystal structures in the slag, that is, the degree of crystallinity is small, the slag is self-collapsed, so that the slag peelability is good. On the contrary, if the degree of crystallinity is high, the slag does not self-collapse, resulting in poor slag peelability.

各種試作溶接ワイヤの溶接試験後のスラグ剥離性を評価した結果、溶接終了後、溶接試験体を1時間空冷し、スラグが自己崩壊を起こし、自然に剥離したスラグの質量とスラグの全発生量との割合を調べた結果、自然に剥離したスラグの質量が全スラグ量に対して30%以上の場合スラグ剥離性が良好で、30%未満では不良であった。   As a result of evaluating the slag peelability after welding test of various prototype welding wires, after welding was completed, the weld specimen was air-cooled for 1 hour, the slag self-collapsed, and the amount of slag that was naturally peeled off and the total amount of slag generated As a result of examining the ratio, the slag peelability was good when the mass of the slag that was naturally peeled was 30% or more with respect to the total amount of slag, and poor when it was less than 30%.

また、得られたスラグをX線回析装置にて結晶化度を測定した結果、上記自然に剥離したスラグの質量が30%以上のスラグはスラグ結晶化の割合が15%以下であった。そこでスラグ結晶化の割合に対する溶接ワイヤの成分組成の影響を調べるため、上記スラグ剥離性の調査を行った溶接ワイヤの各成分の量を独立変数、結晶化の割合を従属変数とする重回帰分析を行い、回帰係数と定数を求めた。これら回帰係数と定数を含めて式として表現したのが下記(1)式であって、この(1)式により溶接ワイヤ成分に基づいて算出されるスラグ結晶化の割合の推定値をスラグ結晶化指数Pscと呼ぶことにした。
Psc=2Mn+145Ti+10Mo−10Si−600S−10Al−100B−2.6 ・・・(1)式
Moreover, as a result of measuring the crystallinity degree of the obtained slag with an X-ray diffraction apparatus, the slag having a mass of 30% or more of the naturally separated slag had a slag crystallization ratio of 15% or less. Therefore, in order to investigate the influence of the composition of the welding wire component on the slag crystallization rate, multiple regression analysis was performed with the amount of each component of the welding wire investigated above as an independent variable and the crystallization rate as a dependent variable. The regression coefficient and the constant were obtained. The following equation (1) is expressed as an equation including these regression coefficients and constants. The estimated value of the slag crystallization rate calculated based on the welding wire component by this equation (1) is expressed as slag crystallization. We decided to call it the index Psc.
Psc = 2Mn + 145Ti + 10Mo-10Si-600S-10Al-100B-2.6 (1)

スラグ結晶化度指数Pscが−8未満では、スラグの粘性が高まること、および表面張力が大きくなることから、スラグが局部的に厚くなり、スラグ剥離性が悪くなるとともにアークが不安定になる。一方、スラグ結晶化度指数Pscが12を超えた場合、スラグの結晶化度は大きくなり、スラグ剥離性が低下する。したがって、溶接ワイヤの前述の各成分に基づき(1)式で得られるスラグ結晶化度指数Pscは−8〜12とする。   When the slag crystallinity index Psc is less than −8, the viscosity of the slag is increased and the surface tension is increased, so that the slag is locally thickened, the slag peelability is deteriorated and the arc becomes unstable. On the other hand, when the slag crystallinity index Psc exceeds 12, the slag crystallinity increases and the slag removability decreases. Therefore, the slag crystallinity index Psc obtained by the equation (1) based on the aforementioned components of the welding wire is set to -8 to 12.

[Nb、V、CrおよびNiから選択された1種または2種以上の合計:0.3%以下]
Nb、V、CrおよびNiは、溶着金属の強度を必要に応じて添加される元素である。しかし、Nb、V、CrおよびNiから選択された1種または2種以上の合計が0.3%を超えると、溶着金属の靱性が低下する。なお、Nbは0.05%以下、Vは0.05%以下、Crは0.3%以下、Niは0.3%以下であることが好ましい。
[Total of one or more selected from Nb, V, Cr and Ni: 0.3% or less]
Nb, V, Cr, and Ni are elements to which the strength of the deposited metal is added as necessary. However, if the total of one or more selected from Nb, V, Cr, and Ni exceeds 0.3%, the toughness of the deposited metal decreases. It is preferable that Nb is 0.05% or less, V is 0.05% or less, Cr is 0.3% or less, and Ni is 0.3% or less.

以下、実施例により本発明をさらに詳細に説明する。
まず、原料鋼を真空溶解し、鍛造、圧延、伸線、焼鈍そして銅めっきした後、1.4mmの製品径まで伸線して20kgのスプール巻ワイヤとした。試作したワイヤの化学成分を表1および表2に示す。
Hereinafter, the present invention will be described in more detail with reference to examples.
First, the raw steel was melted in vacuum, forged, rolled, drawn, annealed, and copper plated, and then drawn to a product diameter of 1.4 mm to form a 20 kg spool wire. Tables 1 and 2 show chemical components of the prototyped wires.

Figure 2015167991
Figure 2015167991

Figure 2015167991
Figure 2015167991

溶接試験は溶着金属試験、スパッタ発生量測定および溶接割れ試験を行った。図1に溶着金属試験および溶接割れ試験に用いた試験鋼板の開先形状を示す。なお、鋼板はJIS G3136 SN490C、板厚20mm、ギャップ7mm、開先角度35°のレ型の裏当金付開先とした。図1中、1および2は鋼板、3は裏当金を示す。   As the welding test, a weld metal test, a spatter generation amount measurement and a weld cracking test were performed. FIG. 1 shows the groove shape of the test steel sheet used in the weld metal test and the weld crack test. The steel plate was a groove with a backing metal of JIS G3136 SN490C, a plate thickness of 20 mm, a gap of 7 mm, and a groove angle of 35 °. In FIG. 1, 1 and 2 are steel plates, and 3 is a backing metal.

溶着金属試験は、図1に示す試験鋼板に表3に示す溶接施工方法で行った。溶接中に生成したスラグについては、すべての溶接が終了するまでスラグ除去作業を実施しないで溶接を行った。溶接中のアーク状態、溶接終了後のスラグ剥離性および溶着金属の機械的性質を評価した。アーク状態は溶接中の官能試験にて評価した。   The weld metal test was performed on the test steel plate shown in FIG. 1 by the welding method shown in Table 3. The slag generated during welding was welded without performing the slag removal work until all the welding was completed. The arc state during welding, slag peelability after welding, and the mechanical properties of the deposited metal were evaluated. The arc state was evaluated by a sensory test during welding.

Figure 2015167991
Figure 2015167991

スラグ剥離性は、溶接後のスラグの自然剥離状況から評価した。溶接終了後、溶接試験体を1時間空冷し、スラグが自己崩壊を起こし、自然に剥離したスラグの質量が全スラグ量の30%以上を○、30%未満を×と評価した。   The slag peelability was evaluated from the state of natural slag peeling after welding. After completion of welding, the weld specimen was air-cooled for 1 hour, the slag was self-destructed, and the mass of the slag that was naturally peeled was evaluated as ◯ when 30% or more of the total slag amount was less than 30%.

溶着金属の機械的性質は、引張試験片(JIS Z2201 A1号)およびシャルピー衝撃試験片(JIS Z2202 4号)を鋼板表面から10mm下を中心に採取して評価した。引張強さは590N/mm以上、シャルピー衝撃試験は試験温度−5℃で各5本行い吸収エネルギーの最低値が100J以上を合格とした。 The mechanical properties of the weld metal were evaluated by collecting a tensile test piece (JIS Z2201 A1) and a Charpy impact test piece (JIS Z22024) centering on the steel sheet surface about 10 mm below. Tensile strength was 590 N / mm 2 or more, and five Charpy impact tests were performed at a test temperature of −5 ° C., and the minimum value of absorbed energy was determined to be 100 J or more.

スパッタ発生量は、銅製の捕集箱を用いて、表3に示す初層の溶接施工条件で30秒×5回溶接を行い、1分間当りのスパッタ発生量を算出した。1分間当りスパッタ発生量が2.0g以下を良好と評価した。   The spatter generation amount was calculated by performing welding for 30 seconds × 5 times under the first layer welding conditions shown in Table 3 using a copper collection box, and calculating the spatter generation amount per minute. A sputter generation amount per minute of 2.0 g or less was evaluated as good.

溶接割れ試験は、図1に示す試験鋼板に溶接による熱変形を防ぐための拘束板を取付けて表3に示す溶接施工条件で行った。溶接は1層目終了後、アークを切ることなく2層目を折返して溶接した。2層目溶接終了後に、溶接試験体を空冷し室温に低下したところで、1層目と2層目の折返し溶接部を浸透探傷試験で溶接割れの有無の確認をした。それらの結果を表4にまとめて示す。   The weld cracking test was performed under the welding conditions shown in Table 3 with a restraint plate for preventing thermal deformation due to welding attached to the test steel plate shown in FIG. After the first layer was welded, the second layer was folded and welded without cutting the arc. After completion of the second layer welding, when the weld specimen was cooled to room temperature by air, the presence of weld cracks in the first layer and second layer folded welds was confirmed by a penetration inspection test. The results are summarized in Table 4.

Figure 2015167991
Figure 2015167991

表1、表2および表4中、ワイヤ記号W1〜10が本発明例、ワイヤ記号W11〜21は比較例である。
本発明例であるワイヤ記号W1〜10は、C、Si、Mn、S、Mo、Cu、Ti、B、Alの含有量が適量で、S+10Bおよびスラグ結晶化度指数Pscも適正であるので、アークの安定性およびスラグ剥離性が良好で、スパッタ発生量が少なく、溶接割れがなく、溶着金属の引張強さおよび吸収エネルギーの最低値も良好で極めて満足な結果であった。
In Tables 1, 2 and 4, wire symbols W1 to W10 are examples of the present invention, and wire symbols W11 to 21 are comparative examples.
The wire symbols W1 to 10 according to the present invention have appropriate amounts of C, Si, Mn, S, Mo, Cu, Ti, B, and Al, and S + 10B and the slag crystallinity index Psc are also appropriate. The arc stability and slag peelability were good, the amount of spatter generated was small, there were no weld cracks, and the minimum values of the tensile strength and absorbed energy of the deposited metal were good, which was a very satisfactory result.

比較例中、ワイヤ記号W11は、Cが少ないので溶着金属の引張強さが低く吸収エネルギーも低値であった。また、スラグ結晶化指数Pscが高いのでスラグ剥離性が不良であった。
ワイヤ記号W12は、Cが多いので割れが生じた。また、溶着金属の吸収エネルギーの最低値が低値であった。さらに、Sが少ないのでスラグ剥離性が不良であった。
In the comparative example, the wire symbol W11 had a low C, so the tensile strength of the deposited metal was low and the absorbed energy was also low. Moreover, since the slag crystallization index Psc was high, the slag peelability was poor.
The wire symbol W12 was cracked because there were many Cs. Moreover, the minimum value of the absorbed energy of the weld metal was low. Furthermore, since there is little S, slag peelability was unsatisfactory.

ワイヤ記号W13は、Siが少ないのでアークが不安定でスパッタ発生量が多く、溶着金属の引張強さが低く吸収エネルギーも低値であった。
ワイヤ記号W14は、Siが多いので溶着金属の吸収エネルギーの最低値が低値であった。また、Cuが多いので割れが生じた。
In the wire symbol W13, since the amount of Si is small, the arc is unstable, the amount of spatter generated is large, the tensile strength of the deposited metal is low, and the absorbed energy is also low.
Since the wire symbol W14 has a large amount of Si, the minimum value of the absorbed energy of the weld metal was low. Moreover, since there was much Cu, the crack arose.

ワイヤ記号W15は、Mnが少ないので溶着金属の引張強さが低く吸収エネルギーの最低値も低かった。また、S+10Bが高いので割れが生じた。
ワイヤ記号W16は、Mnが多いので溶着金属の吸収エネルギーの最低値が低かった。また、Alが多いのでスラグ剥離性が不良であった。
Since the wire symbol W15 has a small amount of Mn, the tensile strength of the deposited metal was low and the minimum value of the absorbed energy was also low. Moreover, since S + 10B was high, cracking occurred.
Since the wire symbol W16 has a large amount of Mn, the minimum value of the absorbed energy of the weld metal was low. Moreover, since there is much Al, the slag peelability was poor.

ワイヤ記号W17は、Cuが少ないので通電性が不良でアークが不安定であった。また、Nb、CrおよびNiの合計が多いので溶着金属の吸収エネルギーの最低値が低値であった。
ワイヤ記号W18は、Sが多いので溶着金属の吸収エネルギーの最低値が低く割れも生じた。また、Tiが多いのでスラグ剥離性が不良であった。
Since the wire symbol W17 has a small amount of Cu, the electric conductivity is poor and the arc is unstable. Further, since the total amount of Nb, Cr and Ni is large, the minimum value of the absorbed energy of the weld metal was low.
Since the wire symbol W18 has a large amount of S, the minimum value of the absorbed energy of the weld metal was low, and cracking occurred. Moreover, since there was much Ti, slag peelability was unsatisfactory.

ワイヤ記号W19は、Moが低いので溶着金属の引張強さが低かった。また、Tiが少ないのでアークが不安定でスパッタ発生量が多く、スラグ剥離性も悪かった。さらに、溶着金属の吸収エネルギーの最低値も低値であった。
ワイヤ記号W20は、Moが多いので溶着金属の引張強さが高過ぎ吸収エネルギーの最低値が低値であった。また、Bが多いのでスラグ剥離性が不良で割れも生じた。
Since the wire symbol W19 has low Mo, the tensile strength of the weld metal was low. Further, since Ti was small, the arc was unstable, the amount of spatter was large, and the slag peelability was poor. Furthermore, the minimum value of the absorbed energy of the weld metal was also low.
Since the wire symbol W20 has a large amount of Mo, the tensile strength of the deposited metal was too high, and the minimum value of the absorbed energy was low. Moreover, since there is much B, slag peelability was bad and the crack also arose.

ワイヤ記号W21は、Bが少ないので溶着金属の吸収エネルギーの最低値が低値であった。また、スラグ結晶化指数Pscが低いのでアークが不安定でスラグ剥離性も不良であった.   Since the wire symbol W21 has a small amount of B, the minimum value of the absorbed energy of the weld metal was low. Also, since the slag crystallization index Psc is low, the arc is unstable and the slag peelability is poor.

1、2 鋼板
3 裏当金
1, 2 Steel plate 3 Back metal

Claims (2)

ワイヤ全質量に対する質量%で、
C :0.02〜0.09%、
Si :0.65〜1.2%、
Mn :1.85〜2.2%、
S :0.007〜0.02%、
Mo :0.34〜0.54%、
Cu :0.15〜0.45%、
Ti :0.05〜0.15%、
B :0.001〜0.006%、
Al :0.020%以下
を含有し、
P :0.020%以下
で、その他はFeおよび不可避的不純物からなり、かつS+10Bが0.07%以下、下記式で示すスラグ結晶化度指数Pscが−8〜12であることを特徴とする炭酸ガスシ−ルドアーク溶接用ソリッドワイヤ。
Psc=2Mn+145Ti+10Mo−10Si−600S−10Al−100B−2.6 ・・・(1)式
% By mass relative to the total mass of the wire
C: 0.02 to 0.09%,
Si: 0.65 to 1.2%,
Mn: 1.85 to 2.2%,
S: 0.007 to 0.02%,
Mo: 0.34 to 0.54%,
Cu: 0.15-0.45%,
Ti: 0.05 to 0.15%,
B: 0.001 to 0.006%,
Al: 0.020% or less,
P: 0.020% or less, the other is Fe and inevitable impurities, S + 10B is 0.07% or less, and the slag crystallinity index Psc represented by the following formula is -8 to 12. Solid wire for carbon dioxide shielded arc welding.
Psc = 2Mn + 145Ti + 10Mo-10Si-600S-10Al-100B-2.6 (1)
ワイヤ全質量に対する質量%で、Nb、V、CrおよびNiから選択された1種または2種以上の合計で0.3%以下更に含有することを特徴とする請求項1に記載の炭酸ガスシ−ルドアーク溶接用ソリッドワイヤ。   The carbon dioxide gas sheath according to claim 1, further comprising 0.3% or less in total of one or more selected from Nb, V, Cr and Ni in mass% with respect to the total mass of the wire. Solid wire for arc welding.
JP2014046136A 2014-03-10 2014-03-10 Solid wire for carbon dioxide gas shielded arc welding Pending JP2015167991A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014046136A JP2015167991A (en) 2014-03-10 2014-03-10 Solid wire for carbon dioxide gas shielded arc welding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014046136A JP2015167991A (en) 2014-03-10 2014-03-10 Solid wire for carbon dioxide gas shielded arc welding

Publications (1)

Publication Number Publication Date
JP2015167991A true JP2015167991A (en) 2015-09-28

Family

ID=54201240

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014046136A Pending JP2015167991A (en) 2014-03-10 2014-03-10 Solid wire for carbon dioxide gas shielded arc welding

Country Status (1)

Country Link
JP (1) JP2015167991A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106392373A (en) * 2016-11-18 2017-02-15 钢铁研究总院 High-strength gas shielded solid welding wire for 1000 MPa-level steel for engineering machinery
CN106514048A (en) * 2016-12-21 2017-03-22 钢铁研究总院 Welding wire for gas shield welding of high-manganese, high-strength and high-toughness medium-thick plate for ocean platform and welding technique of welding wire

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11104886A (en) * 1997-09-30 1999-04-20 Kobe Steel Ltd Gas shielded arc welding method
JP2004148389A (en) * 2002-10-31 2004-05-27 Jfe Engineering Kk Solid wire for circumferential weld of steel pipe
JP2004195543A (en) * 2002-12-20 2004-07-15 Jfe Steel Kk Steel wire for gas shielded arc welding
JP2007301597A (en) * 2006-05-11 2007-11-22 Nippon Steel & Sumikin Welding Co Ltd Solid wire for carbon dioxide gas-shielded arc welding
JP2009106966A (en) * 2007-10-30 2009-05-21 Nippon Steel & Sumikin Welding Co Ltd Solid wire for carbon dioxide gas-shielded arc welding
JP2012101234A (en) * 2010-11-08 2012-05-31 Nippon Steel & Sumikin Welding Co Ltd SOLID WIRE FOR Ar-CO2 MIXED GAS SHIELDED ARC WELDING

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11104886A (en) * 1997-09-30 1999-04-20 Kobe Steel Ltd Gas shielded arc welding method
JP2004148389A (en) * 2002-10-31 2004-05-27 Jfe Engineering Kk Solid wire for circumferential weld of steel pipe
JP2004195543A (en) * 2002-12-20 2004-07-15 Jfe Steel Kk Steel wire for gas shielded arc welding
JP2007301597A (en) * 2006-05-11 2007-11-22 Nippon Steel & Sumikin Welding Co Ltd Solid wire for carbon dioxide gas-shielded arc welding
JP2009106966A (en) * 2007-10-30 2009-05-21 Nippon Steel & Sumikin Welding Co Ltd Solid wire for carbon dioxide gas-shielded arc welding
JP2012101234A (en) * 2010-11-08 2012-05-31 Nippon Steel & Sumikin Welding Co Ltd SOLID WIRE FOR Ar-CO2 MIXED GAS SHIELDED ARC WELDING

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106392373A (en) * 2016-11-18 2017-02-15 钢铁研究总院 High-strength gas shielded solid welding wire for 1000 MPa-level steel for engineering machinery
CN106514048A (en) * 2016-12-21 2017-03-22 钢铁研究总院 Welding wire for gas shield welding of high-manganese, high-strength and high-toughness medium-thick plate for ocean platform and welding technique of welding wire

Similar Documents

Publication Publication Date Title
JP6788550B2 (en) Arc welding method and solid wire
JP5137468B2 (en) Solid wire for carbon dioxide shielded arc welding
JP2008068274A (en) High strength weld metal having excellent low temperature toughness
JP5472244B2 (en) Narrow groove butt welding method for thick steel plates
JP6800770B2 (en) Pulse MAG welding method for thin steel sheets
JP5038853B2 (en) Solid wire for carbon dioxide shielded arc welding
JP4628027B2 (en) Solid wire for gas shielded arc welding
JP6273191B2 (en) Solid wire for welding and welding method
JP6235402B2 (en) Weld metal with excellent strength, toughness and SR cracking resistance
JP3871655B2 (en) Double-sided single layer submerged arc welding wire for high strength steel
JP2014198344A (en) Submerged arc welding method for high strength steel
JP5449110B2 (en) Solid wire for Ar-CO2 mixed gas shielded arc welding
JP2015167991A (en) Solid wire for carbon dioxide gas shielded arc welding
JP6385978B2 (en) Filler for welding ferritic stainless steel
JP4234481B2 (en) Welding wire for gas shielded arc welding
JP2007301597A (en) Solid wire for carbon dioxide gas-shielded arc welding
JP5026002B2 (en) Copper plated wire for gas shielded arc welding
JP2015182094A (en) Gas shielded arc welding method
JP4768310B2 (en) Solid wire for gas shielded arc welding
WO2022050014A1 (en) Arc welding method
JP3861979B2 (en) Steel wire for carbon dioxide shielded arc welding
JP5480705B2 (en) Copper plated solid wire for carbon dioxide shielded arc welding
JP2004091860A (en) Weld metal for low-alloy heat-resisting steel
JP3718464B2 (en) Flux-cored wire for gas shielded arc welding
JP6892305B2 (en) Arc welding method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160728

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20170223

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170413

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170425

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20171017