JP3862213B2 - Welding wire for gas shielded arc welding - Google Patents

Welding wire for gas shielded arc welding Download PDF

Info

Publication number
JP3862213B2
JP3862213B2 JP2001333780A JP2001333780A JP3862213B2 JP 3862213 B2 JP3862213 B2 JP 3862213B2 JP 2001333780 A JP2001333780 A JP 2001333780A JP 2001333780 A JP2001333780 A JP 2001333780A JP 3862213 B2 JP3862213 B2 JP 3862213B2
Authority
JP
Japan
Prior art keywords
welding
heat input
weld metal
conditions
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001333780A
Other languages
Japanese (ja)
Other versions
JP2003136281A (en
Inventor
修一 阪口
時彦 片岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2001333780A priority Critical patent/JP3862213B2/en
Publication of JP2003136281A publication Critical patent/JP2003136281A/en
Application granted granted Critical
Publication of JP3862213B2 publication Critical patent/JP3862213B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Arc Welding In General (AREA)

Description

【0001】
【産業上の利用分野】
本発明は、軟鋼、490及び520N/mm級高張力鋼板のガスシールドアーク溶接用溶接ワイヤに係り、特に高入熱高パス間温度で溶接された場合でも高強度、高靱性が選られるガスシールドアーク溶接用溶接ワイヤに関する。
【0002】
【従来の技術】
鋼構造物の溶接には、ガスシールドアーク溶接、とくに炭酸ガスシールドアーク溶接がもっとも一般的な溶接方法として広く用いられている。前記溶接では、従来から、溶接金属の靱性向上手段として、Ti−B系溶接材料の検討が行われている。例えば、特公昭43−12258号公報では、溶接ワイヤ中のC、Si、MnとAl、Ti、Zr、及びVの中の1種類以上を含有すると共にBを添加した溶接ワイヤが開示されている。また、特公昭55−149797号公報ではC、Si、MnとTi、Moの1種類以上を含有するとともにBを添加した溶接ワイヤが提案されている。
【0003】
しかし、近年では溶接作業の効率化のために、高電流、高入熱高パス間温度条件で溶接が実施される傾向にある。このような高入熱高パス間温度条件下においては、溶接金属の強度が低下すともに衝撃特性も劣化するため、最近の溶接部の特性に対する要求の高度化に対応できる溶接材料の必要性が高くなっている。特に、近年では炭酸ガスシールドアーク溶接ではそのような要求が高く、高入熱高パス間温度条件において、好適な機械的特性を得ることが求められている。
【0004】
このような高入熱高パス間温度条件に対応するために、特開平10−230387号公報では、C、Si、Mn、Ti、B、Sを含有し、BとTiの比率およびBとSの積を規制した溶接ワイヤが、特開平11−90678号公報ではTi、B及びAl、Zrの1種類以上を含有し、さらにC、Si、Mn、Moを所定量含む溶接ワイヤが提案されている。
【0005】
【発明が解決しようとする課題】
しかしながら、これらの方法は高入熱高パス間温度条件での機械的特性の改善には有効であるが、実用上、組み立て溶接や横向き溶接のような場合に求められる低入熱高パス間温度条件での溶接性に問題があった。すなわち、これら従来の溶接ワイヤは、高入熱高パス間温度条件での溶接が想定されていなかったため、実用上の作業効率を落とさず、連続的な溶接作業を続けたときに、溶接金属の硬さが大きくなり、靱性の劣化あるいは割れの発生を引き起こしていた。
【0006】
本発明は、このような従来の溶接ワイヤにかかる問題点を解決することを目的とし、溶接作業の効率化のために必要な高入熱高パス間温度の溶接を行っても溶接金属の機械的強度を確保し、かつ組み立て溶接や横向き溶接のような低入熱条件の溶接を行っても溶接金属の硬さの増加を抑え、靱性の劣化あるいは割れの発生を防止できるガスシールドアーク溶接用溶接ワイヤを提案することを目的とする。
【0007】
【課題を解決するための手段】
本発明者らは、ガスシールド溶接における高入熱高パス間温度条件での溶接の特徴、溶接金属の化学組成と低入熱溶接条件における靱性の劣化或いは割れの発生などについて総合的な検討を行い、高入熱高パス間温度の溶接条件および低入熱条件の双方に適応できる溶接ワイヤを得るためには、溶接時の溶融金属内で起こる脱酸反応によって溶融金属から部分的に離脱する元素の炭素当量への寄与、および溶接時の溶融金属から実質的に離脱しない元素の炭素当量への寄与を分離して成分調整することが重要であることに想到し、本発明を完成した。
【0008】
具体的には、めっきを含めた溶接ワイヤの組成が質量比で、C:0.005〜0.07%、Si:0.65〜1.2%、Mn:1.7〜2.2%、Ti:0.15〜0.30%、Mo:0.12〜0.22%、B:0.0010〜0.0025%、Cr:0.50%以下、Cu:0.5%以下を含み、残部が実質的にFeからなり、下記式を満たすことを特徴とするガスシールドアーク溶接用溶接ワイヤ。
DE=C%+Mn%/6+Si%/24 (1)
AE=Mo%/4+Cr%/5+Ni%/40 (2)
0.32<(0.7×DE+0.8×AE) (3)
(DE+AE)<0.50 (4)
0.1<AE/DE (5)
Pcm=C%+Mn%/6+Si%/30+(Cr%+Cu%)/20+Ni%/60+Mo%/15+5B% (6)
Pcm+760B%<2.5 (7)
【0009】
【発明の実施の形態】
以下、本発明の実施形態を溶接ワイヤの組成限定理由を含めて具体的に説明する。
【0010】
C:0.005〜0.7%(%は質量比、以下同様)
溶接ワイヤに不可避的に含まれるCは、溶接金属の強度を確保するのに必要であり、脱酸元素としての効果もある。0.005%未満では溶接金属の強度が不足し、一方0.07%を超えると溶接金属の靱性が低下する。このため0.005%以上、0.07%以下とした。
【0011】
Si:0.65〜1.2%
Siは脱酸元素として、ガスシールドアーク溶接、とくに炭酸ガスシールドアーク溶接やMAG溶接時に使用する溶接ワイヤに不可欠な元素である。0.65%未満では脱酸効果が不十分で、ブローホールが発生しやすい。一方、1.2%を超えると、溶接金属中の含有量が過多となり、靱性がかえって劣化する。このため0.65%以上、1.0%以下の範囲で含有させる。
【0012】
Mn:1.7〜2.2%
MnはSiとともに脱酸元素として不可欠な元素であるだけでなく、溶接金属の機械的強度および靱性を確保させるために必須な元素である。1.7%未満では、溶接金属中での含有量が不足して十分な機械的強度、靱性を得ることができない。しかし、2.2%を超えて含まれると、溶接金属中での含有量が過多となり、靱性がかえって劣化する。このため1.7%以上、2.2%以下の範囲で含有させる。
【0013】
Ti:0.15〜0.30%
Tiは溶接ワイヤに用いて、比較的入熱の高いガスシールドアーク溶接を行う場合に、アークを安定させてスパッタを減少させ、またブローホールの発生を防止させる効果がある。また、溶接金属の靱性を向上させる効果がある。しかし、0.15%未満ではこれらの効果に乏しく、一方0.30%を超えると溶接ワイヤ素材の溶製上の問題により生産性が低下する。このため、その含有量は0.15以上、0.30%以下とする。
【0014】
B:0.0010〜0.025%
Bは、溶接金属組織の粗大なフェライト生成を抑制して組織を微細化し、靱性を向上させるのに有効な元素である。0.0010%未満では、靱性を向上させる効果が不十分であり、一方、0.0025%を超えて含有させても靱性改善効果には乏しく、むしろ高温割れが発生しやすくなる。このため、その含有量は0.0010以上、0.025%以下とする。
【0015】
Mo:0.12〜0.22%
Moは、大入熱のガスシールドアーク溶接を行う場合に、溶接金属の組織を微細化して靱性を向上させるのに不可欠な元素である。しかし、0.12%未満ではその効果が乏しく、一方、0.22%を超えると、溶接金属に低温変態組織が生成して溶接金属が硬化して靱性が劣化し、割れの発生が顕著となる。このためその含有量は、0.12%以上、0.22%以下とする。
【0016】
Cr:0.30%以下
Crは、大入熱のガスシールドアーク溶接を行う場合に、溶接金属の組織を微細化して、靱性を向上させるのに不可欠な元素である。0.30%を超えると溶接金属に低温変態組織が生成して溶接金属が硬化して靱性の劣化させ、割れの発生が顕著となる。したがって、その含有量は0.30%以下の範囲とする。なお、十分な効果を得るには0.05%以上とするとよい。
【0017】
Cu:0.50%以下
Cuは、溶接金属の焼入れ性を増し、またミクロ組織の固溶強化による強度確保の期待できるそせいであるが、多量に含まれると凝固割れ感受性を高まるため、0.5%以下とした。
【0018】
これらの合金元素を除く残部は実質的にFe(鉄)および不可避的不純物である。不可避的不純物としてはCa、Nなどがあり、これらはそれぞれ質量比で20ppm、80ppm以下の範囲で許容できる。ただし、低入熱時の溶接金属の硬さの上昇を抑制するためには、それぞれ10ppm、50ppm以下とするのが好ましい。
【0019】
本発明においては、上記組成条件を満足するとともに、下記(1)式および(2)式で定義されるDEおよびAEが、下記(3)および(4)式を満たす必要がある。ここで、DEは溶接時の溶融金属内で起こる脱酸反応により、溶融金属から一部が離脱する元素の溶接ワイヤ中の合計量であり、AEは、溶接時の溶融金属から離脱しない元素の溶接ワイヤ中の合計量である。
DE=C%+Mn%/6+Si%/24 (1)
AE=Mo%/4+Cr%/5+Ni%/40 (2)
0.32<(0.7×DE+0.8×AE) (3)
(DE+AE)<0.50 (4)
【0020】
このうち、(3)式は高入熱高パス間温度条件で溶接した場合に溶接金属強度を確保するための条件であり、一方、(4)式は、低入熱条件の場合に溶接金属の硬さの増加を抑え、靱性の劣化或いは割れの発生を防止するための条件である。これらの条件は、何れもいわゆる炭素当量に関係する量であるが、本発明の場合は、これを溶接時に溶融金属内で起こる脱酸反応により溶融金属から部分的に離脱して減少する元素群とそうでない元素群に分け、上記式に表される形でこれら元素のバランスを図ったものである。
【0021】
さらに、本発明では、
0.1<AE/DE (5)
を満たすことが必要である。これにより、高入熱高パス間温度条件で溶接金属強度を確保することができる。高入熱高パス間温度条件では、積層法やウェービング幅などの条件によっては、溶融金属内で起こる脱酸反応により溶融金属から部分的に離脱する元素群が減少し、そのため溶接金属強度を安定して確保することが困難になる。
【0022】
そこで、(5)式を満足させることにより、溶接時の溶融金属から離脱しない元素群の炭素当量の指標であるAEを、溶融金属から部分的に離脱する元素群の炭素当量の指標であるDEに対して十分大きくし、溶接金属強度を安定して確保するのである。なお、この場合において、上記AE/DEの値を0.2未満とすれば、低入熱条件の場合に溶接金属硬さの増加を抑え、靱性の劣化あるいはそれに伴う割れの発生を防止できるので好ましい。
【0023】
さらに、本発明では組立て溶接や横向き溶接のような低入熱での溶接性を確保するために、特に低入熱溶接時の溶接金属の硬さを上昇させるBの含有量を(6)式および(7)式を満たすように制限する。
Pcm=C%+Mn%/6+Si%/30+(Cr%+Cu%)/20+Ni%/60+Mo%/15+5B% (6)
Pcm+760B%<2.5 (7)
【0024】
一般に溶接金属の硬さに及ぼす化学組成の影響はPcmで評価されるが、本発明のような高入熱高パス間温度に対応した溶接ワイヤを用いて低入熱の溶接を行った場合、Bの影響が顕著となる。そこで(7)式によって規定される条件を設け、低入熱時に起こる溶接金属の硬さの上昇を押さえ、靭性の劣化およびそれに由来する割れの発生を回避するのである。
【0025】
【実施例】
表1に示す化学組成を有する鋼を溶製し、鍛造、圧延、めっき及び巻取りの各工程を経て溶接用鋼ワイヤを製造した。これらのワイヤを用い、表2に示す組成を有し、引張強度500MPa級鋼板に対して表3に示す溶接条件で炭酸ガスシールドアーク溶接を行って溶接継手とした。開先形状は図1(溶接条件A:高入熱高パス間温度条件のとき)及び図2(溶接条件B:低入熱溶接件のとき)であった。
【0026】
上記により得られた溶接継手の溶接部から溶接金属を含む試験片を採取し、引張強度及びビッカース硬度Hvを測定した。なお、引張強度を測定するための試験片は、溶接継手より加工したJIS Z 2201に規定するA1号丸棒試験片とし、ビッカース硬度は荷重98Nで溶接金属部を0.5mm間隔で連続して5点測定し、その平均値とした。
【0027】
【表1】

Figure 0003862213
【0028】
【表2】
Figure 0003862213
【0029】
【表3】
Figure 0003862213
【0030】
得られた測定結果を表4に示す。本発明の条件を満たす場合(試験番号No.1〜5)、溶接金属の引張強度が高入熱高パス間温度条件で必要な500MPaを満たし、かつ溶接金属の硬さが低入熱溶接条件で必要なビッカース硬さで320以下であった。これにより、本発明の条件を満たせば、高入熱高パス間温度溶接を行っても、溶接部の機械的な強度を確保でき、かつ低入熱溶接を行っても、溶接部靭性の劣化あるいは割れの発生を防止できることが確認できた。
【0031】
これに対し、本発明の条件を満たさない場合は何れも引張強度あ又はビッカース強度の必要条件を満たさない。すなわち、試験番号6、9及び10の場合は、溶接金属の引張強度は500MPa以上であるが、ビッカース硬さが320を超えている。また、試験番号7及び8の場合は、ビッカース硬さは320以下であるが引張強度が500MPa以下である。
【0032】
【表4】
Figure 0003862213
【0033】
【発明の効果】
本発明により、高入熱高パス間温度の溶接条件において十分な強度の溶接金属が得られ、また低入熱の溶接条件においても溶接金属の硬さの上昇を抑え、靭性の劣化さらにはそれに基づく割れの発生を防止できる。
【図面の簡単な説明】
【図1】 表3に示す溶接条件Aによって溶接試験を行うときの開先形状を示す断面図である。
【図2】 表3に示す溶接条件Bによって溶接試験を行うときの開先形状を示す断面図である。[0001]
[Industrial application fields]
The present invention relates to a welding wire for gas shielded arc welding of mild steel, 490 and 520 N / mm grade 2 high-strength steel plates, and in particular, a gas that has high strength and high toughness even when welded at high heat input and high pass-to-pass temperatures. The present invention relates to a welding wire for shielded arc welding.
[0002]
[Prior art]
For welding steel structures, gas shielded arc welding, particularly carbon dioxide shielded arc welding, is widely used as the most common welding method. Conventionally, in the welding, a Ti-B welding material has been studied as a means for improving the toughness of weld metal. For example, Japanese Patent Publication No. 43-12258 discloses a welding wire containing C, Si, Mn and one or more of Al, Ti, Zr, and V in the welding wire and adding B. . Japanese Patent Publication No. 55-149797 proposes a welding wire containing one or more of C, Si, Mn, Ti, and Mo and having B added thereto.
[0003]
However, in recent years, in order to improve the efficiency of welding work, welding tends to be performed under conditions of high current, high heat input, and high-pass temperature conditions. Under such high heat input and high pass temperature conditions, the strength of the weld metal is reduced and the impact properties are also deteriorated. It is high. In particular, carbon dioxide shielded arc welding has recently been highly demanded, and it is required to obtain suitable mechanical characteristics under high heat input and high interpass temperature conditions.
[0004]
In order to cope with such high heat input high pass temperature conditions, Japanese Patent Application Laid-Open No. 10-230387 includes C, Si, Mn, Ti, B, S, the ratio of B to Ti, and B and S. Japanese Patent Application Laid-Open No. 11-90678 proposes a welding wire containing at least one of Ti, B, Al, and Zr, and further containing a predetermined amount of C, Si, Mn, and Mo. Yes.
[0005]
[Problems to be solved by the invention]
However, these methods are effective for improving the mechanical properties under high heat input and high pass temperature conditions, but in practice, the low heat input and high pass temperature required in the case of assembly welding and transverse welding are required. There was a problem in weldability under the conditions. In other words, since these conventional welding wires were not supposed to be welded under conditions of high heat input and high pass temperature, the practical work efficiency was not reduced, and when continuous welding work was continued, Hardness increased, causing toughness deterioration or cracking.
[0006]
An object of the present invention is to solve the above-described problems associated with conventional welding wires, and even if welding with a high heat input and high pass temperature required for improving the efficiency of welding work is performed, a weld metal machine For gas shielded arc welding, which ensures high strength and suppresses the increase in hardness of the weld metal and prevents toughness deterioration or cracking even when welding under low heat input conditions such as assembly welding or sideways welding The purpose is to propose a welding wire.
[0007]
[Means for Solving the Problems]
The present inventors have conducted a comprehensive study on the characteristics of welding under high heat input and high pass temperature conditions in gas shield welding, the chemical composition of the weld metal, and the deterioration of toughness or the occurrence of cracks under low heat input welding conditions. In order to obtain a welding wire that can be applied to both welding conditions of high heat input and high pass temperature and low heat input conditions, it is partially detached from the molten metal by a deoxidation reaction occurring in the molten metal during welding. The present invention has been completed by conceiving that it is important to separate the contribution of the element to the carbon equivalent and the contribution of the element that does not substantially leave the molten metal during welding to adjust the components.
[0008]
Specifically, the composition of the welding wire including plating is mass ratio: C: 0.005 to 0.07%, Si: 0.65 to 1.2%, Mn: 1.7 to 2.2% Ti: 0.15 to 0.30%, Mo: 0.12 to 0.22%, B: 0.0010 to 0.0025%, Cr: 0.50% or less, Cu: 0.5% or less A welding wire for gas shielded arc welding comprising: the balance being substantially made of Fe and satisfying the following formula:
DE = C% + Mn% / 6 + Si% / 24 (1)
AE = Mo% / 4 + Cr% / 5 + Ni% / 40 (2)
0.32 <(0.7 × DE + 0.8 × AE) (3)
(DE + AE) <0.50 (4)
0.1 <AE / DE (5)
Pcm = C% + Mn% / 6 + Si% / 30 + (Cr% + Cu%) / 20 + Ni% / 60 + Mo% / 15 + 5B% (6)
Pcm + 760B% <2.5 (7)
[0009]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be specifically described including reasons for limiting the composition of the welding wire.
[0010]
C: 0.005 to 0.7% (% is mass ratio, the same applies hereinafter)
C inevitably contained in the welding wire is necessary to ensure the strength of the weld metal, and also has an effect as a deoxidizing element. If it is less than 0.005%, the strength of the weld metal is insufficient, while if it exceeds 0.07%, the toughness of the weld metal is lowered. For this reason, it was made into 0.005% or more and 0.07% or less.
[0011]
Si: 0.65-1.2%
Si is an indispensable element as a deoxidizing element for welding wires used in gas shielded arc welding, particularly carbon dioxide shielded arc welding and MAG welding. If it is less than 0.65%, the deoxidation effect is insufficient and blowholes are likely to occur. On the other hand, if it exceeds 1.2%, the content in the weld metal becomes excessive, and the toughness is rather deteriorated. For this reason, it is made to contain in 0.65% or more and 1.0% or less of range.
[0012]
Mn: 1.7-2.2%
Mn is not only an essential element as a deoxidizing element together with Si, but also an essential element for ensuring the mechanical strength and toughness of the weld metal. If it is less than 1.7%, the content in the weld metal is insufficient, and sufficient mechanical strength and toughness cannot be obtained. However, if the content exceeds 2.2%, the content in the weld metal becomes excessive, and the toughness is deteriorated. For this reason, it is made to contain in 1.7% or more and 2.2% or less of range.
[0013]
Ti: 0.15 to 0.30%
Ti is used as a welding wire, and has an effect of stabilizing the arc to reduce spatter and preventing the occurrence of blowholes when performing gas shielded arc welding with relatively high heat input. Moreover, there exists an effect which improves the toughness of a weld metal. However, if it is less than 0.15%, these effects are poor. On the other hand, if it exceeds 0.30%, productivity is lowered due to a problem in melting the welding wire material. For this reason, the content shall be 0.15 or more and 0.30% or less.
[0014]
B: 0.0010 to 0.025%
B is an element effective in suppressing the formation of coarse ferrite in the weld metal structure, miniaturizing the structure, and improving toughness. If it is less than 0.0010%, the effect of improving toughness is insufficient. On the other hand, if it exceeds 0.0025%, the effect of improving toughness is poor, and hot cracking tends to occur. For this reason, the content is made 0.0010 or more and 0.025% or less.
[0015]
Mo: 0.12-0.22%
Mo is an indispensable element for improving the toughness by refining the structure of the weld metal when performing gas shield arc welding with high heat input. However, when the content is less than 0.12%, the effect is poor. On the other hand, when the content exceeds 0.22%, a low temperature transformation structure is generated in the weld metal, the weld metal is hardened, the toughness is deteriorated, and cracking is remarkable. Become. For this reason, the content is made 0.12% or more and 0.22% or less.
[0016]
Cr: 0.30% or less Cr is an indispensable element for improving the toughness by refining the structure of the weld metal when performing gas shield arc welding with high heat input. If it exceeds 0.30%, a low-temperature transformation structure is generated in the weld metal, the weld metal is hardened, the toughness is deteriorated, and cracking becomes prominent. Therefore, the content is made a range of 0.30% or less. In addition, in order to acquire sufficient effect, it is good to set it as 0.05% or more.
[0017]
Cu: 0.50% or less Cu increases the hardenability of the weld metal and is expected to ensure strength by solid solution strengthening of the microstructure. However, if contained in a large amount, Cu increases the susceptibility to solidification cracking. 5% or less.
[0018]
The balance excluding these alloy elements is substantially Fe (iron) and inevitable impurities. Inevitable impurities include Ca, N, and the like, and these are acceptable within a mass ratio of 20 ppm or less, respectively. However, in order to suppress the increase in the hardness of the weld metal at the time of low heat input, it is preferable to set it to 10 ppm or 50 ppm or less, respectively.
[0019]
In the present invention, DE and AE defined by the following formulas (1) and (2) must satisfy the following formulas (3) and (4) while satisfying the above composition conditions. Here, DE is the total amount of elements in the welding wire that are partially detached from the molten metal due to the deoxidation reaction that occurs in the molten metal during welding, and AE is an element that does not separate from the molten metal during welding. The total amount in the welding wire.
DE = C% + Mn% / 6 + Si% / 24 (1)
AE = Mo% / 4 + Cr% / 5 + Ni% / 40 (2)
0.32 <(0.7 × DE + 0.8 × AE) (3)
(DE + AE) <0.50 (4)
[0020]
Of these, equation (3) is a condition for ensuring weld metal strength when welding is performed at high heat input and high interpass temperature conditions, while equation (4) is weld metal under low heat input conditions. This is a condition for suppressing an increase in the hardness of the steel and preventing toughness deterioration or cracking. These conditions are all amounts related to the so-called carbon equivalent, but in the case of the present invention, the elements are partially separated from the molten metal by the deoxidation reaction that occurs in the molten metal during welding and decrease. It is divided into element groups that are not so, and the balance of these elements is achieved in the form represented by the above formula.
[0021]
Furthermore, in the present invention,
0.1 <AE / DE (5)
It is necessary to satisfy. Thereby, weld metal intensity | strength is securable on the high heat input and the temperature conditions between high passes. Under high heat input and high pass temperature conditions, depending on conditions such as laminating method and waving width, the group of elements partially desorbed from the molten metal due to the deoxidation reaction that occurs in the molten metal is reduced, which stabilizes the weld metal strength. It becomes difficult to secure.
[0022]
Therefore, by satisfying the equation (5), AE, which is an index of the carbon equivalent of the element group that does not depart from the molten metal during welding, is replaced with DE, which is an index of the carbon equivalent of the element group that partially desorbs from the molten metal. Therefore, the strength of the weld metal is secured stably. In this case, if the value of AE / DE is less than 0.2, an increase in weld metal hardness can be suppressed in the case of low heat input conditions, and deterioration of toughness or accompanying cracking can be prevented. preferable.
[0023]
Furthermore, in the present invention, in order to ensure weldability at low heat input such as assembly welding or sideways welding, the content of B that raises the hardness of the weld metal particularly during low heat input welding is expressed by equation (6). And it restrict | limits so that (7) Formula may be satisfy | filled.
Pcm = C% + Mn% / 6 + Si% / 30 + (Cr% + Cu%) / 20 + Ni% / 60 + Mo% / 15 + 5B% (6)
Pcm + 760B% <2.5 (7)
[0024]
In general, the effect of chemical composition on the hardness of the weld metal is evaluated by Pcm, but when performing welding with low heat input using a welding wire corresponding to the high heat input high pass temperature as in the present invention, The influence of B becomes remarkable. Therefore, the condition defined by the equation (7) is provided to suppress the increase in the hardness of the weld metal that occurs when the heat input is low, and to avoid the deterioration of toughness and the cracks derived therefrom.
[0025]
【Example】
Steel having the chemical composition shown in Table 1 was melted, and a steel wire for welding was manufactured through forging, rolling, plating, and winding processes. Using these wires, carbon dioxide shielded arc welding was performed on the steel sheet having the composition shown in Table 2 and having a tensile strength of 500 MPa class under the welding conditions shown in Table 3 to obtain a welded joint. The groove shape was as shown in FIG. 1 (welding condition A: high heat input high pass temperature condition) and FIG. 2 (welding condition B: low heat input welding).
[0026]
A test piece containing a weld metal was taken from the welded portion of the welded joint obtained as described above, and the tensile strength and Vickers hardness Hv were measured. In addition, the test piece for measuring the tensile strength is an A1 round bar test piece defined in JIS Z 2201 processed from a welded joint, and the Vickers hardness is 98 N with a load of 98 mm and the weld metal part is continuously provided at intervals of 0.5 mm. Five points were measured and the average value was taken.
[0027]
[Table 1]
Figure 0003862213
[0028]
[Table 2]
Figure 0003862213
[0029]
[Table 3]
Figure 0003862213
[0030]
The obtained measurement results are shown in Table 4. When the conditions of the present invention are satisfied (test numbers No. 1 to 5), the tensile strength of the weld metal satisfies 500 MPa required under high heat input and high pass temperature conditions, and the weld metal has low heat input welding conditions. The required Vickers hardness was 320 or less. As a result, if the conditions of the present invention are satisfied, the mechanical strength of the welded portion can be ensured even if high heat input high-pass temperature welding is performed, and even if low heat input welding is performed, the toughness of the welded portion deteriorates. Or it has been confirmed that the occurrence of cracks can be prevented.
[0031]
On the other hand, when the conditions of the present invention are not satisfied, none of the requirements for tensile strength or Vickers strength is satisfied. That is, in the case of test numbers 6, 9, and 10, the tensile strength of the weld metal is 500 MPa or more, but the Vickers hardness is over 320. In the case of test numbers 7 and 8, the Vickers hardness is 320 or less, but the tensile strength is 500 MPa or less.
[0032]
[Table 4]
Figure 0003862213
[0033]
【The invention's effect】
According to the present invention, a weld metal having a sufficient strength can be obtained under welding conditions of high heat input and high pass temperature, and an increase in weld metal hardness can be suppressed even under low heat input welding conditions, toughness deterioration and further. The generation of cracks based on this can be prevented.
[Brief description of the drawings]
1 is a cross-sectional view showing a groove shape when a welding test is performed under welding conditions A shown in Table 3. FIG.
2 is a cross-sectional view showing a groove shape when a welding test is performed under welding conditions B shown in Table 3. FIG.

Claims (1)

めっきを含めた溶接ワイヤの組成が質量比で
C:0.005〜0.07%、Si:0.65〜1.2%、Mn:1.7〜2.2%、Ti:0.15〜0.30%、Mo:0.12〜0.22%、B:0.0010〜0.0025%、Cr:0.30%以下、Cu:0.5%以下を含み、残部が実質的にFeからなり、かつ下記(1)〜(7)式を満たすことを特徴とするガスシールドアーク溶接用溶接ワイヤ。
DE=C%+Mn%/6+Si%/24 (1)
AE=Mo%/4+Cr%/5+Ni%/40 (2)
0.32<(0.7×DE+0.8×AE) (3)
(DE+AE)<0.50 (4)
0.1<AE/DE (5)
Pcm=C%+Mn%/6+Si%/30+(Cr%+Cu%)/20+Ni%/60+Mo%/15+5B% (6)
Pcm+760B%<2.5 (7)
The composition of the welding wire including plating is C: 0.005-0.07%, Si: 0.65-1.2%, Mn: 1.7-2.2%, Ti: 0.15 by mass ratio. -0.30%, Mo: 0.12-0.22%, B: 0.0010-0.0025%, Cr: 0.30% or less, Cu: 0.5% or less, the balance being substantially A welding wire for gas shielded arc welding characterized by comprising Fe and satisfying the following formulas (1) to (7).
DE = C% + Mn% / 6 + Si% / 24 (1)
AE = Mo% / 4 + Cr% / 5 + Ni% / 40 (2)
0.32 <(0.7 × DE + 0.8 × AE) (3)
(DE + AE) <0.50 (4)
0.1 <AE / DE (5)
Pcm = C% + Mn% / 6 + Si% / 30 + (Cr% + Cu%) / 20 + Ni% / 60 + Mo% / 15 + 5B% (6)
Pcm + 760B% <2.5 (7)
JP2001333780A 2001-10-31 2001-10-31 Welding wire for gas shielded arc welding Expired - Lifetime JP3862213B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001333780A JP3862213B2 (en) 2001-10-31 2001-10-31 Welding wire for gas shielded arc welding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001333780A JP3862213B2 (en) 2001-10-31 2001-10-31 Welding wire for gas shielded arc welding

Publications (2)

Publication Number Publication Date
JP2003136281A JP2003136281A (en) 2003-05-14
JP3862213B2 true JP3862213B2 (en) 2006-12-27

Family

ID=19148994

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001333780A Expired - Lifetime JP3862213B2 (en) 2001-10-31 2001-10-31 Welding wire for gas shielded arc welding

Country Status (1)

Country Link
JP (1) JP3862213B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4549143B2 (en) * 2004-09-22 2010-09-22 株式会社神戸製鋼所 Solid wire for gas shielded arc welding
US20180119286A1 (en) * 2016-11-01 2018-05-03 Catepillar Inc. Friction burnish for alloy plating

Also Published As

Publication number Publication date
JP2003136281A (en) 2003-05-14

Similar Documents

Publication Publication Date Title
JP5387168B2 (en) Welding wire for high strength steel with flux and manufacturing method thereof
JP4614226B2 (en) Solid wire for gas shielded arc welding
JP5157606B2 (en) TIG welding method of high strength steel using flux cored wire
KR100920549B1 (en) Flux-cored wire for gas shielded arc welding
KR101970076B1 (en) Flux-cored wire for gas-shielded arc welding
JP5387192B2 (en) Flux-cored wire for gas shield welding
JP2018187640A (en) Arc welding method and welding wire
KR20210143296A (en) filler metal for TIG welding
JP4676940B2 (en) Manufacturing method of metal-based flux cored wire with low slag and high fatigue strength welded joint
KR20190021384A (en) Arc spot welding method and welding wire
JP3850764B2 (en) Welding wire for high Cr ferritic heat resistant steel
JP6235402B2 (en) Weld metal with excellent strength, toughness and SR cracking resistance
JP4441372B2 (en) High strength and high toughness gas shielded arc welding wire
JP3894703B2 (en) Gas shielded arc welding wire
US11958139B2 (en) Flux-cored wire for gas shield arc welding
JP2012101234A (en) SOLID WIRE FOR Ar-CO2 MIXED GAS SHIELDED ARC WELDING
JP3862213B2 (en) Welding wire for gas shielded arc welding
JP3842707B2 (en) Weld metal for low alloy heat resistant steel
JPH04143255A (en) Austenitic stainless steel wire rod excellent in mig welding workability
JP4309172B2 (en) Low hydrogen coated arc welding rod for low alloy heat resistant steel
JP4701619B2 (en) Large heat input electroslag welding method
JP3933020B2 (en) Stainless steel with excellent fatigue characteristics and toughness of fillet welded joints when forming fillet welded joints
US20240300056A1 (en) Flux-cored wire
JP2005211933A (en) Carbon dioxide gas shield arc welding method and weld joint
JP2022090974A (en) Ferritic stainless steel welding wire

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040728

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20050509

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20050509

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060703

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060912

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060922

R150 Certificate of patent or registration of utility model

Ref document number: 3862213

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091006

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101006

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111006

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111006

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121006

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131006

Year of fee payment: 7

EXPY Cancellation because of completion of term