JPS5910493A - Wire for pure argon shielded gas welding of austenitic stainless steel for cryogenic temperature service - Google Patents

Wire for pure argon shielded gas welding of austenitic stainless steel for cryogenic temperature service

Info

Publication number
JPS5910493A
JPS5910493A JP11866682A JP11866682A JPS5910493A JP S5910493 A JPS5910493 A JP S5910493A JP 11866682 A JP11866682 A JP 11866682A JP 11866682 A JP11866682 A JP 11866682A JP S5910493 A JPS5910493 A JP S5910493A
Authority
JP
Japan
Prior art keywords
wire
weight
less
austenitic stainless
stainless steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11866682A
Other languages
Japanese (ja)
Inventor
Noriji Ko
広 紀治
Kazuo Akusa
阿草 一男
Noboru Nishiyama
昇 西山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP11866682A priority Critical patent/JPS5910493A/en
Publication of JPS5910493A publication Critical patent/JPS5910493A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/30Selection of soldering or welding materials proper with the principal constituent melting at less than 1550 degrees C
    • B23K35/3053Fe as the principal constituent
    • B23K35/308Fe as the principal constituent with Cr as next major constituent
    • B23K35/3086Fe as the principal constituent with Cr as next major constituent containing Ni or Mn

Abstract

PURPOSE:To prevent the deterioration in the toughness of the deposited metal at a cryogenic temp. by using a wire of the compsn. contg. a small amt. of a rare earth element as a wire for pure Ar shielded gas welding of austenitic stainless steels for cryogenic temp. service. CONSTITUTION:The metal which contains >17% Cr, 8-25% Ni, <0.010% C, 0.2-0.7% Si, 0.5-6.0% Mn, <0.03% P, <0.006% S, 0.02-0.30% rare earth element, <0.010% O, <0.10% N or further <3% Mo and consists of the balance Fe and of which the amt. of delta ferrite calculated by the equation [1] is 0<=delta<=5- 500[C%] is used as a wire for pure Ar shielded gas welding of austenitic stainless steel to be used for a storage vessel or the like of ultra low temp. liquid such as liquid hydrogen, liquid helium. The deposited metal which mainteins the original toughness without deterioration even at a cryogenic temp. is obtd.

Description

【発明の詳細な説明】 この発明は極低温用オーステナイト系ステンレス鋼の純
アルゴン被包ガスアーク溶接用ワイヤに係り、特に溶着
金属のシャルピー衝撃試験におけ−る吸収エネルギーの
すぐれた純アルゴンシールドWIGまたはTIGアーク
浴接用ワイヤに関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a wire for pure argon-covered gas arc welding of austenitic stainless steel for cryogenic use, and in particular to a wire for pure argon shielded gas arc welding of austenitic stainless steel for cryogenic use. This relates to a TIG arc bath contact wire.

元来オーステナイト系ステンレス鋼は、低温においても
脆性破壊奮起こさないためにLNGプラ1ントや液体水
素、液体ヘリウム貯蔵用の極低温圧力容器用鋼材として
広く用いられ、最近VOD精錬などの技術の進歩によp
鋼材材質の改良が図られて、−196°0における吸収
エネルギーははソ80JC9f−m以上にも達するよう
になった。
Originally, austenitic stainless steel does not cause brittle fracture even at low temperatures, so it is widely used as a steel material for cryogenic pressure vessels for storing LNG plants, liquid hydrogen, and liquid helium.Recently, technology such as VOD refining has advanced. Yop
Improvements have been made in the quality of the steel material, and the absorbed energy at -196°0 has reached more than 80JC9f-m.

一方従来から使用されて来た溶接材料は、主と′してc
r −Niオーステナイト系ステンレス鋼溶接ワイヤで
あり、これによると−196°Cにおける浴着金属部の
吸収エネルギーは概ね5kgf−m以下であって上記母
材との間の低温靭性の不つり合いから溶接材料の改善が
強く望まれている。
On the other hand, conventionally used welding materials are mainly c.
This is r-Ni austenitic stainless steel welding wire, and according to this, the absorbed energy of the bath-deposited metal part at -196°C is approximately 5 kgf-m or less, and welding is difficult due to the imbalance in low-temperature toughness with the base metal. Improvements in materials are strongly desired.

公知の事実として溶着金属の靭性の改善には低酸素、低
δフェライトの有効なことがすでに知られている。
It is already known that low oxygen and low δ ferrite are effective in improving the toughness of weld metal.

まず浴冶金踊の低酸素化は特開昭55−114469”
’旬公報で示した如く、ワイヤ中に希土類元素たとえば
ミツシュメタルを添加してアークの安定をはかp1純ア
ルゴンシールドMIG溶接を実施することで達成できる
First, the low oxygen content of the bath metallurgical dance was published in Japanese Patent Application Publication No. 55-114469.
As shown in the latest publication, arc stability can be achieved by adding a rare earth element such as mitshu metal to the wire and performing pure argon shield MIG welding.

ところがδフェライトを減少させると高温われ)・が発
生しやすくなることから通常は3〜8%のδフェライト
を析出させるを要し、従って完全オースブナイト組織の
材料はいまだ実用化されていない。
However, if δ ferrite is reduced, high temperature cracking) is likely to occur, so it is usually necessary to precipitate 3 to 8% δ ferrite, and therefore a material with a completely ausbunite structure has not yet been put to practical use.

発明者らが行なった実験で純アルゴンシールドシ・・狭
開先MIG溶着金属において酸素含有!i′を0.01
0’%以下に抑えればδフエライト量が]θ%程度存在
しても高じん性が得られた。(vE−□oa = 15
.8に9f−m 1 1.かし同じ浴着金属に600〜
8F10°Cの再現熱ザイクルを付与した(再現熱サイ
クル試験装置による)場合、−196”Cにおける吸収
エネルギーが著しく低下しく vE 、、6= 8 #
f’−m以下)、この原因は電子顕微鏡などの究明でδ
フエライト部に炭化物が析出し、ここが破断経路になる
ためであることが判明した。
In an experiment conducted by the inventors, pure argon shield... Oxygen is present in narrow gap MIG weld metal! i′ to 0.01
If the amount of δ ferrite was suppressed to 0'% or less, high toughness could be obtained even if the amount of δ ferrite was present at about ]θ%. (vE-□oa = 15
.. 8 to 9f-m 1 1. 600~ for the same yukata metal
When a reproducible thermal cycle of 8F and 10°C is applied (using a reproducible thermal cycle test device), the absorbed energy at -196"C is significantly reduced. vE,,6=8#
(below f'-m), the cause of this was investigated using an electron microscope, etc., and δ
It turned out that this is because carbide precipitates in the ferrite part, which becomes the fracture path.

また、同じ理由で純アルゴンシールド多層振り分けWI
G浴接において、次バスの再熱サイクルを実際に受けた
溶着金属部の吸収エネルギーが著しく劣化することがわ
かった。
Also, for the same reason, pure argon shield multilayer distribution WI
It was found that in G bath welding, the absorbed energy of the welded metal part that actually underwent the reheating cycle of the next bath deteriorated significantly.

これは硫酸−硫酸銅試験におけるごとき静的的・げ試験
では問題とならない場合であっても衝撃試験においては
無視され得ないという新しい知見であって、むしろ低酸
素化により吸収エネルギーの絶対値が上昇したため、却
って明瞭に現われるようになった問題点である。
This is a new finding that cannot be ignored in an impact test even if it is not a problem in a static test such as the sulfuric acid-copper sulfate test; rather, the absolute value of absorbed energy is This is a problem that has become even more obvious as the price has increased.

かかる理由で再熱部を含めて脆化を防止できる□健全な
溶着金属を得る純アルゴンシールドMIGアーク溶接用
ワイヤの開発が不可欠である。
For this reason, it is essential to develop a pure argon-shielded MIG arc welding wire that can prevent embrittlement, including in the reheated part, and obtain sound weld metal.

さて一般に実施されている不活性ガスシールドMIGア
ーク溶接では、アークを安定させるためにArガス、H
eガスなどの不活性ガスに、02ガスあるいは00.ガ
スなどの活性ガスを適当量加えたガス雰囲気中でアーク
溶接が行なわれて米たが、この場合溶着金属中の酸素含
有量が増加してこの発明で目指すような、低酸素溶着金
属を得ること1′□が出米ないのであり、従って低酸素
化を実現させるためにさきに触れたように希土類元素を
添加して、アークの安定を図ってはじめて純アルゴンシ
ールドMIGアーク溶接を可能ならしめ得る。
Now, in commonly practiced inert gas shielded MIG arc welding, Ar gas, H
Inert gas such as e gas, 02 gas or 00. Arc welding is carried out in a gas atmosphere to which an appropriate amount of active gas such as gas is added, but in this case the oxygen content in the weld metal increases and it is possible to obtain a low-oxygen weld metal as aimed at by this invention. Therefore, pure argon shielded MIG arc welding is only possible by adding rare earth elements as mentioned earlier to achieve low oxygen content and stabilize the arc. obtain.

この発明の目的は、上記のように低酸素化によ1・るじ
ん性の改善のほか、この場合に従来随伴した再熱サイク
ルによる炭化物の析出を防止し、溶着金属のシャルピー
@収エネルギーがすぐれた極低温用オーステナイト系ス
テンレス鋼の純アルゴン被包ガスアーク溶接用ワイヤを
提供しようとする!・・ものである。
In addition to improving toughness by reducing oxygen as described above, the purpose of this invention is to prevent the precipitation of carbides due to the reheating cycle conventionally involved in this case, and to reduce the Charpy energy yield of the weld metal. We aim to provide an excellent cryogenic austenitic stainless steel wire for pure argon encapsulated gas arc welding! ...It's something.

この発明の発想は、上記再熱サイクルによる極低温での
しん性低下が、δフエライト中に炭化物の析出を起して
ここが衝S試験片の破断経路になることを見い出したこ
とに由来している。
The idea of this invention originates from the discovery that the decrease in toughness at extremely low temperatures due to the above-mentioned reheating cycle causes carbide precipitation in δ ferrite, which becomes the fracture path of the impact S test piece. ing.

この発明は再熱ザイクルを受けても画いじん性を有し、
かつ耐溶接凝固われ性の良好な溶漸金緘を得るための、
純アルゴン被包ガスアーク溶接用ワイヤを提供するもの
であって、極低温用高じん性オーステナイト系ステンレ
ス鋼の純アルゴンガ1゛□ス被包アーク溶接材料として
そのワイヤ中に重1%で、0 : 0.010%以下、
 Si : O12〜0.7%。
This invention has image toughness even after undergoing a reheat cycle,
In order to obtain a melt-gradient metal sheet with good welding solidification and brittleness resistance,
The present invention provides a wire for pure argon encapsulated gas arc welding, which contains 1% by weight of pure argon gas encapsulated arc welding material of high toughness austenitic stainless steel for cryogenic use. 0.010% or less,
Si: O12-0.7%.

In : 0.5〜f1.o%、 P : 0.08%
以下、S:0.006%以下でN1:8〜25%、希土
類元素:0.02〜0.80%合金合金0 : 0.0
10%以下、N : ’・0.10%以上であって少く
とも17%のOrとまたさらには8%以下のMOとを含
有し残部は実質的にFeおよび不可避不純物よりなり、
かつ下記式で計算されるδフエライト量(%)が0≦a
≦5−500(0%〕であることの条件を充すことによ
p1上記課−・・・(7) 題の有効な解決を図ったものである。
In: 0.5~f1. o%, P: 0.08%
Below, S: 0.006% or less, N1: 8-25%, rare earth element: 0.02-0.80% alloy Alloy 0: 0.0
10% or less, N: '・0.10% or more, containing at least 17% Or and furthermore 8% or less MO, with the remainder substantially consisting of Fe and unavoidable impurities,
And the amount of δ ferrite (%) calculated by the following formula is 0≦a
By satisfying the condition that ≦5-500 (0%), the problem in p1 above (7) is effectively solved.

記 δフェライト−L2(1,b・C81%’]+[01%
)+[MO%〕)−2,5(ao−([0%〕+〔N%
) ) +0.5・CMn%〕十[Ni%])−24,
7 さて発明者らはまず極低温において尚じん性全侑るため
に必要な鋼中酸累蓋を明らかにすべく実験を行なった。
Recorded δ ferrite-L2 (1,b・C81%']+[01%
)+[MO%])-2,5(ao-([0%]+[N%
) ) +0.5・CMn%〕10 [Ni%]) −24,
7 The inventors first conducted an experiment to clarify the acid accumulation in the steel necessary to maintain its toughness at extremely low temperatures.

すなわち、S U S 8 ] 6 L鋼板(20tX
   ”’150  X8001ai+)に深さ18m
m、先端半径R= 4.5鼎のU溝を加工し、0 : 
0.005%、Sに〇、al  % 、  Kn  :
   2.42  % 、  P  :   0.01
7  % 、 S  :(1,008%、 Ni : 
18.55%、 Or : 18.19%1MO:1.
96%、希土類元素: 0.050%、 0 : 0.
0060%、1・N : 0.0818%を含む化学組
成の1,1174mlワイヤを用いて純アルゴン雰囲気
中と、002ガス混合比e1%、8%、および5%と変
化させたAr +00゜ガス雰囲気中で、MIGアーク
溶接を行いこ\に漬液条件は、電流a i o A *
電圧29■、溶接速20(8) 度30α/minで8パス溶接とした。
That is, SUS 8] 6L steel plate (20tX
”'150 X8001ai+) with a depth of 18m
m, tip radius R = 4.5 mm, machined a U groove, 0:
0.005%, S, al%, Kn:
2.42%, P: 0.01
7%, S: (1,008%, Ni:
18.55%, Or: 18.19%1MO:1.
96%, rare earth elements: 0.050%, 0:0.
Ar +00° gas in pure argon atmosphere and 002 gas mixture ratio e1%, 8%, and 5% using 1,1174 ml wire with a chemical composition containing 0.060%, 1 N: 0.0818%. MIG arc welding is performed in an atmosphere, and the immersion liquid conditions are: current a i o A *
Eight passes of welding were performed at a voltage of 29■ and a welding speed of 20(8) degrees and 30α/min.

実験によってできた溶着金網の−196”0におけるシ
ャルピー吸収エネルギーを調査し、その結果を溶着金属
の酸素含有量とともに表1に示した。
The Charpy absorbed energy at -196''0 of the welded wire mesh produced by the experiment was investigated, and the results are shown in Table 1 along with the oxygen content of the welded metal.

表1 ここで極低温じん性の規格値としてl”12.1に91
f・m以上であるが、鋼材の吸収エネルギーは−】96
”Cで80kflf−m以上の特性を有していることか
ら溶接部の安全性を考慮して母材の1/8以上すなわ・
・・ち10 kl?f−m以上を判定規準とした。表1
におい Iて溶着金属の酸素含有量が0.010%以下
でのみ吸収エネルギーは101c!17f−m以上を示
し、すぐれた低温じん性を有している。
Table 1 Here, the standard values for cryogenic toughness are l”12.1 and 91.
f・m or more, but the absorbed energy of the steel material is -]96
``C has a characteristic of 80kflf-m or more, so in consideration of the safety of the welded part, it should be 1/8 or more of the base metal.
...10 kl? The criterion was f−m or higher. Table 1
The absorbed energy is 101c only when the oxygen content of the weld metal is 0.010% or less! 17 f-m or more, and has excellent low-temperature toughness.

こ\に純アルゴンガスシールドで溶接した溶着゛金属の
酸素含有量はワイヤ中での値と同じであることが見出さ
れた。
It was found that the oxygen content of the deposited metal welded with a pure argon gas shield was the same as that in the wire.

つぎに再熱サイクルを受けても脆化が起らずして高じん
性を得るために必要なワイヤ中のC含有量およびδフエ
ライト量を明らかにすべく次の実】O験を行なった。
Next, we conducted the following experiment to clarify the C content and δ ferrite content required in the wire to obtain high toughness without causing embrittlement even after being subjected to a reheat cycle. .

すなわち、5US816L鋼板(20’X]50wxa
oot絹)に深さ6闘、先端半径R= 4.5朋のU溝
を加工し、表2に示す化学成分の扁1〜] 0 (D 
1.2朋ダ溶接ワイヤを用いて純アルゴンガ1らス雰囲
気中でWIGアーク溶接した。
That is, 5US816L steel plate (20'X] 50wxa
0 (D
WIG arc welding was performed in a pure argon gas atmosphere using a 1.2-diameter welding wire.

溶接条件は電流810A、電圧29■、溶接速1度25
 cyn / minで1バス溶接とした。
Welding conditions are current 810A, voltage 29■, welding speed 1 degree 25
One bus welding was performed at cyn/min.

溶接1まと850°0再現熱サイクルを付与した何れも
ハーフサイズシャルピー衝撃試験片(5×10X55朋
)を採取し、−196°0にて衝撃試゛験を行なった。
A half-size Charpy impact test piece (5 x 10 x 55 mm) which had been subjected to one welding cycle and an 850° 0 reproducible thermal cycle was taken, and an impact test was conducted at -196° 0.

この再現熱サイクルは再現熱サイクル試験架fft、で
85θ℃まで6秒で昇温し、保持時間なし、850°C
から500 ’Oまでの冷却時間全24秒、800℃ま
での冷却時間を90秒に試験条件を定めた。
This reproducible thermal cycle is a reproducible thermal cycle test rack fft, the temperature is raised to 85θ℃ in 6 seconds, and there is no holding time, 850℃
The test conditions were set such that the total cooling time from the temperature to 500'O was 24 seconds, and the cooling time to 800°C was 90 seconds.

δフエライト量の計算はティロンの組織図から8ページ
に前掲した式を導入し、これを使用した。
To calculate the amount of δ ferrite, the formula listed above on page 8 from Tillon's organizational chart was introduced and used.

実験によってできた溶着金属の一196℃の吸収エネル
ギー(ハーフサイズ〕を調査し表8に示した。
The absorbed energy (half size) at 196° C. of the deposited metal obtained through the experiment was investigated and is shown in Table 8.

(]1 ) 表  8 極低温じん性の判定規準としては試験片がノ・−・フサ
イズのため、前述の%すなわち吸収エネルギーで5kg
f−rn以上を高じん性とした。
(]1) Table 8 The criteria for determining cryogenic toughness is that the test piece is of no size, so the above-mentioned %, or absorbed energy, is 5 kg.
Toughness of f-rn or higher was defined as high toughness.

溶接ままではいづれも5に9f−m以上の吸収エネルギ
ーを示し、すぐれた低温じん性を示した。しかし、再現
熱サイクルを付与[7た場合、発明以外のワイヤを使用
した試験片は著しく脆化している。
All of the as-welded specimens exhibited absorbed energy of 9 f-m or more and exhibited excellent low-temperature toughness. However, when subjected to a simulated thermal cycle [7], the test specimens using wires other than the invention were significantly brittle.

前述の如く、衡撃試験においてはδフエライト部に析出
した炭化物が破断経路になるため再熱脆化を防止するよ
うにδフェライト−量の低減と同時1・・にC含有量の
低減が必要となる。
As mentioned above, in the equilibration test, the carbide precipitated in the δ-ferrite part becomes the fracture path, so in order to prevent reheat embrittlement, it is necessary to reduce the C content at the same time as reducing the amount of δ-ferrite. becomes.

r/δ組織のδフエライト粒界への炭化物析出とγ/r
組織のr粒界への炭化物析出に要する時間はAiJ者が
後者の約1//1゜である。したがって浴接再熱ザイク
ルのように短時間の場合、δフエライト1′・の低減は
、炭化物の析出を抑制する効果が太きい。
Carbide precipitation at δ ferrite grain boundaries in r/δ structure and γ/r
The time required for carbide precipitation to the r-grain boundaries of the structure is approximately 1/1° for the AiJ type and the latter type. Therefore, in the case of a short time period such as a bath welding reheat cycle, the reduction of δ ferrite 1' has a great effect in suppressing the precipitation of carbides.

1’cG含有量の絶対値を低減することは炭化物の析出
を少なく出来て再熱脆化の防止に有効である。
Reducing the absolute value of the 1'cG content can reduce carbide precipitation and is effective in preventing reheat embrittlement.

かかる関係を明らかにするため、再現熱サイクル試験後
の吸収エネルギーとC含有量、δフエラ2・・イト量の
関係を第1図に示した。第1図において1吸収エネルギ
ー(ハーフザイズ試験片)で5に9f・m以上の篩じん
性が得られるδフエライト量の上限をC含有量とδフエ
ライト量(%)との関係式%式% また、δフエライト量が負になると凝固われを起こすた
めにδフエライト量(%〕の下限は0≦δに限定した。
In order to clarify this relationship, FIG. 1 shows the relationship between the absorbed energy, the C content, and the amount of δ ferra 2...ite after a simulated thermal cycle test. In Figure 1, the upper limit of the amount of δ ferrite that can obtain a sieving toughness of 5 to 9 f/m or more with 1 absorbed energy (half-size test piece) is determined by the relationship between the C content and the amount of δ ferrite (%). In addition, if the amount of δ ferrite becomes negative, solidification cracks occur, so the lower limit of the amount of δ ferrite (%) was limited to 0≦δ.

とくに高じん性が得られる範囲は0 ; 0.005%
以下でかつδフェライト:0〜2%である。     
               1Qここで発明者らは
δフエライト量が0〜a%の低い領域での高温われをS
含有量、S1含有量の低減と同時に希土類元素を添加し
、(MnRE)Sを形成することで防止した。
The range where particularly high toughness can be obtained is 0; 0.005%
and δ ferrite: 0 to 2%.
1Q Here, the inventors investigated the high temperature cracks in the region where the amount of δ ferrite is low from 0 to a%.
This was prevented by reducing the S1 content and simultaneously adding rare earth elements to form (MnRE)S.

上記の如く、溶接ワイヤの酸素含有量と0含有1・童と
δフエライト量の限定を実用化し、再熱ザイクルが付与
された後もすぐれたしん性の浴着金属を得るために溶接
ワイヤの他の組成の限定も必要である。その限定理由は
次のとおりである。
As mentioned above, in order to put into practical use the limitation of the oxygen content and the amount of 0-containing 1-3 and δ ferrite in the welding wire, and to obtain a bath-deposited metal with excellent tenacity even after being subjected to a reheating cycle, welding wire Other compositional limitations are also necessary. The reason for this limitation is as follows.

0については、すでにのべたように0.010%を20
こえると再熱脆化を回避し得ないので0.010%を1
上限とする。
For 0, as already mentioned, 0.010% is 20
If it exceeds 0.010%, it is impossible to avoid reheat embrittlement.
Upper limit.

Siは溶着金植の脱酸元素であり、0.2%未満となる
とQrの歩留りが低下するので下限をワイヤ中で0.2
%に限定した。またδフエライト量が低い場合は0.7
%をこえて多量に含有すると高温われを発生するためこ
れを防止するようにワイヤ中で0.7%以下に限定した
Si is a deoxidizing element for welded gold implants, and if it is less than 0.2%, the yield of Qr will decrease, so the lower limit is set at 0.2% in the wire.
%. In addition, if the amount of δ ferrite is low, it is 0.7
If the content exceeds 0.7%, high-temperature cracks will occur, so to prevent this, the content is limited to 0.7% or less in the wire.

Inは高温われ防止に有効であるが低0− Ni −Q
r −14nステンレス鋼状態図においてはOrがお1
11よそ16%を越えるとき、Mnが7〜8%以上でフ
ェライト生成元素としての@きが現われオースた0、5
%未満ではOrの歩留りが低下するのでワトイヤ中で0
.5〜6.0%の範囲に限定した。
In is effective in preventing high temperature cracking, but has a low 0-Ni-Q
In the r-14n stainless steel phase diagram, Or is 1.
When Mn exceeds about 16%, Mn appears as a ferrite-forming element when Mn is 7 to 8% or more.
If it is less than 0%, the yield of Or will decrease.
.. It was limited to a range of 5 to 6.0%.

Pは0.0a%を越えると耐高温われ性が劣化するので
ワイヤ中で0.08%以下に限定した。
If P exceeds 0.0a%, high temperature fragility resistance deteriorates, so P is limited to 0.08% or less in the wire.

Sは0.006%を越えるとδフェライトが低い場合耐
高温われ性が劣化するのでワイヤ中で0.006 、・
・%以下に限定した。
If S exceeds 0.006%, the high temperature brittleness resistance will deteriorate if the δ ferrite is low, so S should be 0.006% in the wire.
・Limited to below %.

N1はオーステナイト安定化元素の代表的なものでオー
ステナイト粒素地のしん住改善に効果がある。Mnが6
%などの極端な場合を除いて8%未満ではオーステナイ
ト中にマルテンサイトあるパいは多量のδフエライトヲ
生成し、じん性を劣化するので下限をワイヤ中で8%以
上に限定した。
N1 is a typical austenite stabilizing element and is effective in improving the settlement of the austenite grain matrix. Mn is 6
If the content is less than 8%, a large amount of δ ferrite will be produced in the case of martensite in the austenite, which will deteriorate the toughness, so the lower limit was set to 8% or more in the wire.

しかしわれ感受性を肩める元素でもあるためワイヤ中で
上限を25%とした。
However, since it is also an element that increases sensitivity to cracking, the upper limit in the wire was set at 25%.

希土類元素は0.02%以上でアーク安定化に著1・?
しい寄与が認められるが0.30%を越えると非金属介
在物の増大をもたらしじん性劣化の傾向を示すのでワイ
ヤ中で0.02〜0.30%に限定した。
Rare earth elements of 0.02% or more are significantly effective in stabilizing the arc.
However, if it exceeds 0.30%, nonmetallic inclusions tend to increase and the toughness tends to deteriorate, so it was limited to 0.02 to 0.30% in the wire.

Nは0.10%を越えると気孔を発生し易くなるのでワ
イヤ中で0.10%以下に限定した。
If N exceeds 0.10%, pores are likely to be generated, so N is limited to 0.10% or less in the wire.

Orはシエフラーの状態図から明らかな如く17%未満
ではマルテンサイトを生成し、じん性を劣化するのでワ
イヤ中で少くとも17%を含有することが必要であり、
また、26%をこえると炭化物の析出を促進するため2
6%以下がのぞましい。・・MOは常温強度を筒くする
のに有効であるが3 %を越えるとじん性が低下するの
でワイヤ中で8%以下に限定E7だ。
As is clear from Schiefler's phase diagram, less than 17% of Or produces martensite and deteriorates toughness, so it is necessary to contain at least 17% in the wire.
In addition, if it exceeds 26%, it will promote the precipitation of carbides.
6% or less is desirable. ...MO is effective in increasing room temperature strength, but if it exceeds 3%, the toughness decreases, so it is limited to 8% or less in the wire E7.

次に実施例について説明する。Next, an example will be described.

実施例] 化学成分が重量でO: 0,005%(従って(6−5
oo・Co%〕= 2.5 ) ) 、 Si : 0
.82%、 Mn :z、81%、 P : 0.01
6%、 s : o、ooa%、 Ni:10.88%
、 Or : 18.410%、希土類元素: 0.0
515%、 N : 0.0478%、 o : o、
ooao%(従って(1)式1喝lに従うδフエライト
11.8%)の1.21AIipワイヤを用いて、第2
図に示す開先1を電流8]OA。
Example] The chemical component is O: 0,005% by weight (therefore, (6-5
oo・Co%]=2.5)), Si: 0
.. 82%, Mn:z, 81%, P: 0.01
6%, s: o, ooa%, Ni: 10.88%
, Or: 18.410%, rare earth element: 0.0
515%, N: 0.0478%, o: o,
Using a 1.21 AIip wire with a
The groove 1 shown in the figure was heated to a current of 8] OA.

電圧29v、溶接速度3 Q CTI /□1oで第3
図に示すような、多層振分は純アルゴンシールドガスア
ーク溶接を行い、その浴着金属を調査した。図1・・に
おいて2は溶接母材、8は多層振分は各パス、4は衝撃
試験片採取位置である。溶着金属の化学成分ならびにノ
ツチ位f&l第8図5.6に示しだ場合のシャルピー吸
収エネルギーを、表4に掲げた。
Voltage 29v, welding speed 3Q CTI /□1o 3rd
As shown in the figure, pure argon shielded gas arc welding was performed on the multilayer welding, and the metal deposited in the bath was investigated. In FIG. 1..., 2 is the welding base material, 8 is each pass of multilayer distribution, and 4 is the impact test piece sampling position. Table 4 lists the chemical composition of the deposited metal and the Charpy absorbed energy for the notch positions f&l shown in Figure 8, 5.6.

表4からシャルピー吸収エネルギーはノツチ位置2.1
を多電再熱ザイクルを受けた6の位置に入れた場゛合も
14.7 kgf−mあり低温じん性のすぐれているこ
とがわかる。
From Table 4, the Charpy absorbed energy is at the notch position 2.1.
When placed in position 6, which was subjected to multiple electric reheating cycles, the result was 14.7 kgf-m, indicating excellent low-temperature toughness.

実施例2 表1の扁7ワイヤ(δフェライト量1.6%)ヲ゛用い
て実施例1と同じ条件で溶接した。溶着金属の調査結果
も表4に併せて示したがシャルピー吸収エネルギーはノ
ツチ位txt、を多重再熱サイクルを受けた位置6に入
れた場合でも14.1kf−mであり、すぐれた低温じ
ん性會有している。
Example 2 Welding was carried out under the same conditions as in Example 1 using the flat 7 wire (δ ferrite content: 1.6%) shown in Table 1. The investigation results of the weld metal are also shown in Table 4, and the Charpy absorbed energy is 14.1 kf-m even when the notch position txt is placed at position 6, which has undergone multiple reheat cycles, indicating excellent low-temperature toughness. I have a meeting.

この発明は上記実施例からも明らかな如く、溶1接ワイ
ヤ中の成分、特に希土類元素添加によってアークを安定
化し、純アルゴンシールドガスアーク溶接を可能にして
ワイヤ中の酸素含有量を低く限定し、かつ、炭化物析出
による再熱脆化を防止5できるδフエライト量とC含有
量の関係式を導入し、これを限定することにより極低温
用オーステナイト系ステンレス鋼の溶接部低温じん性を
太いに改善できる。
As is clear from the above embodiments, this invention stabilizes the arc by adding components, particularly rare earth elements, to the welding wire, enables pure argon shielded gas arc welding, and limits the oxygen content in the wire to a low level. In addition, by introducing a relational expression between the amount of δ ferrite and C content that can prevent reheat embrittlement due to carbide precipitation5, and by limiting this, the low temperature toughness of welds of austenitic stainless steel for cryogenic use is greatly improved. can.

なお実施例では純アルゴンシールドWIGアー10り溶
接についてのべたがこれのみに限らず、TIGアーク溶
接についても同様に適用することができる。
In the embodiments, pure argon shielded WIG arc welding is described, but the present invention is not limited to this and can be similarly applied to TIG arc welding.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は再現熱サイクル試験後の吸収エネルギ15−と
0含有量、δフエライト量の関係を示す図表、第2図は
開先形状を示す断面図、 第8図はシャルピー試験片の採取要領を示す断面図であ
る。
Figure 1 is a chart showing the relationship between absorbed energy 15-, 0 content, and δ ferrite amount after a simulated thermal cycle test, Figure 2 is a cross-sectional view showing the groove shape, and Figure 8 is the procedure for collecting Charpy test pieces. FIG.

Claims (1)

【特許請求の範囲】 L  O: 0.010重皿%以下、 Si ; 0.
2〜067重1%、 In : o、5〜6.0重葉%
、 P : 0.08重蓋%以丁、 S : 0.00
6重量%以下で、N18〜25重量%、希土類元素: 
0.02〜0.80重1%を含み、O: 0.0101
0重蓋下、N: 11□0.10重蓋%以■であって少
くとも17重産量のOrを含有するオーステナイト系ス
テンレス鋼組成になり、かつ下記(1)式で割算される
δフェライトit(%)が 0≦δ≦5−500・〔0%〕である、極低j温用オー
ステナイト系ステンレス鋼の純アルゴン被包ガス溶接用
ワイヤ。 δ −8,2−(1,5−[81%’]  + [Or
%〕 )−2,5−(80−((0%〕十〔N%) )
 + o、5−(:Mn%〕+〔N土%)J−24,7
・・・・(1)久 0 : 0.010虫蓋%以下、 
si−: 0.2〜0゜7重蓋% 、In  :  0
.5〜6.0重量% 、  P  :  0.Oa重當
%以下、 S : 0.006重重%以下で、N1:8
〜25重量%、希土類元素: O,02〜0.8G l
”重量%を含み、O: 0.010重量%以下、N:0
.10重鋪″%以下であって少くとも17重量%のOr
と8重量%以下のMOとを含有するオーステナイト系ス
テンレス鋼組成になり、かつ下記(2)式でtt算され
るδフエライト1.(%)1・が 0≦δ≦5−500・〔C%〕である、極低温用オース
テナイト系ステンレス鋼の純アルゴン被包ガス溶接用ワ
イヤ。 δ= 8.2− (1,5−[Si%〕十〔Cr%’E
 +CIO%〕)=2.5・(8011(〔C%〕+〔
N%))+0.5・[Mn%]+[Ni%〕) −24
,7−(2)
[Claims] L O: 0.010% or less, Si; 0.
2-067 weight 1%, In: o, 5-6.0 weight %
, P: 0.08%, S: 0.00
6% by weight or less, N18-25% by weight, rare earth elements:
Contains 1% by weight of 0.02-0.80, O: 0.0101
0 heavy lid, N: 11 □ 0.10 heavy lid % or less ■ has an austenitic stainless steel composition containing at least 17 heavy yield of Or, and δ divided by the following formula (1) A wire for pure argon encapsulated gas welding of austenitic stainless steel for extremely low temperatures, with ferrite it (%) of 0≦δ≦5-500 [0%]. δ −8,2−(1,5−[81%'] + [Or
%] ) -2,5-(80-((0%) 10 [N%) )
+ o, 5-(:Mn%] + [N soil%) J-24,7
...(1) Long 0: 0.010 insect cover% or less,
si-: 0.2~0°7 heavy lid%, In: 0
.. 5-6.0% by weight, P: 0. Oa weight% or less, S: 0.006 weight% or less, N1:8
~25% by weight, rare earth elements: O,02~0.8G l
"Including weight%, O: 0.010% by weight or less, N: 0
.. 10% by weight or less and at least 17% by weight of Or
The composition is an austenitic stainless steel containing 8% by weight or less of MO, and δ ferrite 1. calculated by tt using the following formula (2). A wire for pure argon encapsulated gas welding of austenitic stainless steel for cryogenic use, in which (%) 1 is 0≦δ≦5-500·[C%]. δ= 8.2- (1,5-[Si%] 10[Cr%'E
+CIO%])=2.5・(8011([C%]+[
N%)) +0.5・[Mn%]+[Ni%]) -24
,7-(2)
JP11866682A 1982-07-09 1982-07-09 Wire for pure argon shielded gas welding of austenitic stainless steel for cryogenic temperature service Pending JPS5910493A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11866682A JPS5910493A (en) 1982-07-09 1982-07-09 Wire for pure argon shielded gas welding of austenitic stainless steel for cryogenic temperature service

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11866682A JPS5910493A (en) 1982-07-09 1982-07-09 Wire for pure argon shielded gas welding of austenitic stainless steel for cryogenic temperature service

Publications (1)

Publication Number Publication Date
JPS5910493A true JPS5910493A (en) 1984-01-19

Family

ID=14742203

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11866682A Pending JPS5910493A (en) 1982-07-09 1982-07-09 Wire for pure argon shielded gas welding of austenitic stainless steel for cryogenic temperature service

Country Status (1)

Country Link
JP (1) JPS5910493A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0258310A (en) * 1988-08-24 1990-02-27 Hitachi Ltd Manufacture of superconducting coil
JP2003225792A (en) * 2002-01-31 2003-08-12 Jfe Steel Kk Wire for carbon dioxide gas shielded arc welding
JP2004188428A (en) * 2002-12-09 2004-07-08 Jfe Steel Kk Steel wire for carbon dioxide gas-shielded arc welding, and welding method using the same
JP2004249353A (en) * 2003-02-21 2004-09-09 Jfe Steel Kk Steel wire for carbon dioxide gas shielded arc welding, and welding method using the same
JP2005046879A (en) * 2003-07-29 2005-02-24 Jfe Steel Kk Steel strand to form steel wire for carbon dioxide gas-shielded arc welding
JP2005046878A (en) * 2003-07-29 2005-02-24 Jfe Steel Kk Steel wire for carbon dioxide gas-shielded arc welding, and welding method using the same
JP2005219071A (en) * 2004-02-04 2005-08-18 Jfe Steel Kk Steel wire for carbon dioxide gas-shielded arc welding, and welding method using the same
US8043407B2 (en) * 2007-10-05 2011-10-25 Kobe Steel, Ltd. Welding solid wire
CN102363251A (en) * 2011-10-13 2012-02-29 中国船舶重工集团公司第七二五研究所 High-toughness all-austenitic stainless steel welding wire
EP2592167A1 (en) * 2011-11-10 2013-05-15 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Welding material for cryogenic steels
CN103154291A (en) * 2010-09-29 2013-06-12 新日铁住金不锈钢株式会社 Austenite high-manganese stainless steel, manufacturing method therefor, and member using said steel
JP2019063868A (en) * 2017-09-28 2019-04-25 新日鐵住金株式会社 Weld material for austenite stainless steel
CN112621021A (en) * 2020-12-26 2021-04-09 江苏新核合金科技有限公司 H0Cr19Ni24Mn7Mo6VN welding wire and preparation method thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5213441A (en) * 1975-07-23 1977-02-01 Nippon Steel Corp Inert gas welding wire for high tenacity stainless steel used at low temperatures
JPS5388642A (en) * 1977-01-17 1978-08-04 Japan Gasoline Stainless welding rod for low temperature

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5213441A (en) * 1975-07-23 1977-02-01 Nippon Steel Corp Inert gas welding wire for high tenacity stainless steel used at low temperatures
JPS5388642A (en) * 1977-01-17 1978-08-04 Japan Gasoline Stainless welding rod for low temperature

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0258310A (en) * 1988-08-24 1990-02-27 Hitachi Ltd Manufacture of superconducting coil
JP2003225792A (en) * 2002-01-31 2003-08-12 Jfe Steel Kk Wire for carbon dioxide gas shielded arc welding
JP2004188428A (en) * 2002-12-09 2004-07-08 Jfe Steel Kk Steel wire for carbon dioxide gas-shielded arc welding, and welding method using the same
JP2004249353A (en) * 2003-02-21 2004-09-09 Jfe Steel Kk Steel wire for carbon dioxide gas shielded arc welding, and welding method using the same
JP2005046879A (en) * 2003-07-29 2005-02-24 Jfe Steel Kk Steel strand to form steel wire for carbon dioxide gas-shielded arc welding
JP2005046878A (en) * 2003-07-29 2005-02-24 Jfe Steel Kk Steel wire for carbon dioxide gas-shielded arc welding, and welding method using the same
JP2005219071A (en) * 2004-02-04 2005-08-18 Jfe Steel Kk Steel wire for carbon dioxide gas-shielded arc welding, and welding method using the same
JP4639599B2 (en) * 2004-02-04 2011-02-23 Jfeスチール株式会社 Carbon dioxide shielded arc welding method
US8043407B2 (en) * 2007-10-05 2011-10-25 Kobe Steel, Ltd. Welding solid wire
CN103154291A (en) * 2010-09-29 2013-06-12 新日铁住金不锈钢株式会社 Austenite high-manganese stainless steel, manufacturing method therefor, and member using said steel
US9175361B2 (en) 2010-09-29 2015-11-03 Nippon Steel & Sumikin Stainless Steel Corporation Austenitic high Mn stainless steel and method production of same and member using that steel
CN102363251A (en) * 2011-10-13 2012-02-29 中国船舶重工集团公司第七二五研究所 High-toughness all-austenitic stainless steel welding wire
EP2592167A1 (en) * 2011-11-10 2013-05-15 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Welding material for cryogenic steels
JP2019063868A (en) * 2017-09-28 2019-04-25 新日鐵住金株式会社 Weld material for austenite stainless steel
CN112621021A (en) * 2020-12-26 2021-04-09 江苏新核合金科技有限公司 H0Cr19Ni24Mn7Mo6VN welding wire and preparation method thereof

Similar Documents

Publication Publication Date Title
Harrison et al. Influence of oxygen-rich inclusions on the γ→ α phase transformation in high-strength low-alloy (HSLA) steel weld metals
JPS5910493A (en) Wire for pure argon shielded gas welding of austenitic stainless steel for cryogenic temperature service
US4529669A (en) Welded structure for use at very low temperatures
CN107138876B (en) High-temperature creep resistant low-nickel copper-containing T/P92 steel welding material
JPH09267190A (en) Welding wire for high crome ferrite wire
CN108350541A (en) Two phase stainless steel steel and two phase stainless steel steel pipe
JPH0885849A (en) High chromium ferritic heat resistant steel
JP2013103232A (en) Welding material for cryogenic steel
US3925064A (en) High corrosion fatigue strength stainless steel
JP7272438B2 (en) Steel material, manufacturing method thereof, and tank
CN101910437B (en) Steel for welding structure having welded joint with superior ctod properties in weld heat affected zone
JPS582265B2 (en) Ferrite Goukin
JPH0443977B2 (en)
JPS60261679A (en) Method of welding alloy containing nitrogen
US5820818A (en) Stainless steel having excellent thermal neutron absorption ability
KR100209450B1 (en) High toughness cr-mo steel
CN113798728A (en) Austenitic stainless steel welding wire and preparation method and application thereof
Smirnov et al. The time and heat dependence of the nitrogen distribution upon steel alloying with nitrided manganese
US3585011A (en) Article welded by ferritic alloy
JP2002239722A (en) Lap fillet welding method for steel sheet excellent in fatigue strength of weld zone
JPS59193242A (en) High silicon spheroidal graphite cast iron
JPS6013060B2 (en) Ferritic heat-resistant steel
JP2000226633A (en) Steel for electron beam welding excellent in toughness
JPH0796390A (en) Wire for welding 9cr-1mo steel
JPS63270444A (en) Steel for line pipe having excellent sour resistance