JP2005046878A - Steel wire for carbon dioxide gas-shielded arc welding, and welding method using the same - Google Patents
Steel wire for carbon dioxide gas-shielded arc welding, and welding method using the same Download PDFInfo
- Publication number
- JP2005046878A JP2005046878A JP2003281579A JP2003281579A JP2005046878A JP 2005046878 A JP2005046878 A JP 2005046878A JP 2003281579 A JP2003281579 A JP 2003281579A JP 2003281579 A JP2003281579 A JP 2003281579A JP 2005046878 A JP2005046878 A JP 2005046878A
- Authority
- JP
- Japan
- Prior art keywords
- mass
- welding
- steel wire
- carbon dioxide
- shielded arc
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Arc Welding In General (AREA)
Abstract
Description
本発明は、最も安定な溶滴の移行形態とされるスプレー移行が得られる炭酸ガスシールドアーク溶接用鋼ワイヤ(以下、溶接用鋼ワイヤという)とそれを用いた溶接方法に係り、特に溶接用鋼ワイヤを正極(すなわちマイナス極)側で使用してもスプレー移行が得られ、 その結果、スパッタの発生を抑制し、しかも優れたビード形状が得られる溶接用鋼ワイヤとそれを用いた溶接方法に関する。 The present invention relates to a steel wire for carbon dioxide shielded arc welding (hereinafter referred to as a steel wire for welding) and a welding method using the same, which can provide a spray transfer which is the most stable form of droplet transfer, and particularly for welding. Even if the steel wire is used on the positive electrode (ie, negative electrode) side, spray transfer can be obtained, and as a result, the generation of spatters can be suppressed, and an excellent bead shape can be obtained, and a welding method using the same About.
シールドガスとしてCO2 ガスを用いるガスシールドアーク溶接は、CO2 ガスが安価であるとともに、能率の良い溶接法であるので、鉄鋼材料の溶接に広く利用されている。特に自動溶接の急速な普及によって、造船,建築,橋梁,自動車,建設機械等の種々の分野で使用されている。造船,建築,橋梁の分野では厚板の高電流多層溶接に使用され、自動車,建築機械の分野では薄板の隅肉溶接に使用されることが多い。 Gas shielded arc welding using CO 2 gas as a shielding gas is widely used for welding steel materials because CO 2 gas is inexpensive and is an efficient welding method. In particular, due to the rapid spread of automatic welding, it is used in various fields such as shipbuilding, architecture, bridges, automobiles and construction machinery. It is often used for high-current multilayer welding of thick plates in the fields of shipbuilding, construction, and bridges, and is often used for fillet welding of thin plates in the fields of automobiles and construction machinery.
ArガスとCO2 ガスとの混合ガス(CO2 の混合比率:2〜40体積%)をシールドガスとする溶接法(いわゆる混合ガスアーク溶接)は、溶滴が溶接ワイヤの直径よりも小さい微細なスプレー移行が可能となる。この溶滴のスプレー移行は、溶滴移行形態の中で最も優れており、スパッタの発生が少なく、溶接のビード形状が優れ、かつ溶接速度の向上にも適していることが知られている。そのため混合ガスアーク溶接は、高品質な溶接を必要とする分野で利用されている。 A welding method (so-called mixed gas arc welding) using a mixed gas of Ar gas and CO 2 gas (mixing ratio of CO 2 : 2 to 40% by volume) as a shielding gas is fine in which droplets are smaller than the diameter of the welding wire. Spray transfer is possible. It is known that the spray transfer of the droplet is the best among the droplet transfer modes, the generation of spatter is small, the weld bead shape is excellent, and it is suitable for improving the welding speed. Therefore, mixed gas arc welding is used in fields that require high-quality welding.
しかしながらArガスのコストは、CO2 ガスの5倍と高価であるから、実際の溶接施工においてはArガスの使用量を削減して、CO2 ガスの混合比率を50体積%以上とした混合ガスをシールドガスとして使用する場合が多い。このようなCO2 ガスの混合比率が50体積%以上のシールドガスを用いると、混合ガスアーク溶接(シールドガスのCO2 混合比率:2〜40体積%)に比べて10〜20倍の粗大な溶滴が溶接ワイヤ先端に懸垂し、アーク力によって揺れ動きながら移行(いわゆるグロビュール移行)する。このようなグロビュール移行が生じると、母材(すなわち鋼板)との短絡や再アークによるスパッタが多量に発生し、ビード形状が安定しない。特に高速溶接においては、ビード形状が凹凸(いわゆるハンピングビード)になりやすいという問題があった。 However, the cost of Ar gas is five times higher than that of CO 2 gas, so in actual welding work, the amount of Ar gas used is reduced, and the mixed gas with a CO 2 gas mixing ratio of 50% by volume or more is used. Is often used as a shielding gas. When a shielding gas having a CO 2 gas mixing ratio of 50% by volume or more is used, it is 10 to 20 times as coarse as mixed gas arc welding (shielding gas CO 2 mixing ratio: 2 to 40% by volume). The droplet hangs on the tip of the welding wire and moves while swinging by the arc force (so-called globule transfer). When such globule transition occurs, a large amount of short circuit with the base material (that is, steel plate) and spatter due to re-arcing occur, and the bead shape is not stable. Particularly in high-speed welding, there is a problem that the bead shape tends to be uneven (so-called humping bead).
この問題点に対して、Kの添加によってスパッタ発生量を低減する方法が特開平6-218574号公報に開示されている。しかしこの技術では、溶接速度を増加する場合やシールドガス中のCO2 を50体積%以上に増加する場合には、必ずしもスパッタ発生量の低減やビード形状の安定の効果は得られなかった。 In order to solve this problem, Japanese Patent Laid-Open No. 6-218574 discloses a method of reducing the amount of spatter generated by adding K. However, with this technique, when the welding speed is increased or when the CO 2 in the shielding gas is increased to 50% by volume or more, the effect of reducing the amount of spatter generation and stabilizing the bead shape is not necessarily obtained.
また特開平7-47473 号公報,特開平7-290241号公報には、1溶滴の移行時間内に1パルスを発生させて、スパッタを低減する炭酸ガスパルスアーク溶接方法が提案されている。これらの技術は、Ar−5〜25体積%CO2 からなる混合ガスをシールドガスとして用い、1溶滴1パルスで溶接を行なうものである。つまり、Ar−5〜25体積%CO2 からなる混合ガスを用いる場合には、 溶滴が微細であり,強力な下向きのプラズマ気流によりピーク期間での溶滴成長とベース期間での溶滴移行が効率良く行なえる。また、1溶滴の形成に要する時間も1〜2msと短く、1パルスで1溶滴が移行しなかったとしても、次のパルスで移行すれば大きな溶滴が溶接ワイヤ先端に懸垂することはなく、パルスによってスパッタの低減効果が発揮される。 Japanese Patent Laid-Open Nos. 7-47473 and 7-290241 propose a carbon dioxide pulse arc welding method in which one pulse is generated within the transition time of one droplet to reduce spatter. These techniques, using a mixed gas consisting of Ar-5 to 25 vol% CO 2 as a shielding gas, and performs welding at 1 droplet per pulse. That is, in the case of using a mixed gas of Ar-5 to 25 vol% CO 2, the droplet is fine, droplet transfer in droplet growth and the base period in the peak period powerful downward plasma airflow Can be done efficiently. In addition, the time required to form one droplet is as short as 1 to 2 ms, and even if one droplet does not move in one pulse, a large droplet hangs at the tip of the welding wire if it moves in the next pulse. The effect of reducing spatter is exhibited by the pulse.
しかし、特開平7-47473 号公報,特開平7-290241号公報に開示されたCO2 を主成分とするシールドガス(シールドガスのCO2 混合比率:50体積%以上)を用いる炭酸ガスシールドアーク溶接での溶滴は粗大で、下向きのプラズマ気流は弱く、溶滴の移行はパルスピーク期間の前半で生じる。炭酸ガスシールドアークパルス溶接では、ピーク期間中盤から後半にかけて溶滴が成長し、ベース期間では常に溶滴が溶接ワイヤ先端に懸垂した状態となり、次のピーク期間前半で溶滴が鋼板側へ移行するのが理想と考えられている。1溶滴を形成する期間は10〜20msと長く、1パルスで1溶滴が移行しなかった場合、次のパルスで移行するが、その間、粗大な溶滴が溶接ワイヤ先端に懸垂することになり、短絡等によって粗大なスパッタを多量に発生させる。炭酸ガスシールドアーク溶接法では、溶滴の移行間隔が不安定であり、1溶滴の移行時間に合わせて1パルスを安定に発生させるのは困難である。 However, a carbon dioxide gas shielded arc using a shielding gas (CO 2 mixing ratio of shielding gas: 50% by volume or more) containing CO 2 as a main component disclosed in JP-A-7-47473 and JP-A-7-290241 The droplets in welding are coarse, the downward plasma stream is weak, and droplet transfer occurs in the first half of the pulse peak period. In carbon dioxide shielded arc pulse welding, droplets grow from the middle to the latter half of the peak period, and the droplets always hang from the tip of the welding wire during the base period, and the droplets move to the steel plate side in the first half of the next peak period. Is considered ideal. The period for forming one droplet is as long as 10 to 20 ms. If one droplet does not move in one pulse, it moves in the next pulse, but during that time a coarse droplet hangs on the tip of the welding wire. Therefore, a large amount of coarse spatter is generated due to a short circuit or the like. In the carbon dioxide shielded arc welding method, the droplet transfer interval is unstable, and it is difficult to stably generate one pulse in accordance with the transfer time of one droplet.
また本発明者らは、本発明よりも先に、特開2002-144081 号公報に開示される「MAG溶接用鋼ワイヤおよびそれを用いたMAG溶接法」を開発している。しかしこの技術は、溶接部にギャップがある薄鋼板の低電流溶接(すなわち 250A以下)を対象としており、炭酸ガスシールドアーク溶接における高電流溶接(すなわち 250A超え)では十分なアーク安定の効果が得られない。 Further, the present inventors have developed a “MAG welding steel wire and a MAG welding method using the same” disclosed in Japanese Patent Application Laid-Open No. 2002-144081 prior to the present invention. However, this technology is intended for low current welding of thin steel sheets with gaps in the weld (ie, 250 A or less), and high current welding (ie, over 250 A) in carbon dioxide shielded arc welding provides a sufficient arc stabilization effect. I can't.
また特開昭63-281796 号公報には、希土類元素(以下、REM という)の添加による炭酸ガスシールドアーク溶接のアーク安定化技術が開示されている。しかし特開昭63-281796 号公報には、本発明の最も大きな特徴である溶接用鋼ワイヤを正極性で使用する点について開示がない。通常、溶接用鋼ワイヤが正極性の炭酸ガスシールドアーク溶接では、逆極性(すなわち溶接用鋼ワイヤがプラス極)の場合の溶滴よりもさらに粗大な溶滴が形成され、大きな短絡によって粗大なスパッタが生じる。しかも、溶滴の移行が粗いためにビード形状が不揃いになり、鋼板側の発熱が少なく、溶け込みが浅いのでオーバーラップによる溶接欠陥を発生しやすい。よって、通常は炭酸ガスシールドアーク溶接において溶接用鋼ワイヤを正極側で使用するという発想はなく、逆極性として炭酸ガスシールドアーク溶接を行なっている。 Japanese Patent Laid-Open No. 63-281796 discloses an arc stabilization technique for carbon dioxide shielded arc welding by adding rare earth elements (hereinafter referred to as REM). However, Japanese Patent Laid-Open No. 63-281796 does not disclose the use of a steel wire for welding, which is the greatest feature of the present invention, with positive polarity. Usually, in carbon dioxide shielded arc welding, where the welding steel wire is positive, droplets that are coarser than those in the case of reverse polarity (that is, the welding steel wire is a positive electrode) are formed, and are coarse due to a large short circuit. Spattering occurs. In addition, since the transition of the droplets is rough, the bead shape is uneven, the heat generation on the steel sheet side is small, and the penetration is shallow, so that welding defects due to overlap are likely to occur. Therefore, there is usually no idea of using a welding steel wire on the positive electrode side in carbon dioxide shielded arc welding, and carbon dioxide shielded arc welding is performed with a reverse polarity.
ところが特開昭63-281796 号公報には極性に関する記述はないが、通常の炭酸ガスシールドアーク溶接で採用される逆極性の場合は、REM 添加によってアークの緊縮と反発により大粒のスパッタを増すことが知られており、REM を添加してもアーク安定化効果は得られない。一方、 正極性の場合には、本発明の特徴であるアークの安定化に必要な添加元素(すなわちP,S)や正極性における溶滴移行のスプレー化とアーク安定化効果を低下させる元素(すなわちO)に関する重要な技術の開示、および製鋼におけるREM の歩留りを低下させる元素(すなわちO)に関する開示がなく、炭酸ガスシールドアーク溶接における十分なアーク安定化効果と鋼素線の優れた製造性は得られない。 However, JP 63-281796 does not describe the polarity, but in the case of the reverse polarity used in normal carbon dioxide shielded arc welding, the addition of REM increases the size of spatter due to arc contraction and repulsion. The arc stabilization effect is not obtained even when REM is added. On the other hand, in the case of positive polarity, additional elements (that is, P, S) necessary for the stabilization of the arc, which is a feature of the present invention, and elements that reduce spraying of the droplet transfer and the arc stabilization effect in the positive polarity ( In other words, there is no disclosure of important technologies relating to O) and disclosure of elements (ie O) that reduce the yield of REM in steelmaking, and sufficient arc stabilization effects in carbon dioxide shielded arc welding and excellent steel wire manufacturability Cannot be obtained.
上記のようにArガスへのCO2 ガスの混合比率が40体積%を超えるシールドガスを用いると、通常の混合ガス(CO2 の混合比率:2〜40体積%)を用いた場合に比べて、粗大な溶滴が溶接用鋼ワイヤ先端に懸垂し、アーク力によって揺れ動く。その結果、高速溶接では母材(すなわち鋼板)との不規則な短絡や再アークによるスパッタが増加し、ビード形状が不安定になるという問題があった。CO2 ガスを主成分(CO2 の混合比率:40体積%超え)とするシールドガスを用いる場合は、このような問題を解決するために、溶滴のスプレー移行を達成する必要がある。 As described above, when a shielding gas in which the mixing ratio of CO 2 gas to Ar gas exceeds 40% by volume is used compared to the case of using a normal mixed gas (CO 2 mixing ratio: 2 to 40% by volume). Coarse droplets are suspended from the tip of the welding steel wire and swayed by the arc force. As a result, high-speed welding has a problem that irregular short-circuiting with a base material (that is, a steel plate) or spatter due to re-arcing increases and the bead shape becomes unstable. When using a shielding gas containing CO 2 gas as a main component (CO 2 mixing ratio: more than 40% by volume), it is necessary to achieve spray transfer of droplets in order to solve such a problem.
ところが通常の混合ガス(CO2 の混合比率:2〜40体積%)では、溶滴のスプレー移行は可能であるが、CO2 ガスを主成分(CO2 の混合比率:40体積%超え)とするシールドガスでは、スプレー移行を達成することは極めて困難であった。
本発明は上記の問題に鑑み開発されたもので、CO2 ガスを主成分とするシールドガスを用いる炭酸ガスシールドアーク溶接において、溶滴のスプレー移行を可能とし、高入熱溶接を行なってもスパッタ発生の低減のみならず、優れた製造性が得られる溶接用鋼ワイヤと、それを用いた溶接方法を提供することを目的とする。 The present invention has been developed in view of the above problems, and in carbon dioxide shielded arc welding using a shielding gas containing CO 2 gas as a main component, spray transfer of droplets is possible and high heat input welding can be performed. It aims at providing the steel wire for welding which can obtain not only the spatter generation | occurrence | production but the outstanding manufacturability, and the welding method using the same.
なお通常の炭酸ガスシールドアーク溶接では主にArガス,O2 とCO2 ガスとを混合したシールドガス(CO2 の混合比率:2〜40体積%)を用いるが、本発明では、CO2 ガスを主成分(すなわちCO2 の混合比率:60体積%超え)とするシールドガスを使用する。したがって本発明における炭酸ガスシールドアーク溶接とは、CO2 の混合比率が60体積%以上となるようにArガスとCO2 ガスとを混合したシールドガスを用いる炭酸ガスシールドアーク溶接を指す。 In normal carbon dioxide shielded arc welding, shield gas (mixing ratio of CO 2 : 2 to 40% by volume) in which Ar gas, O 2 and CO 2 gas are mixed is mainly used. In the present invention, CO 2 gas is used. Is used as a main component (ie, CO 2 mixing ratio: more than 60% by volume). Therefore, carbon dioxide shielded arc welding in the present invention refers to carbon dioxide shielded arc welding using a shield gas in which Ar gas and CO 2 gas are mixed so that the mixing ratio of CO 2 is 60% by volume or more.
本発明者らは、ArガスとCO2 ガスとの混合ガスであってCO2 を主成分(すなわちCO2 の混合比率:60体積%超え)とするシールドガスを用いる炭酸ガスシールドアーク溶接において、溶滴のスプレー移行を可能とし、スパッタ発生量を低減しかつビード形状を改善する技術について鋭意検討した。その結果、以下に述べる知見を得た。本発明は、これらの知見に基づいてなされたものである。 In the carbon dioxide shielded arc welding using a shielding gas which is a mixed gas of Ar gas and CO 2 gas and has CO 2 as a main component (that is, the mixing ratio of CO 2 exceeds 60% by volume), We have intensively studied the technology that enables spray transfer of droplets, reduces spatter generation, and improves bead shape. As a result, the following knowledge was obtained. The present invention has been made based on these findings.
(a) 溶接用鋼ワイヤをマイナス極とする正極性の溶接を行なうことによって、溶滴は粗大ではあるが、安定した移行が可能となる。 (a) By performing positive polarity welding with the welding steel wire as the negative electrode, the droplets are coarse, but stable transfer is possible.
(b) 溶接用鋼ワイヤの鋼素線に REMを添加することによって、低電圧領域でのアーク切れを防止し、溶滴の安定した移行が可能となり、しかも溶け込みを確保してビードの平滑化が可能となる。 (b) By adding REM to the steel wire of the steel wire for welding, arc breakage in the low voltage region can be prevented, stable transfer of droplets can be achieved, and penetration can be ensured to smooth the beads. Is possible.
(c) 溶接用鋼ワイヤの鋼素線に REMを添加し、さらにP,S,Oの含有量を規定することによって、陰極におけるアーク発生点を集中かつ安定させることが可能となる。 (c) By adding REM to the steel wire of the steel wire for welding and further specifying the contents of P, S, and O, it becomes possible to concentrate and stabilize the arc generation point in the cathode.
(d) 溶接用鋼ワイヤの鋼素線の REM含有量とO含有量が、下記の (1)式で算出されるD値が0.00以上になるように調整することによって、鋼素線の鋼材を溶製する製鋼段階でのREM 歩留りを向上させ、優れた製造性を確保することが可能となる。 (d) By adjusting the REM content and O content of the steel wire of the welding steel wire so that the D value calculated by the following formula (1) is 0.00 or more, the steel material of the steel wire It is possible to improve the REM yield at the steelmaking stage where the steel is melted and to ensure excellent manufacturability.
D=[REM ]−9×[O]+ 0.5 ・・・ (1)
[REM ]:鋼素線の希土類元素含有量(質量%)
[O] :鋼素線のO含有量(質量%)
すなわち本発明は、正極性炭酸ガスシールドアーク溶接に使用する溶接用鋼ワイヤであって、C:0.20質量%以下,Si:0.05〜2.5 質量%,Mn:0.25〜3.5 質量%,O:0.0010〜0.0080質量%,希土類元素: 0.015〜0.100 質量%,P:0.05質量%以下,S:0.05質量%以下を含有するとともに、下記の (1)式で算出されるD値が0.00以上である鋼素線からなる炭酸ガスシールドアーク溶接用鋼ワイヤである。
D = [REM] −9 × [O] +0.5 (1)
[REM]: Rare earth element content of steel wire (mass%)
[O]: O content (mass%) of steel wire
That is, the present invention is a steel wire for welding used for positive carbon dioxide shielded arc welding, C: 0.20 mass% or less, Si: 0.05-2.5 mass%, Mn: 0.25-3.5 mass%, O: 0.0010- 0.0080% by mass, rare earth element: 0.015 to 0.100% by mass, P: 0.05% by mass or less, S: 0.05% by mass or less, and D value calculated by the following formula (1) is 0.00 or more This is a steel wire for carbon dioxide shielded arc welding consisting of a wire.
D=[REM ]−9×[O]+ 0.5 ・・・ (1)
[REM ]:鋼素線の希土類元素含有量(質量%)
[O] :鋼素線のO含有量(質量%)
また本発明は、炭酸ガスシールドアーク溶接方法において、C:0.20質量%以下,Si:0.05〜2.5 質量%,Mn:0.25〜3.5 質量%,O:0.0010〜0.0080質量%,希土類元素: 0.015〜0.100 質量%,P:0.05質量%以下,S:0.05質量%以下を含有するとともに、下記の (1)式で算出されるD値が0.00以上である鋼素線からなる炭酸ガスシールドアーク溶接用鋼ワイヤを使用し、CO2 ,O2 とArとを混合してCO2 濃度を60体積%以上とした混合ガスを用いてアーク点をシールドし、正極性で溶接を行なう炭酸ガスシールドアーク溶接方法である。
D = [REM] −9 × [O] +0.5 (1)
[REM]: Rare earth element content of steel wire (mass%)
[O]: O content (mass%) of steel wire
In the carbon dioxide shielded arc welding method, the present invention includes C: 0.20 mass% or less, Si: 0.05-2.5 mass%, Mn: 0.25-3.5 mass%, O: 0.0010-0.0080 mass%, rare earth element: 0.015-0.100. Steel for carbon dioxide shielded arc welding consisting of a steel wire having a mass%, P: 0.05 mass% or less, S: 0.05 mass% or less, and a D value calculated by the following formula (1) of 0.00 or more Carbon dioxide shielded arc welding method that uses a wire, shields the arc point using a mixed gas in which CO 2 , O 2 and Ar are mixed to make the CO 2 concentration 60% by volume or more, and welding is performed with positive polarity It is.
D=[REM ]−9×[O]+ 0.5 ・・・ (1)
[REM ]:鋼素線の希土類元素含有量(質量%)
[O] :鋼素線のO含有量(質量%)
前記した炭酸ガスシールドアーク溶接方法の発明では、混合ガスのCO2 濃度が 100体積%(JIS K1106)であることが好ましい。
D = [REM] −9 × [O] +0.5 (1)
[REM]: Rare earth element content of steel wire (mass%)
[O]: O content (mass%) of steel wire
In the invention of the carbon dioxide shielded arc welding method described above, the CO 2 concentration of the mixed gas is preferably 100% by volume (JIS K1106).
なお、ここで鋼素線からなる溶接用鋼ワイヤとは、溶接用フラックスを内装せず、素材となる鋼素線を主体とするワイヤ(いわゆるソリッドワイヤ)を指す。また本発明は、鋼素線の表面にめっきを施したり、あるいは潤滑剤を塗布したソリッドワイヤにも支障なく適用できる。 In addition, the steel wire for welding which consists of a steel strand here refers to the wire (what is called a solid wire) which does not incorporate the welding flux and mainly has the steel strand used as a raw material. Further, the present invention can be applied to a solid wire in which the surface of a steel wire is plated or a lubricant is applied without any trouble.
本発明によれば、正極性の炭酸ガスシールドアーク溶接において不可能とされてきたスプレー移行を達成できるので、スパッタ発生量を低減しかつビード形状を改善でき、安定した厚鋼板継手溶接が可能となる。 According to the present invention, since it is possible to achieve spray transfer, which has been impossible in positive carbon dioxide shielded arc welding, it is possible to reduce spatter generation and improve the bead shape, enabling stable thick steel plate joint welding. Become.
まず本発明の炭酸ガスシールドアーク溶接用鋼ワイヤ(すなわち溶接用鋼ワイヤ)の鋼素線の成分の限定理由について説明する。 First, the reasons for limiting the components of the steel wire of the steel wire for carbon dioxide shielded arc welding of the present invention (ie, the steel wire for welding) will be described.
C:0.20質量%以下
Cは、溶接金属の強度を確保するのに必要な元素であり、溶融メタルの粘性を低下させ流動性を向上させる効果がある。しかしC含有量が0.20質量%を超えると、溶滴および溶融メタルの挙動が不安定となるのみならず、溶接金属の靭性の低下を招く。したがって、Cは0.20質量%以下とした。一方、C含有量を過剰に減少させると溶接金属の強度を確保できない。そのため、 0.003〜0.20質量%とするのが好ましい。なお、0.01〜0.10質量%が一層好ましい。
C: 0.20 mass% or less C is an element necessary for ensuring the strength of the weld metal, and has the effect of reducing the viscosity of the molten metal and improving the fluidity. However, when the C content exceeds 0.20% by mass, not only the behavior of the droplets and the molten metal becomes unstable, but also the toughness of the weld metal is lowered. Therefore, C is 0.20% by mass or less. On the other hand, if the C content is excessively reduced, the strength of the weld metal cannot be ensured. Therefore, it is preferable to set it as 0.003-0.20 mass%. In addition, 0.01-0.10 mass% is still more preferable.
Si:0.05〜2.5 質量%
Siは、脱酸作用を有し、溶融メタルの脱酸のためには不可欠な元素である。Si含有量が0.05質量%未満では、溶融メタルの脱酸が不足し、溶接金属にブロー欠陥が発生する。一方、 2.5質量%を超えると、溶接金属の靱性が著しく低下する。したがって、Siは0.05〜2.5 質量%の範囲内を満足する必要がある。さらに正極性(すなわち溶接用鋼ワイヤをマイナス極)の炭酸ガスシールドアーク溶接におけるアークの広がりを抑え、溶滴の移行回数を増大させるためには、0.25質量%以上が望ましい。そのため、0.25〜2.5 質量%とするのが好ましい。
Si: 0.05-2.5 mass%
Si has a deoxidizing action and is an indispensable element for deoxidizing molten metal. When the Si content is less than 0.05% by mass, deoxidation of the molten metal is insufficient, and blow defects occur in the weld metal. On the other hand, if it exceeds 2.5% by mass, the toughness of the weld metal is significantly reduced. Therefore, Si needs to satisfy the range of 0.05-2.5 mass%. Further, in order to suppress the spread of the arc in the positive polarity (that is, the negative electrode of the welding steel wire) carbon dioxide shielded arc welding and increase the number of times of droplet transfer, 0.25% by mass or more is desirable. Therefore, it is preferable to set it as 0.25-2.5 mass%.
Mn:0.25〜3.5 質量%
Mnは、Siと同様に脱酸作用を有し、溶融メタルの脱酸のためには不可欠な元素である。Mn含有量が0.25質量%未満では、溶融メタルの脱酸が不足し、溶接金属にブローホールが発生する。一方、 3.5質量%を超えると、溶接金属の靭性が低下する。したがって、Mnは0.25〜3.5 質量%の範囲内を満足する必要がある。なお、溶融メタルの脱酸を促進し、ブローホールを防止するためには、0.45質量%以上が望ましい。そのため、0.45〜3.5 質量%とするのが好ましい。
Mn: 0.25 to 3.5% by mass
Mn has a deoxidizing action similar to Si and is an indispensable element for deoxidizing molten metal. When the Mn content is less than 0.25% by mass, deoxidation of the molten metal is insufficient, and blow holes are generated in the weld metal. On the other hand, if it exceeds 3.5% by mass, the toughness of the weld metal decreases. Therefore, Mn needs to satisfy the range of 0.25 to 3.5% by mass. In order to promote deoxidation of molten metal and prevent blowholes, 0.45% by mass or more is desirable. Therefore, it is preferable to set it as 0.45-3.5 mass%.
REM : 0.015〜0.100 質量%
REM は、製鋼および鋳造時の介在物の微細化,溶接金属の靱性改善のために有効な元素である。ただし、通常の逆極性(すなわち溶接用鋼ワイヤをプラス極)の炭酸ガスシールドアーク溶接においては、鋼素線中にREM を添加するとアークの集中が生じて、スパッタを低減する効果が得られない。しかし正極性の炭酸ガスシールドアーク溶接においては、溶滴移行を安定化するために不可欠な元素である。REM 含有量が 0.015質量%未満では、この溶滴移行の安定化効果が得られない。一方、 0.100質量%を超えると、溶接用鋼ワイヤの製造工程で割れが生じたり、溶接金属の靭性の低下を招く。したがって、REM は 0.015〜0.100 質量%の範囲内を満足する必要がある。なお、好ましくは 0.025〜0.050 質量%である。
REM: 0.015-0.100 mass%
REM is an effective element for refinement of inclusions during steelmaking and casting and to improve the toughness of weld metal. However, in carbon dioxide shielded arc welding with normal reverse polarity (ie, the steel wire for welding is a plus electrode), the addition of REM in the steel wire causes concentration of the arc, and the effect of reducing spatter cannot be obtained. . However, in positive polarity carbon dioxide shielded arc welding, it is an indispensable element for stabilizing droplet transfer. If the REM content is less than 0.015% by mass, this droplet transfer stabilization effect cannot be obtained. On the other hand, if it exceeds 0.100% by mass, cracks occur in the manufacturing process of the welding steel wire, and the toughness of the weld metal decreases. Therefore, REM needs to satisfy the range of 0.015 to 0.100 mass%. In addition, Preferably it is 0.025-0.050 mass%.
ここで REMとは、周期表の3族に属する元素の総称である。本発明では、原子番号57〜71の元素を使用するのが好ましく、特にCe,Laが好適である。Ce,Laを鋼素線に添加する場合は、CeまたはLaを単独で添加しても良いし、CeおよびLaを併用しても良い。なお、CeおよびLaを添加する場合は、あらかじめCe:45〜80質量%,La:10〜45質量%の範囲内で混合して得られた混合物(たとえばミッシュメタル)を使用するのが好ましい。 Here, REM is a general term for elements belonging to Group 3 of the periodic table. In the present invention, it is preferable to use an element having an atomic number of 57 to 71, and Ce and La are particularly preferable. When Ce and La are added to the steel strand, Ce or La may be added alone, or Ce and La may be used in combination. In addition, when adding Ce and La, it is preferable to use the mixture (for example, misch metal) obtained by mixing beforehand in the range of Ce: 45-80 mass% and La: 10-45 mass%.
P:0.05質量%以下
Pは、鋼の融点を低下させるとともに、電気抵抗率を向上させ、溶融効率を向上させる元素である。さらに正極性の炭酸ガスシールドアーク溶接において、溶滴を微細化し、アークを安定化する作用も有する。しかしP含有量が0.05質量%を超えると、正極性の炭酸ガスシールドアーク溶接において溶融メタルの粘性が著しく低下し、アークが不安定となり、小粒のスパッタが増加する。また、溶接金属の高温割れを生じる危険性が増大する。したがって、Pは0.05質量%以下とした。なお、好ましくは0.03質量%以下である。一方、 鋼素線の鋼材を溶製する製鋼段階でPを低減するためには長時間を要するので、生産性向上の観点から 0.002質量%以上が望ましい。そのため、 0.002〜0.03質量%とするのが好ましい。
P: 0.05% by mass or less P is an element that lowers the melting point of steel, improves electrical resistivity, and improves melting efficiency. Further, in the positive polarity carbon dioxide shielded arc welding, the droplets are refined to stabilize the arc. However, if the P content exceeds 0.05% by mass, the viscosity of the molten metal is significantly reduced in positive polarity carbon dioxide shielded arc welding, the arc becomes unstable, and small-particle spatter increases. In addition, the risk of hot cracking of the weld metal increases. Therefore, P is set to 0.05% by mass or less. In addition, Preferably it is 0.03 mass% or less. On the other hand, since it takes a long time to reduce P in the steelmaking stage where the steel material of the steel wire is melted, 0.002% by mass or more is desirable from the viewpoint of improving productivity. Therefore, it is preferable to set it as 0.002-0.03 mass%.
S:0.05質量%以下
Sは、溶融メタルの粘性を低下させ、溶接用鋼ワイヤの先端に懸垂した溶滴の離脱を促進し、正極性の炭酸ガスシールドアーク溶接においてアークを安定化する。またSは、正極性の炭酸ガスシールドアーク溶接においてアークを広げ、溶融メタルの粘性を低下させてビードを平滑にする効果も有する。しかしS含有量が0.05質量%を超えると、小粒のスパッタが増加するとともに、溶接金属の靭性が低下する。したがって、Sは0.05質量%以下とした。なお、好ましくは0.02質量%以下である。一方、 鋼素線の鋼材を溶製する製鋼段階でSを低減するためには長時間を要するので、生産性向上の観点から 0.002質量%以上が望ましい。そのため、 0.002〜0.02質量%とするのが好ましい。
S: 0.05% by mass or less S reduces the viscosity of the molten metal, promotes the detachment of the droplet suspended from the tip of the welding steel wire, and stabilizes the arc in positive carbon dioxide shielded arc welding. S also has the effect of smoothing the bead by spreading the arc in positive carbon dioxide shielded arc welding and lowering the viscosity of the molten metal. However, when the S content exceeds 0.05% by mass, the spatter of small grains increases and the toughness of the weld metal decreases. Therefore, S is set to 0.05% by mass or less. In addition, Preferably it is 0.02 mass% or less. On the other hand, since it takes a long time to reduce S in the steelmaking stage where the steel material of the steel wire is melted, 0.002% by mass or more is desirable from the viewpoint of improving productivity. Therefore, it is preferable to set it as 0.002-0.02 mass%.
O:0.0010〜0.0080質量%
Oは、正極性の炭酸ガスシールドアーク溶接において溶接用鋼ワイヤの先端に懸垂した溶滴に発生するアーク点を不安定にし、溶滴を微細化する作用がある。O含有量が、0.0010質量%未満では、そのような効果は得られない。一方、 0.0080質量%を超えると、正極性の高電流溶接におけるアークの安定化というREM 添加の効果が損なわれ、溶滴の揺動が増大してスパッタが多量に発生する。またOは、鋼素線の鋼材を溶製する製鋼段階で REMと激しく反応してスラグを形成する作用を有しており、O含有量が0.0080質量%を超えると、REM の歩留りが著しく低下する。したがって、Oは0.0010〜0.0080質量%の範囲内を満足する必要がある。なお、好ましくは0.0010〜0.0050質量%である。
O: 0.0010 to 0.0080 mass%
O has the effect of destabilizing an arc point generated in a droplet suspended from the tip of a welding steel wire in positive carbon dioxide shielded arc welding, and making the droplet finer. If the O content is less than 0.0010% by mass, such an effect cannot be obtained. On the other hand, if it exceeds 0.0080% by mass, the effect of REM addition, which stabilizes the arc in positive current welding, is impaired, and the fluctuation of droplets increases and a large amount of spatter is generated. O also has the effect of reacting violently with REM to form slag at the steelmaking stage where the steel wire is melted. If the O content exceeds 0.0080% by mass, the yield of REM decreases significantly. To do. Therefore, O needs to satisfy the range of 0.0010-0.0080 mass%. In addition, Preferably it is 0.0010-0.0050 mass%.
さらに、鋼素線の鋼材を溶製する製鋼段階で REMの歩留り向上と均一分布を達成するためには、REM 含有量とO含有量を用いて下記の (1)式で算出されるD値が、 (2)式を満足する必要がある。 Furthermore, in order to achieve REM yield improvement and uniform distribution in the steelmaking stage where the steel material of the steel wire is melted, the D value calculated by the following equation (1) using the REM content and O content: However, it is necessary to satisfy equation (2).
D=[REM ]−9×[O]+ 0.5 ・・・ (1)
[REM ]:鋼素線のREM 含有量(質量%)
[O] :鋼素線のO含有量(質量%)
D≧0.00 ・・・ (2)
なおD値は、好ましくはD≧0.05である。
D = [REM] −9 × [O] +0.5 (1)
[REM]: REM content of steel wire (mass%)
[O]: O content (mass%) of steel wire
D ≧ 0.00 (2)
The D value is preferably D ≧ 0.05.
上記した成分に加えて、本発明では下記の元素を鋼素線に添加することができる。 In addition to the above-described components, the following elements can be added to the steel strand in the present invention.
Ca: 0.003質量%以下
Caは、製鋼および鋳造時に不純物として溶鋼に混入したり、あるいは伸線加工時に不純物として鋼素線に混入する。正極性の炭酸ガスシールドアーク溶接では、Ca含有量が 0.003質量%を超えると、高電流溶接におけるアークの安定化というREM 添加の効果とO添加による溶滴の微細化効果が損なわれる。したがって、Caは 0.003質量%以下とするのが好ましい。
Ca: 0.003 mass% or less
Ca is mixed into the molten steel as an impurity during steelmaking and casting, or mixed into the steel strand as an impurity during wire drawing. In positive carbon dioxide shielded arc welding, if the Ca content exceeds 0.003 mass%, the effect of REM addition, which stabilizes the arc in high-current welding, and the effect of refinement of droplets by addition of O are impaired. Therefore, Ca is preferably 0.003% by mass or less.
K:0.0001〜0.015 質量%
Kは、正極性の炭酸ガスシールドアーク溶接においてアークを広げ、スプレー移行の低電流化を促進し、溶滴を微細化する効果を有する。そこで、必要に応じて鋼素線に添加する。K含有量が0.0001質量%未満では、この効果は得られない。一方、 0.015質量%を超えると、アーク長が長くなり、溶接用鋼ワイヤの先端に懸垂した溶滴が不安定となり、スパッタの発生量が増加する。したがって、Kは0.0001〜0.015 質量%の範囲内を満足するのが好ましい。なお、好ましくは0.0003〜0.003 質量%である。
K: 0.0001 to 0.015 mass%
K has the effect of spreading the arc in positive polarity carbon dioxide shielded arc welding, promoting a reduction in spray transfer current, and miniaturizing the droplets. Therefore, it is added to the steel wire as necessary. When the K content is less than 0.0001% by mass, this effect cannot be obtained. On the other hand, if it exceeds 0.015% by mass, the arc length becomes long, the droplet suspended on the tip of the steel wire for welding becomes unstable, and the amount of spatter increases. Therefore, K preferably satisfies the range of 0.0001 to 0.015 mass%. In addition, Preferably it is 0.0003-0.003 mass%.
またKは、沸点が約 760℃と低いので、鋼素線の鋼材を溶製する製鋼段階でKを添加すると、歩留りが著しく低下する。そのためKは、溶接用鋼ワイヤの製造段階で、鋼素線の表面にカリウム塩溶液を塗布して焼鈍を行なうことによって、溶接用鋼ワイヤ内部にKを安定して含有させるのが好ましい。 In addition, since K has a low boiling point of about 760 ° C., if K is added in the steelmaking stage in which the steel material of the steel wire is melted, the yield is remarkably lowered. Therefore, it is preferable that K is stably contained in the welding steel wire by applying a potassium salt solution to the surface of the steel wire and annealing in the manufacturing stage of the welding steel wire.
さらに本発明では上記した組成に加えて、鋼素線が、Ti:0.02〜0.50質量%,Zr:0.02〜0.50質量%およびAl:0.02〜3.00質量%のうちの1種または2種以上を含有することが好ましい。その理由について説明する。 Further, in the present invention, in addition to the above-described composition, the steel wire contains one or more of Ti: 0.02-0.50 mass%, Zr: 0.02-0.50 mass%, and Al: 0.02-3.00 mass%. It is preferable to do. The reason will be described.
Ti,Zr,Alは、いずれも強脱酸剤として作用するとともに、溶接金属の強度を増加する元素である。さらに溶融メタルの脱酸によって粘性を低下してビード形状を安定化(すなわちハンピングビードを抑制)する効果がある。このような効果を有する故に 350A以上の高電流溶接において有効な元素であり、必要に応じて添加する。Tiが0.02質量%未満,Zrが0.02質量%未満,Alが0.02質量%未満では、この効果は得られない。一方、 Tiが0.50質量%を超える場合,Zrが0.50質量%を超える場合,Alが3.00質量%を超える場合は、溶滴が粗大化して大粒のスパッタが多量に発生する。したがって、Ti,Zr,Alを含有する場合は、Ti:0.02〜0.50質量%,Zr:0.02〜0.50質量%,Al:0.02〜3.00質量%の範囲内を満足するのが好ましい。 Ti, Zr, and Al are elements that act as strong deoxidizers and increase the strength of the weld metal. Furthermore, there exists an effect which stabilizes a bead shape (namely, suppresses a humping bead) by reducing a viscosity by deoxidation of molten metal. Because of this effect, it is an effective element for high current welding at 350 A or more, and it is added as necessary. This effect cannot be obtained if Ti is less than 0.02 mass%, Zr is less than 0.02 mass%, and Al is less than 0.02 mass%. On the other hand, when Ti exceeds 0.50% by mass, Zr exceeds 0.50% by mass, or Al exceeds 3.00% by mass, the droplets become coarse and large spatters are generated. Therefore, when Ti, Zr, and Al are contained, it is preferable to satisfy the ranges of Ti: 0.02 to 0.50 mass%, Zr: 0.02 to 0.50 mass%, and Al: 0.02 to 3.00 mass%.
さらに必要に応じて下記の元素を添加しても、本発明の効果を減じるものではない。 Furthermore, the effects of the present invention are not reduced by adding the following elements as necessary.
Cr:0.02〜3.0 質量%,Ni:0.05〜3.0 質量%,Mo:0.05〜1.5 質量%,Cu:0.05〜3.0 質量%,B:0.0005〜0.015 質量%,Mg: 0.001〜0.2 質量%
Cr,Ni,Mo,Cu,B,Mgは、いずれも溶接金属の強度を増加し、耐候性を向上させる元素である。これらの元素の含有量が微少である場合は、このような効果は得られない。一方、過剰に添加すると、溶接金属の靭性の低下を招く。したがって、Cr,Ni,Mo,Cu,B,Mgを含有する場合は、Cr:0.02〜3.0 質量%,Ni:0.05〜3.0 質量%,Mo:0.05〜1.5 質量%,Cu:0.05〜3.0 質量%,B:0.0005〜0.015 質量%,Mg: 0.001〜0.2 質量%の範囲内を満足するのが好ましい。
Cr: 0.02 to 3.0 mass%, Ni: 0.05 to 3.0 mass%, Mo: 0.05 to 1.5 mass%, Cu: 0.05 to 3.0 mass%, B: 0.0005 to 0.015 mass%, Mg: 0.001 to 0.2 mass%
Cr, Ni, Mo, Cu, B, and Mg are all elements that increase the strength of the weld metal and improve the weather resistance. When the content of these elements is very small, such an effect cannot be obtained. On the other hand, when it adds excessively, the fall of the toughness of a weld metal will be caused. Therefore, when Cr, Ni, Mo, Cu, B, and Mg are contained, Cr: 0.02 to 3.0 mass%, Ni: 0.05 to 3.0 mass%, Mo: 0.05 to 1.5 mass%, Cu: 0.05 to 3.0 mass% B: 0.0005 to 0.015% by mass, Mg: 0.001 to 0.2% by mass is preferably satisfied.
Nb: 0.005〜0.5 質量%,V: 0.005〜0.5 質量%
Nb,Vは、いずれも溶接金属の強度,靭性を向上し、アークの安定性を向上させる元素である。これらの元素の含有量が微少である場合は、このような効果は得られない。一方、過剰に添加すると、溶接金属の靭性の低下を招く。したがって、Nb,Vを含有する場合は、Nb: 0.005〜0.5 質量%,V: 0.005〜0.5 質量%の範囲内を満足するのが好ましい。
Nb: 0.005 to 0.5 mass%, V: 0.005 to 0.5 mass%
Nb and V are elements that improve the strength and toughness of the weld metal and improve the stability of the arc. When the content of these elements is very small, such an effect cannot be obtained. On the other hand, when it adds excessively, the fall of the toughness of a weld metal will be caused. Therefore, when Nb and V are contained, it is preferable to satisfy the ranges of Nb: 0.005 to 0.5% by mass and V: 0.005 to 0.5% by mass.
上記した鋼素線の成分以外の残部は、Feおよび不可避的不純物である。たとえば、鋼材を溶製する段階や鋼素線を製造する段階で不可避的に混入する代表的な不可避的不純物であるNは、 0.020質量%以下に低減するのが好ましい。 The balance other than the components of the steel strand described above is Fe and inevitable impurities. For example, it is preferable to reduce N, which is a typical inevitable impurity inevitably mixed at the stage of melting a steel material or the stage of manufacturing a steel wire, to 0.020% by mass or less.
次に、本発明の溶接用鋼ワイヤの製造方法について説明する。 Next, the manufacturing method of the steel wire for welding of this invention is demonstrated.
転炉または電気炉等を用いて、上記した組成を有する溶鋼を溶製する。この溶鋼の溶製方法は、特定の技術に限定せず、従来から知られている技術を使用する。次いで、得られた溶鋼を、連続鋳造法や造塊法等によって鋼材(たとえばビレット等)を製造する。この鋼材を加熱した後、熱間圧延を施し、さらに乾式の冷間圧延(すなわち伸線)を施して鋼素線を製造する。熱間圧延や冷間圧延の操業条件は、特定の条件に限定せず、所望の寸法形状の鋼素線を製造する条件であれば良い。 Using a converter or an electric furnace, molten steel having the above composition is produced. The melting method of the molten steel is not limited to a specific technique, and a conventionally known technique is used. Next, a steel material (for example, a billet) is manufactured from the obtained molten steel by a continuous casting method, an ingot-making method, or the like. After this steel material is heated, hot rolling is performed, and dry cold rolling (that is, wire drawing) is further performed to manufacture a steel strand. The operating conditions for hot rolling and cold rolling are not limited to specific conditions, and may be any conditions as long as they produce a steel wire having a desired size and shape.
さらに鋼素線は、焼鈍−酸洗−銅めっき−伸線加工−潤滑剤塗布の工程を必要に応じて順次施して、所定の製品すなわち溶接用鋼ワイヤとなる。 Further, the steel wire is sequentially subjected to annealing, pickling, copper plating, wire drawing, and lubricant application as necessary to form a predetermined product, that is, a steel wire for welding.
正極性の炭酸ガスシールドアーク溶接においては、逆極性の溶接に比べて、給電不良に起因してアークが不安定になりやすい。しかし、鋼素線の表面に厚さ 0.6μm以上の銅めっきを施すことによって、溶接用鋼ワイヤの給電不良に起因するアークの不安定化を防止できる。なお、銅めっきの厚さを 0.8μm以上とすると、給電不良防止の効果が顕著に発揮されるので一層好ましい。このようにして銅めっきを厚目付とすることによって、給電チップの損耗も低減できるという効果も得られる。 In positive carbon dioxide shielded arc welding, the arc is likely to become unstable due to power feeding failure as compared with welding with reverse polarity. However, by applying copper plating with a thickness of 0.6 μm or more to the surface of the steel wire, it is possible to prevent arc destabilization due to poor power feeding of the welding steel wire. In addition, it is more preferable that the thickness of the copper plating is 0.8 μm or more because the effect of preventing power feeding failure is remarkably exhibited. By making the copper plating thicker in this way, there is also an effect that the wear of the power supply tip can be reduced.
しかし鋼素線中のCu含有量も含めて、溶接用鋼ワイヤのCu量が 3.0質量%を超えると、溶接金属の靭性が著しく低下する。したがって、溶接用鋼ワイヤのCu量(すなわち鋼素線のCu含有量と銅めっきのCu含有量の合計)を 3.0質量%以下とかるのが好ましい。 However, when the Cu content of the steel wire for welding, including the Cu content in the steel strand, exceeds 3.0% by mass, the toughness of the weld metal is significantly reduced. Therefore, it is preferable that the Cu content of the steel wire for welding (that is, the sum of the Cu content of the steel strand and the Cu content of the copper plating) is 3.0% by mass or less.
このようにして製造した溶接用鋼ワイヤを用いて炭酸ガスシールドアーク溶接を行なう際に、給電の安定性を高めて、溶滴のスプレー移行を安定して維持するために、溶接用鋼ワイヤの平坦度(すなわち実表面積/理論表面積)を1.01未満とすることが好ましい。溶接用鋼ワイヤの平坦度は、伸線加工におけるダイス管理を厳格に行なうことによって1.01未満の範囲に維持することが可能である。 When carbon dioxide shielded arc welding is performed using the welding steel wire thus manufactured, in order to increase the stability of the power feeding and stably maintain the spray transfer of the droplets, The flatness (that is, the actual surface area / theoretical surface area) is preferably less than 1.01. The flatness of the welding steel wire can be maintained in a range of less than 1.01 by strictly controlling the dies in the wire drawing.
溶接用鋼ワイヤの送給性を向上するために、溶接用鋼ワイヤの表面(すなわち鋼素線の表面あるいは銅めっきの表面)に潤滑油を塗布しても良い。潤滑油の塗布量は、溶接用鋼ワイヤ10kgあたり0.35〜1.7 gの範囲内が好ましい。 In order to improve the feedability of the welding steel wire, lubricating oil may be applied to the surface of the welding steel wire (that is, the surface of the steel wire or the surface of the copper plating). The application amount of the lubricating oil is preferably within a range of 0.35 to 1.7 g per 10 kg of the welding steel wire.
なお、溶接用鋼ワイヤを製造する工程で、溶接用鋼ワイヤの表面に種々の不純物が付着する。特に固体の不純物の付着量を、溶接用鋼ワイヤ10kgあたり0.01g以下に抑制すると、給電の安定性が一層向上する。 In the process of manufacturing a welding steel wire, various impurities adhere to the surface of the welding steel wire. In particular, when the amount of solid impurities deposited is suppressed to 0.01 g or less per 10 kg of the welding steel wire, the power feeding stability is further improved.
このようして製造した溶接用鋼ワイヤを用いて正極性炭酸ガスシールドアーク溶接を行なう際の好適な溶接条件について、以下に説明する。 Suitable welding conditions for performing positive polarity carbon dioxide shielded arc welding using the welding steel wire thus manufactured will be described below.
シールドガスは、ArとCO2 との混合ガスを用いる。シールドガス中のCO2 の混合比率は60体積%以上とする。なお、CO2 ガスを単独(すなわちCO2 の混合比率: 100体積%)でシールドガスとして使用しても、支障なく正極性炭酸ガスシールドアーク溶接を行なうことができる。 As the shielding gas, a mixed gas of Ar and CO 2 is used. The mixing ratio of CO 2 in the shielding gas is 60% by volume or more. Even when CO 2 gas is used alone (ie, CO 2 mixing ratio: 100% by volume) as a shielding gas, positive carbon dioxide shielded arc welding can be performed without hindrance.
溶接電流は 270〜450 A,溶接電圧は27〜38V,溶接速度は20〜250 cm/分,突き出し長さは15〜30mm,ワイヤ径は 0.8〜1.6mm ,溶接入熱は5〜40kJ/cmの範囲内が好ましい。溶接する母材(すなわち鋼板)の鋼種は特に限定されないが、JIS規格G3106 に規定されるSi−Mn系の溶接構造用圧延鋼材(SM材)や、JIS規格G3136 に規定される建築構造用鋼材(SN材)に適用するのが好ましい。厚さが10mm以上の厚鋼板の溶接を行なう場合は、多層溶接も可能である。 Welding current is 270 to 450 A, welding voltage is 27 to 38 V, welding speed is 20 to 250 cm / min, protrusion length is 15 to 30 mm, wire diameter is 0.8 to 1.6 mm, welding heat input is 5 to 40 kJ / cm Within the range of is preferable. The steel type of the base material (ie, steel plate) to be welded is not particularly limited. However, Si-Mn rolled steel for welded structure (SM material) specified in JIS standard G3106 and steel for building structure specified in JIS standard G3136. It is preferable to apply to (SN material). When welding thick steel plates with a thickness of 10 mm or more, multilayer welding is also possible.
製鋼段階で成分を調整し、連続鋳造によって製造されたビレットを熱間圧延して、直径 5.5〜7.0mm の線材とした。次いで冷間圧延(すなわち伸線)によって直径 2.0〜2.8mm の鋼素線とし、さらに2〜30質量%のクエン酸3カリウム水溶液を鋼素線1kgあたり30〜50g塗布した。 The billet manufactured by continuous casting was hot-rolled into a wire having a diameter of 5.5 to 7.0 mm by adjusting the components at the steelmaking stage. Subsequently, the steel strand having a diameter of 2.0 to 2.8 mm was formed by cold rolling (that is, wire drawing), and 2 to 30% by mass of a 3 potassium citrate aqueous solution was applied to 30 to 50 g per 1 kg of the steel strand.
得られた鋼素線の成分を表1〜3に示す。 The components of the obtained steel strand are shown in Tables 1-3.
その後、これらの鋼素線を、露点−2℃以下,酸素濃度 200体積ppm 以下,二酸化炭素濃度 0.1体積%以下の窒素雰囲気中で焼鈍した。このとき、鋼素線の直径,クエン酸3カリウム水溶液の濃度,焼鈍時間,焼鈍温度を調整して、鋼素線のK含有量を所定の範囲に調整した。 Thereafter, these steel wires were annealed in a nitrogen atmosphere with a dew point of −2 ° C. or lower, an oxygen concentration of 200 vol ppm or lower, and a carbon dioxide concentration of 0.1 vol% or lower. At this time, the K content of the steel wire was adjusted to a predetermined range by adjusting the diameter of the steel wire, the concentration of the tripotassium citrate aqueous solution, the annealing time, and the annealing temperature.
このようにして焼鈍した後、 鋼素線に酸洗を施し、次いで必要に応じて鋼素線の表面に必要に応じて銅めっきを施した。さらに冷間で伸線加工(乾式伸線)を施して、直径 0.8〜1.6mm の溶接用鋼ワイヤを製造した。さらに、溶接用鋼ワイヤの表面に潤滑油を溶接用鋼ワイヤ10kgあたり 0.4〜0.8 g塗布した。 After annealing in this way, the steel strand was pickled, and then the surface of the steel strand was subjected to copper plating as necessary. Furthermore, cold drawing was performed (dry drawing) to produce a steel wire for welding with a diameter of 0.8 to 1.6 mm. Furthermore, 0.4 to 0.8 g of lubricating oil was applied to the surface of the welding steel wire per 10 kg of the welding steel wire.
製鋼段階で添加した REMの投入量と鋼素線の分析から得られた REMの含有量とを用いてREM 歩留りを算出した。その結果を表1〜3に併せて示す。 The REM yield was calculated using the amount of REM added in the steelmaking stage and the REM content obtained from the analysis of the steel wire. The result is combined with Tables 1-3, and is shown.
表1〜3から明らかなように、発明例は、O含有量を0.0080質量%以下とし、かつD値を0.00以上としたので、比較例に比べてREM 歩留りが向上した。発明例の中でも、特に、ワイヤ番号3〜30は、O含有量を0.0050質量%以下とし、かつD値を0.05以上としたので、REM 歩留りは著しく向上し50%以上を維持できた。 As is apparent from Tables 1 to 3, since the inventive example had an O content of 0.0080 mass% or less and a D value of 0.00 or more, the REM yield was improved as compared with the comparative example. Among the invention examples, in particular, the wire numbers 3 to 30 had an O content of 0.0050 mass% or less and a D value of 0.05 or more, so the REM yield was remarkably improved and maintained at 50% or more.
これらの溶接用鋼ワイヤを用いて正極性炭酸ガスシールドアーク溶接を行ない、溶接中に発生したスパッタを全量捕集して、その重量を測定した。スパッタ発生量が 0.4g/分以下を良(○), 0.4g/分超え〜 0.6g/分以下を可(△), 0.6g/分超えを不可(×)として評価した。その結果は表4〜5に示す通りである。 Positive carbon dioxide shielded arc welding was performed using these welding steel wires, and the entire amount of spatter generated during welding was collected and the weight thereof was measured. The spatter generation rate was evaluated as good (◯) when the amount of spatter was 0.4 g / min or less, acceptable (Δ) when exceeding 0.4 g / min to 0.6 g / min or less (×) when exceeding 0.6 g / min. The results are as shown in Tables 4-5.
なお、正極性炭酸ガスシールドアーク溶接の条件を表6に示す。 Table 6 shows the conditions of positive carbon dioxide shielded arc welding.
表4〜5から明らかなように、発明例では、高電流,高入熱の正極性炭酸ガスシールドアーク溶接において、スパッタ発生量は0.19〜0.52g/分であったのに対して、鋼素線の成分が本発明の範囲を外れる比較例では、スパッタ発生量が2.54〜3.54g/分であった。したがって、本発明では、溶滴のスプレー移行が得られ、スパッタ発生量を低減できることが確かめられた。特に、鋼素線のREM 含有量 0.025質量%以上かつO含有量0.0080質量%以下とすることによって、スパッタ発生量を一層低減することができた。 As is apparent from Tables 4 to 5, in the inventive examples, the amount of spatter generated in the positive carbon dioxide shielded arc welding with high current and high heat input was 0.19 to 0.52 g / min. In the comparative example in which the component of the line is out of the range of the present invention, the amount of spatter generated was 2.54 to 3.54 g / min. Therefore, in the present invention, it was confirmed that spray transfer of droplets was obtained and the amount of spatter generated could be reduced. In particular, when the REM content of the steel wire was 0.025 mass% or more and the O content was 0.0080 mass% or less, the amount of spatter generated could be further reduced.
Claims (3)
D=[REM ]−9×[O]+ 0.5 ・・・ (1)
[REM ]:鋼素線の希土類元素含有量(質量%)
[O] :鋼素線のO含有量(質量%) Steel wire for welding used for positive carbon dioxide shielded arc welding, C: 0.20 mass% or less, Si: 0.05-2.5 mass%, Mn: 0.25-3.5 mass%, O: 0.0010-0.0080 mass%, rare earth Element: 0.015 to 0.100% by mass, P: 0.05% by mass or less, S: 0.05% by mass or less, and a D value calculated by the following formula (1) is 0.00 or more. Characteristic steel wire for carbon dioxide shielded arc welding.
D = [REM] −9 × [O] +0.5 (1)
[REM]: Rare earth element content of steel wire (mass%)
[O]: O content (mass%) of steel wire
D=[REM ]−9×[O]+ 0.5 ・・・ (1)
[REM ]:鋼素線の希土類元素含有量(質量%)
[O] :鋼素線のO含有量(質量%) In the carbon dioxide shielded arc welding method, C: 0.20 mass% or less, Si: 0.05 to 2.5 mass%, Mn: 0.25 to 3.5 mass%, O: 0.0010 to 0.0080 mass%, rare earth element: 0.015 to 0.100 mass%, P: A steel wire for carbon dioxide shielded arc welding comprising 0.05 mass% or less and S: 0.05 mass% or less and comprising a steel wire having a D value calculated by the following formula (1) of 0.00 or more, A carbon dioxide gas shielded arc welding method characterized in that arc points are shielded by using a mixed gas in which CO 2 , O 2 and Ar are mixed to have a CO 2 concentration of 60% by volume or more, and welding is performed with positive polarity. .
D = [REM] −9 × [O] +0.5 (1)
[REM]: Rare earth element content of steel wire (mass%)
[O]: O content (mass%) of steel wire
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003281579A JP3941755B2 (en) | 2003-07-29 | 2003-07-29 | Steel wire for carbon dioxide shielded arc welding and welding method using the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003281579A JP3941755B2 (en) | 2003-07-29 | 2003-07-29 | Steel wire for carbon dioxide shielded arc welding and welding method using the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2005046878A true JP2005046878A (en) | 2005-02-24 |
JP3941755B2 JP3941755B2 (en) | 2007-07-04 |
Family
ID=34267036
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003281579A Expired - Lifetime JP3941755B2 (en) | 2003-07-29 | 2003-07-29 | Steel wire for carbon dioxide shielded arc welding and welding method using the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3941755B2 (en) |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5910493A (en) * | 1982-07-09 | 1984-01-19 | Kawasaki Steel Corp | Wire for pure argon shielded gas welding of austenitic stainless steel for cryogenic temperature service |
JPH07195193A (en) * | 1993-12-29 | 1995-08-01 | Kobe Steel Ltd | Solid wire for thin sheet of high tension steel |
JPH0825080A (en) * | 1994-07-08 | 1996-01-30 | Kobe Steel Ltd | Solid wire for welding and welding method |
JPH1128594A (en) * | 1997-07-09 | 1999-02-02 | Nippon Steel Weld Prod & Eng Co Ltd | Gas shielded arc welding wire for p-added sheet steel and method for mag welding |
JP2000141080A (en) * | 1998-11-06 | 2000-05-23 | Kobe Steel Ltd | Solid wire for gas shielded arc welding |
JP2002144081A (en) * | 2000-11-10 | 2002-05-21 | Kawasaki Steel Corp | Steel wire for mag welding and mag welding method using the same |
JP2002239725A (en) * | 2001-02-13 | 2002-08-28 | Kawasaki Steel Corp | Gas-shielded arc welding for steel sheet |
JP2003001423A (en) * | 2001-06-19 | 2003-01-08 | Kawasaki Steel Corp | Method for producing welded joint |
-
2003
- 2003-07-29 JP JP2003281579A patent/JP3941755B2/en not_active Expired - Lifetime
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5910493A (en) * | 1982-07-09 | 1984-01-19 | Kawasaki Steel Corp | Wire for pure argon shielded gas welding of austenitic stainless steel for cryogenic temperature service |
JPH07195193A (en) * | 1993-12-29 | 1995-08-01 | Kobe Steel Ltd | Solid wire for thin sheet of high tension steel |
JPH0825080A (en) * | 1994-07-08 | 1996-01-30 | Kobe Steel Ltd | Solid wire for welding and welding method |
JPH1128594A (en) * | 1997-07-09 | 1999-02-02 | Nippon Steel Weld Prod & Eng Co Ltd | Gas shielded arc welding wire for p-added sheet steel and method for mag welding |
JP2000141080A (en) * | 1998-11-06 | 2000-05-23 | Kobe Steel Ltd | Solid wire for gas shielded arc welding |
JP2002144081A (en) * | 2000-11-10 | 2002-05-21 | Kawasaki Steel Corp | Steel wire for mag welding and mag welding method using the same |
JP2002239725A (en) * | 2001-02-13 | 2002-08-28 | Kawasaki Steel Corp | Gas-shielded arc welding for steel sheet |
JP2003001423A (en) * | 2001-06-19 | 2003-01-08 | Kawasaki Steel Corp | Method for producing welded joint |
Non-Patent Citations (3)
Title |
---|
片岡時彦ら: "炭酸ガスアーク溶接のスパッタ発生量に及ぼすワイヤ微量元素の影響", 溶接学会全国大会講演概要, JPNX006033280, 24 March 2003 (2003-03-24), pages 80 - 81, ISSN: 0000758538 * |
片岡時彦ら: "炭酸ガスアーク溶接のスパッタ発生量に及ぼすワイヤ微量元素の影響", 溶接学会全国大会講演概要, JPNX006055490, 24 March 2003 (2003-03-24), pages 80 - 81, ISSN: 0000791976 * |
片岡時彦ら: "炭酸ガスアーク溶接のスパッタ発生量に及ぼすワイヤ微量元素の影響", 溶接学会全国大会講演概要, JPNX007013723, 24 March 2003 (2003-03-24), pages 80 - 81, ISSN: 0000828548 * |
Also Published As
Publication number | Publication date |
---|---|
JP3941755B2 (en) | 2007-07-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100553380B1 (en) | Steel wire for carbon dioxide shielded arc welding and welding process using the same | |
JP5472244B2 (en) | Narrow groove butt welding method for thick steel plates | |
JP2007118068A (en) | Narrow groove butt welding method for thick steel plate | |
JP2002239725A (en) | Gas-shielded arc welding for steel sheet | |
JP4930048B2 (en) | Plasma arc hybrid welding method to improve joint fatigue strength of lap fillet welded joint | |
JP4830308B2 (en) | Multi-layer carbon dioxide shielded arc welding method for thick steel plates | |
JP3951593B2 (en) | MAG welding steel wire and MAG welding method using the same | |
JP3941528B2 (en) | Carbon dioxide shielded arc welding wire | |
JP3945396B2 (en) | Steel wire for carbon dioxide shielded arc welding and welding method using the same | |
JP4725700B2 (en) | Steel wire for carbon dioxide shielded arc welding and welding method using the same | |
JP2007118069A (en) | Gas-shielded arc welding method | |
JP4529482B2 (en) | Fillet welding method | |
JP4738824B2 (en) | Multi-electrode gas shielded arc welding method | |
JP3906827B2 (en) | Steel wire for carbon dioxide shielded arc welding and welding method using the same | |
JP3941756B2 (en) | Carbon steel wire for carbon dioxide shielded arc welding | |
JP3861979B2 (en) | Steel wire for carbon dioxide shielded arc welding | |
JP3941755B2 (en) | Steel wire for carbon dioxide shielded arc welding and welding method using the same | |
JP2005219062A (en) | Yag-laser and arc hybrid welding method | |
JP7541650B2 (en) | Positive polarity MAG welding wire and positive polarity MAG welding method using the same | |
JP3969322B2 (en) | Steel wire for carbon dioxide shielded arc welding and welding method using the same | |
JP5051966B2 (en) | Sideways carbon dioxide shielded arc welding method | |
JP4639599B2 (en) | Carbon dioxide shielded arc welding method | |
JP4606751B2 (en) | Plasma arc hybrid welding method | |
JP4639598B2 (en) | Electrogas arc welding method | |
JP3941369B2 (en) | Steel wire for gas shielded arc welding |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20051013 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20060725 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20060925 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20061012 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20061128 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20070125 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20070313 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20070326 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 3941755 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100413 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110413 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110413 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120413 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130413 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130413 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140413 Year of fee payment: 7 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
EXPY | Cancellation because of completion of term |