JPH08281436A - Two-electrode horizontal fillet welding submerged arc welding method for t-joint - Google Patents
Two-electrode horizontal fillet welding submerged arc welding method for t-jointInfo
- Publication number
- JPH08281436A JPH08281436A JP2750796A JP2750796A JPH08281436A JP H08281436 A JPH08281436 A JP H08281436A JP 2750796 A JP2750796 A JP 2750796A JP 2750796 A JP2750796 A JP 2750796A JP H08281436 A JPH08281436 A JP H08281436A
- Authority
- JP
- Japan
- Prior art keywords
- pole
- welding
- electrode
- fillet
- web
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Arc Welding In General (AREA)
- Butt Welding And Welding Of Specific Article (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、溶接H形鋼の製造
等における厚鋼板のT継手のすみ肉溶接を高能率で水平
姿勢で行う方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for performing fillet welding of a T-joint of a thick steel plate in a horizontal position with high efficiency in the production of welded H-section steel and the like.
【0002】[0002]
【従来の技術】H形鋼には熱間圧延で製造される圧延H
形鋼と、厚鋼板を組み立て、溶接して製造される溶接H
形鋼とがある。後者はビルトHとも呼ばれ、肉厚、幅等
の寸法を任意に選定できる利点もあって、高層建築用等
の大寸法のものに溶接H形鋼が採用される場合が多い。2. Description of the Related Art H-section steel is produced by rolling H produced by hot rolling.
Welding H manufactured by assembling and welding shaped steel and thick steel plate
There is shaped steel. The latter is also referred to as a built H, and has the advantage that the dimensions such as wall thickness and width can be arbitrarily selected, and in many cases welded H-section steel is adopted for large dimensions such as for high-rise buildings.
【0003】溶接H形鋼の製造には、通常2電極潜弧溶
接法による下向きすみ肉溶接が採用されている。この溶
接法は、T継手のすみ肉溶接としてごく一般的なもので
ある。また、薄鋼板に水平すみ肉溶接を施した例とし
て、以下のものがある。特公昭52-40299号公報に記載の
発明は、下塗り塗料等の溶接上有害な塗料が塗布された
鋼板のすみ肉溶接において、ピットやブローホール等の
溶接欠陥を発生させない溶接法に関するものであって本
発明とは直接関わりがないが、同公報には従来技術の説
明として、 3.2mm以上の太径ワイヤを使用し、図4
(a)に示すように先行電極(以下略記する場合L極と
いう)4Lの傾斜角度を水平に対して40〜60°とし、
(b)に示すように後行電極(以下略記する場合T極と
いう)4Tの傾斜角度を35〜55°程度としてほぼ二等辺三
角形状の多層肉盛りを行うことが記載されている。In the production of welded H-section steel, downward fillet welding by a two-electrode latent arc welding method is usually adopted. This welding method is very common for fillet welding of T joints. The following are examples of horizontal fillet welding of thin steel sheets. The invention described in Japanese Examined Patent Publication No. 52-40299 relates to a welding method that does not cause welding defects such as pits and blow holes in fillet welding of steel sheets coated with a coating that is harmful to welding such as undercoating. Although not directly related to the present invention, in the publication, as an explanation of the prior art, a wire having a diameter of 3.2 mm or more is used.
As shown in (a), the inclination angle of the leading electrode (hereinafter referred to as the L pole when abbreviated) 4L is 40 to 60 ° with respect to the horizontal,
As shown in (b), it is described that a multilayer electrode buildup having an approximately isosceles triangular shape is performed with an inclination angle of a trailing electrode (hereinafter referred to as a T pole when abbreviated) 4T is approximately 35 to 55 °.
【0004】また、特開昭57-68268号公報には、例えば
タンク側板とアニュラー板との間のすみ肉溶接におい
て、溶接部の止端部形状をよりなだらかなものにするた
めに、先行電極と側板、後行電極と側板の各々の最短距
離の関係を規定し、後行電極の傾斜角度を60〜90°とし
て図5に示すように1プールで溶接する方法が記載され
ている。Further, in Japanese Laid-Open Patent Publication No. 57-68268, for example, in fillet welding between a tank side plate and an annular plate, in order to make the toe shape of the welded portion more gentle, And the side plate, and the relationship between the shortest distance between the trailing electrode and the side plate is defined, and welding is performed in one pool as shown in FIG. 5 with the inclination angle of the trailing electrode set to 60 to 90 °.
【0005】溶接H形鋼の場合、従来、ウエブ厚16mm以
下の比較的薄いサイズのものの場合は、ウエブとフラン
ジとを互いに十分溶け込ませるよりも、溶接部の脚長を
大きくすることによって溶接強度を確保してきた。この
ためウエブ側、フランジ側とも脚長は板厚と同等以上と
し、図6に示すようにほぼ二等辺三角形状の1パス溶接
盛りが行われている。図6は溶接部を示す模式図で、1
はウエブ、2はフランジ、3は溶接部(溶接金属)であ
る。In the case of the welded H-section steel, in the case of a comparatively thin size with a web thickness of 16 mm or less, the welding strength is increased by increasing the leg length of the welded portion rather than allowing the web and the flange to sufficiently melt each other. I have secured. Therefore, the leg length is equal to or more than the plate thickness on both the web side and the flange side, and as shown in FIG. FIG. 6 is a schematic view showing a welded portion, 1
Is a web, 2 is a flange, and 3 is a welded portion (welded metal).
【0006】一方、ウエブ厚が16mmを超える溶接H形鋼
の場合は、肉盛りによる強度確保のみでは不十分で、ウ
エブ厚みの 1/3以上の部分溶け込みと 1/3以上のフラン
ジ側脚長、または完全溶け込みと 1/4以上のフランジ側
脚長によって強度を確保しなければならない。このため
1パスで溶接を行う場合には、大入熱による潜弧溶接が
必要である。ところが、水平姿勢で大入熱溶接を行う
と、図7(a)に示すようにフランジ側にアンダーカッ
ト、(b)に示すようにウエブ側にオーバラップなどの
溶接欠陥が発生する。その解決策としてさきの図6に示
したようにウエブ側に開先加工を施し、図8に示すよう
に被溶接物を傾けて下向きで表溶接を行い、反転して裏
ガウジング、グラインダ仕上げした後、被溶接物を反転
したままの傾けた状態で下向き姿勢による裏側の溶接を
行う方法が一般にとられてきた。図8はこの方法を示す
概念図で、1はウエブ、2はフランジ、4は電極であ
る。On the other hand, in the case of a welded H-section steel having a web thickness of more than 16 mm, it is not enough to secure the strength by overlaying, and partial penetration of 1/3 or more of the web thickness and flange side leg length of 1/3 or more, Alternatively, the strength must be ensured by the complete penetration and the leg length on the flange side of 1/4 or more. Therefore, when welding is performed in one pass, latent arc welding due to large heat input is required. However, when high heat input welding is performed in a horizontal position, undercut occurs on the flange side as shown in FIG. 7A and welding defects such as overlap occur on the web side as shown in FIG. 7B. As a solution to this, as shown in FIG. 6 above, the web side was groove-processed, and as shown in FIG. 8, the workpiece was tilted to perform the front welding downward, and the reverse was carried out to perform the back gouging and grinder finishing. After that, a method of welding the back side in a downward posture in a state where the object to be welded is tilted while being inverted has been generally used. FIG. 8 is a conceptual diagram showing this method, in which 1 is a web, 2 is a flange, and 4 is an electrode.
【0007】しかしこの方法では作業ごとに被溶接物の
反転や移動をともない、また開先加工、ガウジング、グ
ラインダ仕上げ等の工程が不可欠であり、省力化はもと
よりアークタイム率を向上させることが困難であった。
近年、高層ビルに代表される構造物の大型化に伴い、使
用される鋼材寸法も大型化しており、梁として使用され
るH形鋼の板厚も増大している。H形鋼の製造時間も長
大化したため、H形鋼生産の高能率化が新たな課題とな
ってきている。このような背景から、本発明者らは厚鋼
板のT継手の一層すみ肉潜弧溶接方法について鋭意研究
を重ね、その一端が特開平5-57448 号公報および特開平
5-237659号公報により公開されている。However, with this method, the work to be welded is reversed or moved for each work, and processes such as groove processing, gouging, and grinder finishing are indispensable, and it is difficult to improve the arc time rate as well as save labor. Met.
In recent years, with the increase in the size of structures represented by high-rise buildings, the size of steel materials used has also increased, and the plate thickness of H-section steel used as beams has also increased. Since the manufacturing time of H-section steel has been lengthened, increasing the efficiency of H-section steel production has become a new issue. Against this background, the present inventors have earnestly conducted research on a further fillet submerged arc welding method for T joints of thick steel plates, one end of which is disclosed in JP-A-5-57448 and JP-A-5-57448.
It is disclosed in Japanese Patent Publication No. 5-237659.
【0008】特開平5-57448 号公報に記載の厚鋼板の高
能率すみ肉溶接方法は、図9に示すようにウエブ1に板
厚に応じた深さの開先を加工し、板厚に応じて完全溶け
込みまたは部分溶け込みとして両側1パスの2電極潜弧
溶接を行うものである。焼成型フラックスを使用し、先
行電極と後行電極との電流比を0.65〜1.00とし、先行電
極には後退角を、後行電極には前進角を付与する。ま
た、特開平5-237659号公報に記載の厚鋼板の高能率すみ
肉溶接方法は、開先を設けず、フラックスとワイヤの組
成を限定して同様の溶接を行うものである。A high-efficiency fillet welding method for thick steel plates disclosed in Japanese Patent Laid-Open No. 5-57448 is as follows: As shown in FIG. Correspondingly, two-electrode latent arc welding with one pass on both sides is performed as complete or partial penetration. A firing type flux is used, the current ratio between the leading electrode and the trailing electrode is set to 0.65 to 1.00, the lead electrode is given a receding angle, and the trailing electrode is given an advancing angle. Further, the high-efficiency fillet welding method for thick steel plates described in Japanese Patent Laid-Open No. 5-237659 is to perform similar welding without providing a groove and limiting the composition of the flux and the wire.
【0009】これらの方法によれば従来必要であったガ
ウジング、グラインダ仕上げ、あるいは開先加工の工程
が省略できるため、従来方法と比較して厚鋼板のH形鋼
製造の飛躍的な高能率化が可能となった。しかしこの方
法の場合も、被溶接物を約30〜70°傾け、前記の図8と
同様に、下向き姿勢として溶接を行わねばならない。し
たがって1本のH形鋼を製造するために合計4回の溶接
を行い、溶接する毎に被溶接物を反転する作業を行う必
要がある点では従来法と変わりがない。またこの方法に
おいては、被溶接物を傾斜、回転させるポジショナが必
須であり、これがないと作業は一層非能率的なものとな
ってしまう。According to these methods, the steps of gouging, grinder finishing, or groove processing, which have been conventionally required, can be omitted, so that the H-shaped steel production of thick steel plates can be dramatically improved as compared with the conventional methods. Became possible. However, also in this method, it is necessary to tilt the object to be welded by about 30 to 70 ° and perform the welding in a downward posture, as in the case of FIG. Therefore, there is no difference from the conventional method in that it is necessary to perform welding a total of four times in order to manufacture one H-section steel, and to perform the work of reversing the work piece every welding. Further, in this method, a positioner for inclining and rotating the object to be welded is essential, and without it, the work becomes more inefficient.
【0010】[0010]
【発明が解決しようとする課題】本発明は上記諸問題の
解決を目的とし、具体的には厚肉H形鋼の溶接組み立て
時にウエブを水平に保持したまま、アンダーカットやオ
ーバラップの溶接欠陥なしに十分な溶込み深さとフラン
ジ側脚長をもつ溶接を行うことにより、被溶接物を傾け
る作業を省略し、溶接H形鋼を高能率に製作することを
目的とし、さらにウエブ両端のT継手における2本の溶
接線を同一方向に並行して溶接することにより、溶接H
形鋼の製造を大幅に高能率化することを目的とする。SUMMARY OF THE INVENTION The present invention is intended to solve the above-mentioned problems, and specifically, during welding and assembling of thick H-section steel, welding defects such as undercuts and overlaps with the web held horizontally. By welding with a sufficient penetration depth and a leg length on the flange side, the aim is to produce a welded H-section steel with high efficiency by omitting the work of tilting the workpiece. By welding the two welding lines in the same direction in parallel, the welding H
The purpose is to significantly increase the efficiency of the production of shaped steel.
【0011】[0011]
【課題を解決するための手段】請求項1に記載の本発明
は、ウエブ材が厚鋼板であるT継手の一層すみ肉溶接に
おいて、ウエブを水平姿勢とし、すみ肉溶接を下記の溶
接条件により行うことを特徴とするT継手の2電極水平
すみ肉潜弧溶接方法である。 記 L極ワイヤ径: 3.2〜6.4mm 、T極ワイヤ径: 3.2〜7.
0mm 、L極電流とT極電流の比(IT /IL ): 0.6〜
1.0 、L極電圧(VL ):VL ≦45V、T極電圧
(VT ):VT ≦50V、L極電極傾度(a):3〜30
°、T極電極傾度(b):3〜35°、L極電極角度
(c):−10〜+10°、T極電極角度(d):0〜30
°、L極とT極の極間距離(l):10〜120mm 、L極と
フランジの最短距離(e): 0〜10mm、T極とフランジ
の最短距離(f):1〜13mm。According to the present invention as set forth in claim 1, in a single-layer fillet welding of a T joint in which a web material is a thick steel plate, the web is placed in a horizontal posture and the fillet welding is performed under the following welding conditions. This is a two-electrode horizontal fillet latent arc welding method for a T-joint, which is characterized in that it is performed. Note: L pole wire diameter: 3.2 to 6.4 mm, T pole wire diameter: 3.2 to 7.
0 mm, the ratio of L-pole current and the T-pole current (I T / I L): 0.6~
1.0, L pole voltage (V L): V L ≦ 45V, T pole voltage (V T): V T ≦ 50V, L -pole electrode gradient (a): 3 to 30
°, T pole electrode inclination (b): 3 to 35 °, L pole electrode angle (c): −10 to + 10 °, T pole electrode angle (d): 0 to 30
°, distance between L pole and T pole (l): 10 to 120 mm, shortest distance between L pole and flange (e): 0 to 10 mm, shortest distance between T pole and flange (f): 1 to 13 mm.
【0012】請求項2に記載の本発明は、ウエブ材が板
厚16mm超え32mmまでの厚鋼板であり、すみ肉溶接が部分
溶け込み法による開先加工なしのすみ肉溶接である請求
項1に記載のT継手の2電極水平すみ肉潜弧溶接方法で
ある。請求項3に記載の本発明は、ウエブ材が板厚
(t)16mm超え60mmまでの厚鋼板であり、すみ肉溶接が
ウエブの端部両面に開先角度30〜65°、板厚に対して
(1/5 〜1/3 )t深さのレ型開先を設けた部分溶け込み
法によるすみ肉溶接である請求項1に記載のT継手の2
電極水平すみ肉潜弧溶接方法である。The present invention according to claim 2 is that the web material is a thick steel plate having a plate thickness of more than 16 mm and up to 32 mm, and the fillet welding is fillet welding without groove processing by the partial penetration method. It is a two-electrode horizontal fillet latent arc welding method for the described T-joint. In the present invention according to claim 3, the web material is a thick steel plate having a plate thickness (t) of more than 16 mm and up to 60 mm, and fillet welding is performed on both sides of the web at a groove angle of 30 to 65 ° with respect to the plate thickness. 2. The T-joint according to claim 1, wherein the T-joint is fillet welding by a partial penetration method in which a groove groove having a depth of (1/5 to 1/3) t is provided.
Electrode horizontal fillet welding method.
【0013】請求項4に記載の本発明は、ウエブ材が板
厚(t)16mm超え60mmまでの厚鋼板であり、すみ肉溶接
がウエブの端部両面に開先角度30〜65°、板厚に対して
(1/5 〜5/12)t深さのレ形開先を設けた完全溶け込み
法によるすみ肉溶接である請求項1に記載のT継手の2
電極水平すみ肉潜弧溶接方法である。請求項5に記載の
本発明は、請求項1ないし4のいずれかに記載の一層す
み肉溶接を、ウエブ両端のT継手において同時に行うこ
とを特徴とする溶接H形鋼の製造におけるT継手の2電
極水平すみ肉潜弧溶接方法である。According to a fourth aspect of the present invention, the web material is a thick steel sheet having a plate thickness (t) of more than 16 mm and 60 mm, and fillet welding is performed on both sides of the web at a groove angle of 30 to 65 °. 2. The T-joint according to claim 1, which is fillet welding by a complete penetration method in which a rectangular groove having a depth of (1/5 to 5/12) to the depth of t is provided.
Electrode horizontal fillet welding method. The present invention according to claim 5 is characterized in that the single-layer fillet welding according to any one of claims 1 to 4 is simultaneously performed in the T-joints at both ends of the web. This is a two-electrode horizontal fillet latent arc welding method.
【0014】[0014]
【発明の実施の形態】以下に本発明の手段たる構成なら
びに作用を詳細に説明する。本発明者らは厚鋼板を組み
立てて製造する溶接H形鋼を水平姿勢に保持したまま効
率良くすみ肉溶接する方法について鋭意研究を行った結
果、以下の知見を得た。BEST MODE FOR CARRYING OUT THE INVENTION The constitution and operation of the present invention will be described in detail below. The present inventors have earnestly conducted research on a method for efficiently performing fillet welding while maintaining a welded H-section steel, which is manufactured by assembling thick steel plates, in a horizontal posture, and as a result, obtained the following findings.
【0015】1パスで溶け込みと脚長を得るために必然
的に多電極の大入熱溶接となり、フランジ側にはメタル
の垂れ落ちによるアンダーカット、ウエブ側のビード止
端部にはメタルの垂れ落ちによるオーバラップが発生し
やすい。しかし電極配置および電流値、電圧値等の溶接
条件を適切に選定することにより、必要な溶け込みを確
保し、かつ十分な脚長と滑らかなビード止端部の得られ
る溶接方法が可能であることがわかった。In order to obtain the penetration and the leg length in one pass, a large heat input welding of multiple electrodes is inevitably performed, the flange side undercuts due to the metal dripping, and the bead toe on the web side drips the metal. It is easy for overlap to occur. However, by appropriately selecting the electrode arrangement and welding conditions such as current value and voltage value, it may be possible to obtain a welding method that secures the necessary penetration and has a sufficient leg length and a smooth bead toe. all right.
【0016】部分溶け込みの場合はウエブ厚の 1/3以
上、完全溶け込みの場合はウエブ厚の1/2以上の溶込み
深さが要求される場合が多い。開先なし部分溶込み溶接
の適用はウエブ材の板厚32mmまでが限度である。32mmを
超えるとウエブ厚の 1/3以上の溶込み深さを得るために
必然的に先行電極の電流値が大きくなり、溶着量が過剰
になるため溶接ビードのオーバラップの防止が困難にな
る。In the case of partial penetration, a penetration depth of 1/3 or more of the web thickness is required, and in the case of complete penetration, a penetration depth of 1/2 or more of the web thickness is often required. The application of grooveless partial penetration welding is limited to the plate thickness of the web material up to 32 mm. If it exceeds 32 mm, the current value of the leading electrode inevitably increases in order to obtain a penetration depth of 1/3 or more of the web thickness, and the amount of welding becomes excessive, making it difficult to prevent welding bead overlap. .
【0017】ウエブ材の板厚が16〜60mmで、部分溶込み
溶接とする場合において、開先深さが 1/3を超えて深く
なると溶接量が増大して不経済であり、 1/5より浅けれ
ば溶け込み不足となる。また開先角度が30°を超えて狭
くなると溶け込み不足やスラグ巻き込み、割れが発生し
やすく、65°を超えて広くなると不経済であるばかりで
なく、開先の溶け残りが発生するので好ましくない。When the plate thickness of the web material is 16 to 60 mm and partial penetration welding is performed, if the groove depth exceeds 1/3 and the depth becomes deeper, the welding amount increases and it is uneconomical. If it is shallower, there will be insufficient melting. In addition, if the groove angle is narrower than 30 °, insufficient melting or slag entrainment, cracking is likely to occur, and if it is wider than 65 °, not only is it uneconomical, but unmelted portion of the groove occurs, which is not preferable. .
【0018】またウエブ材の板厚が16〜60mmで、完全溶
込み溶接とする場合においては、開先深さが5/12を超え
て深くなると溶け落ちの危険があり、 1/5より浅くなる
と溶込み不足が発生するのでいずれも好ましくない。次
に溶接条件について説明する。L極の機能は主に所定の
溶け込み深さを得ることであり、T極の機能はビード形
状を整えることにある。特に水平すみ肉溶接で発生する
アンダーカットやオーバラップを防止するにはT極電極
配置と電流−電圧、ワイヤ径の選択が極めて重要とな
る。すなわちL極では溶け込みを得るために細径のワイ
ヤ径を選択し、T極では過剰な溶着量をつけず、なだら
かなビード形状を得るために太径のワイヤを選択するの
が好ましい。Further, when the plate thickness of the web material is 16 to 60 mm and full penetration welding is performed, there is a risk of burn-through when the groove depth becomes deeper than 5/12, and it becomes shallower than 1/5. If this happens, insufficient penetration will occur, which is not preferable. Next, the welding conditions will be described. The function of the L pole is mainly to obtain a predetermined penetration depth, and the function of the T pole is to adjust the bead shape. In particular, in order to prevent undercuts and overlaps that occur in horizontal fillet welding, it is extremely important to select the T-pole electrode arrangement, current-voltage, and wire diameter. That is, it is preferable to select a small wire diameter for the L pole in order to obtain penetration, and to select a large wire diameter for the T pole in order to obtain a gentle bead shape without adding an excessive amount of welding.
【0019】L極ワイヤ径が 3.2mmより細ければ溶込み
先端のビード幅が狭くなり、溶込み不足やスラグ巻き込
み、ブローホールなどが発生しやすい。また 6.4mmより
太くなると溶込み不足が発生する。溶着量が過剰になる
とオーバラップの発生およびビードが凸形状となるため
後行電極の溶着量を適正にして、ビード形状を整える必
要がある。そのためT極のワイヤ径は 3.2〜7.0mm とす
る必要がある。ワイヤ径が 3.2mmより細くなると溶着量
が増加して上記不具合が発生し、また 7.0mmを超えて太
くなるとアークが広がりフランジ側にアンダーカットが
発生しやすくなる。If the diameter of the L pole wire is smaller than 3.2 mm, the bead width at the penetration tip becomes narrow and insufficient penetration, slag entrainment, blowholes and the like are likely to occur. If it is thicker than 6.4 mm, insufficient penetration will occur. When the amount of welding is excessive, overlap occurs and the bead has a convex shape. Therefore, it is necessary to adjust the amount of welding of the trailing electrode and adjust the bead shape. Therefore, the wire diameter of the T pole must be 3.2 to 7.0 mm. If the wire diameter is smaller than 3.2 mm, the welding amount increases and the above problems occur. If the wire diameter exceeds 7.0 mm, the arc spreads and undercut easily occurs on the flange side.
【0020】L極電流とT極電流の比、IT /IL は
0.6〜1.0 にする必要がある。 0.6より小さければ先行
電極により形成される溶接金属に高温割れが発生しやす
く、融合不良やスラグ巻き込みなどの溶接欠陥も発生す
る。また溶着量が不足し、のど厚の不足やアンダーカッ
トが発生する。 1.0より大きくなると後行電極により形
成される溶接金属に割れが発生するばかりでなく、過大
な溶着量によるオーバラップの発生や、アンダーカット
が発生する。The ratio of the L pole current to the T pole current, I T / I L is
It should be 0.6-1.0. If it is less than 0.6, high temperature cracks are likely to occur in the weld metal formed by the preceding electrode, and welding defects such as poor fusion and slag inclusion also occur. In addition, the amount of welding is insufficient, resulting in insufficient throat thickness and undercut. When it is larger than 1.0, not only the weld metal formed by the trailing electrode is cracked, but also an overlap due to an excessive amount of welding and an undercut are generated.
【0021】L極電圧VL は十分な溶込みを得るために
45V以下にする必要がある。また45Vを超えるとフラン
ジ側にアンダーカットが発生する。T極電圧VT は50V
以下とする必要がある。50Vより大きければフランジ側
にアンダーカットが発生する。図2に示すL極電極傾度
(以下「電極傾度」は単に「傾度」ともいう)aは十分
な溶け込みを効率良く得るために重要なパラメータであ
る。aが3°より小さければ、溶け込みの方向がフラン
ジ側を向かず、突合せ部分を溶融できずに溶け込み不足
を生じ、30°より大きければ溶け込みの方向がフランジ
側に入りすぎて、同様に突合わせ部を十分に溶融でき
ず、溶け込み不足を生じる。The L pole voltage V L is in order to obtain sufficient penetration.
Must be 45 V or less. If it exceeds 45V, undercutting will occur on the flange side. T pole voltage V T is 50V
It is necessary to: If it is larger than 50V, undercut will occur on the flange side. The L-pole electrode gradient (hereinafter “electrode gradient” is also simply referred to as “gradient”) a shown in FIG. 2 is an important parameter for efficiently obtaining sufficient penetration. If a is less than 3 °, the direction of fusion does not face the flange side, and the butt portion cannot be melted, resulting in insufficient fusion. If it is greater than 30 °, the direction of fusion enters too much on the flange side, and so does butt jointing. The part cannot be melted sufficiently, resulting in insufficient melting.
【0022】同じ図2に示すT極傾度bはアンダーカッ
トおよびオーバラップを防止するのに重要である。bが
3°よりも小さければフランジ側の脚長が不足し、35°
より大きければウエブ側止端部がオーバラップ形状にな
り、フランジ側止端部にアンダーカットが発生する。図
3に示すL極電極角度(以下「電極角度」は単に「角
度」ともいう)cは効率良く溶込みを得るのに重要であ
る。−10〜+10°の範囲を外れるとアークの集中が悪く
なり、溶込み不足が生じる。The same T pole gradient b shown in FIG. 2 is important for preventing undercuts and overlaps. If b is smaller than 3 °, the leg length on the flange side will be insufficient and 35 °
If it is larger, the toe on the web side has an overlapping shape, and an undercut occurs on the toe on the flange side. The L-pole electrode angle (hereinafter “electrode angle” is also simply referred to as “angle”) c shown in FIG. 3 is important for efficient penetration. If it deviates from the range of -10 to + 10 °, the concentration of the arc will worsen and insufficient penetration will occur.
【0023】同じ図3に示すT極角度dはビードの形状
を整えるのに重要である。0°より小さければビード形
状が凸になり、30°より大きければフランジ側にアンダ
ーカットを生じる。L極とT極の極間距離lは10〜120m
m とする必要がある。この範囲をはずれると溶接金属中
に割れが生じる。また120mm を超えるとウエブ側止端部
がオーバラップ形状となり、またL極が形成した溶融ス
ラグが凝固してT極アークが不安定となり、ビードが不
均一となる。The T pole angle d shown in the same FIG. 3 is important for adjusting the bead shape. If it is smaller than 0 °, the bead shape becomes convex, and if it is larger than 30 °, undercut occurs on the flange side. Distance between the L and T poles is 10 to 120m
Must be m. If it deviates from this range, cracks will occur in the weld metal. On the other hand, if it exceeds 120 mm, the toe on the web side will have an overlapping shape, and the molten slag formed by the L pole will solidify, making the T pole arc unstable and making the bead uneven.
【0024】図2に示すL極とフランジの最短距離eは
十分な溶込み深さを得るために極めて重要な因子であ
る。0〜10mmの範囲を外れると溶接金属の溶込み先端部
が突合せ開先からずれて溶込み不足を生じ、かつフラン
ジ側止端部にアンダーカットを生じる。同じ図2に示す
T極とフランジの最短距離fはフランジ側アンダーカッ
トおよびウエブ側オーバラップを防止するのに極めて重
要な因子である。T極とフランジの最短距離が1mmより
も小さければフランジ側にアンダーカットが生じ、また
ウエブ側もオーバラップ形状になりやすい。また13mmよ
り大きければフランジ側の脚長を十分に得られない。The shortest distance e between the L pole and the flange shown in FIG. 2 is an extremely important factor for obtaining a sufficient penetration depth. If it goes out of the range of 0 to 10 mm, the weld metal penetration end part shifts from the butt groove to cause insufficient penetration, and undercut occurs at the flange side toe part. The shortest distance f between the T pole and the flange shown in FIG. 2 is a very important factor for preventing the undercut on the flange side and the overlap on the web side. If the shortest distance between the T pole and the flange is less than 1 mm, undercut occurs on the flange side and the web side is likely to have an overlap shape. If it is larger than 13 mm, the leg length on the flange side cannot be obtained sufficiently.
【0025】[0025]
【実施例】本発明の実施状況を図1の概念図に示す。1
はウエブ、2はフランジでウエブ1は水平姿勢であり、
4a、4bはウエブ1の両側のT継手を同時に溶接する一対
の電極である。以下、ウエブ材の板厚および開先、溶け
込み条件毎に、本発明を構成する溶接条件の限定内容に
ついて実施例を説明する。ただし以下のデータは片側の
T継手に関するものであり、同一の溶接条件で両側同時
に溶接を実施することは、ウエブが水平姿勢である以上
きわめて容易である。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The embodiment of the present invention is shown in the conceptual diagram of FIG. 1
Is a web, 2 is a flange, and web 1 is in a horizontal position,
4a and 4b are a pair of electrodes for simultaneously welding the T joints on both sides of the web 1. Hereinafter, examples will be described with respect to the limiting content of the welding conditions constituting the present invention for each plate thickness, groove, and penetration condition of the web material. However, the following data relates to the T-joint on one side, and simultaneous welding on both sides under the same welding conditions is extremely easy as long as the web is in a horizontal posture.
【0026】[0026]
【表1】 [Table 1]
【0027】[0027]
【表2】 [Table 2]
【0028】[0028]
【表3】 [Table 3]
【0029】[0029]
【表4】 [Table 4]
【0030】表4には、本発明の請求項2に相当するウ
エブ材が板厚が16mm超え32mmまでの厚鋼板である溶接H
形鋼製造における開先なしの2電極水平すみ肉潜弧溶接
の実施例No.1〜 No.13を示す。先行電極、後行電極とも
に交流電源を使用し、逆V結線として溶接を行った。使
用した鋼板の化学組成を表1に、ワイヤの化学組成を表
2に、フラックスは焼成型を用い、その組成を表3に示
す。Table 4 shows the welding H in which the web material according to claim 2 of the present invention is a thick steel plate having a plate thickness of 16 mm to 32 mm.
Examples No. 1 to No. 13 of two-electrode horizontal fillet latent arc welding without a groove in the production of shaped steel are shown. An AC power supply was used for both the leading electrode and the trailing electrode, and welding was performed as an inverted V connection. Table 1 shows the chemical composition of the steel sheet used, Table 2 shows the chemical composition of the wire, and Table 3 shows the composition of the flux using the firing type.
【0031】[0031]
【表5】 [Table 5]
【0032】表5には、表4に対応する本発明の比較例
No.14 〜 No.29を示す。No.14 ではL極ワイヤ径が細い
ため、溶込み先端が開先突き合わせ部よりずれて、溶込
み不足が生じ、またスラグ巻き込みも発生している。N
o.15 ではT極ワイヤ径が細く、ビードが凸形状となり
ビード外観が劣化した。No.16 ではT極電流のL極電流
に対する比が小さいため、スラグ巻き込みや割れが発生
した。No.17 ではL極の電圧が高く、アンダーカットお
よび溶込み不足を生じた。No.18 ではT極の電圧が高
く、アンダーカットが生じた。No.19 では電流比が高
く、オーバラップおよび溶込み不足を生じた。No.20 で
はL極傾度が大きく、溶込み不足が生じた。No.21 では
T極傾度が大きく、アンダーカットが生じた。No.22 で
はL極角度が大きく、溶込み不足が生じた。No.23 では
T極角度が大きく、アンダーカットが生じた。No.24 で
は極間距離が大きく、溶接割れおよびオーバラップが生
じた。No.25 ではフランジとL極との距離が小さく、溶
込み不足とアンダーカットが生じた。No.26 ではフラン
ジとT極との距離が大きく、脚長不足となった。No.27
ではフランジとT極との距離が小さく、アンダーカット
が生じた。No.28 ではL極のワイヤ径が太いため、溶込
み不足を生じた。No.29 ではT極のワイヤ径が太いた
め、フランジ側にアンダーカットを生じた。Table 5 shows a comparative example of the present invention corresponding to Table 4.
Indicates No.14 to No.29. In No. 14, since the L pole wire diameter is small, the penetration tip deviates from the groove abutment part, insufficient penetration occurs, and slag entrainment also occurs. N
At o.15, the diameter of the T pole wire was small, and the bead was convex, and the bead appearance deteriorated. In No. 16, since the ratio of the T pole current to the L pole current was small, slag entrainment and cracking occurred. In No. 17, the voltage of the L pole was high and undercut and insufficient penetration occurred. In No. 18, the voltage of the T pole was high and undercut occurred. In No. 19, the current ratio was high, causing overlap and insufficient penetration. In No. 20, the L pole gradient was large, and insufficient penetration occurred. In No. 21, the T pole inclination was large and an undercut occurred. In No. 22, the L pole angle was large and insufficient penetration occurred. In No. 23, the T pole angle was large and undercut occurred. In No. 24, the distance between the poles was large, and welding cracks and overlap occurred. In No. 25, the distance between the flange and the L pole was small, resulting in insufficient penetration and undercut. In No. 26, the distance between the flange and the T pole was large, and the leg length was insufficient. No.27
In, the distance between the flange and the T pole was small, and undercut occurred. In No. 28, the wire diameter of the L pole was large, so insufficient penetration occurred. In No. 29, the wire diameter of the T pole was large, so undercut occurred on the flange side.
【0033】[0033]
【表6】 [Table 6]
【0034】表6には、本発明の請求項3に相当するウ
エブ材が板厚が16mm超え60mmまでの厚鋼板である溶接H
形鋼におけるレ形開先を設けた部分溶け込み法による2
電極水平すみ肉潜弧溶接の実施例No.30 〜 No.38を示
す。In Table 6, Welding H in which the web material according to claim 3 of the present invention is a thick steel plate having a plate thickness exceeding 16 mm and up to 60 mm
2) by the partial penetration method with a groove for forming steel
Examples No. 30 to No. 38 of horizontal electrode fillet latent arc welding are shown.
【0035】[0035]
【表7】 [Table 7]
【0036】また、表7にはこの表6に対応する比較例
No.39 〜 No.46を示す。No.39 では開先深さが小さく、
溶込み不足が生じた。No.40 では開先角度が大きいた
め、開先に未溶解の部分が残った。No.41 では開先角度
が狭いため、スラグ巻き込みが発生した。No.42 ではL
極電圧が高いため、溶込みが不足およびアンダーカット
が生じた。No.43 では電流比が高く、アンダーカットお
よびオーバラップが生じた。No.44 では先行極ワイヤが
太いため、溶込み不足が生じた。No.45 ではT極角度が
大きいため、アンダーカットが発生した。No.46 では極
間距離が小さいため、溶接金属に割れが発生した。Table 7 shows comparative examples corresponding to Table 6.
No. 39 to No. 46 are shown. In No. 39, the groove depth is small,
Insufficient penetration occurred. In No. 40, the groove angle was large, so unmelted parts remained in the groove. No. 41 had a narrow groove angle, so slag entrainment occurred. No.42 is L
Due to the high polar voltage, insufficient penetration and undercut occurred. In No. 43, the current ratio was high and undercut and overlap occurred. In No. 44, the leading electrode wire was thick, so insufficient penetration occurred. In No. 45, the T pole angle was large, so undercut occurred. In No. 46, the gap between the electrodes was small, so cracks occurred in the weld metal.
【0037】[0037]
【表8】 [Table 8]
【0038】表8には、本発明の請求項4に相当するウ
エブ材が板厚が16mm超え60mmまでの厚鋼板である溶接H
形鋼におけるレ形開先を設けた完全溶け込み法による2
電極水平すみ肉潜弧溶接の実施例No.47 〜 No.56を示
す。Table 8 shows the welding H in which the web material corresponding to claim 4 of the present invention is a thick steel plate having a plate thickness of 16 mm to 60 mm.
2) by the complete penetration method with a rectangular groove for shaped steel
Examples No. 47 to No. 56 of horizontal electrode fillet latent arc welding are shown.
【0039】[0039]
【表9】 [Table 9]
【0040】また、表9にはこの表8に対応する比較例
No.57 〜 No.64を示す。No.57 では開先深さが小さく、
溶込み不足を生じた。No.58 では開先角度が大きく、開
先が未溶解のまま残った。No.59 では開先角度が狭く、
スラグ巻き込みが生じた。No.60 では開先深さが深す
ぎ、溶け落ちた。No.61 ではL極とフランジとの距離が
大きく、溶込みが不足し、オーバラップも発生した。N
o.62 ではT極傾度が大きく、アンダーカットが生じ
た。No.63 ではL極ワイヤ径が小さく、溶込みが深いた
め溶け落ちが発生した。No.64 ではT極角度が大きく、
アンダーカットが発生した。Table 9 shows comparative examples corresponding to Table 8.
No.57 to No.64 are shown. No. 57 has a small groove depth,
Insufficient penetration occurred. In No. 58, the groove angle was large and the groove remained unmelted. No.59 has a narrow groove angle,
Entrapment of slag occurred. In No. 60, the groove depth was too deep and melted down. In No. 61, the distance between the L pole and the flange was large, penetration was insufficient, and overlap occurred. N
At o.62, the T pole inclination was large and undercut occurred. In No. 63, the L pole wire diameter was small and the penetration was deep, causing burn-through. In No. 64, the T pole angle is large,
Undercut has occurred.
【0041】[0041]
【発明の効果】以上詳しく説明したように、本発明は被
溶接物のウエブを水平姿勢に保持したまま溶接が可能で
あるため、従来行っていた被溶接物の傾動作業が不要と
なり、コスト削減、納期短縮等を図ることができ、工業
的にきわめて有効な技術であり、さらに両端同時溶接を
行うことにより、一層の生産工数削減が可能である。As described in detail above, according to the present invention, since welding can be performed while holding the web of the work piece in a horizontal position, the tilting work of the work piece which has been conventionally performed is unnecessary, and the cost is reduced. It is an industrially very effective technology that can shorten the delivery time, etc. Furthermore, by simultaneously welding both ends, it is possible to further reduce the production man-hours.
【図1】本発明の実施例における溶接状況を示す概念図
である。FIG. 1 is a conceptual diagram showing a welding situation in an example of the present invention.
【図2】本発明におけるフランジと電極との距離、およ
び電極傾度を示す説明図である。FIG. 2 is an explanatory diagram showing a distance between a flange and an electrode and an electrode inclination in the present invention.
【図3】本発明における電極角度および極間距離を示す
説明図である。FIG. 3 is an explanatory diagram showing an electrode angle and a distance between electrodes in the present invention.
【図4】従来の技術における溶接方法を示す説明図であ
る。FIG. 4 is an explanatory view showing a welding method in the conventional technique.
【図5】他の従来の技術における溶接方法を示す説明図
である。FIG. 5 is an explanatory view showing a welding method in another conventional technique.
【図6】従来の技術における溶接部の形状を示す説明図
である。FIG. 6 is an explanatory view showing the shape of a welded portion in the conventional technique.
【図7】従来の技術における溶接欠陥を示す説明図であ
る。FIG. 7 is an explanatory diagram showing welding defects in the conventional technique.
【図8】従来の技術における溶接状況を示す概念図であ
る。FIG. 8 is a conceptual diagram showing a welding situation in the conventional technique.
【図9】さらに他の従来の技術における溶接状況を示す
概念図である。FIG. 9 is a conceptual diagram showing a welding situation in still another conventional technique.
1 ウエブ 2 フランジ 3 溶接部 4 電極 4L L極 4T T極 IT /IL L極電流とT極電流の比 VL L極電圧 VT T極電圧 a L極電極傾度 b T極電極傾度 c L極電極角度 d T極電極角度 e L極とフランジの最短距離 f T極とフランジの最短距離 l L極とT極の極間距離 t 板厚1 web 2 flange 3 welded portion 4 electrodes 4L L pole 4T T pole I T / I L L ratio of electrode current and the T electrode current V L L pole voltage V T T pole voltage a L-pole electrode slope b T-pole electrode slope c L pole electrode angle d T pole electrode angle e Shortest distance between L pole and flange f Shortest distance between T pole and flange l Distance between L pole and T pole t Plate thickness
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 B23K 33/00 B23K 33/00 Z (72)発明者 阪口 修一 千葉県千葉市中央区川崎町1番地 川崎製 鉄株式会社技術研究所内 (72)発明者 杉崎 光嗣 東京都千代田区内幸町2丁目2番3号 川 崎製鉄株式会社内 (72)発明者 中島 松重 香川県丸亀市昭和町18番地 川鉄メタルフ ァブリカ株式会社内─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification number Reference number within the agency FI Technical display location B23K 33/00 B23K 33/00 Z (72) Inventor Shuichi Sakaguchi 1 Kawasaki-cho, Chuo-ku, Chiba-shi, Chiba Prefecture Address Kawasaki Steel Co., Ltd. Technical Research Institute (72) Inventor Mitsutsugu Sugisaki 2-3 2-3 Uchisaiwaicho, Chiyoda-ku, Tokyo Inside Kawasaki Steel Co., Ltd. (72) Inventor Matsushima Nakajima 18 Showa-cho, Marugame, Kagawa Prefecture Kawatetsu Inside Metal Fabrica Co., Ltd.
Claims (5)
み肉溶接において、ウエブを水平姿勢とし、すみ肉溶接
を下記の溶接条件により行うことを特徴とするT継手の
2電極水平すみ肉潜弧溶接方法。 記 L極ワイヤ径: 3.2〜6.4mm 、T極ワイヤ径: 3.2〜7.
0mm 、L極電流とT極電流の比(IT /IL ): 0.6〜
1.0 、L極電圧(VL ):VL ≦45V、T極電圧
(VT ):VT ≦50V、L極電極傾度(a):3〜30
°、T極電極傾度(b):3〜35°、L極電極角度
(c):−10〜+10°、T極電極角度(d):0〜30
°、L極とT極の極間距離(l):10〜120mm 、L極と
フランジの最短距離(e):0〜10mm、T極とフランジ
の最短距離(f):1〜13mm。1. A two-electrode horizontal fillet for a T-joint, characterized in that, in a single-layer fillet welding of a T-joint whose web material is a thick steel plate, the web is placed in a horizontal posture and fillet welding is performed under the following welding conditions. Submerged arc welding method. Note: L pole wire diameter: 3.2 to 6.4 mm, T pole wire diameter: 3.2 to 7.
0 mm, the ratio of L-pole current and the T-pole current (I T / I L): 0.6~
1.0, L pole voltage (V L): V L ≦ 45V, T pole voltage (V T): V T ≦ 50V, L -pole electrode gradient (a): 3 to 30
°, T pole electrode inclination (b): 3 to 35 °, L pole electrode angle (c): −10 to + 10 °, T pole electrode angle (d): 0 to 30
°, distance between L pole and T pole (l): 10 to 120 mm, shortest distance between L pole and flange (e): 0 to 10 mm, shortest distance between T pole and flange (f): 1 to 13 mm.
板であり、すみ肉溶接が部分溶け込み法による開先加工
なしのすみ肉溶接である請求項1に記載のT継手の2電
極水平すみ肉潜弧溶接方法。2. The two-electrode horizontal of the T-joint according to claim 1, wherein the web material is a thick steel plate having a plate thickness of 16 mm to 32 mm and the fillet welding is fillet welding without groove processing by the partial penetration method. Fillet submerged arc welding method.
の厚鋼板であり、すみ肉溶接がウエブの端部両面に開先
角度30〜65°、板厚に対して(1/5 〜1/3 )t深さのレ
型開先を設けた部分溶け込み法によるすみ肉溶接である
請求項1に記載のT継手の2電極水平すみ肉潜弧溶接方
法。3. The web material is a thick steel plate having a plate thickness (t) of more than 16 mm and 60 mm, and fillet welding is carried out on both sides of the web with a groove angle of 30 to 65 °, and a plate thickness (1/5 ~ 1/3) The two-electrode horizontal fillet latent arc welding method for a T-joint according to claim 1, which is fillet welding by a partial penetration method provided with a groove groove having a depth of t.
の厚鋼板であり、すみ肉溶接がウエブの端部両面に開先
角度30〜65°、板厚に対して(1/5 〜5/12)t深さのレ
形開先を設けた完全溶け込み法によるすみ肉溶接である
請求項1に記載のT継手の2電極水平すみ肉潜弧溶接方
法。4. The web material is a thick steel plate having a plate thickness (t) of from 16 mm to 60 mm, and fillet welding is carried out at a groove angle of 30 to 65 ° on both sides of the web, with respect to the plate thickness (1/5 5-12) The two-electrode horizontal fillet latent arc welding method for a T-joint according to claim 1, which is fillet welding by a complete penetration method provided with a grooved groove of t depth.
層すみ肉溶接を、ウエブ両端のT継手において同時に行
うことを特徴とする溶接H形鋼の製造におけるT継手の
2電極水平すみ肉潜弧溶接方法。5. A two-electrode horizontal fillet for a T-joint in the production of a welded H-section steel, characterized in that the single-layer fillet welding according to any one of claims 1 to 4 is performed simultaneously at the T-joints at both ends of the web. Submerged arc welding method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2750796A JPH08281436A (en) | 1995-02-15 | 1996-02-15 | Two-electrode horizontal fillet welding submerged arc welding method for t-joint |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2694895 | 1995-02-15 | ||
JP7-26948 | 1995-02-15 | ||
JP2750796A JPH08281436A (en) | 1995-02-15 | 1996-02-15 | Two-electrode horizontal fillet welding submerged arc welding method for t-joint |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH08281436A true JPH08281436A (en) | 1996-10-29 |
Family
ID=26364804
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2750796A Pending JPH08281436A (en) | 1995-02-15 | 1996-02-15 | Two-electrode horizontal fillet welding submerged arc welding method for t-joint |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH08281436A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20010060793A (en) * | 1999-12-28 | 2001-07-07 | 이구택 | 2 Pole tandem high input SAW for preventing hot cracking of fillet join in high thickness structural steels |
JP2011011246A (en) * | 2009-07-03 | 2011-01-20 | Sumitomo Metal Ind Ltd | Welded h-section steel and manufacturing method therefor |
CN102974927A (en) * | 2012-11-26 | 2013-03-20 | 南车二七车辆有限公司 | Welding method for lengthening H-shaped steel of railway freight platform wagon chassis |
CN104227182A (en) * | 2014-09-01 | 2014-12-24 | 湖北源盛钢构有限公司 | Process for molding I-steel main welding seam non-back chipping full-penetration I-level component |
CN106078012A (en) * | 2016-07-22 | 2016-11-09 | 江苏工力重机有限公司 | A kind of H profile steel welding tooling |
-
1996
- 1996-02-15 JP JP2750796A patent/JPH08281436A/en active Pending
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20010060793A (en) * | 1999-12-28 | 2001-07-07 | 이구택 | 2 Pole tandem high input SAW for preventing hot cracking of fillet join in high thickness structural steels |
JP2011011246A (en) * | 2009-07-03 | 2011-01-20 | Sumitomo Metal Ind Ltd | Welded h-section steel and manufacturing method therefor |
CN102974927A (en) * | 2012-11-26 | 2013-03-20 | 南车二七车辆有限公司 | Welding method for lengthening H-shaped steel of railway freight platform wagon chassis |
CN104227182A (en) * | 2014-09-01 | 2014-12-24 | 湖北源盛钢构有限公司 | Process for molding I-steel main welding seam non-back chipping full-penetration I-level component |
CN104227182B (en) * | 2014-09-01 | 2016-06-08 | 湖北源盛钢构有限公司 | The moulding process of the main weld seam of joist steel unclear completepenetration I level component |
CN106078012A (en) * | 2016-07-22 | 2016-11-09 | 江苏工力重机有限公司 | A kind of H profile steel welding tooling |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR20080081797A (en) | One side welding method of butt-welded joints | |
JP4957441B2 (en) | Gas shield arc welding method | |
JPH08281436A (en) | Two-electrode horizontal fillet welding submerged arc welding method for t-joint | |
JP2006231359A (en) | Welding method and structure welded by the method | |
TW202335770A (en) | One-sided submerged arc welding method, welded joint, and production method for welded joint | |
JP3182672B2 (en) | Internal welding method of clad steel pipe | |
JP2001030091A (en) | Structure of t-shaped joint with narrow groove, its welding method, and welded structure | |
JP3367566B2 (en) | Large heat input single-sided submerged arc welding method | |
JP5057615B2 (en) | Manufacturing method of welded joint | |
JPH10211578A (en) | Two-electrode submerged arc welding method for square joint | |
JPH0994658A (en) | One side butt welding method | |
JPH08281429A (en) | Method for fillet-welding stainless steel and manufacture of stainless steel shapes | |
CN113210870A (en) | Efficient laser-electric arc composite heat source high-strength steel pipeline straight seam welding process | |
JPH07256456A (en) | One-side submerged arc welding | |
JPH0428472B2 (en) | ||
JP2833279B2 (en) | Steel pipe welding method | |
JP3186885B2 (en) | Single-sided submerged arc welding method | |
CN110640272B (en) | Double-side double-wire gas shielded welding process for low-alloy high-strength steel fillet weld with workshop primer | |
JP2522114B2 (en) | Joint welding method for steel members | |
JP2662101B2 (en) | Welding method | |
RU2254974C2 (en) | Method for assembling welded large-size thick-sheet orthotropic plates of carbon low-alloy steels for automatic welding | |
JPH09271992A (en) | Backing material for t-joint | |
JPH06285639A (en) | Inner surface seam welding method for clad steel tube | |
JPS589779A (en) | Butt welding method | |
JP2867708B2 (en) | Tube welding by consumable electrode welding |