JP2003053545A - Tandem arc welding method - Google Patents

Tandem arc welding method

Info

Publication number
JP2003053545A
JP2003053545A JP2001239596A JP2001239596A JP2003053545A JP 2003053545 A JP2003053545 A JP 2003053545A JP 2001239596 A JP2001239596 A JP 2001239596A JP 2001239596 A JP2001239596 A JP 2001239596A JP 2003053545 A JP2003053545 A JP 2003053545A
Authority
JP
Japan
Prior art keywords
welding
electrode
wire
weight
tandem arc
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001239596A
Other languages
Japanese (ja)
Inventor
Yoshihiro Yokota
順弘 横田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2001239596A priority Critical patent/JP2003053545A/en
Publication of JP2003053545A publication Critical patent/JP2003053545A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To obtain weld beads which are little in the amount of spatters to be produced, is good in the stability of a molten pool and is good in bead shapes in performing tandem arc welding by arranging a preceding electrode and trailing electrode consisting of solid wires for welding apart a prescribed inter- electrode distance in a welding direction, using a shielding gas having a gaseous composition of rich inert gas and forming the one molten pool with two arcs. SOLUTION: This tandem arc welding method comprises specifying the electrode projection length of the respective electrodes to 22 to 35 mm, the electrode angle formed by the two electrodes when viewed from a direction orthogonal with the welding direction to 1 to 9 deg., the inter-electrode distance to 10 to 29 mm and the sum of the welding current density of the preceding electrode and the welding current density of the trailing electrode to 500 to 1,000 A/mm<2> . A wire without copper plating which is coated with a K compound on the wire surface and is not subjected to copper plating on the wire surface is used as the solid wire for welding.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、高溶着溶接に好適
であって、スパッタ発生量が少なく、溶融プールの安定
性が良くて良好な溶接ビードを得られるようにしたタン
デムアーク溶接方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a tandem arc welding method which is suitable for high-welding welding, produces a small amount of spatter, has good stability of the molten pool, and is capable of obtaining a good weld bead. Is.

【0002】[0002]

【従来の技術】建設機械メーカーや橋梁メーカーなど、
鋼の厚板溶接を行う分野では、さらなる低コスト化を図
るために、溶接の高能率化・自動化をさらに進めること
が望まれている。そこで、このような要請に応えるため
に、教示再生型溶接ロボットを用いてガスシールド溶接
法にてタンデムアーク溶接を行うことが考えられる。こ
のタンデムアーク溶接は、溶接用ソリッドワイヤからな
る先行電極及び後行電極を溶接方向に所定電極間距離を
隔てて配置し、各々の電極からガスシールドアークを発
生させて溶接を行うものであり、単電極によるアーク溶
接に比較して溶着量(ワイヤ溶融量)が大幅に多く、高
能率な溶接を可能とするものである。
[Prior Art] Construction machinery manufacturers, bridge manufacturers, etc.
In the field of thick plate welding of steel, it is desired to further improve the efficiency and automation of welding in order to further reduce the cost. Therefore, in order to meet such a demand, it is conceivable to perform tandem arc welding by a gas shield welding method using a teaching reproduction type welding robot. This tandem arc welding is to perform welding by arranging a leading electrode and a trailing electrode made of a solid wire for welding with a predetermined electrode distance in the welding direction, and generating a gas shield arc from each electrode. Compared with arc welding with a single electrode, the amount of welding (the amount of wire fusion) is significantly larger, which enables highly efficient welding.

【0003】このような教示再生型溶接ロボット(以
下、単に溶接ロボットという。)を用いてタンデムアー
ク溶接を行う場合には、ワークとトーチとの干渉を回避
するために、溶接ロボットの手首部に搭載するトーチと
して、2つの単電極トーチを搭載するのに比べて小型化
しうる2電極一体型溶接トーチを用い、先行電極と後行
電極との電極間距離を接近させて各々発生させた2つの
アークで1つの溶融プールを形成させて溶接することが
必要となる。前記2電極一体型溶接トーチの一例として
は、各々が溶接ワイヤ通路、シールドガス供給路、給電
路及び冷却水通路を有する一対のトーチ本体を、溶接方
向に所定間隔を隔てて配置し、1つのジャケットにより
該一対のトーチ本体をそのトーチ本体先端部にて一体に
包囲して保持し、各トーチ本体に接続されたチップボデ
ィに取り付けられるチップ(コンタクトチップ)の先端
方向にシールドガスを導く1つのシールドガスノズル
を、前記ジャケットの先端に取り付けてなるものが挙げ
られる。
When performing tandem arc welding by using such a teaching reproduction type welding robot (hereinafter, simply referred to as a welding robot), in order to avoid the interference between the work and the torch, the welding robot has a wrist portion. As a torch to be mounted, a two-electrode integrated welding torch that can be downsized compared to mounting two single-electrode torches is used, and two electrodes are generated by making the inter-electrode distance between the leading electrode and the trailing electrode close to each other. It is necessary to form and weld one molten pool with the arc. As an example of the two-electrode integrated welding torch, a pair of torch bodies each having a welding wire passage, a shield gas supply passage, a power feeding passage and a cooling water passage are arranged at predetermined intervals in the welding direction, A pair of torch bodies are integrally surrounded and held by the tip end portions of the torch body by a jacket, and one shield gas is introduced in the tip direction of the tip (contact tip) attached to the tip body connected to each torch body. An example is one in which a shield gas nozzle is attached to the tip of the jacket.

【0004】ところが、従来、フラックス入りワイヤに
比べてスラグが発生しない溶接用ソリッドワイヤからな
る先行電極及び後行電極を溶接方向に所定電極間距離を
隔てて配置し、スパッタの発生を少なくすべくガス組成
が不活性ガスリッチのシールドガスを用い、電極間距離
を短くし高電流にて2つのアークで1つの溶融プールを
形成してタンデムアーク溶接を行う際には、溶融プール
を安定化させることがむずかしく、スパッタ発生量が少
なくビード形状が良好な溶接ビードが得られにくかっ
た。
However, conventionally, a leading electrode and a trailing electrode made of a solid wire for welding, which does not generate slag as compared with a flux-cored wire, are arranged at a predetermined distance in the welding direction in order to reduce the occurrence of spatter. Stabilize the molten pool when performing tandem arc welding by using a shield gas whose gas composition is rich in inert gas, shortening the distance between the electrodes, and forming one molten pool with two arcs at high current. It was difficult to obtain a weld bead having a good bead shape with a small amount of spatter generation.

【0005】[0005]

【発明が解決しようとする課題】そこで、本発明の目的
は、溶接用ソリッドワイヤからなる先行電極及び後行電
極を溶接方向に所定電極間距離を隔てて配置し、ガス組
成が不活性ガスリッチのシールドガスを用い、電極間距
離を短くし高電流にて2つのアークで1つの溶融プール
を形成してタンデムアーク溶接を行うに際し、スパッタ
発生量が少なく、溶融プールの安定性が良くてビード形
状が良好な溶接ビードを得ることができるタンデムアー
ク溶接方法を提供することにある。
SUMMARY OF THE INVENTION Therefore, an object of the present invention is to arrange a leading electrode and a trailing electrode made of a solid wire for welding with a predetermined electrode distance in the welding direction, and to make the gas composition inert gas rich. When a tandem arc welding is performed by using shield gas, shortening the distance between electrodes and forming a single molten pool with two arcs at high current, the amount of spatter is small, the molten pool is stable, and the bead shape is good. It is to provide a tandem arc welding method capable of obtaining a good welding bead.

【0006】[0006]

【課題を解決するための手段】前記目的を達成するため
に、請求項1の発明は、溶接用ソリッドワイヤからなる
先行電極及び後行電極を溶接方向に所定電極間距離を隔
てて配置し、ガス組成が不活性ガスリッチのシールドガ
スを用い、2つのアークで1つの溶融プールを形成して
タンデムアーク溶接を行うに際し、先行電極の溶接電流
密度と後行電極の溶接電流密度との和:500〜100
0A/mm2 、各電極の電極突出し長さ:22〜35m
m、電極間距離:10〜29mm、溶接方向に直交する
方向からみて前記両電極同士がなす電極角度:1〜9
°、とすることを特徴とするタンデムアーク溶接方法で
ある。
In order to achieve the above-mentioned object, the invention of claim 1 arranges a leading electrode and a trailing electrode made of a welding solid wire at a predetermined distance in the welding direction, The sum of the welding current density of the leading electrode and the welding current density of the trailing electrode when performing tandem arc welding by forming one molten pool with two arcs using a shield gas with an inert gas rich gas composition: 500 ~ 100
0 A / mm 2 , electrode protrusion length of each electrode: 22 to 35 m
m, distance between electrodes: 10 to 29 mm, electrode angle formed by the both electrodes as viewed from a direction orthogonal to the welding direction: 1 to 9
Is a tandem arc welding method.

【0007】請求項2の発明は、前記請求項1記載のタ
ンデムアーク溶接方法において、先行電極の溶接電流を
A1、溶接電圧をV1とし、後行電極の溶接電流をA
2、溶接電圧をV2とすると、(V1/A1)/(V2
/A2)の値が0.78〜0.97であることを特徴と
する。
According to a second aspect of the present invention, in the tandem arc welding method according to the first aspect, the welding current of the leading electrode is A1, the welding voltage is V1, and the welding current of the trailing electrode is A1.
2. If the welding voltage is V2, (V1 / A1) / (V2
The value of / A2) is 0.78 to 0.97.

【0008】請求項3の発明は、前記請求項1又は2記
載のタンデムアーク溶接方法において、シールドガス
は、Ar+CO2 の場合はArの混合比率が55〜96
%であり、Ar+He+(O2 又はCO2 ) の場合は
Ar+Heの混合比率が55〜96%であることを特徴
とする。
According to a third aspect of the present invention, in the tandem arc welding method according to the first or second aspect, when the shielding gas is Ar + CO 2 , the mixing ratio of Ar is 55 to 96.
%, And in the case of Ar + He + (O 2 or CO 2 ), the mixing ratio of Ar + He is 55 to 96%.

【0009】請求項4の発明は、前記請求項1〜3のい
ずれか1項に記載のタンデムアーク溶接方法において、
溶接用ソリッドワイヤとして、C:0.01〜0.13
重量%、Si:0.5〜1.1重量%、Mn:0.5〜
2.2重量%、Ti:0.04〜0.35重量%、S:
0.001〜0.030重量%、O:0.001〜0.
020重量%、をそれぞれ含有し、残部がFe及び不可
避的不純物からなり、かつ、ワイヤ表面にK化合物が1
〜15ppm(カリウム換算値)塗布されており、ワイ
ヤ表面に銅めっきが施されていない銅めっきなしの溶接
用ソリッドワイヤを用いることを特徴とする。
A fourth aspect of the invention is the tandem arc welding method according to any one of the first to third aspects,
As a solid wire for welding, C: 0.01 to 0.13
% By weight, Si: 0.5 to 1.1% by weight, Mn: 0.5 to
2.2% by weight, Ti: 0.04 to 0.35% by weight, S:
0.001-0.030% by weight, O: 0.001-0.
020% by weight, the balance consisting of Fe and unavoidable impurities, and 1 K compound on the wire surface.
It is characterized by using a solid wire for welding, which is coated with ˜15 ppm (value converted to potassium) and has no copper plating on the wire surface.

【0010】請求項5の発明は、前記請求項1〜3のい
ずれか1項に記載のタンデムアーク溶接方法において、
溶接用ソリッドワイヤとして、C:0.01〜0.06
重量%、Si:0.6〜0.9重量%、Mn:1.4〜
1.9重量%、Ti:0.12〜0.28重量%、S:
0.005〜0.025重量%、O:0.003〜0.
020重量%、をそれぞれ含有し、残部がFe及び不可
避的不純物からなり、かつ、ワイヤ表面にK化合物が1
〜15ppm(カリウム換算値)塗布されており、ワイ
ヤ表面に銅めっきが施されていない銅めっきなしの溶接
用ソリッドワイヤを用いることを特徴とする。
A fifth aspect of the present invention is the tandem arc welding method according to any one of the first to third aspects,
As a solid wire for welding, C: 0.01 to 0.06
% By weight, Si: 0.6 to 0.9% by weight, Mn: 1.4 to
1.9% by weight, Ti: 0.12 to 0.28% by weight, S:
0.005-0.025% by weight, O: 0.003-0.
020% by weight, the balance consisting of Fe and unavoidable impurities, and 1 K compound on the wire surface.
It is characterized by using a solid wire for welding, which is coated with ˜15 ppm (value converted to potassium) and has no copper plating on the wire surface.

【0011】請求項6の発明は、前記請求項4又は5記
載のタンデムアーク溶接方法において、溶接用ソリッド
ワイヤが、そのワイヤ表面にMoS2 がワイヤ10kg
当たり0.01〜0.50g塗布されていることを特徴
とする。
According to a sixth aspect of the invention, in the tandem arc welding method according to the fourth or fifth aspect, the solid wire for welding has MoS 2 on the wire surface of 10 kg of the wire.
It is characterized in that 0.01 to 0.50 g is applied per unit.

【0012】[0012]

【発明の実施の形態】以下、本発明について詳細に説明
する。本発明のタンデムアーク溶接方法において、溶接
用ソリッドワイヤからなる先行電極及び後行電極を溶接
方向に所定電極間距離を隔てて配置し、ガス組成が不活
性ガスリッチのシールドガスを用い、2つのアークで1
つの溶融プールを形成して行うタンデムアーク溶接にお
ける各構成とその数値的限定理由について説明する。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention will be described in detail below. In the tandem arc welding method of the present invention, the leading electrode and the trailing electrode made of a solid wire for welding are arranged with a predetermined distance between the electrodes in the welding direction, and two arcs are used by using a shield gas whose gas composition is inert gas rich. In 1
Each configuration in tandem arc welding performed by forming two molten pools and the reason for numerical limitation thereof will be described.

【0013】なお、本発明では、先行電極及び後行電極
として用いる溶接用ソリッドワイヤは、ガスシールドア
ーク溶接で最も多用されているワイヤ直径1.2mmφ
のものを用いることを基本としている。また、図2は本
発明のタンデムアーク溶接方法における電極突出し長さ
L(ワイヤ突出し長さ)、電極角度θ、電極間距離Dを
説明するための図である。同図に示すように、電極突出
し長さLは、チップ先端と母材間距離であり、先行電極
3及び後行電極4とも同じである。電極角度θは、溶接
方向に直交する方向からみて先行電極3と後行電極4と
のなす角度であり、電極間距離Dは、チップ先端から電
極突出し長さL離れた位置における先行電極3と後行電
極4との間隔距離である。なお、図2において、1は2
電極一体型溶接トーチ、1aは先行電極用トーチ本体、
1bは後行電極用トーチ本体、1cはジャケット、1d
はシールドガスノズルである。
In the present invention, the solid wire for welding used as the leading electrode and the trailing electrode has a wire diameter of 1.2 mmφ which is most frequently used in gas shielded arc welding.
It is based on the use of the one. Further, FIG. 2 is a diagram for explaining the electrode protruding length L (wire protruding length), the electrode angle θ, and the interelectrode distance D in the tandem arc welding method of the present invention. As shown in the figure, the electrode protruding length L is the distance between the tip of the tip and the base material, and is the same for the leading electrode 3 and the trailing electrode 4. The electrode angle θ is an angle formed by the leading electrode 3 and the trailing electrode 4 when viewed from the direction orthogonal to the welding direction, and the inter-electrode distance D is the distance between the leading electrode 3 and the leading electrode 3 at a position separated by a length L from the tip of the tip. It is the distance from the trailing electrode 4. In addition, in FIG. 2, 1 is 2
Electrode integrated welding torch, 1a is the torch body for the leading electrode,
1b is a torch body for the trailing electrode, 1c is a jacket, 1d
Is a shield gas nozzle.

【0014】「先行電極の溶接電流密度と後行電極の溶
接電流密度との和:500〜1000A/mm2 」 溶
接電流密度の和が500A/mm2 より小さいと、溶着
量が少なくて高能率化を達成できない。一方、1000
A/mm2 より大きいと、両電極間に形成される溶融プ
ール(湯溜り)に作用する両電極のプラズマ気流による
力が強すぎて、溶融プール(湯溜り)が不安定になり易
い。したがって、両電極の溶接電流密度の和は、500
〜1000A/mm2 とした。より好ましくは、600
〜800A/mm2 である。
"Sum of welding current density of leading electrode and welding current density of trailing electrode: 500 to 1000 A / mm 2 " When the sum of welding current densities is less than 500 A / mm 2 , the welding amount is small and the efficiency is high. Cannot be achieved. On the other hand, 1000
If it is larger than A / mm 2 , the force due to the plasma airflow of both electrodes acting on the molten pool (pool) formed between both electrodes is too strong, and the molten pool (pool) tends to be unstable. Therefore, the sum of the welding current densities of both electrodes is 500
˜1000 A / mm 2 . More preferably, 600
~ 800 A / mm 2 .

【0015】「各電極の電極突出し長さL:22〜35
mm」 電極突出し長さ(ワイヤ突出し長さ)Lが22
mmより短い場合には、溶融プールからの輻射熱によっ
てチップ温度が600℃以上に上昇し、ワイヤ送給が不
安定となることでスパッタが多発し、また、アーク停止
時に溶接用ワイヤの送給を停止した時に高温のチップに
溶接用ワイヤが融着するという不具合がしばしば発生す
る。一方、高溶着化のためには電極突出し長さLが長い
方がよいものの、電極突出し長さLが35mmを超える
と、ガスシールド性が悪くなって溶接ビードにブローホ
ールが発生しやすくなる。したがって、各電極の電極突
出し長さLは22〜35mmとした。より好ましくは2
3〜27mmであり、その最適値は25mmである。な
お、突出し長さLが25mmの場合、両電極の平均溶接
電流が400Aでは20kg/hという高い溶着量が得
られる。
[The length L of the protruding electrode of each electrode: 22 to 35]
mm "electrode protrusion length (wire protrusion length) L is 22
If the length is shorter than mm, the radiant heat from the molten pool raises the chip temperature to 600 ° C or more and the wire feeding becomes unstable, resulting in frequent spattering. Also, when the arc is stopped, the welding wire is fed. The problem often occurs when the welding wire is fused to the hot tip when stopped. On the other hand, in order to achieve high welding, it is preferable that the electrode protruding length L is long, but if the electrode protruding length L exceeds 35 mm, the gas shielding property is deteriorated and blow holes are easily generated in the welding bead. Therefore, the electrode protrusion length L of each electrode is set to 22 to 35 mm. More preferably 2
It is 3 to 27 mm, and its optimum value is 25 mm. When the protruding length L is 25 mm, when the average welding current of both electrodes is 400 A, a high deposition amount of 20 kg / h can be obtained.

【0016】「電極間距離D:10〜29mm」 電極
間距離Dが10mmより小さいと先行電極と後行電極の
各々から発生するアークが互いに強く引き合い干渉し
て、両電極間に形成される溶融プール(湯溜り)が不安
定となる。一方、電極間距離Dが29mmより大きい
と、溶融プール(湯溜り)の安定性は良いものの、溶接
ロボットの手首部に搭載される2電極一体型溶接トーチ
のシールドガスノズルの外径寸法が大きくなることによ
り、該トーチとワークとの干渉によって溶接ロボットの
適用範囲が狭められることになる。したがって、電極間
距離Dは10〜29mmとした。より好ましくは13〜
20mmであり、その最適値は15mmである。
"Distance between electrodes D: 10 to 29 mm" When the distance D between the electrodes is smaller than 10 mm, the arcs generated from the leading electrode and the trailing electrode strongly attract each other and interfere with each other, and the melting formed between the two electrodes. The pool (bath pool) becomes unstable. On the other hand, if the inter-electrode distance D is larger than 29 mm, the stability of the molten pool (pool) is good, but the outer diameter of the shield gas nozzle of the two-electrode integrated welding torch mounted on the wrist of the welding robot becomes large. As a result, the application range of the welding robot is narrowed due to the interference between the torch and the work. Therefore, the distance D between the electrodes is set to 10 to 29 mm. More preferably 13-
It is 20 mm, and its optimum value is 15 mm.

【0017】「電極角度θ:1〜9°」 電極角度θが
1°より小さい場合には、両電極間に形成される溶融プ
ール(湯溜り)にこれを安定化させるための両電極のプ
ラズマ気流による力が十分に作用せず、溶融プールが不
安定になり易い。一方、電極角度θが9°より大きい場
合には、溶融プール(湯溜り)に両電極のプラズマ気流
による力が強く作用しすぎて、溶融プール(湯溜り)が
不安定になり易い。したがって、電極角度θは1〜9°
とした。より好ましくは3〜7°であり、その最適値は
5°である。
[Electrode angle θ: 1 to 9 °] When the electrode angle θ is smaller than 1 °, the plasma of both electrodes is stabilized in the molten pool (melt pool) formed between both electrodes. The force due to the air flow does not sufficiently act, and the molten pool easily becomes unstable. On the other hand, when the electrode angle θ is larger than 9 °, the force due to the plasma airflow of both electrodes acts on the molten pool (melt pool) too much, and the molten pool (melt pool) is likely to become unstable. Therefore, the electrode angle θ is 1 to 9 °
And It is more preferably 3 to 7 °, and its optimum value is 5 °.

【0018】「先行電極の溶接電流をA1、溶接電圧を
V1とし、後行電極の溶接電流をA2、溶接電圧をV2
とすると、(V1/A1)/(V2/A2)の値が0.
78〜0.97であること」 2つのアークで1つの溶
融プールを形成してタンデムアーク溶接を行う場合に
は、両電極の間に形成される溶融プール(湯溜り)を安
定化させて維持するため、溶接電圧については、後行電
極に比べて先行電極の電圧を絞ることがよい。(V1/
A1)/(V2/A2)の値が0.97より大きい場合
には、先行電極の電圧が高すぎて溶融プール(湯溜り)
が不安定となる。一方、0.78より小さいと後行電極
によるスパッタの発生量が多くなる。したがって、(V
1/A1)/(V2/A2)の値は0.78〜0.97
とした。より好ましくは、0.85〜0.93である。
"The welding current of the leading electrode is A1, the welding voltage is V1, the welding current of the trailing electrode is A2, and the welding voltage is V2.
Then, the value of (V1 / A1) / (V2 / A2) is 0.
78 to 0.97 "When performing tandem arc welding by forming one molten pool with two arcs, stabilize and maintain the molten pool (bath pool) formed between both electrodes Therefore, as for the welding voltage, it is preferable to reduce the voltage of the leading electrode as compared with the trailing electrode. (V1 /
When the value of (A1) / (V2 / A2) is larger than 0.97, the voltage of the preceding electrode is too high and the molten pool (hot water pool)
Becomes unstable. On the other hand, if it is less than 0.78, the amount of spatter generated by the trailing electrode increases. Therefore, (V
The value of 1 / A1) / (V2 / A2) is 0.78 to 0.97.
And More preferably, it is 0.85-0.93.

【0019】「シールドガスは、Ar+CO2 の場合は
Arの混合比率が55〜96%であり、Ar+He+
(O2 又はCO2 )の場合はAr+Heの混合比率が5
5〜96%であること」 溶滴の小粒化とスパッタ発生
量の低減のため、シールドガス組成は不活性ガス(A
r,He)リッチがよい。Ar+CO2 の場合はArの
混合比率が96%を超えると、また、Ar+He+(O
2 又はCO2 )の場合はAr+Heの混合比率が96%
を超えると、空気を巻き込みやすくなって溶接ビードに
ブローホールが発生する。一方、混合比率が55%を下
回ると、前記両方の場合ともに溶滴小粒化及びスパッタ
低減の効果が発揮されない。したがって、シールドガス
は、Ar+CO2 の場合はArの混合比率が55〜96
%とし、Ar+He+(O2 又はCO2 )の場合はAr
+Heの混合比率が55〜96%とした。
In the case of Ar + CO 2 , the shielding gas has an Ar mixing ratio of 55 to 96%, and Ar + He +.
In the case of (O 2 or CO 2 ), the mixing ratio of Ar + He is 5
5 to 96% ”In order to reduce the droplet size and the amount of spatter generated, the shield gas composition should be an inert gas (A
r, He) Rich is good. For Ar + CO 2 When the mixing ratio of Ar exceeds 96%, also, Ar + He + (O
2 or CO 2 ) the mixing ratio of Ar + He is 96%
If it exceeds, the air will be easily entrained and blow holes will be generated in the weld bead. On the other hand, if the mixing ratio is less than 55%, the effect of atomizing droplets and reducing spatter cannot be exhibited in both cases. Therefore, when Ar + CO 2 is used as the shield gas, the mixing ratio of Ar is 55 to 96.
%, And in the case of Ar + He + (O 2 or CO 2 ), Ar
The mixing ratio of + He was set to 55 to 96%.

【0020】次に、本発明のタンデムアーク溶接方法に
おいて先行電極及び後行電極として用いる溶接用ソリッ
ドワイヤについて説明する。本発明方法で用いる溶接用
ソリッドワイヤは、ワイヤ表面に銅めっきが施されてい
ない銅めっきなしのワイヤ構造である。この点について
説明すると、不活性ガスがリッチのマグ溶接(MAG溶
接)においては、銅めっき付きソリッドワイヤでは、ワ
イヤ先端から離脱し移行する溶滴の表面張力が銅めっき
なしの場合に比べて小さく、溶滴が球状でなく移行方向
(落下方向)へ細長くのびた楕円体形状をしており、そ
のためワイヤ先端から母材の溶融プールへ移行中の溶滴
同士がつながって該ワイヤ先端と溶融プールがごく短時
間短絡する瞬間短絡現象が起こることがあり、該つなが
っていた溶滴が破断し飛散してスパッタ発生の原因とな
っている。
Next, the solid wire for welding used as the leading electrode and the trailing electrode in the tandem arc welding method of the present invention will be described. The solid wire for welding used in the method of the present invention has a wire structure in which copper is not plated on the surface of the wire. Explaining this point, in the MAG welding (MAG welding) rich in inert gas, the surface tension of the droplets separated from the tip of the wire and transferred in the solid wire with copper plating is smaller than that without copper plating. , The droplets are not spherical but have an ellipsoidal shape that is elongated and elongated in the transition direction (falling direction). Therefore, the droplets that are transitioning from the wire tip to the molten pool of the base material are connected and the wire tip and the molten pool are A momentary short circuit phenomenon may occur in which a short circuit occurs for a very short time, and the connected droplets are broken and scattered to cause spatter generation.

【0021】そこで、本発明方法で用いる溶接用ソリッ
ドワイヤは、ワイヤ表面に銅めっきを施さない構造にす
るとともにワイヤ成分値を適正化することにより、不活
性ガスリッチのマグ溶接における溶滴の表面張力を適度
に調整して溶滴形状が細長でなくほぼ球状になるように
し、かつ、ワイヤ表面に所定量のK化合物(カリウム化
合物)を塗布することにより、前記溶滴を小粒化して溶
滴が規則正しくスムーズに母材へ移行するようにしたも
のであり、スパッタ発生の原因となる前記瞬間短絡現象
の発生を大幅に抑制しうるものである。
Therefore, the solid wire for welding used in the method of the present invention has a structure in which the surface of the wire is not copper-plated and the wire component values are optimized so that the surface tension of the droplets in the inert gas-rich mag welding is improved. Is adjusted to a substantially spherical shape instead of an elongated shape, and a predetermined amount of a K compound (potassium compound) is applied to the surface of the wire to reduce the size of the droplet to form a droplet. The transition to the base material is made to be regular and smooth, and the occurrence of the above-mentioned instantaneous short-circuit phenomenon that causes the generation of spatter can be significantly suppressed.

【0022】以下に、本発明方法で用いる溶接用ソリッ
ドワイヤの化学成分とその値の限定理由について説明す
る。
The chemical components of the welding solid wire used in the method of the present invention and the reasons for limiting the values will be described below.

【0023】「銅めっきなし」 銅めっきなしのワイヤ
構造により、溶滴表面への酸素の浸入がはやくなり、溶
滴の小粒化によってスパッタ発生量を減らすことができ
る。
"No Copper Plating" The wire structure without copper plating makes it possible for oxygen to infiltrate the surface of the droplet quickly, and to reduce the amount of spatter by reducing the droplet size.

【0024】「C:0.01〜0.13重量%」 C
は、溶接部の強度を確保するとともに、銅めっきなしの
溶接用ソリッドワイヤにおいて溶滴の表面張力を適度に
保ち、不活性ガスリッチのマグ溶接での前記瞬間短絡現
象に起因するスパッタを減らす効果を持つ元素である。
しかし、C量が0.01重量%未満では溶滴の表面張力
が小さくスパッタ低減効果が発揮されず、一方、0.1
3重量%を超えると溶滴の表面張力が大きくなりすぎ、
ワイヤ先端の溶滴がアーク力によって反発されて大粒の
スパッタとして飛散し、逆にスパッタ発生量が増える。
したがって、C量は0.01〜0.13重量%とし、よ
り低スパッタ化する点から、0.01〜0.06重量%
の範囲がより好ましい。
"C: 0.01 to 0.13% by weight" C
Is an effect that secures the strength of the welded portion, keeps the surface tension of the droplets moderate in the solid wire for welding without copper plating, and reduces the spatter caused by the instantaneous short circuit phenomenon in the inert gas-rich mag welding. It is an element that has.
However, when the amount of C is less than 0.01% by weight, the surface tension of the droplets is small and the effect of reducing spatter is not exhibited.
If it exceeds 3% by weight, the surface tension of the droplets becomes too large,
The droplets at the tip of the wire are repelled by the arc force and are scattered as large spatters, which in turn increases the spatter generation amount.
Therefore, the amount of C is set to 0.01 to 0.13% by weight, and 0.01 to 0.06% by weight from the viewpoint of lowering the sputtering.
Is more preferable.

【0025】「Si:0.5〜1.1重量%」 Si
は、脱酸元素として作用するとともに、銅めっきなしの
溶接用ソリッドワイヤにおいて溶滴の表面張力を適度に
保ち、不活性ガスリッチのマグ溶接での前記瞬間短絡現
象に起因するスパッタを減らす効果を持つ元素である。
しかし、Si量が0.5重量%未満では溶滴の表面張力
が小さくスパッタ低減効果が発揮されず、一方、1.1
重量%を超えると溶滴の表面張力が大きくなりすぎ、ワ
イヤ先端の溶滴がアーク力によって反発されて大粒のス
パッタとして飛散し、逆にスパッタ発生量が増える。し
たがって、Si量は0.5〜1.1重量%とし、より低
スパッタ化する点から、0.6〜0.9重量%の範囲が
より好ましい。
"Si: 0.5 to 1.1% by weight" Si
Has the effect of acting as a deoxidizing element, keeping the surface tension of droplets moderate in the solid wire for welding without copper plating, and reducing spatter caused by the instantaneous short circuit phenomenon in inert gas-rich mag welding. It is an element.
However, when the amount of Si is less than 0.5% by weight, the surface tension of the droplets is small and the effect of reducing spatter is not exhibited.
If the content is more than wt%, the surface tension of the droplets becomes too large, and the droplets at the tip of the wire are repelled by the arc force and scattered as large spatters, which in turn increases the spatter generation amount. Therefore, the Si amount is set to 0.5 to 1.1% by weight, and the range of 0.6 to 0.9% by weight is more preferable from the viewpoint of lowering the sputtering.

【0026】「Mn:0.5〜2.2重量%」 Mn
は、脱酸元素として作用するとともに、銅めっきなしの
溶接用ソリッドワイヤにおいて溶滴の表面張力を適度に
保ち、不活性ガスリッチのマグ溶接での前記瞬間短絡現
象に起因するスパッタを減らす効果を持つ元素である。
しかし、Mn量が0.5重量%未満では溶滴の表面張力
が小さくスパッタ低減効果が発揮されず、一方、2.2
重量%を超えると溶滴の表面張力が大きくなりすぎ、ワ
イヤ先端の溶滴がアーク力で反発されて大粒のスパッタ
として飛散し、逆にスパッタ発生量が増える。したがっ
て、Mn量は0.5〜2.2重量%とし、より低スパッ
タ化する点から、1.4〜1.9重量%の範囲がより好
ましい。
"Mn: 0.5 to 2.2% by weight" Mn
Has the effect of acting as a deoxidizing element, keeping the surface tension of droplets moderate in the solid wire for welding without copper plating, and reducing spatter caused by the instantaneous short circuit phenomenon in inert gas-rich mag welding. It is an element.
However, when the amount of Mn is less than 0.5% by weight, the surface tension of the droplets is small and the effect of reducing spatter is not exhibited.
If the content is more than wt%, the surface tension of the droplets becomes too large, and the droplets at the tip of the wire are repelled by the arc force and are scattered as large spatters, which in turn increases the spatter generation amount. Therefore, the amount of Mn is 0.5 to 2.2% by weight, and the range of 1.4 to 1.9% by weight is more preferable from the viewpoint of lowering the sputtering.

【0027】「Ti:0.04〜0.35重量%」 T
iは、強脱酸元素として作用するとともに、銅めっきな
しの溶接用ソリッドワイヤにおいて溶滴の表面張力を適
度に保ち、マグ溶接での瞬間短絡現象に起因するスパッ
タを減らす元素である。Ti量が0.04重量%未満で
は溶滴の表面張力が小さくスパッタ低減効果が発揮され
ず、一方、0.35重量%を超えると溶滴の表面張力が
大きくなりすぎ、ワイヤ先端の溶滴がアーク力で反発さ
れて大粒のスパッタとして飛散し、逆にスパッタ発生量
が増える。したがって、Ti量は0.04〜0.35重
量%とし、より低スパッタ化する点から、0.12〜
0.28重量%の範囲がより好ましい。
"Ti: 0.04 to 0.35% by weight" T
i is an element that acts as a strong deoxidizing element, keeps the surface tension of the droplets moderate in the solid wire for welding without copper plating, and reduces spatter caused by an instantaneous short circuit phenomenon in mag welding. If the Ti content is less than 0.04% by weight, the surface tension of the droplets is small and the effect of reducing spatter is not exhibited, while if it exceeds 0.35% by weight, the surface tension of the droplets becomes too large and the droplets at the tip of the wire Is repelled by the arc force and scattered as large-sized spatters, which in turn increases the amount of spatters generated. Therefore, the Ti amount is 0.04 to 0.35% by weight, and 0.12 to 0.12% from the viewpoint of lowering the sputtering.
The range of 0.28% by weight is more preferable.

【0028】「S:0.001〜0.030重量%」
Sは、溶滴の表面張力に大きな影響を与える元素であ
る。S量が0.030重量%を超えると溶滴の表面張力
が小さくスパッタ低減効果が発揮されず、0.001重
量%未満では溶滴の表面張力が大きくなりすぎ、ワイヤ
先端の溶滴がアーク力で反発されて大粒のスパッタとし
て飛散し、スパッタ発生量が逆に増える。したがって、
S量は0.001〜0.030重量%とし、より低スパ
ッタ化する点から、0.005〜0.025重量%の範
囲がより好ましい。
"S: 0.001-0.030% by weight"
S is an element that greatly affects the surface tension of the droplet. If the amount of S exceeds 0.030% by weight, the surface tension of the droplets is small and the effect of reducing spatter is not exhibited. If the amount of S is less than 0.001% by weight, the surface tension of the droplets becomes too large and the droplets at the wire tip arc. It is repelled by force and scatters as a large amount of spatter, which in turn increases the amount of spatter generated. Therefore,
The amount of S is 0.001 to 0.030% by weight, and the range of 0.005 to 0.025% by weight is more preferable from the viewpoint of lowering the sputtering.

【0029】「O:0.001〜0.020重量%」
Oは、前記Sと同様に溶滴の表面張力に大きな影響を与
える元素である。O量が0.020重量%を超えると溶
滴の表面張力が小さくスパッタ低減効果が発揮されず、
0.001重量%未満では溶滴の表面張力が大きくなり
すぎ、ワイヤ先端の溶滴がアーク力で反発されて大粒の
スパッタとして飛散し、スパッタ発生量が逆に増える。
したがって、O量は0.001〜0.020重量%と
し、より低スパッタ化する点から、0.003〜0.0
20重量%の範囲がより好ましい。
"O: 0.001 to 0.020% by weight"
O is an element that has a great influence on the surface tension of the droplet, like S. If the amount of O exceeds 0.020% by weight, the surface tension of the droplets is small and the effect of reducing spatter is not exhibited.
If it is less than 0.001% by weight, the surface tension of the droplets becomes too large, and the droplets at the tip of the wire are repelled by the arc force and scattered as large spatters.
Therefore, the amount of O is 0.001 to 0.020% by weight, and 0.003 to 0.0
The range of 20% by weight is more preferable.

【0030】「ワイヤ表面にK化合物が1〜15ppm
(カリウム換算値)塗布されていること」 ワイヤ表面
に塗布されるステアリン酸カリウムなどのK化合物は、
電離電圧が低くて電子の放出を容易にするので、アーク
の電位傾度が下がり、溶滴へのアークの這い上がりが促
進され、アークはワイヤ先端の溶滴を包み込むように発
生する。これにより、溶滴の離脱・移行が促進され、溶
滴が小粒化されてスムーズに移行し、スパッタ発生の原
因となる前記瞬間短絡現象の発生を減らすことができ
る。このK化合物の量が1ppm 未満では、ワイヤ先
端の溶滴へのアークの這い上がりが十分でなく、母材へ
移行する溶滴を小粒化させてスパッタを減らす効果が得
られない。一方、15ppm を超えると、高電流時に
ローテーティング(ワイヤ先端部が長くのびて高速で回
転しながら溶滴が移行する現象)が発生しやすくなっ
て、溶融プールが不安定となる。したがって、ワイヤ表
面に塗布されるK化合物量は、1〜15ppm(カリウ
ム換算値)とした。
"1 to 15 ppm of K compound on the wire surface
(Kalium equivalent value) Must be applied. ”K compounds such as potassium stearate applied to the wire surface are
Since the ionization voltage is low to facilitate the emission of electrons, the potential gradient of the arc is lowered, the creeping of the arc to the droplet is promoted, and the arc is generated so as to wrap around the droplet at the tip of the wire. As a result, the detachment / migration of the droplets is promoted, the droplets are reduced in size and smoothly migrated, and the occurrence of the above-mentioned instantaneous short-circuit phenomenon that causes spattering can be reduced. If the amount of this K compound is less than 1 ppm, the creep of the arc to the droplet at the tip of the wire is not sufficient, and the effect of reducing the droplets that migrate to the base material and reducing spatter cannot be obtained. On the other hand, when it exceeds 15 ppm, rotation (a phenomenon in which the tip of the wire extends for a long time and droplets move while rotating at high speed) easily occurs at a high current, and the molten pool becomes unstable. Therefore, the amount of the K compound applied to the surface of the wire is set to 1 to 15 ppm (value converted to potassium).

【0031】「ワイヤ表面にMoS2 がワイヤ10kg
当たり0.01〜0.50g塗布されていること」 本
発明方法で用いる溶接用ソリッドワイヤでは、ワイヤ送
給潤滑剤(潤滑性粒子)としてワイヤ表面に適量のMo
2 を塗布することにより、ワイヤ送給用のコンジット
チューブ(スプリングライナー)内を通過する時の摩擦
力(送給抵抗)を小さくしてワイヤ送給性を良好にで
き、溶融プールを安定にし、ワイヤの送給不安定に起因
するアークの不安定によるスパッタ発生を極めて少なく
しうる。MoS2 の塗布量がワイヤ10kg当たり0.
01 gより少ないと、ワイヤ送給性改善効果が発揮さ
れない。一方、0.50gより多くなると、コンジット
ライナー内での詰まり量が多くなり、逆にワイヤ送給不
安定が発生し易く、この送給不安定に起因するアークの
不安定によってスパッタ発生量が増える。したがって、
ワイヤ表面に塗布されるMoS2 の量は、ワイヤ10k
g当たり0.01〜0.50gとした。
"10 kg of wire containing MoS 2 on the wire surface
In the welding solid wire used in the method of the present invention, an appropriate amount of Mo is applied to the wire surface as a wire feed lubricant (lubricant particles).
By applying S 2 , the friction force (feed resistance) when passing through the conduit tube (spring liner) for wire feeding can be reduced to improve the wire feeding property and stabilize the molten pool. The generation of spatter due to instability of the arc due to unstable feeding of the wire can be extremely reduced. The coating amount of MoS 2 is 0.
If it is less than 01 g, the effect of improving the wire feeding property is not exhibited. On the other hand, when the amount is more than 0.50 g, the clogging amount in the conduit liner increases and conversely, wire feeding instability easily occurs, and the amount of spatter generation increases due to instability of the arc due to this feeding instability. . Therefore,
The amount of MoS 2 applied on the wire surface is 10 k
It was set to 0.01 to 0.50 g per g.

【0032】なお、ワイヤ表面へのK化合物、MoS2
の塗布については、ワイヤ伸線完了後に、バフなどを用
いて接触塗布する方法、あるいは静電的に非接触で塗布
する方法がある。この場合、K化合物とMoS2 は、個
別に塗布してもよいし、これらを混合し塗布してもよ
い。また、同じくワイヤ伸線完了後に、ワイヤ送給用の
油にこれら化合物を溶解または分散させたものを塗布す
る方法がある。さらに、ワイヤ伸線工程の中間ダイスま
たは最終ダイスで用いる伸線潤滑剤にこれらを添加し、
伸線処理時にワイヤ表面に付着・塗布する方法があり、
ワイヤ製造工程に適した塗布方法を適宜選択すればよ
い。
The K compound and MoS 2 on the wire surface
As for the coating, after the wire drawing is completed, there is a method of contact coating using a buff or the like, or a method of electrostatically non-contact coating. In this case, the K compound and MoS 2 may be applied individually, or may be mixed and applied. There is also a method of applying a solution obtained by dissolving or dispersing these compounds in oil for wire feeding after completion of wire drawing. Furthermore, these are added to the wire drawing lubricant used in the intermediate die or the final die of the wire drawing process,
There is a method of attaching and applying to the wire surface during wire drawing treatment,
A coating method suitable for the wire manufacturing process may be appropriately selected.

【0033】図1は本発明によるタンデムアーク溶接方
法の実施に用いる溶接ロボット装置の一例を示す構成説
明図である。この溶接ロボット装置は、手首部に2電極
一体型溶接トーチ1を取り付けた多関節(6軸)の教示
再生型の溶接ロボット2と、2電極一体型溶接トーチ1
に先行電極3を送給する先行電極用ワイヤ送給装置5
と、該先行電極3に給電を行う先行電極用溶接電源7
と、2電極一体型溶接トーチ1に後行電極4を送給する
後行電極用ワイヤ送給装置6と、該後行電極4に給電を
行う後行電極用溶接電源8と、溶接ロボット2の動作制
御と溶接電源7,8の出力制御を行うロボット制御装置
9と、ティーチングボックス10とから構成されてい
る。
FIG. 1 is a structural explanatory view showing an example of a welding robot apparatus used for carrying out the tandem arc welding method according to the present invention. This welding robot apparatus includes a multi-joint (6-axis) teaching reproduction welding robot 2 having a two-electrode integrated welding torch 1 attached to the wrist and a two-electrode integrated welding torch 1.
Wire feeding device 5 for feeding the leading electrode 3 to the leading electrode
And a welding power source 7 for the preceding electrode that supplies power to the preceding electrode 3.
A trailing electrode wire feeder 6 for feeding the trailing electrode 4 to the two-electrode integrated welding torch 1, a trailing electrode welding power source 8 for feeding power to the trailing electrode 4, and a welding robot 2 The robot control device 9 controls the operation of the robot and the output of the welding power sources 7 and 8, and the teaching box 10.

【0034】[0034]

【実施例】前記溶接ロボット装置を用いて、本発明の方
法と比較例の方法とによりタンデムアーク溶接を行って
その溶接結果を評価した。
EXAMPLES Tandem arc welding was carried out by using the welding robot apparatus according to the method of the present invention and the method of the comparative example, and the welding results were evaluated.

【0035】表3と表4に示す、銅めっきなしの構造
で、ワイヤ直径が1.2mmφの溶接用ソリッドワイヤ
(表3:本発明方法で用いるワイヤ、表4:比較例方法
で用いるワイヤ)を製作した。なお、ワイヤ表面に塗布
するK化合物としてステアリン酸カリウムを使用した。
これらの溶接用ソリッドワイヤを用い、表1と表2に示
す溶接条件により、板厚12mmのSM490鋼板によ
る下向すみ肉継手についてタンデムアーク溶接を実施し
た。シールドガス組成は80%Ar+20%CO 2 であ
り、溶接速度は60cm/分である。
Structures shown in Tables 3 and 4 without copper plating
And solid wire for welding with wire diameter of 1.2 mmφ
(Table 3: Wire used in the method of the present invention, Table 4: Comparative example method)
Wire used in. Apply on the wire surface
Potassium stearate was used as the K compound.
Using these solid welding wires, the results are shown in Table 1 and Table 2.
Depending on the welding conditions, the SM490 steel plate with a plate thickness of 12 mm
Tandem arc welding was performed on the down fillet joint.
It was Shield gas composition is 80% Ar + 20% CO 2 And
And the welding speed is 60 cm / min.

【0036】溶接結果の評価は、表3、表4に示すよう
に、溶融プールの安定性に強く影響される溶接ビード形
状の良否と、スパッタの発生量とについて行った。これ
らの評価は、◎:非常に優れている、○:優れている、
□:普通、△:やや劣る、とした。
As shown in Tables 3 and 4, the evaluation of the welding results was carried out on the quality of the weld bead shape, which is strongly influenced by the stability of the molten pool, and the amount of spatter generated. These evaluations are ◎: very good, ◯: excellent,
□: Normal, Δ: Slightly inferior.

【0037】[0037]

【表1】 [Table 1]

【0038】[0038]

【表2】 [Table 2]

【0039】[0039]

【表3】 [Table 3]

【0040】[0040]

【表4】 [Table 4]

【0041】表1〜表4において、No.1〜No.1
1が実施例、No.12〜No.32が比較例である。
本発明の構成要件を満足するNo.1〜No.11の実
施例は、いずれもスパッタ発生量が少なく、溶融プール
の安定性が良くてビード形状が良好な溶接ビードを得る
ことができた。
In Tables 1 to 4, No. 1-No. 1
No. 1 is an example, and No. 1 is an example. 12-No. 32 is a comparative example.
No. which satisfies the constituent requirements of the present invention. 1-No. In all of the eleventh examples, the amount of spatter generated was small, the stability of the molten pool was good, and a weld bead with a good bead shape could be obtained.

【0042】これに対して、No.12〜No.32の
比較例では、本発明で規定する要件の何れかを欠くた
め、次のような問題があった。すなわち、No.12の
比較例は、電極間距離Dが短すぎてアーク及び溶融プー
ルが不安定となり、溶接ビード形状が悪く、また、スパ
ッタが多く発生した。No.13の比較例は、先行電極
及び後行電極の突出し長さLが短すぎて溶融プールから
の輻射熱によってチップ温度が上昇し、アーク停止時に
高温のチップに溶接用ワイヤが融着してしまった。N
o.14の比較例は、逆に突出し長さLが長すぎて、ビ
ード形状は良好なものの、ガスシールド性が悪くなって
溶接ビードにブローホールが発生した。No.15の比
較例は、先行電極の溶接電流密度と後行電極の溶接電流
密度との和が大きすぎて、溶融プールが不安定となり、
溶接ビード形状が悪かった。No.16の比較例は、電
極角度θが小さすぎて溶融プールが不安定となり、溶接
ビード形状が悪く、またNo.17の比較例は、逆に電
極角度θが大きすぎて溶融プールが不安定となり、溶接
ビード形状が悪かった。No.18の比較例は、(V1
/A1)/(V2/A2)の値が小さすぎ、後行電極で
のスパッタが多く発生した。No.19の比較例は、
(V1/A1)/(V2/A2)の値が大きすぎ、先行
電極の電圧が高すぎて溶融プールが不安定となり、溶接
ビード形状が悪かった。
On the other hand, in No. 12-No. The 32 comparative examples lacked any of the requirements specified in the present invention, and thus had the following problems. That is, No. In Comparative Example No. 12, the electrode-to-electrode distance D was too short, the arc and molten pool became unstable, the weld bead shape was poor, and a large amount of spatter occurred. No. In Comparative Example No. 13, the protruding length L of the leading electrode and the trailing electrode was too short and the tip temperature rose due to radiant heat from the molten pool, and the welding wire was fused to the high temperature tip when the arc was stopped. . N
o. In Comparative Example 14 on the contrary, the protruding length L was too long and the bead shape was good, but the gas shielding property was poor and blowholes were generated in the weld bead. No. In the comparative example of No. 15, the sum of the welding current density of the leading electrode and the welding current density of the trailing electrode was too large, and the molten pool became unstable,
The weld bead shape was bad. No. In the comparative example of No. 16, the electrode angle θ was too small, the molten pool became unstable, the weld bead shape was bad, and No. On the contrary, in the comparative example of No. 17, the electrode angle θ was too large, the molten pool became unstable, and the weld bead shape was bad. No. 18 comparative examples are (V1
The value of / A1) / (V2 / A2) was too small, and a lot of spatter occurred on the trailing electrode. No. The 19 comparative examples are
The value of (V1 / A1) / (V2 / A2) was too large, the voltage of the leading electrode was too high, the molten pool became unstable, and the weld bead shape was bad.

【0043】また、No.20の比較例は、溶接用ワイ
ヤのC量が多すぎるため、溶滴の表面張力が大きくなり
すぎてスパッタの発生が多かった。No.21の比較例
は、溶接用ワイヤのSi量が少なすぎるため、溶滴の表
面張力が小さくスパッタの発生が多く、一方、No.2
2の比較例は、溶接用ワイヤのSi量が多すぎるため、
溶滴の表面張力が大きくなりすぎてスパッタの発生が多
かった。No.23の比較例は、溶接用ワイヤのMn量
が少なすぎるため、溶滴の表面張力が小さくスパッタの
発生が多く、一方、No.24の比較例は、溶接用ワイ
ヤのMn量が多すぎるため、溶滴の表面張力が大きくな
りすぎてスパッタの発生が多かった。No.25の比較
例は、溶接用ワイヤのS量が多すぎるため、溶滴の表面
張力が小さくスパッタの発生が多かった。No.26の
比較例は、溶接用ワイヤのTi量が少なすぎるため、溶
滴の表面張力が小さくスパッタの発生が多く、一方、N
o.27の比較例は、逆に溶接用ワイヤのTi量が多す
ぎるため、溶滴の表面張力が大きくなりすぎてスパッタ
の発生が多かった。No.28の比較例は、溶接用ワイ
ヤのO量が多すぎるため、溶滴の表面張力が小さくスパ
ッタの発生が多かった。No.29の比較例は、溶接用
ワイヤのワイヤ表面に塗布されているK量が少なすぎる
ためスパッタを減らす効果が発揮されず、スパッタの発
生が多かった。一方、No.30の比較例は、K量が多
すぎるためローテーティングが発生して、溶融プールが
不安定となって溶接ビード形状が悪かった。No.31
の比較例は、溶接用ワイヤのワイヤ表面に塗布されてい
るMoS2 量が少なすぎるため、ワイヤ送給性改善効果
が発揮されずスパッタの発生が多かった。一方、No.
32の比較例は、MoS2 量が多すぎるため、コンジッ
トライナー内での詰まり量が多くなり、ワイヤ送給不安
定に起因するアーク不安定によるスパッタの発生が多か
った。
No. In Comparative Example No. 20, the amount of C in the welding wire was too large, so that the surface tension of the droplet became too large and spatter was generated frequently. No. In the comparative example of No. 21, since the amount of Si of the welding wire is too small, the surface tension of the droplet is small and spatter is often generated. Two
In the comparative example of 2, since the amount of Si in the welding wire is too large,
The surface tension of the droplets became too large and spatter was generated frequently. No. In the comparative example of No. 23, since the Mn amount of the welding wire is too small, the surface tension of the droplet is small and the spatter is often generated. In Comparative Example No. 24, the Mn content of the welding wire was too large, and therefore the surface tension of the droplet became too large and spatter was generated frequently. No. In Comparative Example No. 25, the amount of S in the welding wire was too large, and thus the surface tension of the droplet was small and spatter was generated frequently. No. In the comparative example of No. 26, since the amount of Ti in the welding wire is too small, the surface tension of the droplet is small and spatter is often generated.
o. On the contrary, in Comparative Example No. 27, the amount of Ti in the welding wire was too large, so that the surface tension of the droplet became too large and spatter was generated frequently. No. In Comparative Example No. 28, the O content of the welding wire was too large, and therefore the surface tension of the droplet was small and spatter was often generated. No. In Comparative Example 29, since the amount of K applied to the wire surface of the welding wire was too small, the effect of reducing spatter was not exhibited, and spatter was generated frequently. On the other hand, No. In the comparative example of No. 30, since the K content was too large, rotation occurred, the molten pool became unstable, and the weld bead shape was poor. No. 31
In the comparative example, since the amount of MoS 2 applied to the wire surface of the welding wire was too small, the effect of improving the wire feedability was not exhibited, and spatter was often generated. On the other hand, No.
In Comparative Example No. 32, the amount of MoS 2 was too large, so the amount of clogging in the conduit liner was large, and spatter was often generated due to arc instability due to unstable wire feeding.

【0044】[0044]

【発明の効果】以上述べたように、本発明によるタンデ
ムアーク溶接方法によると、溶接用ソリッドワイヤから
なる先行電極及び後行電極を溶接方向に所定電極間距離
を隔てて配置し、ガス組成が不活性ガスリッチのシール
ドガスを用い、2つのアークで1つの溶融プールを形成
してタンデムアーク溶接を行うに際し、スパッタ発生量
が少なく、溶融プールの安定性が良くてビード形状が良
好な溶接ビードを得ることができる。
As described above, according to the tandem arc welding method of the present invention, the leading electrode and the trailing electrode made of a solid wire for welding are arranged at a predetermined distance in the welding direction, and the gas composition is When using a shield gas rich in inert gas to form one molten pool with two arcs and performing tandem arc welding, a weld bead with a small amount of spatter, good stability of the molten pool, and good bead shape Obtainable.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明によるタンデムアーク溶接方法の実施に
用いる溶接ロボット装置の一例を示す構成説明図であ
る。
FIG. 1 is a structural explanatory view showing an example of a welding robot apparatus used for carrying out a tandem arc welding method according to the present invention.

【図2】本発明によるタンデムアーク溶接方法における
電極突出し長さL(ワイヤ突出し長さ)、電極角度θ、
電極間距離Dを説明するための図である。
FIG. 2 shows an electrode protrusion length L (wire protrusion length), an electrode angle θ, and a tandem arc welding method according to the present invention.
It is a figure for demonstrating the distance D between electrodes.

【符号の説明】[Explanation of symbols]

1…2電極一体型溶接トーチ 1a…先行電極用トーチ
本体 1b…後行電極用トーチ本体 1c…ジャケット
1d…シールドガスノズル 2…教示再生型溶接ロボ
ット 3…先行電極 4…後行電極 5…先行電極用ワ
イヤ送給装置 6…後行電極用ワイヤ送給装置 7…先行電極用溶接電
源 8…後行電極用溶接電源 9…ロボット制御装置
10…ティーチングボックス
1 ... 2 electrode integrated welding torch 1a ... torch body for leading electrode 1b ... torch body for trailing electrode 1c ... jacket 1d ... shield gas nozzle 2 ... teaching regenerative welding robot 3 ... leading electrode 4 ... trailing electrode 5 ... leading electrode Wire feeding device 6 ... Wire feeding device for trailing electrode 7 ... Welding power source for leading electrode 8 ... Welding power source for trailing electrode 9 ... Robot controller
10 ... Teaching box

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 溶接用ソリッドワイヤからなる先行電極
及び後行電極を溶接方向に所定電極間距離を隔てて配置
し、ガス組成が不活性ガスリッチのシールドガスを用
い、2つのアークで1つの溶融プールを形成してタンデ
ムアーク溶接を行うに際し、先行電極の溶接電流密度と
後行電極の溶接電流密度との和:500〜1000A/
mm2 、各電極の電極突出し長さ:22〜35mm、電
極間距離:10〜29mm、溶接方向に直交する方向か
らみて前記両電極同士がなす電極角度:1〜9°、とす
ることを特徴とするタンデムアーク溶接方法。
1. A front electrode and a rear electrode made of a solid wire for welding are arranged at a predetermined distance in the welding direction, and a shield gas having an inert gas rich gas composition is used. When forming a pool and performing tandem arc welding, the sum of the welding current density of the leading electrode and the welding current density of the trailing electrode: 500 to 1000 A /
mm 2 , the electrode protruding length of each electrode: 22 to 35 mm, the distance between the electrodes: 10 to 29 mm, the electrode angle formed by the both electrodes when viewed from the direction orthogonal to the welding direction: 1 to 9 ° Tandem arc welding method.
【請求項2】 先行電極の溶接電流をA1、溶接電圧を
V1とし、後行電極の溶接電流をA2、溶接電圧をV2
とすると、(V1/A1)/(V2/A2)の値が0.
78〜0.97であることを特徴とする請求項1記載の
タンデムアーク溶接方法。
2. The welding current of the leading electrode is A1, the welding voltage is V1, the welding current of the trailing electrode is A2, and the welding voltage is V2.
Then, the value of (V1 / A1) / (V2 / A2) is 0.
It is 78-0.97, The tandem arc welding method of Claim 1 characterized by the above-mentioned.
【請求項3】 シールドガスは、Ar+CO2 の場合は
Arの混合比率が55〜96%であり、Ar+He+
(O2 又はCO2 )の場合はAr+Heの混合比率が5
5〜96%であることを特徴とする請求項1又は2記載
のタンデムアーク溶接方法。
3. The shielding gas has a mixing ratio of Ar of 55 to 96% in the case of Ar + CO 2 , and Ar + He +.
In the case of (O 2 or CO 2 ), the mixing ratio of Ar + He is 5
The tandem arc welding method according to claim 1, wherein the tandem arc welding is 5 to 96%.
【請求項4】 溶接用ソリッドワイヤとして、C:0.
01〜0.13重量%、Si:0.5〜1.1重量%、
Mn:0.5〜2.2重量%、Ti:0.04〜0.3
5重量%、S:0.001〜0.030重量%、O:
0.001〜0.020重量%、をそれぞれ含有し、残
部がFe及び不可避的不純物からなり、かつ、ワイヤ表
面にK化合物が1〜15ppm(カリウム換算値)塗布
されており、ワイヤ表面に銅めっきが施されていない銅
めっきなしの溶接用ソリッドワイヤを用いることを特徴
とする請求項1〜3のいずれか1項に記載のタンデムア
ーク溶接方法。
4. A solid wire for welding, C: 0.
01-0.13% by weight, Si: 0.5-1.1% by weight,
Mn: 0.5 to 2.2% by weight, Ti: 0.04 to 0.3
5% by weight, S: 0.001 to 0.030% by weight, O:
0.001 to 0.020% by weight, respectively, the balance consists of Fe and unavoidable impurities, and the wire compound is coated with a K compound in an amount of 1 to 15 ppm (calcium conversion value). The tandem arc welding method according to any one of claims 1 to 3, wherein a solid wire for welding without copper plating, which is not plated, is used.
【請求項5】 溶接用ソリッドワイヤとして、C:0.
01〜0.06重量%、Si:0.6〜0.9重量%、
Mn:1.4〜1.9重量%、Ti:0.12〜0.2
8重量%、S:0.005〜0.025重量%、O:
0.003〜0.020重量%、をそれぞれ含有し、残
部がFe及び不可避的不純物からなり、かつ、ワイヤ表
面にK化合物が1〜15ppm(カリウム換算値)塗布
されており、ワイヤ表面に銅めっきが施されていない銅
めっきなしの溶接用ソリッドワイヤを用いることを特徴
とする請求項1〜3のいずれか1項に記載のタンデムア
ーク溶接方法。
5. A solid wire for welding, C: 0.
01-0.06% by weight, Si: 0.6-0.9% by weight,
Mn: 1.4 to 1.9% by weight, Ti: 0.12 to 0.2
8% by weight, S: 0.005-0.025% by weight, O:
0.003 to 0.020% by weight, respectively, the balance consists of Fe and unavoidable impurities, and the wire surface is coated with 1 to 15 ppm (value converted to potassium) of a K compound, and the wire surface is copper. The tandem arc welding method according to any one of claims 1 to 3, wherein a solid wire for welding without copper plating, which is not plated, is used.
【請求項6】 溶接用ソリッドワイヤが、そのワイヤ表
面にMoS2 がワイヤ10kg当たり0.01〜0.5
0g塗布されていることを特徴とする請求項4又は5記
載のタンデムアーク溶接方法。
6. A solid wire for welding, wherein MoS 2 is present on the wire surface in an amount of 0.01 to 0.5 per 10 kg of wire.
The tandem arc welding method according to claim 4 or 5, wherein 0 g is applied.
JP2001239596A 2001-08-07 2001-08-07 Tandem arc welding method Pending JP2003053545A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001239596A JP2003053545A (en) 2001-08-07 2001-08-07 Tandem arc welding method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001239596A JP2003053545A (en) 2001-08-07 2001-08-07 Tandem arc welding method

Publications (1)

Publication Number Publication Date
JP2003053545A true JP2003053545A (en) 2003-02-26

Family

ID=19070321

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001239596A Pending JP2003053545A (en) 2001-08-07 2001-08-07 Tandem arc welding method

Country Status (1)

Country Link
JP (1) JP2003053545A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008016084A1 (en) 2006-08-02 2008-02-07 Taiyo Nippon Sanso Corporation Tandem gas metal arc welding method, and welding torch and welding apparatus used in the method
JP2010142822A (en) * 2008-12-17 2010-07-01 Nippon Steel & Sumikin Welding Co Ltd Twin-electrode gas-shielded arc welding method of steel pipe sheet pile
EP2532466A2 (en) 2011-06-09 2012-12-12 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Two-electrode welding method
JP2013111597A (en) * 2011-11-28 2013-06-10 Panasonic Corp Arc welding method
US8680432B2 (en) 2005-04-20 2014-03-25 Illinois Tool Works Inc. Cooperative welding system
KR20140114778A (en) * 2013-03-19 2014-09-29 가부시키가이샤 고베 세이코쇼 Tandem gas-shielded arc welding method
KR101477893B1 (en) * 2012-03-09 2014-12-30 가부시키가이샤 고베 세이코쇼 Tandem gas-shielded arc welding method
CN105382383A (en) * 2014-08-28 2016-03-09 株式会社神户制钢所 Multi-electrode gas-shielded arc welding method
CN106133285A (en) * 2014-02-28 2016-11-16 三菱重工业株式会社 Movable wall component and welding method
US10486256B2 (en) 2012-12-28 2019-11-26 Esab Ab Arc welding method and arc welding arrangement with first and second electrodes

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8680432B2 (en) 2005-04-20 2014-03-25 Illinois Tool Works Inc. Cooperative welding system
US9636766B2 (en) 2005-04-20 2017-05-02 Illinois Tool Works Inc. Cooperative welding system
US8461471B2 (en) 2006-08-02 2013-06-11 Taiyo Nippon Sanso Corporation Tandem gas metal arc welding
WO2008016084A1 (en) 2006-08-02 2008-02-07 Taiyo Nippon Sanso Corporation Tandem gas metal arc welding method, and welding torch and welding apparatus used in the method
JP2010142822A (en) * 2008-12-17 2010-07-01 Nippon Steel & Sumikin Welding Co Ltd Twin-electrode gas-shielded arc welding method of steel pipe sheet pile
EP2532466A3 (en) * 2011-06-09 2015-06-17 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Two-electrode welding method
EP2532466A2 (en) 2011-06-09 2012-12-12 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Two-electrode welding method
US8809740B2 (en) 2011-06-09 2014-08-19 Kobe Steel, Ltd. Two-electrode welding method
JP2013111597A (en) * 2011-11-28 2013-06-10 Panasonic Corp Arc welding method
US9266197B2 (en) 2012-03-09 2016-02-23 Kobe Steel, Ltd. Tandem gas-shielded arc welding method
KR101477893B1 (en) * 2012-03-09 2014-12-30 가부시키가이샤 고베 세이코쇼 Tandem gas-shielded arc welding method
US10486256B2 (en) 2012-12-28 2019-11-26 Esab Ab Arc welding method and arc welding arrangement with first and second electrodes
US11389889B2 (en) 2012-12-28 2022-07-19 Esab Ab Arc welding method and arc welding arrangement with first and second electrodes
KR101656924B1 (en) * 2013-03-19 2016-09-12 가부시키가이샤 고베 세이코쇼 Tandem gas-shielded arc welding method
KR20140114778A (en) * 2013-03-19 2014-09-29 가부시키가이샤 고베 세이코쇼 Tandem gas-shielded arc welding method
CN106133285A (en) * 2014-02-28 2016-11-16 三菱重工业株式会社 Movable wall component and welding method
JPWO2015129612A1 (en) * 2014-02-28 2017-03-30 三菱重工業株式会社 Welding method for movable wall member
KR20170116188A (en) * 2014-02-28 2017-10-18 미츠비시 쥬고교 가부시키가이샤 Mobile wall member and welding method
KR102163845B1 (en) * 2014-02-28 2020-10-12 미츠비시 쥬고교 가부시키가이샤 Mobile wall member and welding method
CN105382383A (en) * 2014-08-28 2016-03-09 株式会社神户制钢所 Multi-electrode gas-shielded arc welding method
KR20160026785A (en) * 2014-08-28 2016-03-09 가부시키가이샤 고베 세이코쇼 Multielectrode gas-shielded arc welding method
KR101707324B1 (en) * 2014-08-28 2017-02-15 가부시키가이샤 고베 세이코쇼 Multielectrode gas-shielded arc welding method

Similar Documents

Publication Publication Date Title
US11577345B2 (en) Systems and methods for low-manganese welding alloys
US7087860B2 (en) Straight polarity metal cored wires
US9457420B2 (en) Gas tungsten arc welding with cross AC arcing twin wires
US4463243A (en) Welding system
US6855913B2 (en) Flux-cored wire formulation for welding
JP5570473B2 (en) Two-electrode welding method
JP5345392B2 (en) Tandem gas metal arc welding method, welding torch and welding apparatus used therefor
JP2912693B2 (en) Gas metal arc welding method for aluminum base material
JP2007000933A (en) Tig welding or braze welding with metal transfer via liquid bridge
CN108367393B (en) Low manganese tubular welding wire and method of forming a weld deposit
JP2018079506A (en) Welding electrode wires having alkaline earth metals
JP3404264B2 (en) Solid wire for MAG welding
JP2003053545A (en) Tandem arc welding method
JP2004261839A (en) Multiple electrode gas shielded arc welding method
JP3117287B2 (en) Consumable electrode arc welding method
JPS62248597A (en) Flux cored wire for gas shielded arc welding
JP3820179B2 (en) Titanium alloy welding wire for MIG welding and welding method
JP2749968B2 (en) High current density welding method
JPH11226735A (en) Gas shield arc welding method
JPS583778A (en) Arc welding method
JPH04157069A (en) Double gas shielded metal arc welding method
JP3947422B2 (en) MIG welding method of titanium or titanium alloy
JP2731968B2 (en) Overlay welding method for titanium or titanium alloy surface
JP2016535678A (en) Method of overlaying electric arc with gas protection consisting of argon / helium gas mixture
JPH0729205B2 (en) High-speed gas shield arc welding method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080124

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110118

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20110330

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20110404

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20110405

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110628