JP3820179B2 - Titanium alloy welding wire for MIG welding and welding method - Google Patents

Titanium alloy welding wire for MIG welding and welding method Download PDF

Info

Publication number
JP3820179B2
JP3820179B2 JP2002126679A JP2002126679A JP3820179B2 JP 3820179 B2 JP3820179 B2 JP 3820179B2 JP 2002126679 A JP2002126679 A JP 2002126679A JP 2002126679 A JP2002126679 A JP 2002126679A JP 3820179 B2 JP3820179 B2 JP 3820179B2
Authority
JP
Japan
Prior art keywords
welding
titanium alloy
titanium
mig
wire
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002126679A
Other languages
Japanese (ja)
Other versions
JP2003311480A (en
Inventor
俊介 深見
満男 石井
泰治 長谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2002126679A priority Critical patent/JP3820179B2/en
Publication of JP2003311480A publication Critical patent/JP2003311480A/en
Application granted granted Critical
Publication of JP3820179B2 publication Critical patent/JP3820179B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、船舶、建築構造物などに使用されるチタンまたはチタン合金部材の溶接の際に使用されるMIG溶接用チタン合金溶接ワイヤに関する。
【0002】
【従来の技術】
従来より、チタンまたはチタン合金は、高い耐食性が要求される船舶、建築構造物、自動車、自動二輪車等に使用されており、最近においてはその使用量が益々増加している。このチタンまたはチタン合金の溶接に際しては、現在では、主に非消耗電極式溶接方法の1種であるTIG溶接方法(タングステンイナートガスメタル溶接方法)を採用している。これに対して、消耗電極式溶接方法であるMIG溶接方法(イナートガスメタルアーク溶接方法)では、TIG溶接方法に比較して数倍以上の溶接能率が得られるという利点を有するものの、純チタン製の溶接ワイヤを用いてMIG溶接を行った場合、溶接アークが極めて不安定になる。
【0003】
これは、チタンおよびチタン合金をMIG溶接方法で溶接した場合、アークは陰極点を維持するために、チタンおよびチタン合金の被溶接材の表面酸化膜が残存する位置にアークが激しく移動して暴れるワンダリング現象が生じるため、溶接スパッタが多量に発生し、母材となるチタンおよびチタン合金にスパッタが付着する。また、このワンダリング現象によって溶接ビードが蛇行するという問題があり、溶接部の外観不良が頻発している。このため、チタンおよびチタン合金をMIG溶接方法で溶接するという危険は極力忌避されてきた。
【0004】
一方、TIG溶接方法を採用した場合には、高融点の非消耗電極を使用してアークを発生させて、母材に生成される溶融池に、溶接ワイヤを供給しながら溶接を行うためにスパッタ発生はない。また、電極側が負極性で、被溶接側が正極性であるために、被溶接材表面に生成する酸化膜を除去するクリーニング作用があることから上記ワンダリング現象が生じることはなく、依って、溶接ビードは蛇行はなく、良好な溶接外観形状が得られる。このために、チタンおよびチタン合金の溶接に際しては専らTIG溶接方法が採用されていた。
【0005】
また、TIG溶接では溶接トーチを適正な位置に保持しつつ、溶接ワイヤも適正な位置に保持する必要がある。そのために、工場等で溶接トーチと溶接ワイヤを適切な位置に保持できる装置を準備できる場合は良いものの、非溶接物が大型の構造物である場合には、溶接作業者がこれら溶接トーチと溶接ワイヤ等を適切な位置に保持しつつ、溶接進行に伴って移動しなければならないために溶接作業者にかかる負担は想像もできない。更に、溶接トーチ内に溶接ワイヤを送給するガイド装置が組み込まれているものは、MIG溶接用半自動溶接トーチに比較して極めて高価である。加えて、TIG溶接は、MIG溶接に比べて溶接入熱が小さいために溶接時間が長く、そのために溶接能率が悪いという問題がある。また、溶接時間が長いためにシールドガスに使用するガス量が多量となり、コスト高となる。
【0006】
例えば、特公昭59−226159号公報には、加工組織をなす2本のチタン帯板の長さ方向端面を突き合わせ、TIG溶接して溶接部近傍の母材部を軟化焼鈍することで破断することのないチタン帯板の接続方法が開示されている。このように、従来ではチタン帯板の溶接に際しては専らTIG溶接方法での溶接が行われている。また、特公平12−280076号公報には、不活性ガスに微量の酸化性ガスを添加したシールドガス、及びチタン又はチタン合金の消耗電極を使用してパルス溶接電流を通電して溶接するチタン又はチタン合金のアーク溶接方法が開示されている。しかし、シールドガスから酸素或いは酸化物を供給すると溶接アークを安定化させるだけでなく、溶接金属内に大量の酸素が混入するために、溶接部が硬化し、伸びが低下するなどの機会的特性の劣化を招くことになる。
【0007】
【発明が解決しようとする課題】
本発明は、上述した従来技術の問題点に鑑み、チタン又はチタン合金をMIG溶接方法を用いて、安定、かつ高能率に、かつ半自動溶接による現場溶接を可能とし、溶接時間短縮によるシールドガス使用量低減によるコスト削減を図ったMIG溶接用チタン合金溶接ワイヤ、溶接方法および溶着金属を提供するものである。
【0008】
【課題を解決するための手段】
本発明は、上記課題を解決するためになされたもので、その要旨は次の通りである。
(1)チタンまたはチタン合金用溶接ワイヤであって、前記ワイヤが管状のチタンまたはチタン合金製で、コア部軸方向に中空部を有し、この中空部に、Al:0.5〜10質量%含むチタン合金粉末、Al酸化物の何れか1種を充填したことを特徴とするMIG溶接用チタン合金溶接ワイヤ。
(2)前記粉末に、更にO:1.0質量%以下を含有することを特徴とする(1)記載のMIG溶接用チタン合金溶接ワイヤ。
(3)前記粉末の粒径が1〜100μmであることを特徴とする(1)または(2)記載のMIG溶接用チタン合金溶接ワイヤ。
(4)前記溶接ワイヤの断面外径が、1.6〜2.0mmであることを特徴とする(1)〜(3)の何れかに記載のMIG溶接用チタン合金溶接ワイヤ。
(5)チタンまたはチタン合金のMIG溶接において、(1)〜(4)に記載の何れかの溶接ワイヤを用い、かつ以下の条件を満たすパルス溶接電流で溶接することを特徴とするチタンまたはチタン合金のMIG溶接方法。
【0009】
300A≦(ピーク電流)≦500A
2.0≦(ピーク電流)/(ベース電流)≦5.0
【0010】
【発明の実施の形態】
先ず、MIG溶接に使用する溶接装置について図1を用いて説明する。図1において、被溶接材1に対し、溶接部位の直上に、中心に溶接ワイヤ3、その外周に別途設けたシールドガス供給装置3から供給されるシールドガス4を溶融地5に向けて噴射する噴射口を備えたMIG溶接用トーチ2を配置し、溶接電流を通電して溶接作業を行い、溶接ビード6を形成する。一般に、チタンまたはチタン合金は鋼などに比べて低温で酸化し易く、鋼で用いる溶接トーチ先端のみのガスシールドでは、溶接金属が酸化して硬化し、溶接金属の良好な伸びが得られなくなる。そのために、溶接直後の溶接トーチの後方にシールドボックスを設けて、溶接アーク点の後方もArガスなどの不活性ガスでシールドする。
【0011】
本発明で用いる上記シールドガス供給装置3は、シールドガス供給パイプ3−1から供給されたシールドガスをシールドボックス3−2内に一旦取り込み、このシールドボックス3−2内に、シールドガスが溶接ビード6の表面に均一に供給されるように、溶接方向と平行にガス供給パイプ3−3を配置し、ガス出口3−4を溶接ビード6と反対の出口に複数箇所設けてガス出口から噴射するシールドガス4′をシールドボックス3−2内の上壁に当ててから、下面の溶接ビード6に当てる方法が採用される。
【0012】
図2に従来方法によるMIG溶接を行った場合のワンダリング現象によるスパッタの飛散状況を、また図3に溶接ビード外観の模式図をそれぞれ示した。図2に示すように、従来のチタンおよびチタン合金のMIG溶接においては、アークが陰極点を維持するために溶接アークが極めて不安定になり、被溶接材の表面酸化膜が残存する位置にアークが激しく移動して暴れるワンダリング現象のために溶接スパッタが多量に発生し、母材表面にスパッタ7が飛散して付着する。また、図3に示すように、上記スパッタの飛散・付着に加え、ワンダリング現象によって溶接ビードが蛇行し、溶接部の外観不良の発生および溶接金属の強度低下となる。図3において、ワンダリング現象が起こると溶接ビード始端部の外側に、上記ワンダリング現象によってアークがうねり幅方向に移動した痕跡が残り、極めて劣悪な溶接ビード形状となる。
【0013】
そこで、本発明においては、チタンまたはチタン合金用溶接ワイヤとしてコア部軸方向に中空部を有する管状とし、この中空部にAl:0.5〜10質量%、必要に応じてO:1.0質量%以下を含むチタン合金粉末、Al23 に代表されるAl酸化物粉末の何れか1種を充填した、断面外径が1.6〜2.0mmの溶接ワイヤを使用し、更に好ましくは、この溶接ワイヤを用いて、以下の条件を満たすパルス溶接電流で溶接することによりワンダリング現象を起こさず、安定してMIG溶接しうる条件を見いだしたものである。
【0014】
300A≦(ピーク電流)≦500A
2.0≦(ピーク電流)/(ベース電流)≦5.0
上記溶接ワイヤのコア部に充填されるチタン合金粉末或いはAl酸化物の粉末中に含まれるAl量は、0.5〜10質量%、好ましくは2〜10質量%、必要に応じてO量を1.0質量%以下、を含有させ、これを用いてMIG溶接すると、MIG溶接時のアークが安定してワンダリング現象が減少し、ほぼ0mmとなり、しかもスパッタが少なくなり、溶接ビードの蛇行も減少し、図4に示すような、良好な溶接ビードの外観形状を得ることができる。しかし、このAl量が0.5質量%未満、或いは10質量%超では、アークが不安定となってワンダリング現象が大きくなり、溶接ビード始端部の外側にワンダリング現象の痕跡が残り、ワンダリング現象幅が大きくなる。また、溶接ビードの蛇行幅も大きくなり外観形状の不良部の発生が増大するのである。なお、Oはアークを安定させる上からも必要な元素で、しかも、このアークを安定させる酸素がアーク近傍のみに存在するため溶融池への進入が非常に少なくなるため継ぎ手性能が劣化しないことから、その添加量は1.0質量%以下が好ましい。
【0015】
また、本発明においては、上述した溶接ワイヤを用いてMIG溶接する場合の操業条件として、溶接電源にパルス溶接電源を用い、かつ、300A≦(ピーク電流)≦500A、および2.0≦(ピーク電流)/(ベース電流)≦5.0、の条件を満たすパルス溶接電流を用いて溶接することによりワンダリング現象を起こさず、安定してMIG溶接しうる条件を採用することが好ましい。
【0016】
すなわち、図5に示すように上記条件内でMIG溶接することにより極めて良好な溶接ビード(図5中の◎)を得ることができる。また、上記条件を外れた場合においても良好な溶接ビード(図5中の○)を得ることができる。なお、上記の良好な溶接ビード外観とは、ワンダリング現象幅(Ww)が0mm、ビード蛇行幅(Wb)が0.2超0.6mm以下を云い、極めて良好な溶接ビード外観とは、ワンダリング現象幅(Ww)が0mm、ビード蛇行幅(Wb)が0.2mm以下を云う。
【0017】
このような溶接ワイヤを用い、かつ上述で特定した溶接条件を採用してチタン或いはチタン合金をMIG溶接した場合には、チタンまたはチタン合金の溶着部の組成が、質量%で、Al:0.5〜10%、O:0〜1.0%、残部チタンである溶着金属を得ることができる。
【0018】
また、本発明においては、溶接時の溶滴移行を規則的、かつスムースに行うため、一般にパルス溶接電流を用いて溶接電流をパルス状に制御して溶接することが知られているが、本発明におけるMIG溶接においては、通常の直流溶接電源の代わりに、直流パルス溶接電源を用いてパルス溶接電流を使用することで、ワンダリング現象幅、或いは溶接ビード蛇行幅を更に現象させることができる。
【0019】
【実施例】
<実施例1>
被溶接材料として、板厚:12.7mmのV開先(90°)を有する純チタン材を、溶接電流:300A、溶接電圧:30V、溶接速度:100cm/min 、流量:251/min のArガスをシールドガスとして用い、Al量を様々に変化するチタン合金粉末またはAl酸化物粉末を充填したチタンベースの径1.6mmφの溶接ワイヤでMIG溶接を行った。その結果を表1に示した。
【0020】
【表1】

Figure 0003820179
【0021】
なお、表1において、ワンダリング現象幅とは、ワンダリング現象によりアークが不安定となってワンダリング現象が大きくなり、溶接ビード始端部の外側にワンダリング現象の痕跡が残る幅をいい、溶接ビード蛇行幅とは、溶接ビード始端部が最も凹んでいる位置を通って溶接方向に平行な直線と、溶接ビード始端部が最も出っ張っている位置を通って溶接方向に平行な直線との最短距離をいう。(図3参照)
<実施例2>
被溶接材料として、板厚:12.7mmのV開先(90°)を有する純チタン材を、溶接速度:50〜100cm/min 、流量:251/min のArガスをシールドガスとして用いた溶接条件で、更にパルス溶接電流のピーク電流を200Aから600Aに、ベース電流を50Aから250Aの範囲内で溶接を行った結果を表2および図5に示した。
【0022】
【表2】
Figure 0003820179
【0023】
表2および図5から分かるように、ピーク溶接電流が300Aから500Aで、かつピーク電流/ベース電流が2.0〜5.0の範囲内にある場合にはワンダリング幅およびビード蛇行幅が著しく減少し、溶接ビードの外観形状も極めて良好であった。
【0024】
【発明の効果】
以上述べたように、本発明は、チタン又はチタン合金をMIG溶接方法を用いて、安定、かつ高能率に、かつ半自動溶接による現場溶接を可能とし、溶接時間短縮によるシールドガス使用量低減によるコスト削減を図ったMIG溶接用チタン合金溶接ワイヤ、溶接方法および溶接金属の提供を可能にする。
【図面の簡単な説明】
【図1】MIG溶接装置の外観模式図。
【図2】MIG溶接法の外観模式図。
【図3】従来のMIG溶接による溶接ビードの平面模式図。
【図4】本発明によるMIG溶接による溶接ビードの平面模式図。
【図5】パルス溶接時の適正溶接電流範囲を示す図。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a titanium alloy welding wire for MIG welding used for welding titanium or titanium alloy members used in ships, building structures and the like.
[0002]
[Prior art]
Conventionally, titanium or a titanium alloy has been used for ships, building structures, automobiles, motorcycles, and the like that require high corrosion resistance, and recently, the amount of use has been increasing. At the time of welding titanium or a titanium alloy, a TIG welding method (tungsten inert gas metal welding method), which is one of non-consumable electrode type welding methods, is currently employed. On the other hand, the MIG welding method (inert gas metal arc welding method) which is a consumable electrode type welding method has an advantage that a welding efficiency several times or more can be obtained as compared with the TIG welding method, but is made of pure titanium. When MIG welding is performed using a welding wire, the welding arc becomes extremely unstable.
[0003]
This is because, when titanium and a titanium alloy are welded by the MIG welding method, the arc violently moves to the position where the surface oxide film of the material to be welded of titanium and titanium alloy remains in order to maintain the cathode spot. Since the wandering phenomenon occurs, a large amount of welding spatter is generated, and the spatter adheres to titanium and titanium alloy as a base material. Further, there is a problem that the weld bead meanders due to the wandering phenomenon, and the appearance defect of the welded portion frequently occurs. For this reason, the danger of welding titanium and titanium alloys by the MIG welding method has been avoided as much as possible.
[0004]
On the other hand, when the TIG welding method is adopted, an arc is generated using a non-consumable electrode having a high melting point, and sputtering is performed in order to perform welding while supplying a welding wire to the molten pool generated in the base material. There is no occurrence. In addition, since the electrode side is negative and the welded side is positive, the wandering phenomenon does not occur because there is a cleaning action to remove the oxide film generated on the surface of the material to be welded. The bead does not meander and a good weld appearance shape is obtained. For this reason, the TIG welding method has been exclusively employed for welding titanium and titanium alloys.
[0005]
In TIG welding, it is necessary to hold the welding wire in an appropriate position while holding the welding torch in an appropriate position. Therefore, if it is possible to prepare a device that can hold the welding torch and welding wire in an appropriate position at a factory, etc., but if the non-welded product is a large structure, the welding operator can The burden on the welding operator cannot be imagined because the wire or the like must be moved as the welding progresses while being held in an appropriate position. Furthermore, the one in which the guide device for feeding the welding wire is incorporated in the welding torch is extremely expensive as compared with the semi-automatic welding torch for MIG welding. In addition, TIG welding has a problem that welding time is long because welding heat input is smaller than MIG welding, and therefore welding efficiency is poor. Further, since the welding time is long, the amount of gas used for the shield gas becomes large, resulting in an increase in cost.
[0006]
For example, in Japanese Examined Patent Publication No. 59-226159, the end faces in the length direction of two titanium strips forming a processed structure are brought into contact with each other, and TIG welding is performed to soften and anneal the base metal part in the vicinity of the welded part. A method of connecting a titanium strip without a gap is disclosed. As described above, conventionally, when the titanium strip is welded, welding is performed exclusively by the TIG welding method. Japanese Patent Publication No. 12-280076 discloses a shield gas in which a trace amount of an oxidizing gas is added to an inert gas and titanium or a titanium or titanium alloy consumable electrode, and is welded by applying a pulse welding current. A method for arc welding of a titanium alloy is disclosed. However, supplying oxygen or oxide from the shielding gas not only stabilizes the welding arc, but a large amount of oxygen is mixed in the weld metal, so the welded part hardens and the elongation is reduced. Will lead to deterioration.
[0007]
[Problems to be solved by the invention]
In view of the above-described problems of the prior art, the present invention enables stable and highly efficient on-site welding by semi-automatic welding using titanium or a titanium alloy, and uses shield gas by shortening the welding time. The present invention provides a titanium alloy welding wire for MIG welding, a welding method, and a weld metal in which the cost is reduced by reducing the amount.
[0008]
[Means for Solving the Problems]
The present invention has been made to solve the above problems, and the gist thereof is as follows.
(1) A welding wire for titanium or titanium alloy, wherein the wire is made of tubular titanium or titanium alloy , and has a hollow portion in the axial direction of the core portion, and Al: 0.5 to 10 mass in the hollow portion A titanium alloy welding wire for MIG welding, which is filled with any one of titanium alloy powder containing 1% and Al oxide.
(2) The titanium alloy welding wire for MIG welding according to (1), wherein the powder further contains O: 1.0% by mass or less.
(3) The titanium alloy welding wire for MIG welding according to (1) or (2), wherein the powder has a particle size of 1 to 100 μm.
(4) The titanium alloy welding wire for MIG welding according to any one of (1) to (3), wherein an outer diameter of a cross section of the welding wire is 1.6 to 2.0 mm.
(5) In titanium or titanium alloy MIG welding, any one of the welding wires described in (1) to (4) is used and welding is performed with a pulse welding current that satisfies the following conditions: Alloy MIG welding method.
[0009]
300A ≦ (peak current) ≦ 500A
2.0 ≦ (peak current) / (base current) ≦ 5.0
[0010]
DETAILED DESCRIPTION OF THE INVENTION
First, a welding apparatus used for MIG welding will be described with reference to FIG. In FIG. 1, a welding gas 3 is sprayed to a welded material 1 toward a melted ground 5 immediately above a welding site, with a welding wire 3 at the center and a shield gas supply device 3 separately provided on the outer periphery thereof. A MIG welding torch 2 having an injection port is arranged, and welding work is performed by applying a welding current to form a weld bead 6. In general, titanium or a titanium alloy is easily oxidized at a low temperature as compared with steel and the like, and in a gas shield having only a welding torch tip used in steel, the weld metal is oxidized and hardened, and good elongation of the weld metal cannot be obtained. Therefore, a shield box is provided behind the welding torch immediately after welding, and the rear of the welding arc point is also shielded with an inert gas such as Ar gas.
[0011]
The shield gas supply device 3 used in the present invention temporarily takes the shield gas supplied from the shield gas supply pipe 3-1 into the shield box 3-2, and the shield gas is welded to the shield bead 3-2. The gas supply pipe 3-3 is arranged in parallel with the welding direction so as to be uniformly supplied to the surface of the gas 6, and a plurality of gas outlets 3-4 are provided at the outlet opposite to the weld bead 6 and injected from the gas outlet. A method is adopted in which the shield gas 4 ′ is applied to the upper wall in the shield box 3-2 and then applied to the weld bead 6 on the lower surface.
[0012]
FIG. 2 shows the spatter scattering state due to the wandering phenomenon in the case of performing MIG welding by the conventional method, and FIG. 3 shows a schematic diagram of the appearance of the weld bead. As shown in FIG. 2, in conventional MIG welding of titanium and titanium alloys, the arc remains at the cathode spot, so that the welding arc becomes extremely unstable, and the arc is placed at the position where the surface oxide film of the work piece remains. As a result of the wandering phenomenon, the spatter 7 is scattered and adheres to the surface of the base material. Further, as shown in FIG. 3, in addition to the scattering and adhesion of the spatter, the weld bead meanders due to the wandering phenomenon, resulting in the appearance defect of the weld and the strength of the weld metal. In FIG. 3, when the wandering phenomenon occurs, a trace of the arc moving in the waviness width direction due to the wandering phenomenon remains outside the weld bead starting end portion, resulting in a very poor weld bead shape.
[0013]
Therefore, in the present invention, the welding wire for titanium or titanium alloy has a tubular shape having a hollow portion in the axial direction of the core portion. Al: 0.5 to 10% by mass in the hollow portion, and O: 1.0 as necessary. It is more preferable to use a welding wire having a cross-sectional outer diameter of 1.6 to 2.0 mm filled with any one of titanium alloy powder containing less than mass% and Al oxide powder typified by Al 2 O 3. The inventors have found out that the welding wire can be stably welded with MIG without causing a wandering phenomenon by welding with a pulse welding current that satisfies the following conditions.
[0014]
300A ≦ (peak current) ≦ 500A
2.0 ≦ (peak current) / (base current) ≦ 5.0
The amount of Al contained in the titanium alloy powder or Al oxide powder filled in the core portion of the welding wire is 0.5 to 10% by mass, preferably 2 to 10% by mass, and if necessary, the O amount. When MIG welding is performed using 1.0% by mass or less, the arc during MIG welding is stabilized and the wandering phenomenon is reduced to almost 0 mm, spatter is reduced, and the welding bead meanders. As a result, the appearance shape of a good weld bead as shown in FIG. 4 can be obtained. However, if the Al content is less than 0.5% by mass or more than 10% by mass, the arc becomes unstable and the wandering phenomenon becomes large, and a wandering trace remains on the outer side of the weld bead starting end. The ring phenomenon width becomes large. In addition, the meandering width of the weld bead is increased, and the occurrence of a defective portion of the appearance shape is increased. Note that O is an element necessary for stabilizing the arc. Moreover, since oxygen that stabilizes the arc exists only in the vicinity of the arc, entry into the molten pool is very small, and the joint performance is not deteriorated. The addition amount is preferably 1.0% by mass or less.
[0015]
Further, in the present invention, as an operation condition in performing MIG welding using the above-described welding wire, a pulse welding power source is used as the welding power source, and 300 A ≦ (peak current) ≦ 500 A, and 2.0 ≦ (peak) It is preferable to employ a condition in which MIG welding can be stably performed without causing a wandering phenomenon by welding using a pulse welding current that satisfies the condition of (current) / (base current) ≦ 5.0.
[0016]
That is, as shown in FIG. 5, a very good weld bead (◎ in FIG. 5) can be obtained by MIG welding within the above conditions. Even when the above conditions are not satisfied, a good weld bead (◯ in FIG. 5) can be obtained. The above-mentioned good weld bead appearance means that the wandering phenomenon width (Ww) is 0 mm and the bead meandering width (Wb) is more than 0.2 and not more than 0.6 mm. The ring phenomenon width (Ww) is 0 mm and the bead meandering width (Wb) is 0.2 mm or less.
[0017]
When such a welding wire is used and when the welding conditions specified above are adopted and titanium or a titanium alloy is MIG welded, the composition of the welded portion of titanium or the titanium alloy is expressed by mass%, Al: 0.00. The weld metal which is 5 to 10%, O: 0 to 1.0%, and the balance titanium can be obtained.
[0018]
Further, in the present invention, in order to perform droplet transfer regularly and smoothly during welding, it is generally known that welding is performed by controlling the welding current in a pulse shape using a pulse welding current. In the MIG welding according to the present invention, the wandering phenomenon width or the welding bead meandering width can be further caused by using a pulse welding current using a DC pulse welding power source instead of a normal DC welding power source.
[0019]
【Example】
<Example 1>
As a material to be welded, a pure titanium material having a V groove (90 °) with a plate thickness of 12.7 mm, an Ar of welding current: 300 A, welding voltage: 30 V, welding speed: 100 cm / min, flow rate: 251 / min Using gas as a shielding gas, MIG welding was performed with a 1.6 mmφ diameter titanium-based welding wire filled with titanium alloy powder or Al oxide powder with various amounts of Al. The results are shown in Table 1.
[0020]
[Table 1]
Figure 0003820179
[0021]
In Table 1, the width of the wandering phenomenon means a width in which the wandering phenomenon becomes large due to the unstable arc due to the wandering phenomenon, and the trace of the wandering phenomenon remains outside the weld bead starting end. The meandering width of the bead is the shortest distance between a straight line parallel to the welding direction through the position where the welding bead start end is most recessed and a straight line parallel to the welding direction through the position where the welding bead start end protrudes most. Say. (See Figure 3)
<Example 2>
As a material to be welded, a pure titanium material having a V groove (90 °) with a plate thickness of 12.7 mm, welding using Ar gas as a shielding gas with a welding speed of 50 to 100 cm / min and a flow rate of 251 / min. Table 2 and FIG. 5 show the results of welding under the conditions that the peak current of the pulse welding current was further changed from 200 A to 600 A and the base current was changed from 50 A to 250 A.
[0022]
[Table 2]
Figure 0003820179
[0023]
As can be seen from Table 2 and FIG. 5, when the peak welding current is 300 A to 500 A and the peak current / base current is in the range of 2.0 to 5.0, the wandering width and the bead meandering width are remarkably increased. The external shape of the weld bead was extremely good.
[0024]
【The invention's effect】
As described above, the present invention enables stable and highly efficient on-site welding by semi-automatic welding of titanium or a titanium alloy using the MIG welding method, and the cost of reducing the amount of shield gas used by shortening the welding time. It is possible to provide a titanium alloy welding wire for MIG welding, a welding method, and a weld metal that are reduced.
[Brief description of the drawings]
FIG. 1 is a schematic external view of a MIG welding apparatus.
FIG. 2 is a schematic external view of a MIG welding method.
FIG. 3 is a schematic plan view of a welding bead by conventional MIG welding.
FIG. 4 is a schematic plan view of a weld bead by MIG welding according to the present invention.
FIG. 5 is a diagram showing an appropriate welding current range during pulse welding.

Claims (5)

チタンまたはチタン合金用溶接ワイヤであって、前記ワイヤが管状のチタンまたはチタン合金製で、コア部軸方向に中空部を有し、この中空部に、Al:0.5〜10質量%を含むチタン合金粉末、Al酸化物の粉末の何れか1種を充填したことを特徴とするMIG溶接用チタン合金溶接ワイヤ。A welding wire for titanium or a titanium alloy, wherein the wire is made of tubular titanium or a titanium alloy and has a hollow portion in the axial direction of the core portion, and the hollow portion contains Al: 0.5 to 10% by mass A titanium alloy welding wire for MIG welding, which is filled with any one of titanium alloy powder and Al oxide powder. 前記粉末に、更にO:1.0質量%以下を含有することを特徴とする請求項1記載のMIG溶接用チタン合金溶接ワイヤ。  2. The titanium alloy welding wire for MIG welding according to claim 1, wherein the powder further contains O: 1.0% by mass or less. 前記粉末の粒径が1〜100μmであることを特徴とする請求項1または2記載のMIG溶接用チタン合金溶接ワイヤ。  3. The titanium alloy welding wire for MIG welding according to claim 1, wherein the powder has a particle size of 1 to 100 μm. 前記溶接ワイヤの断面外径が、1.6〜2.0mmであることを特徴とする請求項1〜3の何れかに記載のMIG溶接用チタン合金溶接ワイヤ。  The titanium alloy welding wire for MIG welding according to any one of claims 1 to 3, wherein the welding wire has a cross-sectional outer diameter of 1.6 to 2.0 mm. チタンまたはチタン合金のMIG溶接において、請求項1〜4に記載の何れかの溶接ワイヤを用い、かつ以下の条件を満たすパルス溶接電流を用いて溶接することを特徴とするチタンまたはチタン合金のMIG溶接方法。
300A≦(ピーク電流)≦500A
2.0≦(ピーク電流)/(ベース電流)≦5.0
In MIG welding of titanium or a titanium alloy, the welding wire according to any one of claims 1 to 4 is used and welding is performed using a pulse welding current that satisfies the following conditions: MIG of titanium or titanium alloy Welding method.
300A ≦ (peak current) ≦ 500A
2.0 ≦ (peak current) / (base current) ≦ 5.0
JP2002126679A 2002-04-26 2002-04-26 Titanium alloy welding wire for MIG welding and welding method Expired - Fee Related JP3820179B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002126679A JP3820179B2 (en) 2002-04-26 2002-04-26 Titanium alloy welding wire for MIG welding and welding method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002126679A JP3820179B2 (en) 2002-04-26 2002-04-26 Titanium alloy welding wire for MIG welding and welding method

Publications (2)

Publication Number Publication Date
JP2003311480A JP2003311480A (en) 2003-11-05
JP3820179B2 true JP3820179B2 (en) 2006-09-13

Family

ID=29541020

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002126679A Expired - Fee Related JP3820179B2 (en) 2002-04-26 2002-04-26 Titanium alloy welding wire for MIG welding and welding method

Country Status (1)

Country Link
JP (1) JP3820179B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103406685A (en) * 2011-11-02 2013-11-27 兰州大学 One-dimensional tin and silver binary nanometer welding flux for micrometer/nanometer welding

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100335225C (en) * 2004-07-15 2007-09-05 武汉理工大学 Large pulse power supply heating welding method for Ti-6Al-4V titanium alloy
CN115179558A (en) * 2022-08-10 2022-10-14 安阳市超高工业技术有限责任公司 Seamless welding method for ultra-high molecular weight polyethylene plates

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103406685A (en) * 2011-11-02 2013-11-27 兰州大学 One-dimensional tin and silver binary nanometer welding flux for micrometer/nanometer welding
CN103406685B (en) * 2011-11-02 2016-01-13 兰州大学 For the one-dimensional tin silver bielement nano solder of micro-/ nano welding

Also Published As

Publication number Publication date
JP2003311480A (en) 2003-11-05

Similar Documents

Publication Publication Date Title
US6723954B2 (en) Straight polarity metal cored wire
EP1762324B2 (en) Flux system to reduce copper cracking
EP2377637B1 (en) Method of high-current-density gas-shielded arc welding using a flux-cored wire
JP2005262319A (en) Gas-metal arc welding method of ferrous alloy
JP2007000933A (en) Tig welding or braze welding with metal transfer via liquid bridge
EP2610361B1 (en) Flux-cored welding wire for carbon steel and process for arc welding
JP3993150B2 (en) Flux-cored wire for two-electrode electrogas arc welding, two-electrode electrogas arc welding method, and two-electrode electrogas arc welding apparatus
JP6091974B2 (en) Welding manufacturing method, welding method, welding apparatus
JP4538518B2 (en) Gas shield arc brazing method for steel sheet
JP2001259888A (en) Flux cored wire for welding galvanized steel sheet having excellent pit resistance and blowhole resistance
JP3820179B2 (en) Titanium alloy welding wire for MIG welding and welding method
JP3881588B2 (en) Welding method of titanium alloy for MIG welding
JP3987754B2 (en) MIG welding method of titanium or titanium alloy
JP3596723B2 (en) Two-electrode vertical electrogas arc welding method
JP3987771B2 (en) MIG welding method of titanium or titanium alloy and weld metal
JP3881587B2 (en) MIG welding method of titanium or titanium alloy with excellent arc stability
JP3947422B2 (en) MIG welding method of titanium or titanium alloy
JPH09248668A (en) Gas shielded consumable electrode arc brazing method
JP2021159959A (en) Multiple electrode gas shielded one-side arc welding method and multiple electrode gas shielded one-side arc welding equipment
JP2004066273A (en) Titanium alloy welding wire for mig welding, welding method, and weld metal
JP2003320457A (en) Method for mig welding titanium and titanium alloy
JP2003019564A (en) Shield gas for arc-welding aluminum or aluminum-base alloy and arc-welding method
JP2833279B2 (en) Steel pipe welding method
JPS5978779A (en) Welding method for preventing melt-down in end part of welding in tig welding
JPS62248597A (en) Flux cored wire for gas shielded arc welding

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041217

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060221

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060424

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060606

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060616

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090623

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100623

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100623

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110623

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110623

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120623

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees