JP3987771B2 - MIG welding method of titanium or titanium alloy and weld metal - Google Patents

MIG welding method of titanium or titanium alloy and weld metal Download PDF

Info

Publication number
JP3987771B2
JP3987771B2 JP2002230139A JP2002230139A JP3987771B2 JP 3987771 B2 JP3987771 B2 JP 3987771B2 JP 2002230139 A JP2002230139 A JP 2002230139A JP 2002230139 A JP2002230139 A JP 2002230139A JP 3987771 B2 JP3987771 B2 JP 3987771B2
Authority
JP
Japan
Prior art keywords
welding
titanium
titanium alloy
welding method
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002230139A
Other languages
Japanese (ja)
Other versions
JP2004066304A (en
Inventor
俊介 深見
満男 石井
秀樹 藤井
泰治 長谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2002230139A priority Critical patent/JP3987771B2/en
Publication of JP2004066304A publication Critical patent/JP2004066304A/en
Application granted granted Critical
Publication of JP3987771B2 publication Critical patent/JP3987771B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、船舶、建築構造物などに使用されるチタンまたはチタン合金部材の溶接の際に使用されるチタンまたはチタン合金のMIG溶接方法と溶着金属に関する。
【0002】
【従来の技術】
従来より、チタンまたはチタン合金は、高い耐食性が要求される船舶、建築構造物、自動車、自動二輪車等に使用されており、最近においてはその使用量が益々増加している。このチタンまたはチタン合金の溶接に際しては、現在では、主に非消耗電極式溶接方法の1種であるTIG溶接方法(タングステンイナートガスメタル溶接方法)を採用している。これに対して、消耗電極式溶接方法であるMIG溶接方法(イナートガスメタルアーク溶接方法)では、TIG溶接方法に比較して数倍以上の溶接能率が得られるという利点を有するものの、純チタン製の溶接ワイヤを用いてMIG溶接を行った場合、溶接アークが極めて不安定になる。これは、チタンおよびチタン合金をMIG溶接方法で溶接した場合、アークは陰極点を維持するために、チタンおよびチタン合金の被溶接材の表面酸化膜が残存する位置にアークが激しく移動して暴れるワンダリング現象が生じるため、溶接スパッタが多量に発生し、母材となるチタンおよびチタン合金にスパッタが付着する。また、このワンダリング現象によって溶接ビードが蛇行するという問題があり、溶接部の外観不良が頻発している。このため、チタンおよびチタン合金をMIG溶接方法で溶接するという危険は極力忌避されてきた。
【0003】
一方、TIG溶接方法を採用した場合には、高融点の非消耗電極を使用してアークを発生させて、母材に生成される溶融池に、溶接ワイヤを供給しながら溶接を行うためにスパッタ発生はない。また、電極側が負極性で、被溶接側が正極性であるために、被溶接材表面に生成する酸化膜を除去するクリーニング作用がないことから上記ワンダリング現象が生じることはなく、依って、溶接ビードは蛇行はなく、良好な溶接外観形状が得られる。このために、チタンおよびチタン合金の溶接に際しては専らTIG溶接方法が採用されていた。
【0004】
また、TIG溶接では溶接トーチを適正な位置に保持しつつ、溶接ワイヤも適正な位置に保持する必要がある。そのために、工場等で溶接トーチと溶接ワイヤを適切な位置に保持できる装置を準備できる場合は良いものの、非溶接物が大型の構造物である場合には、溶接作業者がこれら溶接トーチと溶接ワイヤ等を適切な位置に保持しつつ、溶接進行に伴って移動しなければならないために溶接作業者にかかる負担は想像もできない。更に、溶接トーチ内に溶接ワイヤを送給するガイド装置が組み込まれているものは、MIG溶接用半自動溶接トーチに比較して極めて高価である。加えて、TIG溶接は、MIG溶接に比べて溶接入熱が小さいために溶接時間が長く、そのために溶接能率が悪いという問題がある。また、溶接時間が長いためにシールドガスに使用するガス量が多量となり、コスト高となる。
【0005】
例えば、特開昭59−226159号公報には、加工組織をなす2本のチタン帯板の長さ方向端面を突き合わせ、TIG溶接して溶接部近傍の母材部を軟化焼鈍することで破断することのないチタン帯板の接続方法が開示されている。このように、従来ではチタン帯板の溶接に際しては専らTIG溶接方法での溶接が行われている。また、特開2000−280076号公報には、不活性ガスに微量の酸化性ガスを添加したシールドガス、及びチタン又はチタン合金の消耗電極を使用してパルス溶接電流を通電して溶接するチタン又はチタン合金のアーク溶接方法が開示されている。しかし、シールドガスから酸素或いは酸化物を供給すると溶接アークを安定化させるだけでなく、溶接金属内に大量の酸素が混入するために、溶接部が硬化し、伸びが低下するなどの機械的特性の劣化を招くことになる。
【0006】
一方、交流電流を使用するMIG溶接については、例えば、200〜400Aの交流電流を通電し、チタン材等の被溶接物を不活性ガスを充満した密閉したチャンバー内で手溶接する技術が特開昭63−101079号公報に開示されている。また、交流アーク溶接方法として、正極性溶接と逆極性溶接を交互に繰り返す方法もあるが、正極性期間と逆極性期間の比率が難しく実用化されていない現状にある。そこで、消耗電極と母材間に直流電圧を印加し、消耗電極の極性を反転してアークを形成する手段も提案されているが、何れにしろ工業的に交流電流を用いるチタン又はチタン合金のMIG溶接は実用化されていない。
【0007】
【発明が解決しようとする課題】
本発明は、上述した従来技術の問題点に鑑み、交流電流によるチタン又はチタン合金をMIG溶接において、安定、かつ高能率に、かつ半自動溶接による現場溶接を可能とし、溶接時間短縮によるシールドガス使用量低減によるコスト削減を図ったチタンまたはチタン合金のMIG溶接方法および溶着金属を提供するものである。
【0008】
【課題を解決するための手段】
本発明は、上記課題を解決するためになされたもので、その要旨は、チタンまたはチタン合金のMIG溶接方法において、好ましくは断面外径が、1.6mm以上2.0mm以下の溶接ワイヤの組成が、Al:0.5〜10質量%、好ましくはO≦1.0質量%を含み、残部チタン及び不可避的不純物からなるチタン合金ワイヤを用い、MIG溶接に際し、下記電流条件を満足する交流パルス溶接電流でチタン母材またはチタン合金母材を溶接することを特徴とするチタンまたはチタン合金のMIG溶接方法、
200A≦正極性のピーク電流≦500A
−50A≧負極性のピーク電流
1.0≦|正極性のピーク電流/負極性のピーク電流|
また、本発明は、上述の溶接方法で得た溶着金属の組成が、Al:0.5〜10質量%、O≦1.0質量%、残部チタン及び不可避的不純物からなる溶着金属、
である。
【0009】
【発明の実施の形態】
先ず、MIG溶接に使用する溶接装置について図1を用いて説明する。図1において、被溶接材1に対し、溶接部位の直上に、中心に溶接ワイヤ8、その外周に別途設けたシールドガス供給装置3から供給されるシールドガス4を溶融地5に向けて噴射する噴射口を備えたMIG溶接用トーチ2を配置し、溶接電流を通電して溶接作業を行い、溶接ビード6を形成する。一般に、チタンまたはチタン合金は鋼などに比べて低温で酸化し易く、鋼で用いる溶接トーチ先端のみのガスシールドでは、溶接金属が酸化して硬化し、溶接金属の良好な伸びが得られなくなる。そのために、溶接直後の溶接トーチの後方にシールドボックスを設けて、溶接アーク点の後方もArガスなどの不活性ガスでシールドする。本発明で用いる上記シールドガス供給装置3は、シールドガス供給パイプ3−1から供給されたシールドガスをシールドボックス3−2内に一旦取り込み、このシールドボックス3−2内に、シールドガスが溶接ビード6の表面に均一に供給されるように、溶接方向と平行にガス供給パイプ3−3を配置し、ガス出口3−4を溶接ビード6と反対の出口に複数箇所設けてガス出口から噴射するシールドガス4′をシールドボックス3−2内の上壁に当ててから、下面の溶接ビード6に当てる方法が採用される。
【0010】
図2に従来方法によるMIG溶接を行った場合のワンダリング現象によるスパッタの飛散状況を、また図3に溶接ビード外観の模式図をそれぞれ示した。図2に示すように、従来のチタンおよびチタン合金のMIG溶接においては、アークが陰極点を維持するために溶接アークが極めて不安定になり、被溶接材の表面酸化膜が残存する位置にアークが激しく移動して暴れるワンダリング現象のために溶接スパッタが多量に発生し、母材表面にスパッタ7が飛散して付着する。また、図3に示すように、上記スパッタの飛散・付着に加え、ワンダリング現象によって溶接ビードが蛇行し、溶接部の外観不良の発生および溶接金属の強度低下となる。図3において、ワンダリング現象が起こると溶接ビード始端部の外側に、上記ワンダリング現象によってアークがうねり幅方向に移動した痕跡が残り、極めて劣悪な溶接ビード形状となる。
【0011】
一方、ガスシールドアーク溶接において、トーチ(棒)プラスの直流MIG溶接法は、母材表面の酸化皮膜が除去されるクリーニング作用がある反面、このクリーニング作用が大き過ぎてワンダリング現象が大きくなり、同一入熱ではトーチマイナスに比較して溶け込みが深く、溶着金属量が少ないという欠点がある。また、交流MIG溶接は、トーチプラス、トーチマイナスの両者があり、前者では母材のクリーニング作用があり、後者では母材のクリーニング作用が抑制され、ワンダリング現象が小さくなるという利点に加え、トーチプラスに比べて溶け込みが浅くなり、溶着金属量が多くなるという利点がある。特に、この交流MIG溶接は、薄板の溶接では溶け落ちが出にくくなるというメリットがあるが、厚板の溶接では同一入熱でトーチプラスの直流に比べ溶着金属量が少なくなるので溶接能率が低下するというデメリットがある。
【0012】
上述した母材のクリーニング作用について詳細に説明する。この母材のクリーニング作用は、トーチプラスの極性で発生するが、トーチマイナスの極性では発生しない。一般に、アルミニウム材の溶接に際しては表面に存在する電気伝導度の小さい酸化膜(Al)を除去してアークが安定し、酸素が溶接金属内に入りにくくなるために継手特性が向上する。一方、チタン材のTIG溶接では上述したアルミニウム材と同一の効果を奏する。しかし、チタン材のMIG溶接では、使用する溶接電流が大きいためにクリーニング作用も大きくなり、ワンダリング現象が発生する。そこで、交流を使用してMIG溶接を行うことで上記ワンダリング現象を抑制することが可能となり、優れたビード形状が得られることになる。
【0013】
そこで、本発明は上記知見を元に、チタンまたはチタン合金のMIG溶接方法において、溶接ワイヤの組成が、Al:0.5〜10質量%、必要に応じてO≦1.0質量%含有し、残部チタン及び不可避的不純物からなる、ワイヤの断面外径が、1.6mm以上2.0mm以下のチタン合金ワイヤを用い、MIG溶接に際し、電流条件として、
200A≦正極性のピーク電流≦500A
−50A≧負極性のピーク電流
1.0≦|正極性のピーク電流/負極性のピーク電流|
の条件を満足する交流パルス溶接電流でチタン母材またはチタン合金母材を溶接することで、ワンダリング現象を抑制し、優れたビード形状を有するチタンまたはチタン合金のMIG溶接が可能となったものである。
【0014】
このような溶接ワイヤを用い、かつ上述で特定した溶接条件を採用してチタン或いはチタン合金をMIG溶接した場合には、チタンまたはチタン合金の溶着部の組成が、質量%で、Al:0.5〜10%、O:0〜1.0%、残部チタンである溶接金属を得ることができる。
【0015】
【実施例】
被溶接材料として、板厚:12.7mmのV開先(90°)を有する純チタン材を、交流パルス溶接電流として、正のピーク溶接電流値を150〜550A、負のピーク溶接電流値を−30〜−550Aの範囲に変動させ、溶接速度:100cm/min、流量:25l/minのArガスをシールドガスとして用い、ワイヤの断面外径1.2mmφ、1.6mmφの溶接ワイヤでMIG溶接を行った。表1に本発明で使用した交流パルス溶接電流とビード外観評価を示した。なお、図5は、表1の評価をそのまま図示したものであり、同図では負のピーク溶接電流値を横軸に、正のピーク溶接電流値を縦軸にとり、それぞれのビード外観評価が「極めて良好」な場合を◎印で、また、「良好」な場合を○印で表している。この表1から分かるように、正のピーク溶接電流と負のピーク溶接電流の値、或いはそれらの比を適切に選択することにより優れたビード外観を得ることができる(図4参照)。また、表2に溶接ワイヤ径と溶接状態および外観評価の結果を示した。この表2からも分かるように、本発明で規定するような、正のピーク溶接電流と負のピーク溶接電流値と1.6mm以上2.0mm以下の径を有する溶接ワイヤを用いることで優れたビード外観を得ることができる。
【0016】
【表1】

Figure 0003987771
【0017】
【表2】
Figure 0003987771
【0018】
なお、表2において、ワンダリング現象幅とは、ワンダリング現象によりアークが不安定となってワンダリング現象が大きくなり、溶接ビード始端部の外側にワンダリング現象の痕跡が残る幅をいい、溶接ビード蛇行幅とは、溶接ビード始端部が最も凹んでいる位置を通って溶接方向に平行な直線と、溶接ビード始端部が最も出っ張っている位置を通って溶接方向に平行な直線との最短距離をいう。(図3参照)
【0019】
【発明の効果】
以上述べたように、本発明は、チタン又はチタン合金をMIG溶接方法を用いて、安定、かつ高能率に、かつ半自動溶接による現場溶接を可能とし、溶接時間短縮によるシールドガス使用量低減によるコスト削減を図ったMIG溶接用チタン合金溶接ワイヤ、溶接方法および溶接金属の提供を可能にする。
【図面の簡単な説明】
【図1】 MIG溶接装置の外観模式図。
【図2】 MIG溶接法の外観模式図。
【図3】 従来のMIG溶接による溶接ビードの平面模式図。
【図4】 本発明によるMIG溶接による溶接ビードの平面模式図。
【図5】 パルス溶接時の適正溶接電流範囲を示す図。
【符号の説明】
1…被溶接材
2…MIG溶接用トーチ
3…シールドガス供給装置
3−1…シールドガス供給パイプ
3−2…シールドボックス
3−3…ガス供給パイプ
3−4…ガス出口
4、4’…シールドガス
5…溶融池
6…溶接ビード
7…スパッタ
8…溶接ワイヤ [0001]
BACKGROUND OF THE INVENTION
The present invention relates to a titanium or titanium alloy MIG welding method and weld metal used for welding titanium or titanium alloy members used in ships, building structures, and the like.
[0002]
[Prior art]
Conventionally, titanium or a titanium alloy has been used for ships, building structures, automobiles, motorcycles, and the like that require high corrosion resistance, and recently, the amount of use has been increasing. At the time of welding titanium or a titanium alloy, a TIG welding method (tungsten inert gas metal welding method), which is one of non-consumable electrode type welding methods, is currently employed. On the other hand, the MIG welding method (inert gas metal arc welding method) which is a consumable electrode type welding method has an advantage that a welding efficiency several times or more can be obtained as compared with the TIG welding method, but is made of pure titanium. When MIG welding is performed using a welding wire, the welding arc becomes extremely unstable. This is because, when titanium and a titanium alloy are welded by the MIG welding method, the arc violently moves to the position where the surface oxide film of the material to be welded of titanium and titanium alloy remains in order to maintain the cathode spot. Since the wandering phenomenon occurs, a large amount of welding spatter is generated, and the spatter adheres to titanium and titanium alloy as a base material. Further, there is a problem that the weld bead meanders due to the wandering phenomenon, and the appearance defect of the welded portion frequently occurs. For this reason, the danger of welding titanium and titanium alloys by the MIG welding method has been avoided as much as possible.
[0003]
On the other hand, when the TIG welding method is adopted, an arc is generated using a non-consumable electrode having a high melting point, and sputtering is performed in order to perform welding while supplying a welding wire to the molten pool generated in the base material. There is no occurrence. In addition, since the electrode side is negative and the welded side is positive, the wandering phenomenon does not occur because there is no cleaning action to remove the oxide film formed on the surface of the material to be welded. The bead does not meander and a good weld appearance shape is obtained. For this reason, the TIG welding method has been exclusively employed for welding titanium and titanium alloys.
[0004]
In TIG welding, it is necessary to hold the welding wire in an appropriate position while holding the welding torch in an appropriate position. Therefore, if it is possible to prepare a device that can hold the welding torch and welding wire in an appropriate position at a factory, etc., but if the non-welded product is a large structure, the welding operator can The burden on the welding operator cannot be imagined because the wire or the like must be moved as the welding progresses while being held in an appropriate position. Furthermore, the one in which the guide device for feeding the welding wire is incorporated in the welding torch is extremely expensive as compared with the semi-automatic welding torch for MIG welding. In addition, TIG welding has a problem that welding time is long because welding heat input is smaller than MIG welding, and therefore welding efficiency is poor. Further, since the welding time is long, the amount of gas used for the shield gas becomes large, resulting in an increase in cost.
[0005]
For example, in Japanese Patent Application Laid-Open No. 59-226159, the end surfaces in the length direction of two titanium strips forming a processed structure are brought into contact with each other, and TIG welding is performed to soften and anneal the base metal portion in the vicinity of the welded portion. There is disclosed a method for connecting a titanium strip without any problems. As described above, conventionally, when the titanium strip is welded, welding is performed exclusively by the TIG welding method. Japanese Patent Laid-Open No. 2000-280076 discloses a shield gas in which a trace amount of an oxidizing gas is added to an inert gas, and titanium or titanium that is welded by applying a pulse welding current using a consumable electrode of titanium or a titanium alloy. A method for arc welding of a titanium alloy is disclosed. However, when oxygen or oxide is supplied from the shielding gas, not only the welding arc is stabilized, but also a large amount of oxygen is mixed in the weld metal, so that the welded part is hardened and the elongation is reduced. Will lead to deterioration.
[0006]
On the other hand, with regard to MIG welding using an alternating current, for example, there is a technique in which an alternating current of 200 to 400 A is applied and a workpiece such as titanium material is manually welded in a sealed chamber filled with an inert gas. This is disclosed in Japanese Patent Laid-Open No. 63-101079. In addition, as an AC arc welding method, there is a method in which positive polarity welding and reverse polarity welding are alternately repeated. However, the ratio between the positive polarity period and the reverse polarity period is difficult and is not practically used. Therefore, a means for forming an arc by applying a DC voltage between the consumable electrode and the base material and reversing the polarity of the consumable electrode has been proposed. MIG welding has not been put to practical use.
[0007]
[Problems to be solved by the invention]
In view of the above-mentioned problems of the prior art, the present invention enables stable and highly efficient on-site welding by semi-automatic welding in titanium or titanium alloy by alternating current, and uses shield gas by shortening the welding time. It is an object of the present invention to provide a MIG welding method of titanium or a titanium alloy and a deposited metal which are intended to reduce the cost by reducing the amount.
[0008]
[Means for Solving the Problems]
The present invention has been made to solve the above-mentioned problems, and the gist of the present invention is a composition of a welding wire having a cross-sectional outer diameter of 1.6 mm or more and 2.0 mm or less in a MIG welding method of titanium or a titanium alloy. However, Al: 0.5 to 10% by mass, preferably O ≦ 1.0% by mass, using a titanium alloy wire consisting of the remaining titanium and unavoidable impurities, and MIG welding, the AC pulse satisfying the following current conditions A titanium or titanium alloy MIG welding method characterized by welding a titanium base material or a titanium alloy base material with a welding current;
200A ≦ positive current peak current ≦ 500A
-50 A ≧ negative peak current 1.0 ≦ | positive polarity peak current / negative polarity peak current of |
In the present invention, the composition of the weld metal obtained by the above welding method is Al: 0.5 to 10% by mass, O ≦ 1.0% by mass, the balance titanium and inevitable impurities,
It is.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
First, a welding apparatus used for MIG welding will be described with reference to FIG. In Figure 1, relative to the material to be welded 1, directly above the welding site, welding the center wire ya 8, a shielding gas 4 supplied from the shielding gas feeding device 3 provided separately on the outer periphery toward the molten fabric 5 injection A torch 2 for MIG welding having an injection port is arranged, and welding work is performed by applying a welding current to form a weld bead 6. In general, titanium or a titanium alloy is easily oxidized at a low temperature as compared with steel and the like, and in a gas shield having only a welding torch tip used in steel, the weld metal is oxidized and hardened, and good elongation of the weld metal cannot be obtained. Therefore, a shield box is provided behind the welding torch immediately after welding, and the rear of the welding arc point is also shielded with an inert gas such as Ar gas. The shield gas supply device 3 used in the present invention temporarily takes the shield gas supplied from the shield gas supply pipe 3-1 into the shield box 3-2, and the shield gas is welded to the shield bead 3-2. The gas supply pipe 3-3 is arranged in parallel with the welding direction so as to be uniformly supplied to the surface of the gas 6, and a plurality of gas outlets 3-4 are provided at the outlet opposite to the weld bead 6 and injected from the gas outlet. A method is adopted in which the shield gas 4 ′ is applied to the upper wall in the shield box 3-2 and then applied to the weld bead 6 on the lower surface.
[0010]
FIG. 2 shows the spatter scattering state due to the wandering phenomenon in the case of performing MIG welding by the conventional method, and FIG. 3 shows a schematic diagram of the appearance of the weld bead. As shown in FIG. 2, in conventional MIG welding of titanium and titanium alloys, the arc remains at the cathode spot, so that the welding arc becomes extremely unstable, and the arc is placed at the position where the surface oxide film of the work piece remains. As a result of the wandering phenomenon, the spatter 7 is scattered and adheres to the surface of the base material. Further, as shown in FIG. 3, in addition to the scattering and adhesion of the spatter, the weld bead meanders due to the wandering phenomenon, resulting in the appearance defect of the weld and the strength of the weld metal. In FIG. 3, when the wandering phenomenon occurs, a trace of the arc moving in the waviness width direction due to the wandering phenomenon remains outside the weld bead starting end portion, resulting in a very poor weld bead shape.
[0011]
On the other hand, in gas shielded arc welding, the direct-current MIG welding method with a torch (rod) plus has a cleaning action that removes the oxide film on the surface of the base material, but this cleaning action is too large and the wandering phenomenon becomes large. With the same heat input, there is a disadvantage that the penetration is deeper than the torch minus and the amount of deposited metal is small. In addition, AC MIG welding has both torch plus and torch minus. In the former, there is a cleaning action of the base material, and in the latter, the cleaning action of the base material is suppressed, and the wandering phenomenon is reduced. Compared with the plus, there is an advantage that the penetration becomes shallower and the amount of deposited metal increases. In particular, this AC MIG welding has the advantage that it will be difficult to melt through the welding of thin plates, but the welding efficiency will be lower because the amount of deposited metal will be less than that of direct torch plus with the same heat input in the welding of thick plates. There is a disadvantage of doing.
[0012]
The above-described cleaning operation of the base material will be described in detail. This cleaning action of the base material occurs with a torch plus polarity, but does not occur with a torch minus polarity. Generally, when welding an aluminum material, the oxide film (Al 2 O 3 ) having a small electrical conductivity existing on the surface is removed to stabilize the arc, and oxygen becomes difficult to enter the weld metal, thereby improving joint characteristics. . On the other hand, TIG welding of titanium material has the same effect as the aluminum material described above. However, in MIG welding of a titanium material, since the welding current to be used is large, the cleaning action is also increased, and a wandering phenomenon occurs. Therefore, by performing MIG welding using alternating current, the wandering phenomenon can be suppressed, and an excellent bead shape can be obtained.
[0013]
Therefore, the present invention is based on the above knowledge, and in the MIG welding method of titanium or titanium alloy, the composition of the welding wire contains Al: 0.5 to 10% by mass, and optionally O ≦ 1.0% by mass. Using a titanium alloy wire having a cross-sectional outer diameter of 1.6 mm or more and 2.0 mm or less, consisting of the remaining titanium and unavoidable impurities, during MIG welding, as a current condition,
200A ≦ positive current peak current ≦ 500A
-50 A ≧ negative peak current 1.0 ≦ | positive polarity peak current / negative polarity peak current of |
By welding the titanium base material or titanium alloy base material with an AC pulse welding current that satisfies the above conditions, the wandering phenomenon can be suppressed and MIG welding of titanium or titanium alloy having an excellent bead shape has become possible. It is.
[0014]
When such a welding wire is used and when the welding conditions specified above are adopted and titanium or a titanium alloy is MIG welded, the composition of the welded portion of titanium or the titanium alloy is expressed by mass%, Al: 0.00. A weld metal that is 5 to 10%, O: 0 to 1.0%, and the balance titanium can be obtained.
[0015]
【Example】
As a material to be welded, a pure titanium material having a V groove (90 °) with a plate thickness of 12.7 mm is used as an AC pulse welding current, and a positive peak welding current value is 150 to 550 A, and a negative peak welding current value is MIG welding with a welding wire having a cross-sectional outer diameter of 1.2 mmφ and 1.6 mmφ using Ar gas with a welding speed of 100 cm / min and a flow rate of 25 l / min as a shielding gas, with a range of −30 to −550 A. Went. Table 1 shows the AC pulse welding current and bead appearance evaluation used in the present invention. 5 shows the evaluation of Table 1 as it is. In FIG. 5, the negative peak welding current value is plotted on the horizontal axis and the positive peak welding current value is plotted on the vertical axis. The case of “very good” is indicated by ◎, and the case of “good” is indicated by ○. As can be seen from Table 1, an excellent bead appearance can be obtained by appropriately selecting the values of the positive peak welding current and the negative peak welding current, or the ratio thereof (see FIG. 4) . Table 2 shows the results of the welding wire diameter, welding state, and appearance evaluation. As can be seen from Table 2, it was excellent in using a welding wire having a positive peak welding current, a negative peak welding current value, and a diameter of 1.6 mm or more and 2.0 mm or less as defined in the present invention. A bead appearance can be obtained.
[0016]
[Table 1]
Figure 0003987771
[0017]
[Table 2]
Figure 0003987771
[0018]
In Table 2, the width of the wandering phenomenon means a width in which the wandering phenomenon becomes large due to the unstable arc due to the wandering phenomenon, and the trace of the wandering phenomenon remains on the outside of the weld bead starting end. The meandering width of the bead is the shortest distance between the straight line parallel to the welding direction through the position where the weld bead start end is most recessed and the straight line parallel to the weld direction through the position where the weld bead start end protrudes most. Say. (See Figure 3)
[0019]
【The invention's effect】
As described above, the present invention enables stable and highly efficient on-site welding by semi-automatic welding using titanium or a titanium alloy by using the MIG welding method, and reduces the amount of shielding gas used by shortening the welding time. It is possible to provide a titanium alloy welding wire for MIG welding, a welding method, and a weld metal that are reduced.
[Brief description of the drawings]
FIG. 1 is a schematic external view of a MIG welding apparatus.
FIG. 2 is a schematic external view of the MIG welding method.
FIG. 3 is a schematic plan view of a weld bead formed by conventional MIG welding.
FIG. 4 is a schematic plan view of a weld bead by MIG welding according to the present invention.
FIG. 5 is a diagram showing an appropriate welding current range during pulse welding.
[Explanation of symbols]
1 ... Material to be welded
2 ... MIG welding torch
3 ... Shield gas supply device
3-1. Shield gas supply pipe
3-2 ... Shield box
3-3 ... Gas supply pipe
3-4 ... Gas outlet
4, 4 '... shield gas
5 ... molten pool
6 ... Weld beads
7 ... Spatter
8 ... welding wire

Claims (4)

チタンまたはチタン合金のMIG溶接方法において、溶接ワイヤの組成が、Al:0.5〜10質量%、残部チタン及び不可避的不純物からなるチタン合金ワイヤを用い、MIG溶接に際し、下記電流条件を満足する交流パルス溶接電流でチタン母材またはチタン合金母材を溶接することを特徴とするチタンまたはチタン合金のMIG溶接方法。
200A≦正極性のピーク電流≦500A
−50A≧負極性のピーク電流
1.0≦|正極性のピーク電流/負極性のピーク電流|
In the MIG welding method of titanium or a titanium alloy, the composition of the welding wire is Al: 0.5 to 10% by mass, the titanium alloy wire consisting of the remaining titanium and unavoidable impurities is used, and the following current conditions are satisfied during MIG welding. A titanium or titanium alloy MIG welding method comprising welding a titanium base material or a titanium alloy base material with an AC pulse welding current.
200A ≦ positive current peak current ≦ 500A
-50 A ≧ negative peak current 1.0 ≦ | positive polarity peak current / negative polarity peak current of |
前記チタン合金ワイヤが、更に、O≦1.0質量%含有することを特徴とする請求項1記載のチタンまたはチタン合金のMIG溶接方法。  The titanium or titanium alloy MIG welding method according to claim 1, wherein the titanium alloy wire further contains O ≦ 1.0 mass%. 前記チタン合金ワイヤの断面外径が、1.6mm以上2.0mm以下であることを特徴とする請求項1または2記載のチタンまたはチタン合金のMIG溶接方法。  3. The titanium or titanium alloy MIG welding method according to claim 1, wherein the titanium alloy wire has a cross-sectional outer diameter of 1.6 mm or more and 2.0 mm or less. 請求項1〜3の何れかの溶接方法で溶接した溶着金属の組成が、Al:0.5〜10質量%、O≦1.0質量%、残部チタン及び不可避的不純物からなる溶着金属。  A weld metal in which the composition of the weld metal welded by the welding method according to any one of claims 1 to 3 is Al: 0.5 to 10% by mass, O ≦ 1.0% by mass, the remaining titanium and unavoidable impurities.
JP2002230139A 2002-08-07 2002-08-07 MIG welding method of titanium or titanium alloy and weld metal Expired - Fee Related JP3987771B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002230139A JP3987771B2 (en) 2002-08-07 2002-08-07 MIG welding method of titanium or titanium alloy and weld metal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002230139A JP3987771B2 (en) 2002-08-07 2002-08-07 MIG welding method of titanium or titanium alloy and weld metal

Publications (2)

Publication Number Publication Date
JP2004066304A JP2004066304A (en) 2004-03-04
JP3987771B2 true JP3987771B2 (en) 2007-10-10

Family

ID=32016312

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002230139A Expired - Fee Related JP3987771B2 (en) 2002-08-07 2002-08-07 MIG welding method of titanium or titanium alloy and weld metal

Country Status (1)

Country Link
JP (1) JP3987771B2 (en)

Also Published As

Publication number Publication date
JP2004066304A (en) 2004-03-04

Similar Documents

Publication Publication Date Title
JP3993150B2 (en) Flux-cored wire for two-electrode electrogas arc welding, two-electrode electrogas arc welding method, and two-electrode electrogas arc welding apparatus
JP2000084665A (en) Vertical downward build-up welding method
US11878374B2 (en) Welding gas compositions and method for use
JP6383319B2 (en) Multi-electrode single-sided single layer submerged arc welding method
JP3987771B2 (en) MIG welding method of titanium or titanium alloy and weld metal
JP3820179B2 (en) Titanium alloy welding wire for MIG welding and welding method
JP3881588B2 (en) Welding method of titanium alloy for MIG welding
JP2002144081A (en) Steel wire for mag welding and mag welding method using the same
US6884963B1 (en) Apparatus and method for welding duplex stainless steel
JP3987754B2 (en) MIG welding method of titanium or titanium alloy
JP3596723B2 (en) Two-electrode vertical electrogas arc welding method
JP2006088174A (en) Method for joining dissimilar materials
JP2021159959A (en) Multiple electrode gas shielded one-side arc welding method and multiple electrode gas shielded one-side arc welding equipment
JP3881587B2 (en) MIG welding method of titanium or titanium alloy with excellent arc stability
JP2833279B2 (en) Steel pipe welding method
JP2003019564A (en) Shield gas for arc-welding aluminum or aluminum-base alloy and arc-welding method
JPH07256456A (en) One-side submerged arc welding
JP3947422B2 (en) MIG welding method of titanium or titanium alloy
JP2004066273A (en) Titanium alloy welding wire for mig welding, welding method, and weld metal
JP6715682B2 (en) Submerged arc welding method
JP7435931B1 (en) Gas shielded arc welding method and welded joint manufacturing method
JP2003320457A (en) Method for mig welding titanium and titanium alloy
JP7435932B1 (en) Gas shielded arc welding method and welded joint manufacturing method
JP5099775B2 (en) AC plasma welding method
JP3583561B2 (en) Horizontal electrogas welding method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041217

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070319

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070403

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070604

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070703

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070713

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100720

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110720

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120720

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130720

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130720

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130720

Year of fee payment: 6

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130720

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees