JP2004066304A - Method of mig welding of titanium or titanium alloy, and deposited metal - Google Patents

Method of mig welding of titanium or titanium alloy, and deposited metal Download PDF

Info

Publication number
JP2004066304A
JP2004066304A JP2002230139A JP2002230139A JP2004066304A JP 2004066304 A JP2004066304 A JP 2004066304A JP 2002230139 A JP2002230139 A JP 2002230139A JP 2002230139 A JP2002230139 A JP 2002230139A JP 2004066304 A JP2004066304 A JP 2004066304A
Authority
JP
Japan
Prior art keywords
welding
titanium
titanium alloy
mig welding
mig
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002230139A
Other languages
Japanese (ja)
Other versions
JP3987771B2 (en
Inventor
Shunsuke Fukami
深見 俊介
Mitsuo Ishii
石井 満男
Hideki Fujii
藤井 秀樹
Taiji Hase
長谷 泰治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2002230139A priority Critical patent/JP3987771B2/en
Publication of JP2004066304A publication Critical patent/JP2004066304A/en
Application granted granted Critical
Publication of JP3987771B2 publication Critical patent/JP3987771B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To enable site welding of titanium or titanium alloy by semi-automatic welding consistently at high efficiency by using a MIG welding method, and to provide a titanium or titanium alloy MIG welding method for reducing a cost through reduction of the shield gas consumption by shortening the welding time. <P>SOLUTION: In the titanium or titanium alloy MIG welding, a titanium alloy wire having a composition consisting of, by mass, 0.5 to 10% Al and ≤ 1.0% O as necessary, and the balance titanium with inevitable impurities and the outer diameter of the wire section of ≥ 1.6 mm and ≤ 2.0 mm is used as a welding wire. In the MIG welding, a titanium base metal or a titanium alloy base metal is welded by the AC pulse welding current satisfying conditions that 200A ≤ peak current of positive polarity ≤ 500A, -50A ≤ peak current of negative polarity, and 1.0 ≤ peak current of positive polarity/peak current of negative polarity as the current conditions. The MIG welding of titanium or titanium alloy with excellent bead shape is performed by suppressing a wandering phenomenon. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、船舶、建築構造物などに使用されるチタンまたはチタン合金部材の溶接の際に使用されるMIG溶接用チタン合金溶接ワイヤに関する。
【0002】
【従来の技術】
従来より、チタンまたはチタン合金は、高い耐食性が要求される船舶、建築構造物、自動車、自動二輪車等に使用されており、最近においてはその使用量が益々増加している。このチタンまたはチタン合金の溶接に際しては、現在では、主に非消耗電極式溶接方法の1種であるTIG溶接方法(タングステンイナートガスメタル溶接方法)を採用している。これに対して、消耗電極式溶接方法であるMIG溶接方法(イナートガスメタルアーク溶接方法)では、TIG溶接方法に比較して数倍以上の溶接能率が得られるという利点を有するものの、純チタン製の溶接ワイヤを用いてMIG溶接を行った場合、溶接アークが極めて不安定になる。これは、チタンおよびチタン合金をMIG溶接方法で溶接した場合、アークは陰極点を維持するために、チタンおよびチタン合金の被溶接材の表面酸化膜が残存する位置にアークが激しく移動して暴れるワンダリング現象が生じるため、溶接スパッタが多量に発生し、母材となるチタンおよびチタン合金にスパッタが付着する。また、このワンダリング現象によって溶接ビードが蛇行するという問題があり、溶接部の外観不良が頻発している。このため、チタンおよびチタン合金をMIG溶接方法で溶接するという危険は極力忌避されてきた。
【0003】
一方、TIG溶接方法を採用した場合には、高融点の非消耗電極を使用してアークを発生させて、母材に生成される溶融池に、溶接ワイヤを供給しながら溶接を行うためにスパッタ発生はない。また、電極側が負極性で、被溶接側が正極性であるために、被溶接材表面に生成する酸化膜を除去するクリーニング作用があることから上記ワンダリング現象が生じることはなく、依って、溶接ビードは蛇行はなく、良好な溶接外観形状が得られる。このために、チタンおよびチタン合金の溶接に際しては専らTIG溶接方法が採用されていた。
【0004】
また、TIG溶接では溶接トーチを適正な位置に保持しつつ、溶接ワイヤも適正な位置に保持する必要がある。そのために、工場等で溶接トーチと溶接ワイヤを適切な位置に保持できる装置を準備できる場合は良いものの、非溶接物が大型の構造物である場合には、溶接作業者がこれら溶接トーチと溶接ワイヤ等を適切な位置に保持しつつ、溶接進行に伴って移動しなければならないために溶接作業者にかかる負担は想像もできない。更に、溶接トーチ内に溶接ワイヤを送給するガイド装置が組み込まれているものは、MIG溶接用半自動溶接トーチに比較して極めて高価である。加えて、TIG溶接は、MIG溶接に比べて溶接入熱が小さいために溶接時間が長く、そのために溶接能率が悪いという問題がある。また、溶接時間が長いためにシールドガスに使用するガス量が多量となり、コスト高となる。
【0005】
例えば、特公昭59−226159号公報には、加工組織をなす2本のチタン帯板の長さ方向端面を突き合わせ、TIG溶接して溶接部近傍の母材部を軟化焼鈍することで破断することのないチタン帯板の接続方法が開示されている。このように、従来ではチタン帯板の溶接に際しては専らTIG溶接方法での溶接が行われている。また、特公平12−280076号公報には、不活性ガスに微量の酸化性ガスを添加したシールドガス、及びチタン又はチタン合金の消耗電極を使用してパルス溶接電流を通電して溶接するチタン又はチタン合金のアーク溶接方法が開示されている。しかし、シールドガスから酸素或いは酸化物を供給すると溶接アークを安定化させるだけでなく、溶接金属内に大量の酸素が混入するために、溶接部が硬化し、伸びが低下するなどの機械的特性の劣化を招くことになる。
【0006】
一方、交流電流を使用するMIG溶接については、例えば、200〜400Aの交流電流を通電し、チタン材等の被溶接物を不活性ガスを充満した密閉したチャンバー内で手溶接する技術が特開昭63−101079号公報に開示されている。また、交流アーク溶接方法として、正極性溶接と逆極性溶接を交互に繰り返す方法もあるが、正極性期間と逆極性期間の比率が難しく実用化されていない現状にある。そこで、消耗電極と母材間に直流電圧を印加し、消耗電極の極性を反転してアークを形成する手段も提案されているが、何れにしろ工業的に交流電流を用いるチタン又はチタン合金のMIG溶接は実用化されていない。
【0007】
【発明が解決しようとする課題】
本発明は、上述した従来技術の問題点に鑑み、交流電流によるチタン又はチタン合金をMIG溶接において、安定、かつ高能率に、かつ半自動溶接による現場溶接を可能とし、溶接時間短縮によるシールドガス使用量低減によるコスト削減を図ったチタンまたはチタン合金のMIG溶接方法および溶接金属を提供するものである。
【0008】
【課題を解決するための手段】
本発明は、上記課題を解決するためになされたもので、その要旨は、チタンまたはチタン合金のMIG溶接方法において、好ましくは断面外径が、1.6mm以上2.0mm以下の溶接ワイヤの組成が、Al:0.5〜10質量%、好ましくはO≦1.0質量%を含み、残部チタン及び不可避的不純物からなるチタン合金ワイヤを用い、MIG溶接に際し、下記電流条件を満足する交流パルス溶接電流でチタン母材またはチタン合金母材を溶接することを特徴とするチタンまたはチタン合金のMIG溶接方法、
200A≦正極性のピーク電流≦500A
−50A≦負極性のピーク電流
1.0≦正極性のピーク電流/負極性のピーク電流
また、本発明は、上述の溶接方法で得た溶着金属の組成が、Al:0.5〜10質量%、O≦1.0質量%、残部チタン及び不可避的不純物からなる溶着金属、である。
【0009】
【発明の実施の形態】
先ず、MIG溶接に使用する溶接装置について図1を用いて説明する。図1において、被溶接材1に対し、溶接部位の直上に、中心に溶接ワイヤ3、その外周に別途設けたシールドガス供給装置3から供給されるシールドガス4を溶融地5に向けて噴射する噴射口を備えたMIG溶接用トーチ2を配置し、溶接電流を通電して溶接作業を行い、溶接ビード6を形成する。一般に、チタンまたはチタン合金は鋼などに比べて低温で酸化し易く、鋼で用いる溶接トーチ先端のみのガスシールドでは、溶接金属が酸化して硬化し、溶接金属の良好な伸びが得られなくなる。そのために、溶接直後の溶接トーチの後方にシールドボックスを設けて、溶接アーク点の後方もArガスなどの不活性ガスでシールドする。本発明で用いる上記シールドガス供給装置3は、シールドガス供給パイプ3−1から供給されたシールドガスをシールドボックス3−2内に一旦取り込み、このシールドボックス3−2内に、シールドガスが溶接ビード6の表面に均一に供給されるように、溶接方向と平行にガス供給パイプ3−3を配置し、ガス出口3−4を溶接ビード6と反対の出口に複数箇所設けてガス出口から噴射するシールドガス4′をシールドボックス3−2内の上壁に当ててから、下面の溶接ビード6に当てる方法が採用される。
【0010】
図2に従来方法によるMIG溶接を行った場合のワンダリング現象によるスパッタの飛散状況を、また図3に溶接ビード外観の模式図をそれぞれ示した。図2に示すように、従来のチタンおよびチタン合金のMIG溶接においては、アークが陰極点を維持するために溶接アークが極めて不安定になり、被溶接材の表面酸化膜が残存する位置にアークが激しく移動して暴れるワンダリング現象のために溶接スパッタが多量に発生し、母材表面にスパッタ7が飛散して付着する。また、図3に示すように、上記スパッタの飛散・付着に加え、ワンダリング現象によって溶接ビードが蛇行し、溶接部の外観不良の発生および溶接金属の強度低下となる。図3において、ワンダリング現象が起こると溶接ビード始端部の外側に、上記ワンダリング現象によってアークがうねり幅方向に移動した痕跡が残り、極めて劣悪な溶接ビード形状となる。
【0011】
一方、ガスシールドアーク溶接において、トーチ(棒)プラスの直流MIG溶接法は、母材表面の酸化皮膜が除去されるクリーニング作用がある反面、このクリーニング作用が大き過ぎてワンダリング現象が大きくなり、同一入熱ではトーチマイナスに比較して溶け込みが深く、溶着金属量が少ないという欠点がある。また、交流MIG溶接は、トーチプラス、トーチマイナスの両者があり、前者では母材のクリーニング作用があり、後者では母材のクリーニング作用が抑制され、ワンダリング現象が小さくなるという利点に加え、トーチプラスに比べて溶け込みが浅くなり、溶着金属量が多くなるという利点がある。特に、この交流MIG溶接は、薄板の溶接では溶け落ちが出にくくなるというメリットがあるが、厚板の溶接では同一入熱でトーチプラスの直流に比べ溶着金属量が少なくなるので溶接能率が低下するというデメリットがある。
【0012】
上述した母材のクリーニング作用について詳細に説明する。この母材のクリーニング作用は、トーチプラスの極性で発生するが、トーチマイナスの極性では発生しない。一般に、アルミニウム材の溶接に際しては表面に存在する電気伝導度の小さい酸化膜(Al O )を除去してアークが安定し、酸素が溶接金属内に入りにくくなるために継手特性が向上する。一方、チタン材のTIG溶接では上述したアルミニウム材と同一の効果を奏する。しかし、チタン材のMIG溶接では、使用する溶接電流が大きいためにクリーニング作用も大きくなり、ワンダリング現象が発生する。そこで、交流を使用してMIG溶接を行うことで上記ワンダリング現象を抑制することが可能となり、優れたビード形状が得られることになる。
【0013】
そこで、本発明は上記知見を元に、チタンまたはチタン合金のMIG溶接方法において、溶接ワイヤの組成が、Al:0.5〜10質量%、必要に応じてO≦1.0質量%含有し、残部チタン及び不可避的不純物からなる、ワイヤの断面外径が、1.6mm以上2.0mm以下のチタン合金ワイヤを用い、MIG溶接に際し、電流条件として、
200A≦正極性のピーク電流≦500A
−50A≦負極性のピーク電流
1.0≦正極性のピーク電流/負極性のピーク電流
の条件を満足する交流パルス溶接電流でチタン母材またはチタン合金母材を溶接することで、ワンダリング現象を抑制し、優れたビード形状を有するチタンまたはチタン合金のMIG溶接が可能となったものである。
【0014】
このような溶接ワイヤを用い、かつ上述で特定した溶接条件を採用してチタン或いはチタン合金をMIG溶接した場合には、チタンまたはチタン合金の溶着部の組成が、質量%で、Al:0.5〜10%、O:0〜1.0%、残部チタンである溶接金属を得ることができる。
【0015】
【実施例】
被溶接材料として、板厚:12.7mmのV開先(90°)を有する純チタン材を、交流パルス溶接電流として、正のピーク溶接電流値を150〜550A、負のピーク溶接電流値を−30〜−550Aの範囲に変動させ、溶接速度:100cm/min 、流量:25l/min のArガスをシールドガスとして用い、ワイヤの断面外径1.2mmφ、1.6mmφの溶接ワイヤでMIG溶接を行った。表1に本発明で使用した交流パルス溶接電流とビード外観評価を示した。この表1から分かるように、正のピーク溶接電流と負のピーク溶接電流の値、或いはそれらの比を適切に選択することにより優れたビード外観を得ることができる。また、表2に溶接ワイヤ径と溶接状態および外観評価の結果を示した。この表2からも分かるように、本発明で規定するような、正のピーク溶接電流と負のピーク溶接電流値と1.6mm以上2.0mm以下の径を有する溶接ワイヤを用いることで優れたビード外観を得ることができる。
【0016】
【表1】

Figure 2004066304
【0017】
【表2】
Figure 2004066304
【0018】
なお、表2において、ワンダリング現象幅とは、ワンダリング現象によりアークが不安定となってワンダリング現象が大きくなり、溶接ビード始端部の外側にワンダリング現象の痕跡が残る幅をいい、溶接ビード蛇行幅とは、溶接ビード始端部が最も凹んでいる位置を通って溶接方向に平行な直線と、溶接ビード始端部が最も出っ張っている位置を通って溶接方向に平行な直線との最短距離をいう。(図1参照)
【0019】
【発明の効果】
以上述べたように、本発明は、チタン又はチタン合金をMIG溶接方法を用いて、安定、かつ高能率に、かつ半自動溶接による現場溶接を可能とし、溶接時間短縮によるシールドガス使用量低減によるコスト削減を図ったMIG溶接用チタン合金溶接ワイヤ、溶接方法および溶接金属の提供を可能にする。
【図面の簡単な説明】
【図1】MIG溶接装置の外観模式図。
【図2】MIG溶接法の外観模式図。
【図3】従来のMIG溶接による溶接ビードの平面模式図。
【図4】本発明によるMIG溶接による溶接ビードの平面模式図。
【図5】パルス溶接時の適正溶接電流範囲を示す図。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a titanium alloy welding wire for MIG welding used when welding titanium or a titanium alloy member used for ships, building structures, and the like.
[0002]
[Prior art]
BACKGROUND ART Conventionally, titanium or a titanium alloy has been used for ships, building structures, automobiles, motorcycles, and the like that require high corrosion resistance, and the use of titanium or titanium alloy has been increasing recently. At the time of welding titanium or a titanium alloy, at present, a TIG welding method (tungsten inert gas metal welding method), which is one of the non-consumable electrode welding methods, is mainly employed. On the other hand, the MIG welding method (inert gas metal arc welding method), which is a consumable electrode welding method, has an advantage that a welding efficiency several times or more can be obtained as compared with the TIG welding method, but is made of pure titanium. When MIG welding is performed using a welding wire, a welding arc becomes extremely unstable. This is because when the titanium and the titanium alloy are welded by the MIG welding method, the arc is violently moved to a position where the surface oxide film of the material to be welded of the titanium and the titanium alloy remains so as to maintain the cathode spot. Since the wandering phenomenon occurs, a large amount of welding spatter is generated, and the spatter adheres to titanium and a titanium alloy as base materials. In addition, there is a problem that the weld bead meanders due to the wandering phenomenon, and poor appearance of the welded portion frequently occurs. For this reason, the danger of welding titanium and titanium alloy by the MIG welding method has been avoided as much as possible.
[0003]
On the other hand, when the TIG welding method is employed, an arc is generated using a non-consumable electrode having a high melting point, and a sputter is performed to perform welding while supplying a welding wire to a molten pool formed in the base material. No occurrence. In addition, since the electrode side has a negative polarity and the welded side has a positive polarity, the above-described wandering phenomenon does not occur because there is a cleaning action for removing an oxide film generated on the surface of the material to be welded. The bead does not meander, and a good weld appearance shape is obtained. For this reason, when welding titanium and a titanium alloy, the TIG welding method has been exclusively used.
[0004]
In TIG welding, it is necessary to hold a welding wire at an appropriate position while holding a welding torch at an appropriate position. For this reason, it is good to be able to prepare a device that can hold the welding torch and the welding wire in appropriate positions at a factory, etc. The burden on the welding operator cannot be imagined because it must be moved as the welding progresses while holding the wire and the like at an appropriate position. Further, a device incorporating a guide device for feeding a welding wire into a welding torch is extremely expensive as compared with a semi-automatic welding torch for MIG welding. In addition, TIG welding has a problem that welding time is long because welding heat input is smaller than MIG welding, and therefore welding efficiency is poor. Further, since the welding time is long, a large amount of gas is used as the shielding gas, which increases the cost.
[0005]
For example, Japanese Patent Publication No. 59-226159 discloses that two titanium strips forming a working structure are abutted with each other in a longitudinal direction, and the base material in the vicinity of the welded portion is softened and annealed by TIG welding to be broken. There is disclosed a method of connecting a titanium strip without any. As described above, conventionally, when welding a titanium strip, welding is performed exclusively by the TIG welding method. In Japanese Patent Publication No. 12-28076, there is disclosed a shield gas obtained by adding a trace amount of an oxidizing gas to an inert gas, and a titanium or titanium alloy to be welded by supplying a pulse welding current using a consumable electrode of titanium or a titanium alloy. An arc welding method for a titanium alloy is disclosed. However, supplying oxygen or oxide from the shielding gas not only stabilizes the welding arc, but also causes a large amount of oxygen to be mixed into the weld metal, causing the weld to harden and reduce mechanical properties such as reduced elongation. Will be degraded.
[0006]
On the other hand, for MIG welding using an alternating current, for example, a technique is known in which an alternating current of 200 to 400 A is applied to manually weld a workpiece such as a titanium material in a closed chamber filled with an inert gas. It is disclosed in JP-A-63-101779. Further, as an AC arc welding method, there is a method of alternately repeating positive polarity welding and reverse polarity welding. However, the ratio of the positive polarity period to the reverse polarity period is so difficult that it has not been put to practical use. Therefore, a means for applying a DC voltage between the consumable electrode and the base material and inverting the polarity of the consumable electrode to form an arc has been proposed. MIG welding has not been put to practical use.
[0007]
[Problems to be solved by the invention]
In view of the above-mentioned problems of the prior art, the present invention makes it possible to stably and efficiently perform on-site welding of titanium or a titanium alloy by AC current in MIG welding by semi-automatic welding, and to use a shielding gas by shortening welding time. It is an object of the present invention to provide a method for MIG welding titanium or a titanium alloy and a weld metal, in which cost is reduced by reducing the amount.
[0008]
[Means for Solving the Problems]
The present invention has been made in order to solve the above-mentioned problems, and the gist of the present invention is to provide a MIG welding method for titanium or a titanium alloy, the composition of a welding wire having a cross-sectional outer diameter of preferably 1.6 mm or more and 2.0 mm or less. However, in the case of MIG welding, an AC pulse that satisfies the following current conditions using a titanium alloy wire containing Al: 0.5 to 10% by mass, preferably O ≦ 1.0% by mass, the balance being titanium and unavoidable impurities. A titanium or titanium alloy MIG welding method, comprising welding a titanium base material or a titanium alloy base material with a welding current;
200A ≦ Positive peak current ≦ 500A
−50 A ≦ peak current of negative polarity 1.0 ≦ peak current of positive polarity / peak current of negative polarity Also, in the present invention, the composition of the deposited metal obtained by the above-described welding method is Al: 0.5 to 10 mass %, O ≦ 1.0% by mass, the balance being titanium and inevitable impurities.
[0009]
BEST MODE FOR CARRYING OUT THE INVENTION
First, a welding device used for MIG welding will be described with reference to FIG. In FIG. 1, a welding wire 3 is provided at a center of a workpiece 1 to be welded, and a shielding gas 4 supplied from a shielding gas supply device 3 separately provided on the outer periphery of the welding wire 3 is injected toward a molten ground 5. A MIG welding torch 2 having an injection port is arranged, and a welding current is applied to perform a welding operation to form a welding bead 6. Generally, titanium or a titanium alloy is easily oxidized at a lower temperature than steel or the like, and in a gas shield having only a welding torch tip used for steel, the weld metal is oxidized and hardened, and good elongation of the weld metal cannot be obtained. Therefore, a shield box is provided behind the welding torch immediately after welding, and the rear of the welding arc point is also shielded with an inert gas such as Ar gas. The shield gas supply device 3 used in the present invention once takes in the shield gas supplied from the shield gas supply pipe 3-1 into the shield box 3-2, and in this shield box 3-2, the shield gas is supplied with a welding bead. The gas supply pipe 3-3 is arranged in parallel with the welding direction so as to be uniformly supplied to the surface of the welding bead 6, and a plurality of gas outlets 3-4 are provided at the outlet opposite to the welding bead 6, and the gas is injected from the gas outlet. A method is adopted in which the shielding gas 4 'is applied to the upper wall of the shield box 3-2 and then to the welding bead 6 on the lower surface.
[0010]
FIG. 2 shows the state of spatter scattering due to the wandering phenomenon when MIG welding is performed by the conventional method, and FIG. 3 is a schematic view of the appearance of a weld bead. As shown in FIG. 2, in the conventional MIG welding of titanium and a titanium alloy, the arc is extremely unstable because the arc maintains a cathode point, and the arc is located at a position where the surface oxide film of the material to be welded remains. A large amount of welding spatter is generated due to the wandering phenomenon, which violently moves and violates, and spatter 7 scatters and adheres to the surface of the base material. Further, as shown in FIG. 3, in addition to the scattering and adhesion of the above-mentioned spatter, the weld bead meanders due to the wandering phenomenon, resulting in poor appearance of the welded portion and reduced strength of the weld metal. In FIG. 3, when the wandering phenomenon occurs, a trace that the arc has moved in the direction of the undulation width due to the wandering phenomenon remains outside the weld bead starting end portion, resulting in an extremely poor weld bead shape.
[0011]
On the other hand, in gas shielded arc welding, the DC MIG welding method using a torch (rod) plus has a cleaning action of removing an oxide film on the surface of a base material, but the cleaning action is too large to increase wandering phenomenon. At the same heat input, there is a drawback that the penetration is deeper and the amount of deposited metal is smaller than that of the torch minus. In addition, AC MIG welding has both torch plus and torch minus. The former has a cleaning effect of the base material, and the latter suppresses the cleaning operation of the base material, and has the advantage of reducing the wandering phenomenon. There is an advantage that the penetration becomes shallower and the amount of deposited metal becomes larger than that of the plus. In particular, this AC MIG welding has the advantage that it is difficult to cause burn-through when welding a thin plate. There is a disadvantage of doing so.
[0012]
The above-described cleaning operation of the base material will be described in detail. The cleaning action of the base material occurs with the torch plus polarity, but not with the torch minus polarity. Generally, at the time of welding an aluminum material, an oxide film (Al 2 O 3 ) having a small electric conductivity existing on the surface is removed to stabilize an arc, and it becomes difficult for oxygen to enter a weld metal, so that joint characteristics are improved. . On the other hand, TIG welding of a titanium material has the same effect as the aluminum material described above. However, in MIG welding of a titanium material, a large welding current is used, so that the cleaning action also increases, and a wandering phenomenon occurs. Therefore, by performing MIG welding using alternating current, the wandering phenomenon can be suppressed, and an excellent bead shape can be obtained.
[0013]
Therefore, based on the above findings, the present invention provides a MIG welding method for titanium or a titanium alloy in which the composition of the welding wire contains Al: 0.5 to 10% by mass, and if necessary, O ≦ 1.0% by mass. , A titanium alloy wire having a cross-sectional outer diameter of 1.6 mm or more and 2.0 mm or less consisting of titanium and unavoidable impurities is used.
200A ≦ Positive peak current ≦ 500A
The wandering phenomenon is caused by welding a titanium base material or a titanium alloy base material with an AC pulse welding current satisfying a condition of −50 A ≦ peak current of negative polarity 1.0 ≦ peak current of positive polarity / peak current of negative polarity. And MIG welding of titanium or titanium alloy having an excellent bead shape has become possible.
[0014]
When titanium or a titanium alloy is subjected to MIG welding by using such a welding wire and employing the welding conditions specified above, the composition of the welded portion of titanium or titanium alloy is expressed as Al: 0.1% by mass%. It is possible to obtain a weld metal that is 5 to 10%, O: 0 to 1.0%, and the balance titanium.
[0015]
【Example】
As a material to be welded, a pure titanium material having a V groove (90 °) with a plate thickness of 12.7 mm is used. As an AC pulse welding current, a positive peak welding current value of 150 to 550 A and a negative peak welding current value of MIG welding with a welding wire having a cross-sectional outer diameter of 1.2 mmφ and 1.6 mmφ using Ar gas with a welding speed of 100 cm / min and a flow rate of 25 l / min as a shielding gas while varying the range from −30 to −550 A Was done. Table 1 shows the AC pulse welding current and bead appearance evaluation used in the present invention. As can be seen from Table 1, an excellent bead appearance can be obtained by appropriately selecting the values of the positive peak welding current and the negative peak welding current, or their ratio. Table 2 shows the results of the welding wire diameter, the welding state, and the appearance evaluation. As can be seen from Table 2, the use of a welding wire having a positive peak welding current, a negative peak welding current value, and a diameter of 1.6 mm or more and 2.0 mm or less as defined in the present invention was excellent. A bead appearance can be obtained.
[0016]
[Table 1]
Figure 2004066304
[0017]
[Table 2]
Figure 2004066304
[0018]
In Table 2, the wandering phenomenon width means a width in which an arc becomes unstable due to the wandering phenomenon, the wandering phenomenon becomes large, and a trace of the wandering phenomenon remains outside the weld bead starting end. The meandering width of the bead is the shortest distance between a straight line parallel to the welding direction through the position where the weld bead start end is most concave and a straight line parallel to the weld direction through the position where the weld bead start end protrudes most. Say. (See Fig. 1)
[0019]
【The invention's effect】
As described above, the present invention makes it possible to stably and efficiently perform on-site welding of titanium or a titanium alloy by using a MIG welding method by semi-automatic welding, and to reduce costs by reducing the amount of shielding gas used by shortening welding time. It is possible to provide a titanium alloy welding wire for MIG welding, a welding method, and a weld metal which are reduced.
[Brief description of the drawings]
FIG. 1 is a schematic external view of a MIG welding apparatus.
FIG. 2 is a schematic external view of the MIG welding method.
FIG. 3 is a schematic plan view of a conventional weld bead formed by MIG welding.
FIG. 4 is a schematic plan view of a weld bead by MIG welding according to the present invention.
FIG. 5 is a diagram showing an appropriate welding current range during pulse welding.

Claims (4)

チタンまたはチタン合金のMIG溶接方法において、溶接ワイヤの組成が、Al:0.5〜10質量%、残部チタン及び不可避的不純物からなるチタン合金ワイヤを用い、MIG溶接に際し、下記電流条件を満足する交流パルス溶接電流でチタン母材またはチタン合金母材を溶接することを特徴とするチタンまたはチタン合金のMIG溶接方法。
200A≦正極性のピーク電流≦500A
−50A≦負極性のピーク電流
1.0≦正極性のピーク電流/負極性のピーク電流
In the MIG welding method of titanium or a titanium alloy, the composition of the welding wire uses a titanium alloy wire composed of 0.5 to 10% by mass of Al, the balance of titanium and unavoidable impurities, and satisfies the following current conditions in the MIG welding. A titanium or titanium alloy MIG welding method characterized by welding a titanium base material or a titanium alloy base material with an alternating pulse welding current.
200A ≦ Positive peak current ≦ 500A
−50 A ≦ peak current of negative polarity 1.0 ≦ peak current of positive polarity / peak current of negative polarity
前記チタン合金ワイヤが、更に、O≦1.0質量%含有することを特徴とする請求項1記載のチタンまたはチタン合金のMIG溶接方法。The MIG welding method for titanium or titanium alloy according to claim 1, wherein the titanium alloy wire further contains O ≦ 1.0% by mass. 前記チタン合金ワイヤの断面外径が、1.6mm以上2.0mm以下であることを特徴とする請求項1または2記載のチタンまたはチタン合金のMIG溶接方法。The MIG welding method for titanium or titanium alloy according to claim 1 or 2, wherein a cross-sectional outer diameter of the titanium alloy wire is 1.6 mm or more and 2.0 mm or less. 請求項1〜3の何れかの溶接方法で溶接した溶着金属の組成が、Al:0.5〜10質量%、O≦1.0質量%、残部チタン及び不可避的不純物からなる溶着金属。A weld metal having a composition of the weld metal welded by the welding method according to any one of claims 1 to 3 comprising Al: 0.5 to 10% by mass, O ≦ 1.0% by mass, the balance being titanium and unavoidable impurities.
JP2002230139A 2002-08-07 2002-08-07 MIG welding method of titanium or titanium alloy and weld metal Expired - Fee Related JP3987771B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002230139A JP3987771B2 (en) 2002-08-07 2002-08-07 MIG welding method of titanium or titanium alloy and weld metal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002230139A JP3987771B2 (en) 2002-08-07 2002-08-07 MIG welding method of titanium or titanium alloy and weld metal

Publications (2)

Publication Number Publication Date
JP2004066304A true JP2004066304A (en) 2004-03-04
JP3987771B2 JP3987771B2 (en) 2007-10-10

Family

ID=32016312

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002230139A Expired - Fee Related JP3987771B2 (en) 2002-08-07 2002-08-07 MIG welding method of titanium or titanium alloy and weld metal

Country Status (1)

Country Link
JP (1) JP3987771B2 (en)

Also Published As

Publication number Publication date
JP3987771B2 (en) 2007-10-10

Similar Documents

Publication Publication Date Title
JP5205115B2 (en) MIG flux-cored wire for pure Ar shield gas welding and MIG arc welding method
EP2402106B1 (en) Method of and machine for arc welding combining gas-shield arc welding with submerged arc welding
WO2009119561A1 (en) Plasma welding process and outer gas for use in the plasma welding process
JPH02280968A (en) Horizontal filter gas shielded arc welding method at high speed
JP2007260692A (en) Submerged arc welding method of thick steel plate
JP3820179B2 (en) Titanium alloy welding wire for MIG welding and welding method
JP3987771B2 (en) MIG welding method of titanium or titanium alloy and weld metal
JP3881588B2 (en) Welding method of titanium alloy for MIG welding
US6884963B1 (en) Apparatus and method for welding duplex stainless steel
KR101091469B1 (en) PURE Ar GAS SHIELDED WELDING MIG FLUX-CORED WIRE AND MIG ARC WELDING METHOD
JP6412817B2 (en) Welding method of galvanized steel sheet
AU778041B2 (en) Apparatus and method for welding duplex stainless steel
JP3987754B2 (en) MIG welding method of titanium or titanium alloy
JP2004066273A (en) Titanium alloy welding wire for mig welding, welding method, and weld metal
JP5280060B2 (en) Gas shield arc welding method
JP3881587B2 (en) MIG welding method of titanium or titanium alloy with excellent arc stability
JP2003019564A (en) Shield gas for arc-welding aluminum or aluminum-base alloy and arc-welding method
JP4319713B2 (en) Multi-electrode gas shield arc single-sided welding method
JP3947422B2 (en) MIG welding method of titanium or titanium alloy
JP2003320457A (en) Method for mig welding titanium and titanium alloy
JPH07256456A (en) One-side submerged arc welding
JP6715682B2 (en) Submerged arc welding method
JP5099775B2 (en) AC plasma welding method
JP3583561B2 (en) Horizontal electrogas welding method
JPH11226735A (en) Gas shield arc welding method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041217

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070319

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070403

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070604

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070703

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070713

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100720

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110720

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120720

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130720

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130720

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130720

Year of fee payment: 6

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130720

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees