JP2010125496A - Tandem arc welding method - Google Patents

Tandem arc welding method Download PDF

Info

Publication number
JP2010125496A
JP2010125496A JP2008303823A JP2008303823A JP2010125496A JP 2010125496 A JP2010125496 A JP 2010125496A JP 2008303823 A JP2008303823 A JP 2008303823A JP 2008303823 A JP2008303823 A JP 2008303823A JP 2010125496 A JP2010125496 A JP 2010125496A
Authority
JP
Japan
Prior art keywords
gas
electrode
welding
arc welding
welding method
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008303823A
Other languages
Japanese (ja)
Other versions
JP5228846B2 (en
Inventor
Tokihiko Kataoka
時彦 片岡
Tomomasa Ikeda
倫正 池田
Moriaki Ono
守章 小野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2008303823A priority Critical patent/JP5228846B2/en
Publication of JP2010125496A publication Critical patent/JP2010125496A/en
Application granted granted Critical
Publication of JP5228846B2 publication Critical patent/JP5228846B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a tandem arc welding method using two welding wires as electrodes and capable of obtaining the sufficient depth of penetration, forming a smooth weld metal, and suppressing production of slag. <P>SOLUTION: In the consumable electrode type tandem arc welding method using two welding wires as the electrodes, an active gas composed of an inert gas and CO<SB>2</SB>gas of ≥40 vol.% or gaseous carbon dioxide is used for shield gas for a preceding electrode, and an inert gas containing ≥99.5 vol.% of one or two or more kinds selected from among Ar gas, He gas and H<SB>2</SB>gas is used for a shield gas of a succeeding electrode. Slag is cleaned with the succeeding electrode before a molten metal formed by the preceding electrode is solidified. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、2本の溶接用ワイヤを電極として溶接の進行方向に平行に配置して行なうガスシールドアーク溶接方法(以下、タンデムアーク溶接方法という)に関し、特に十分な溶込み深さが得られ、平滑な溶接金属が形成され、かつスラグの生成を抑制できるタンデムアーク溶接方法に関する。   The present invention relates to a gas shielded arc welding method (hereinafter referred to as tandem arc welding method) performed by arranging two welding wires as electrodes in parallel with the welding direction, and a particularly sufficient penetration depth can be obtained. The present invention relates to a tandem arc welding method in which a smooth weld metal is formed and generation of slag can be suppressed.

ガスシールドアーク溶接は、能率に優れた溶接技術として、鉄鋼材料の溶接に広く利用されている。特に自動溶接の急速な普及によって、造船,建築,橋梁,自動車,建設機械等の種々の分野で使用されている。造船,建築,橋梁の分野では、厚板の高電流多層溶接に使用され、自動車,建設機械の分野では、薄板の隅肉溶接に使用されることが多い。
ガスシールドアーク溶接は、使用するシールドガスの種類に応じて、CO2ガスを主成分(すなわち99体積%以上)とするガスをシールドガスとして用いる炭酸ガスアーク溶接法,ArガスとCO2ガスの混合ガスをシールドガスとして用いる混合ガスアーク溶接法(いわゆるMAG溶接法),ArガスとHeガスの混合ガスをシールドガスとして用いる混合ガスアーク溶接法(いわゆるMIG溶接法)等に分類される。
Gas shielded arc welding is widely used for welding steel materials as a highly efficient welding technique. In particular, due to the rapid spread of automatic welding, it is used in various fields such as shipbuilding, architecture, bridges, automobiles and construction machinery. In the fields of shipbuilding, architecture, and bridges, it is used for high-current multi-layer welding of thick plates, and in the fields of automobiles and construction machinery, it is often used for fillet welding of thin plates.
In gas shielded arc welding, depending on the type of shielding gas used, carbon dioxide arc welding using CO 2 gas as the main component (ie, 99% by volume or more) as shielding gas, mixing Ar gas and CO 2 gas It is classified into a mixed gas arc welding method (so-called MAG welding method) using gas as a shielding gas, a mixed gas arc welding method (so-called MIG welding method) using a mixed gas of Ar gas and He gas as a shielding gas, and the like.

これらの溶接法は、それぞれ長所と短所がある。炭酸ガスアーク溶接法は、CO2ガスの解離吸熱反応によってアークが緊縮するので、アーク点が集中して深い溶込みが得られるという利点を有する一方で、CO2ガスによる酸化反応によって溶接金属の表面に酸化物(いわゆるスラグ)が形成されるという欠点がある。そのため、炭酸ガスアーク溶接法で多層溶接を行なう場合は、上層の溶接を行なう前に下層の溶接金属のスラグを除去しなければならない。 Each of these welding methods has advantages and disadvantages. The carbon dioxide arc welding method has an advantage that the arc is contracted by the dissociative endothermic reaction of the CO 2 gas, so that a deep penetration can be obtained by concentrating the arc point, while the surface of the weld metal is obtained by the oxidation reaction by the CO 2 gas. There is a disadvantage that oxide (so-called slag) is formed. Therefore, when performing multilayer welding by the carbon dioxide arc welding method, the slag of the lower layer weld metal must be removed before the upper layer welding is performed.

MIG溶接法は、スラグの生成を抑制でき、かつアークの広がりによって平滑な溶接金属が得られるという利点を有する一方で、アーク点が不安定になるので、十分な溶込みが得られないという欠点がある。
なおMAG溶接法では、炭酸ガスアーク溶接法とMIG溶接法の特性がシールドガスのCO2含有量に応じて現われる。
The MIG welding method has the advantage that the generation of slag can be suppressed and a smooth weld metal can be obtained due to the spread of the arc, while the arc point becomes unstable, so that sufficient penetration cannot be obtained. There is.
In the MAG welding method, the characteristics of the carbon dioxide arc welding method and the MIG welding method appear according to the CO 2 content of the shielding gas.

また、ガスシールドアーク溶接法(すなわち炭酸ガスアーク溶接法,MAG溶接法,MIG溶接法)の施工能率を一層高めるために、複数の電極を使用した溶接技術が検討されている。
たとえば特許文献1には、2本以上の溶接用ワイヤを電極として用いる多電極ガスシールドアーク溶接において、溶接用ワイヤの成分と電極の極性とを規定することによって、アークを安定させ、かつ施工能率を高める技術が開示されている。しかし、いずれの電極においてもCO2を含有するシールドガスを使用するので、CO2の酸化反応によって溶接金属の表面にスラグが生成するのは避けられず、スラグの巻込みに起因する溶接欠陥が生じる惧れがある。
Further, in order to further improve the work efficiency of the gas shielded arc welding method (that is, carbon dioxide arc welding method, MAG welding method, MIG welding method), a welding technique using a plurality of electrodes has been studied.
For example, in Patent Document 1, in multi-electrode gas shielded arc welding in which two or more welding wires are used as electrodes, the arc is stabilized and the construction efficiency is determined by defining the components of the welding wires and the polarity of the electrodes. A technique for enhancing the above is disclosed. However, since a shield gas containing CO 2 is used in any electrode, it is inevitable that slag is generated on the surface of the weld metal due to the oxidation reaction of CO 2 , and there is a weld defect caused by slag entrainment. There is a possibility that it will occur.

つまり特許文献1に開示された技術は、溶接金属表面のスラグ生成を抑制する観点から改善の余地が残されていた。
特開2005-246478号公報
That is, the technique disclosed in Patent Document 1 leaves room for improvement from the viewpoint of suppressing the generation of slag on the surface of the weld metal.
JP 2005-246478 A

本発明は、2本の溶接用ワイヤを電極として用い、十分な溶込み深さが得られ、平滑な溶接金属が形成され、かつスラグの生成を抑制できるタンデムアーク溶接方法を提供することを目的とする。   An object of the present invention is to provide a tandem arc welding method in which two welding wires are used as electrodes, a sufficient penetration depth is obtained, a smooth weld metal is formed, and generation of slag can be suppressed. And

発明者らは、多電極ガスシールドアーク溶接において溶接金属表面のスラグ生成を抑制する技術について調査研究した。その結果、電極の数を2本とし、各電極で異なる成分のシールドガスを使用することによって、炭酸ガスアーク溶接法,MAG溶接法,MIG溶接法のそれぞれの利点を活用できることが判明した。
さらに、電極として使用する溶接用ワイヤの成分を規定し、各電極の極性を規定することによって、十分な溶込み深さが得られ、平滑な溶接金属が形成され、かつスラグの生成を抑制できる効果が向上することが分かった。また、電極の間隔を規定すれば、効果が一層改善されることが分かった。
The inventors investigated and studied a technique for suppressing slag formation on the surface of the weld metal in multi-electrode gas shielded arc welding. As a result, it has been found that the advantages of each of the carbon dioxide arc welding method, the MAG welding method, and the MIG welding method can be utilized by using two electrodes and using shield gases having different components for each electrode.
Furthermore, by defining the components of the welding wire used as electrodes and by defining the polarity of each electrode, a sufficient penetration depth can be obtained, a smooth weld metal can be formed, and the generation of slag can be suppressed. It turned out that an effect improves. It has also been found that the effect is further improved if the distance between the electrodes is defined.

本発明は、これらの知見に基づいてなされたものである。
すなわち本発明は、2本の溶接用ワイヤを電極に用いた消耗電極式のタンデムアーク溶接方法において、先行極のシールドガスとしてCO2ガスを40体積%以上含有する活性ガスを用い、後行極のシールドガスとしてArガス,HeガスおよびH2ガスの中から選ばれる1種または2種以上を合計99.5体積%以上含有する不活性ガスを用いるとともに、先行極で生じた溶融メタルが凝固する前に後行極でスラグのクリーニングを行なうタンデムアーク溶接方法である。
The present invention has been made based on these findings.
That is, the present invention relates to a consumable electrode type tandem arc welding method using two welding wires as electrodes, using an active gas containing 40% by volume or more of CO 2 gas as a shielding gas for the leading electrode, As the shielding gas, an inert gas containing 99.5% by volume or more of one or more selected from Ar gas, He gas and H 2 gas is used, and before the molten metal generated at the leading electrode solidifies This is a tandem arc welding method in which the slag is cleaned at the trailing electrode.

本発明のタンデムアーク溶接方法においては、先行極の溶接用ワイヤがREMを0.015〜0.100質量%含有し、かつ先行極を正極性とすることが好ましい。また、後行極の溶接用ワイヤがREMを0.015〜0.100質量%含有し、かつ後行極を逆極性とすることが好ましい。先行極と後行極との間隔は15〜40mmの範囲内が好ましい。   In the tandem arc welding method of the present invention, it is preferable that the welding wire for the leading electrode contains 0.015 to 0.100% by mass of REM and that the leading electrode has a positive polarity. Further, it is preferable that the welding wire for the trailing electrode contains 0.015 to 0.100% by mass of REM and that the trailing electrode has a reverse polarity. The distance between the leading electrode and the trailing electrode is preferably within a range of 15 to 40 mm.

本発明によれば、十分な溶込み深さが得られ、平滑な溶接金属が形成され、かつスラグの生成を抑制できるので、健全な溶接継手が得られる。また、スラグの生成を抑制することによって、スラグの巻込みに起因する溶接欠陥を防止できる。しかも多層溶接を行なう場合に下層の溶接金属のスラグを除去する必要がないので、多層溶接の施工能率を向上できる。   According to the present invention, a sufficient depth of penetration is obtained, a smooth weld metal is formed, and the generation of slag can be suppressed, so that a sound welded joint is obtained. Moreover, the welding defect resulting from slag entrainment can be prevented by suppressing the production | generation of slag. In addition, when multi-layer welding is performed, it is not necessary to remove the slag of the lower layer weld metal, so that the construction efficiency of multi-layer welding can be improved.

本発明では、電極として2本の溶接用ワイヤを用いて、ガスシールドアーク溶接を行なう。1パスで2本の電極を使用することによって、ガスシールドアーク溶接の施工能率を高めることができる。
電極となる溶接用ワイヤは、フラックスを内装していないソリッドワイヤと呼ばれるものを使用する。また2本の電極は、溶接の進行方向に対して平行に配置する。ここでは、2本の電極を溶接の進行方向に対して平行に配置して行なうガスシールドアーク溶接をタンデムアーク溶接と記す。また2本の電極のうち、溶接の進行方向の前方に配置される電極を先行極と記し、後方に配置される電極を後行極と記す。
In the present invention, gas shield arc welding is performed using two welding wires as electrodes. The use efficiency of gas shield arc welding can be improved by using two electrodes in one pass.
As the welding wire serving as an electrode, a so-called solid wire not incorporating a flux is used. The two electrodes are arranged in parallel to the welding direction. Here, gas shield arc welding performed by arranging two electrodes in parallel to the traveling direction of welding is referred to as tandem arc welding. Of the two electrodes, an electrode disposed in front of the welding direction is referred to as a leading electrode, and an electrode disposed behind is referred to as a trailing electrode.

従来のタンデムアーク溶接や多電極ガスシールドアーク溶接では、アークが互いに干渉して、スパッタの発生量が増大するので、アークの安定化に有効なシールドガス(たとえば80体積%Ar−20体積%CO2)を用いるMAG溶接が採用されている。しかしMAG溶接では、シールドガスに含有されるCO2の酸化反応によって溶接金属の表面にスラグが生成するので、多層溶接には適用されず、厚鋼板の隅肉溶接を1パスで行なう技術として開発されてきた。 In conventional tandem arc welding and multi-electrode gas shielded arc welding, the arcs interfere with each other and the amount of spatter generated increases, so that a shielding gas effective for stabilizing the arc (for example, 80 volume% Ar-20 volume% CO2). MAG welding using 2 ) is adopted. However, in MAG welding, slag is generated on the surface of the weld metal due to the oxidation reaction of CO 2 contained in the shielding gas, so it is not applied to multilayer welding, and developed as a technique for performing fillet welding of thick steel plates in one pass. It has been.

これに対して本発明では、タンデムアーク溶接を多層溶接に適用するために、2本の電極がそれぞれ異なる役割を担うことによって、タンデムアーク溶接における融合不良およびスラグ巻込みを防止する。
まず、先行極では融合不良を防止する観点から、溶込みの深さを増大させる。ただし、MIG溶接では溶込み深さの増大は期待できないので、先行極では炭酸ガスアーク溶接またはMAG溶接を採用する。つまり、不活性ガスと40体積%以上のCO2ガスとを混合した活性ガスまたは炭酸ガス(すなわちCO2ガス)をシールドガスとして使用する。その不活性ガスはArガスを使用することが好ましい。先行極のシールドガスのCO2含有量が40体積%未満では、十分な溶込み深さは得られず、多層溶接における融合不良を防止できない。したがって先行極では、不活性ガスと40体積%以上のCO2ガスとを混合した活性ガスまたは炭酸ガス(すなわちCO2ガス)をシールドガスとして使用して、MAG溶接を行なう。シールドガスのCO2含有量は80体積%以上が好ましい。シールドガスのCO2含有量は100体積%(すなわち炭酸ガスアーク溶接)であっても良い。
In contrast, in the present invention, in order to apply tandem arc welding to multi-layer welding, the two electrodes play different roles, thereby preventing poor fusion and slag entrainment in tandem arc welding.
First, from the viewpoint of preventing poor fusion, the depth of penetration is increased at the leading electrode. However, since MIG welding cannot be expected to increase the penetration depth, carbon dioxide arc welding or MAG welding is adopted for the leading electrode. That is, an active gas or carbon dioxide gas (ie, CO 2 gas) obtained by mixing an inert gas and 40% by volume or more of CO 2 gas is used as the shielding gas. The inert gas is preferably Ar gas. When the CO 2 content of the shield gas of the leading electrode is less than 40% by volume, a sufficient penetration depth cannot be obtained, and poor fusion in multilayer welding cannot be prevented. Therefore, at the leading electrode, MAG welding is performed using an active gas or carbon dioxide gas (that is, CO 2 gas) obtained by mixing an inert gas and 40% by volume or more of CO 2 gas as a shielding gas. The CO 2 content of the shielding gas is preferably 80% by volume or more. The CO 2 content of the shielding gas may be 100% by volume (that is, carbon dioxide arc welding).

このようにして先行極ではCO2を含有するシールドガスを使用するので、溶融メタルの表面が酸化されてスラグが生じる。
そこで後行極では、溶融メタル表面のスラグを再び溶解(以下、クリーニングという)させるために、MIG溶接を採用する。つまり後行極では、Arガス,HeガスおよびH2ガスの中から選ばれる1種または2種以上を混合したシールドガスを使用する。ただしシールドガスに含有されるAr,HeおよびH2の中から選ばれる1種または2種以上の合計が99.5体積%未満では、クリーニング効果が得られず、スラグ巻込みを防止できない。したがって後行極では、Ar,HeおよびH2の中から選ばれる1種または2種以上を合計99.5体積%以上含有するシールドガスを用いて、MIG溶接を行なう。なお、シールドガスのAr,HeおよびH2の中から選ばれる1種または2種以上の含有量は合計99.9体積%以上が好ましい。
In this way, since the leading electrode uses a shielding gas containing CO 2 , the surface of the molten metal is oxidized and slag is generated.
Therefore, in the trailing electrode, MIG welding is employed in order to melt again the slag on the surface of the molten metal (hereinafter referred to as cleaning). That is, the trailing electrode uses a shielding gas in which one or more selected from Ar gas, He gas and H 2 gas are mixed. However Ar contained in the shielding gas, in one or less than a total of two or more is 99.5 vol% selected from among He and H 2, the cleaning effect can not be obtained, can not be prevented slag inclusion. Therefore, in the trailing electrode, MIG welding is performed using a shielding gas containing 99.5% by volume or more in total of one or more selected from Ar, He and H 2 . The content of one or more selected from Ar, He and H 2 of the shielding gas is preferably 99.9% by volume or more in total.

また後行極のMIG溶接では、アークが広がるという本来のMIG溶接の特性に加えて、先行極にて発生したスラグが陰極点(すなわち溶融メタルのアーク点)となってアークを安定させるので、平滑な形状の溶接金属が得られる。
以上に説明した通り、本発明のタンデムアーク溶接方法において、先行極では炭酸ガスアーク溶接またはMAG溶接を採用し、後行極ではMIG溶接を採用することは、融合不良およびスラグ巻込みを防止する上で重要な意味を持っている。
In addition, in the MIG welding of the trailing electrode, in addition to the original MIG welding characteristic that the arc spreads, the slag generated in the leading electrode becomes the cathode spot (that is, the arc point of the molten metal) and stabilizes the arc. A smooth weld metal is obtained.
As described above, in the tandem arc welding method according to the present invention, carbon dioxide arc welding or MAG welding is adopted for the leading electrode, and MIG welding is adopted for the trailing electrode, in order to prevent poor fusion and slag entrainment. It has an important meaning.

次に、本発明のタンデムアーク溶接にて使用する溶接用ワイヤの成分と電極の極性について説明する。
先行極では、既に説明した通り、溶込み深さを増大させるために炭酸ガスアーク溶接またはMAG溶接を採用する。そこで、電極の極性を正極性(すなわち溶接用ワイヤをマイナス極)として、アークを集中させることが好ましい。使用する溶接用ワイヤの希土類元素(以下、REMという)の含有量が0.015質量%未満では、正極性でアークを集中させる効果が得られない。一方、0.100質量%を超えると、溶接用ワイヤの製造工程における加工性が劣化するので、製造コストの上昇を招く。したがって先行極で使用する溶接用ワイヤのREM含有量は、0.015〜0.100質量%の範囲内が好ましい。
Next, the components of the welding wire used in the tandem arc welding of the present invention and the polarities of the electrodes will be described.
In the leading electrode, as already explained, carbon dioxide arc welding or MAG welding is employed to increase the penetration depth. Therefore, it is preferable to concentrate the arc by setting the polarity of the electrode to positive polarity (that is, the welding wire is negative). If the content of rare earth elements (hereinafter referred to as REM) in the welding wire used is less than 0.015% by mass, the effect of concentrating the arc with positive polarity cannot be obtained. On the other hand, if it exceeds 0.100% by mass, the workability in the manufacturing process of the welding wire is deteriorated, leading to an increase in manufacturing cost. Therefore, the REM content of the welding wire used in the leading electrode is preferably in the range of 0.015 to 0.100 mass%.

後行極では、既に説明した通り、先行極で生じた溶融メタル表面のスラグをクリーニングするためにMIG溶接を採用する。そこで、電極の極性を逆極性(すなわち溶接用ワイヤをプラス極)として、アークを安定させることが好ましい。使用する溶接用ワイヤのREM含有量が0.015質量%未満では、逆極性でアークを安定させる効果が得られない。一方、0.100質量%を超えると、溶接用ワイヤの製造工程における加工性が劣化するので、製造コストの上昇を招く。したがって後行極で使用する溶接用ワイヤのREM含有量は、0.015〜0.100質量%の範囲内が好ましい。より好ましくは0.025〜0.050質量%である。   As described above, the trailing electrode employs MIG welding in order to clean the molten metal surface slag generated in the leading electrode. Therefore, it is preferable to stabilize the arc by setting the polarity of the electrode to the opposite polarity (that is, the welding wire is a plus electrode). If the REM content of the welding wire used is less than 0.015% by mass, the effect of stabilizing the arc with reverse polarity cannot be obtained. On the other hand, if it exceeds 0.100% by mass, the workability in the manufacturing process of the welding wire is deteriorated, leading to an increase in manufacturing cost. Therefore, the REM content of the welding wire used in the trailing electrode is preferably in the range of 0.015 to 0.100% by mass. More preferably, it is 0.025-0.050 mass%.

なおREMは電子放出能が高いので、後行極にてクリーニングが進行し、スラグが減少した状態においても、陰極点を安定させる作用を有する。そのため、後行極では、アークが広がり、かつ安定するので、平滑な形状の溶接金属が得られる。
先行極で使用する溶接用ワイヤと後行極で使用する溶接用ワイヤは、いずれも上記したREMの他に、Ca,O,Nの含有量を規定することが好ましい。Ca,O,Nは、いずれも溶接用ワイヤの素材となる溶鋼を溶製する工程、および得られた線材を伸線加工する工程で不可避的に混入する元素である。
Since REM has a high electron emission capability, it has a function of stabilizing the cathode spot even when cleaning progresses at the trailing electrode and slag is reduced. For this reason, the arc spreads and stabilizes at the trailing electrode, so that a weld metal having a smooth shape can be obtained.
It is preferable that the welding wire used in the leading electrode and the welding wire used in the trailing electrode both define the contents of Ca, O, and N in addition to the REM described above. Ca, O, and N are elements that are inevitably mixed in the process of melting molten steel as a material for the welding wire and the process of drawing the obtained wire.

Ca含有量が0.0008質量%を超えると、アークの安定性が阻害される。したがって、Ca含有量は0.0008質量%以下とすることが好ましい。
Oは、溶滴の移行形態を微細化する作用を有する。O含有量が0.0010質量%未満では、溶滴を微細化する効果が得られない。一方、0.010質量%を超えると、アークの安定性が阻害される。したがって、O含有量は0.0010〜0.010質量%の範囲内が好ましい。より好ましくは0.0010質量%以上0.0080質量%未満である。
When the Ca content exceeds 0.0008 mass%, the arc stability is impaired. Therefore, the Ca content is preferably 0.0008% by mass or less.
O has the effect | action which refines | miniaturizes the transfer form of a droplet. If the O content is less than 0.0010% by mass, the effect of refining the droplets cannot be obtained. On the other hand, if it exceeds 0.010% by mass, the stability of the arc is hindered. Therefore, the O content is preferably in the range of 0.0010 to 0.010 mass%. More preferably, it is 0.0010 mass% or more and less than 0.0080 mass%.

Nは、溶滴の移行形態を微細化する作用を有する。N含有量が0.0010質量%未満では、溶滴を微細化する効果が得られない。一方、0.010質量%を超えると、アークの安定性が阻害される。したがって、N含有量は0.0010〜0.010質量%の範囲内が好ましい。より好ましくは0.0010質量%以上0.0080質量%未満である。
次に、本発明のタンデムアーク溶接における先行極と後行極との間隔について説明する。
N has the effect | action which refines | miniaturizes the transfer form of a droplet. When the N content is less than 0.0010% by mass, the effect of refining the droplets cannot be obtained. On the other hand, if it exceeds 0.010% by mass, the stability of the arc is hindered. Therefore, the N content is preferably in the range of 0.0010 to 0.010 mass%. More preferably, it is 0.0010 mass% or more and less than 0.0080 mass%.
Next, the distance between the leading electrode and the trailing electrode in the tandem arc welding of the present invention will be described.

先行極で溶込み深さを増大させるためには、先行極の溶接電流を高く設定する必要がある。ところが、先行極と後行極との間隔が15mm未満では、先行極のアークと後行極のアークが干渉し、アークが不安定となる。そして先行極の溶接電流が過剰に高くなると、先行極のアークと後行極のアークが一体化するので、タンデムアーク溶接の効果が得られない。一方、電極の間隔が40mmを超えると、先行極の溶接電流を高く設定してもアークの干渉は生じないが、先行極で生じた溶融メタルが後行極の手前で凝固してしまうので、タンデムアーク溶接の効果が得られない。したがって、先行極と後行極との間隔は15〜40mmの範囲内が好ましい。より好ましくは20〜30mmである。   In order to increase the penetration depth at the leading electrode, it is necessary to set the welding current at the leading electrode high. However, if the distance between the leading electrode and the trailing electrode is less than 15 mm, the arc of the leading electrode and the arc of the trailing electrode interfere with each other and the arc becomes unstable. If the welding current of the leading electrode becomes excessively high, the arc of the leading electrode and the arc of the trailing electrode are integrated, so that the effect of tandem arc welding cannot be obtained. On the other hand, if the electrode spacing exceeds 40 mm, arc interference does not occur even if the welding current of the leading electrode is set high, but the molten metal generated in the leading electrode solidifies before the trailing electrode, The effect of tandem arc welding cannot be obtained. Therefore, the distance between the leading electrode and the trailing electrode is preferably within a range of 15 to 40 mm. More preferably, it is 20-30 mm.

以上に説明した通り、本発明によれば、溶接用ワイヤとして安価なソリッドワイヤを使用しても、十分な溶込み深さが得られ、平滑な溶接金属が形成され、かつスラグの生成を抑制できる。しかも、ガスシールドアーク溶接の施工能率を向上できる。   As described above, according to the present invention, even if an inexpensive solid wire is used as a welding wire, a sufficient penetration depth is obtained, a smooth weld metal is formed, and the generation of slag is suppressed. it can. Moreover, the construction efficiency of gas shielded arc welding can be improved.

表1に示す成分の溶接用ワイヤを用いて、鋼板(厚さ40mm)の突合せ継手をタンデムアーク溶接で作製した。開先はレ形(角度35°)とし、ルートギャップは7mmとした。タンデムアーク溶接の設定条件は表2に示す通りである。なおシールドガスの流量は、いずれの条件においても先行極,後行極ともに20〜25 liter/分とした。   Using the welding wires having the components shown in Table 1, butt joints of steel plates (thickness 40 mm) were produced by tandem arc welding. The groove was a round shape (angle 35 °) and the root gap was 7 mm. The setting conditions for tandem arc welding are as shown in Table 2. The flow rate of the shielding gas was set to 20 to 25 liter / min for both the leading electrode and the trailing electrode under any conditions.

Figure 2010125496
Figure 2010125496

Figure 2010125496
Figure 2010125496

表2中の発明例のうち、継手番号1は先行極でMAG溶接を行ない、後行極でMIG溶接を行なう例であり、継手番号2〜5は先行極で炭酸ガスアーク溶接を行ない、後行極でMIG溶接を行なう例である。一方、比較例のうち、継手番号6は先行極で炭酸ガスアーク溶接,後行極でMAG溶接を行なう例であり、継手番号7は先行極のシールドガスの成分が本発明の範囲を外れる例である。   Of the invention examples in Table 2, joint number 1 is an example in which MAG welding is performed at the leading electrode and MIG welding is performed at the trailing electrode, and joint numbers 2 to 5 are carbon dioxide arc welding at the leading electrode, following This is an example of performing MIG welding at the pole. On the other hand, in the comparative example, joint number 6 is an example in which carbon dioxide arc welding is performed at the leading electrode and MAG welding is performed at the trailing electrode, and joint number 7 is an example in which the shield gas component of the leading electrode is outside the scope of the present invention. is there.

また、継手番号1,2,3は4層5パスの多層溶接、継手番号4,5は7層12パスの多層溶接を行なった。いずれの突合せ継手も、多層溶接の途中では溶接金属表面のスラグ除去を行なわず、最終パスが終了した後で最上層の溶接金属のスラグを除去して、X線透過試験に供した。
X線透過試験では、スラグ巻込みに起因する内部欠陥を想定して1mm以上の幅を有する欠陥の個数を測定した。その結果を表3に示す。なお表3では、突合せ継手の長さ方向300mm当たりの個数に換算して、幅1mm以上の欠陥が2個未満の突合せ継手を優(○),2個以上5個未満の突合せ継手を良(△),5個以上の突合せ継手を不可(×)として評価した。
In addition, joint numbers 1, 2 and 3 were subjected to multilayer welding with 4 layers and 5 passes, and joint numbers 4 and 5 were subjected to multilayer welding with 7 layers and 12 passes. All butt joints were not subjected to slag removal on the surface of the weld metal during multi-layer welding, and after the final pass, the slag of the uppermost weld metal was removed and subjected to an X-ray transmission test.
In the X-ray transmission test, the number of defects having a width of 1 mm or more was measured assuming internal defects due to slag entrainment. The results are shown in Table 3. In Table 3, in terms of the number of butt joints per 300 mm in the length direction, butt joints with a width of 1 mm or more with less than 2 defects are excellent (O), and butt joints with 2 or more and less than 5 are good ( (Triangle | delta), Five or more butt joints were evaluated as impossible (x).

Figure 2010125496
Figure 2010125496

表3から明らかなように、発明例(継手番号1〜5)では内部欠陥の評価が優または良(すなわち内部欠陥の個数は5個未満)であった。一方、比較例(継手番号6,7)では内部欠陥の評価が不可(すなわち内部欠陥の個数が5個以上)であった。
また溶接金属の外観を目視で検査したところ、発明例では平滑な溶接金属が形成されていた。
As is apparent from Table 3, in the inventive examples (joint numbers 1 to 5), the evaluation of internal defects was excellent or good (that is, the number of internal defects was less than 5). On the other hand, in the comparative examples (joint numbers 6 and 7), evaluation of internal defects was impossible (that is, the number of internal defects was 5 or more).
Further, when the appearance of the weld metal was visually inspected, a smooth weld metal was formed in the invention example.

つまり本発明を適用すれば、スラグの生成を抑制して内部欠陥を抑制でき、かつ平滑な溶接金属が得られることが確かめられた。
In other words, it was confirmed that the application of the present invention can suppress the generation of slag, suppress internal defects, and obtain a smooth weld metal.

Claims (4)

2本の溶接用ワイヤを電極に用いた消耗電極式のタンデムアーク溶接方法において、先行極のシールドガスとして不活性ガスと40体積%以上のCO2ガスからなる活性ガスまたは炭酸ガスを用い、後行極のシールドガスとしてArガス、HeガスおよびH2ガスの中から選ばれる1種または2種以上を合計99.5体積%以上含有する不活性ガスを用いるとともに、前記先行極で生じた溶融メタルが凝固する前に前記後行極でスラグのクリーニングを行なうことを特徴とするタンデムアーク溶接方法。 In a consumable electrode type tandem arc welding method using two welding wires as electrodes, an active gas or carbon dioxide gas composed of an inert gas and 40% by volume or more of CO 2 gas is used as a shield gas for the leading electrode. An inert gas containing 99.5% by volume or more of one or more selected from Ar gas, He gas, and H 2 gas is used as the shielding gas for the row electrode, and the molten metal produced at the leading electrode is A tandem arc welding method, wherein the slag is cleaned at the trailing electrode before solidification. 前記先行極の溶接用ワイヤがREMを0.015〜0.100質量%含有し、かつ前記先行極を正極性とすることを特徴とする請求項1に記載のタンデムアーク溶接方法。   2. The tandem arc welding method according to claim 1, wherein the welding wire for the leading electrode contains 0.015 to 0.100 mass% of REM and the leading electrode has a positive polarity. 前記後行極の溶接用ワイヤがREMを0.015〜0.100質量%含有し、かつ前記後行極を逆極性とすることを特徴とする請求項1または2に記載のタンデムアーク溶接方法。   The tandem arc welding method according to claim 1 or 2, wherein the welding wire for the trailing electrode contains 0.015 to 0.100 mass% of REM and the trailing electrode has a reverse polarity. 前記先行極と前記後行極との間隔を15〜40mmとすることを特徴とする請求項1〜3のいずれか一項に記載のタンデムアーク溶接方法。
The tandem arc welding method according to any one of claims 1 to 3, wherein an interval between the leading electrode and the trailing electrode is 15 to 40 mm.
JP2008303823A 2008-11-28 2008-11-28 Tandem arc welding method Active JP5228846B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008303823A JP5228846B2 (en) 2008-11-28 2008-11-28 Tandem arc welding method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008303823A JP5228846B2 (en) 2008-11-28 2008-11-28 Tandem arc welding method

Publications (2)

Publication Number Publication Date
JP2010125496A true JP2010125496A (en) 2010-06-10
JP5228846B2 JP5228846B2 (en) 2013-07-03

Family

ID=42326240

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008303823A Active JP5228846B2 (en) 2008-11-28 2008-11-28 Tandem arc welding method

Country Status (1)

Country Link
JP (1) JP5228846B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2636477A1 (en) 2012-03-09 2013-09-11 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Tandem gas-shielded arc welding method
WO2023149239A1 (en) * 2022-02-04 2023-08-10 Jfeスチール株式会社 Straight polarity mag-welding wire and straight polarity mag-welding method using same

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5471744A (en) * 1977-11-21 1979-06-08 Nippon Kokan Kk <Nkk> Welding method by direct current gas shielded arc
JPS6160269A (en) * 1984-09-03 1986-03-27 Nippon Kokan Kk <Nkk> High speed tack welding
JPS62179872A (en) * 1986-02-04 1987-08-07 Toshiba Corp Arc welding method for light metal
JPH09206945A (en) * 1996-02-05 1997-08-12 Kobe Steel Ltd Multi-electrode gas shielded one-side welding method
JP2000052033A (en) * 1998-08-06 2000-02-22 Nkk Corp Multi-electrode arc welding method
JP2001191197A (en) * 1999-12-28 2001-07-17 Mitsubishi Heavy Ind Ltd Material for mig welding
JP2002137086A (en) * 2000-10-30 2002-05-14 Kawasaki Steel Corp Mig welding wire and mig welding method of stainless steel
JP2006247695A (en) * 2005-03-10 2006-09-21 Komatsu Engineering Corp Tandem torch welding method and torch polarity switching apparatus
JP2008161899A (en) * 2006-12-27 2008-07-17 Jfe Steel Kk Plasma arc hybrid welding method for improving fatigue strength of lap fillet welding joint

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5471744A (en) * 1977-11-21 1979-06-08 Nippon Kokan Kk <Nkk> Welding method by direct current gas shielded arc
JPS6160269A (en) * 1984-09-03 1986-03-27 Nippon Kokan Kk <Nkk> High speed tack welding
JPS62179872A (en) * 1986-02-04 1987-08-07 Toshiba Corp Arc welding method for light metal
JPH09206945A (en) * 1996-02-05 1997-08-12 Kobe Steel Ltd Multi-electrode gas shielded one-side welding method
JP2000052033A (en) * 1998-08-06 2000-02-22 Nkk Corp Multi-electrode arc welding method
JP2001191197A (en) * 1999-12-28 2001-07-17 Mitsubishi Heavy Ind Ltd Material for mig welding
JP2002137086A (en) * 2000-10-30 2002-05-14 Kawasaki Steel Corp Mig welding wire and mig welding method of stainless steel
JP2006247695A (en) * 2005-03-10 2006-09-21 Komatsu Engineering Corp Tandem torch welding method and torch polarity switching apparatus
JP2008161899A (en) * 2006-12-27 2008-07-17 Jfe Steel Kk Plasma arc hybrid welding method for improving fatigue strength of lap fillet welding joint

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2636477A1 (en) 2012-03-09 2013-09-11 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Tandem gas-shielded arc welding method
JP2013184212A (en) * 2012-03-09 2013-09-19 Kobe Steel Ltd Tandem gas shielded arc welding method
KR101477893B1 (en) * 2012-03-09 2014-12-30 가부시키가이샤 고베 세이코쇼 Tandem gas-shielded arc welding method
US9266197B2 (en) 2012-03-09 2016-02-23 Kobe Steel, Ltd. Tandem gas-shielded arc welding method
WO2023149239A1 (en) * 2022-02-04 2023-08-10 Jfeスチール株式会社 Straight polarity mag-welding wire and straight polarity mag-welding method using same

Also Published As

Publication number Publication date
JP5228846B2 (en) 2013-07-03

Similar Documents

Publication Publication Date Title
JP5515850B2 (en) Combined welding method combining gas shielded arc welding and submerged arc welding and its combined welding machine
JP4256879B2 (en) Method of joining iron-based material and aluminum-based material and joint
US20110174784A1 (en) Method for gas-shielded arc brazing of steel sheet
US20080053966A1 (en) Shielding gases for mag-welding of galvanized steel sheets and welding method using the same
JP2010253511A (en) Method of welding circumference of fixed steel pipe
US9102013B2 (en) Flux-cored welding wire for carbon steel and process for arc welding
JP5260469B2 (en) Gas shield arc welding method
JP2007229770A (en) Two-electrode large leg length horizontal fillet gas shield arc welding method
JP5228846B2 (en) Tandem arc welding method
JP4385028B2 (en) MIG brazing welding method
JP2015139784A (en) Two-electrode horizontal fillet gas shielded arc welding method
JP6188626B2 (en) Two-electrode horizontal fillet gas shielded arc welding method
JP5977965B2 (en) Tandem gas shielded arc welding method
US20220402078A1 (en) Mig welding method
KR102216814B1 (en) Multi-electrode submerged arc welding method and welding device
JPH09206945A (en) Multi-electrode gas shielded one-side welding method
JP3210609U (en) Consumable electrode for special coated metal
JP2004298963A (en) Tig welding equipment and method
JP2015136720A (en) Two electrode horizontal fillet gas shield arc welding method
KR102424484B1 (en) Tandem gas shield arc welding method and welding device
JP7435932B1 (en) Gas shielded arc welding method and welded joint manufacturing method
JPH11226735A (en) Gas shield arc welding method
KR102136302B1 (en) Tandem horizontal fillet welding method using metal-cored welding consumable
JP2749968B2 (en) High current density welding method
JP3574038B2 (en) High-speed MAG welding method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110824

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121127

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130125

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130219

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130304

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160329

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5228846

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250