JP2015136720A - Two electrode horizontal fillet gas shield arc welding method - Google Patents

Two electrode horizontal fillet gas shield arc welding method Download PDF

Info

Publication number
JP2015136720A
JP2015136720A JP2014010113A JP2014010113A JP2015136720A JP 2015136720 A JP2015136720 A JP 2015136720A JP 2014010113 A JP2014010113 A JP 2014010113A JP 2014010113 A JP2014010113 A JP 2014010113A JP 2015136720 A JP2015136720 A JP 2015136720A
Authority
JP
Japan
Prior art keywords
electrode
welding
wire
arc
slag
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014010113A
Other languages
Japanese (ja)
Inventor
竜太朗 千葉
Ryutaro Chiba
竜太朗 千葉
力也 高山
Rikiya Takayama
力也 高山
州司郎 長島
Shujiro Nagashima
州司郎 長島
正明 鳥谷部
Masaaki Toriyabe
正明 鳥谷部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Welding and Engineering Co Ltd
Original Assignee
Nippon Steel and Sumikin Welding Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel and Sumikin Welding Co Ltd filed Critical Nippon Steel and Sumikin Welding Co Ltd
Priority to JP2014010113A priority Critical patent/JP2015136720A/en
Publication of JP2015136720A publication Critical patent/JP2015136720A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Arc Welding In General (AREA)
  • Butt Welding And Welding Of Specific Article (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a two electrode horizontal fillet gas shield arc welding method in which a sound welding bead is obtained having an excellent arc state, less spatter, and a stable basin without undercut and overwrap, and the equal leg length welding bead is obtained excellent in slag encapsulating performance and slag removing performance preventing generation of pits.SOLUTION: A two electrode horizontal fillet gas shield arc welding method uses a solid wire for welding as a preceding electrode, and a flux-cored wire for welding as a succeeding electrode. The solid wire for welding contains in mass% to the wire total mass, 0.04-0.10% of C, 0.5-0.9% of Si, 1.4-1.9% of Mn, and 0.15-0.30% of Ti. The balance is Fe with inevitable impurities. Gap distance between the preceding electrode and the succeeding electrode is 10-40 mm, and wire diameter of the preceding electrode or the succeeding electrode is 1.2-2.0 mm. The wire diameter of the preceding electrode is equal to or less than that of the succeeding electrode when performing welding.

Description

本発明は、軟鋼及び490N/mm2級高張力鋼板をはじめとする各種鋼板を水平すみ肉溶接する2電極水平すみ肉ガスシールドアーク溶接方法に関するものであり、特に、無機ジンクなどのプライマ塗装鋼板の長尺水平すみ肉溶接で問題となるビード形状、耐気孔性を向上させる上で好適な2電極水平すみ肉ガスシールドアーク溶接方法に関する。 The present invention relates to a two-electrode horizontal fillet gas shielded arc welding method for horizontal fillet welding of various steel plates including mild steel and 490 N / mm 2 grade high-strength steel plates, and in particular, primer coated steel plates such as inorganic zinc. The present invention relates to a two-electrode horizontal fillet gas shielded arc welding method suitable for improving the bead shape and the pore resistance, which are problems in long horizontal fillet welding.

近年、船舶や橋梁の分野ではガスシールドアーク溶接が広く使用されているが、溶接の更なる高能率化の目的から、例えば特許文献1、2に示すような2電極1プール方式での水平すみ肉ガスシールドアーク溶接が提案され、長尺ロンジ溶接などに使用されている。この溶接法を用いれば、溶接速度を下げることなく溶着量を確保できるため、高能率な溶接が可能となる。   In recent years, gas shielded arc welding has been widely used in the field of ships and bridges. For the purpose of further improving the efficiency of welding, for example, horizontal corners in a two-electrode one-pool system as shown in Patent Documents 1 and 2 are used. Meat gas shielded arc welding has been proposed and used for long long welding. If this welding method is used, the amount of welding can be secured without lowering the welding speed, so that highly efficient welding is possible.

図1に2電極1プール方式の水平すみ肉ガスシールドアーク溶接の状況を示す模式図を示す。図1に示すように、2電極水平すみ肉ガスシールドアーク溶接で良好なビード形状を得るためには、先行電極ワイヤ1について鉛直方向に対し後方斜め方向に角度θ1(以下、後退角という。)を持たせ、後行電極ワイヤ2について鉛直方向に対し前方斜め方向に角度θ2(以下、前進角という。)を持たせ、その2電極間に安定した湯溜り3を形成することが重要である。なお、図1中において、後行電極ワイヤ2の後方には溶融プール4が形成され、その溶融プール4の表面に溶融スラグ5及び凝固スラグ6が形成される。また図1には、形成される溶接ビード7や、鋼板表面に塗布した無機ジンクのプライマ8も示している。 FIG. 1 is a schematic view showing a situation of horizontal fillet gas shielded arc welding of the two-electrode one-pool method. As shown in FIG. 1, in order to obtain a good bead shape by two-electrode horizontal fillet gas shielded arc welding, the leading electrode wire 1 is referred to as an angle θ 1 (hereinafter referred to as a receding angle) in a rearward oblique direction with respect to the vertical direction. It is important that the trailing electrode wire 2 has an angle θ 2 (hereinafter referred to as a forward angle) obliquely forward with respect to the vertical direction and that a stable puddle 3 is formed between the two electrodes. It is. In FIG. 1, a molten pool 4 is formed behind the trailing electrode wire 2, and a molten slag 5 and a solidified slag 6 are formed on the surface of the molten pool 4. FIG. 1 also shows a weld bead 7 to be formed and an inorganic zinc primer 8 applied to the surface of the steel plate.

しかし、2電極1プール方式での水平すみ肉ガスシールドアーク溶接では、溶接電流が高電流域(例えば、両極とも溶接電流450A以上)になると、2電極間に形成される湯溜り3の状態及びアーク状態が2電極の強いアーク力の干渉によって不安定となり、溶接ビードのビード形状が乱れ、脚長も不均等な溶接ビードとなる。   However, in horizontal fillet gas shielded arc welding in the two-electrode one-pool method, when the welding current is in a high current region (for example, a welding current of 450 A or more for both electrodes), the state of the puddle 3 formed between the two electrodes and The arc state becomes unstable due to the interference of the strong arc force of the two electrodes, the bead shape of the weld bead is disturbed, and the leg length is also uneven.

例えば、溶接速度1.0m/min以上での溶接で健全な溶接ビードを得ようとする場合、溶接電流を高くして溶着量を多く確保するため、高電流域での溶接となり、先行電極ワイヤ1と後行電極ワイヤ2のアーク力が共に強くなるため、それらアーク力によって湯溜り3も不安定となる。さらに、アーク状態も不安定になるため、最終的には湯溜り3自体の変動が非常に大きくなり、良好な溶接ビード7が形成できなくなるという問題点も生じる。また、後行電極の後方にある溶融プール4の表面に形成される溶融スラグ5も安定しないので、凝固してできる凝固スラグ6の被包状態も不均一となる。その結果、図2に示すように、溶接部内にアンダーカット11やオーバーラッブ12といった欠陥が発生し、スラグ剥離性も不良となり、溶接ビードの脚長も不均等となる。   For example, when a sound welding bead is to be obtained by welding at a welding speed of 1.0 m / min or higher, the welding current is increased to secure a large amount of welding, so welding is performed in a high current region, and the leading electrode wire Since both the arc force of 1 and the trailing electrode wire 2 become strong, the puddle 3 also becomes unstable due to the arc force. Furthermore, since the arc state becomes unstable, the fluctuation of the hot water puddle 3 itself becomes very large in the end, and there is a problem that a good weld bead 7 cannot be formed. In addition, since the molten slag 5 formed on the surface of the molten pool 4 behind the trailing electrode is not stable, the encapsulated state of the solidified slag 6 formed by solidification becomes non-uniform. As a result, as shown in FIG. 2, defects such as undercut 11 and overlub 12 occur in the welded portion, the slag peelability becomes poor, and the leg length of the weld bead becomes uneven.

また、近年、耐錆性の目的から、鋼板表面に無機ジンクのプライマ8が塗装されている鋼板(以下、プライマ塗装鋼板という。)が多く使用されている。このようなプライマ塗装鋼板を溶接した場合、図2に示すように、立板9及び下板10に塗装したプライマ8や鋼板表面の赤錆及び付着する水分が溶接時に蒸気化して蒸気ガスが発生する。このため、ピット13が発生し、この手直し溶接に時間を要するため、生産コストが高くなるという問題がある。   In recent years, for the purpose of rust resistance, a steel plate (hereinafter referred to as a primer-coated steel plate) in which an inorganic zinc primer 8 is coated on the steel plate surface is often used. When such a primer-coated steel plate is welded, as shown in FIG. 2, the primer 8 coated on the upright plate 9 and the lower plate 10 and red rust on the surface of the steel plate and the adhering moisture are vaporized during welding to generate steam gas. . For this reason, the pits 13 are generated, and it takes time for the rework welding, so that there is a problem that the production cost is increased.

これら問題を解決する方法として、特許文献3には、2電極1プール方式での水平すみ肉ガスシールドアーク溶接において、先行電極及び後行電極に用いるフラックス入りワイヤの含有成分を限定することにより、プライマ塗装鋼板を用いた場合の耐気孔性を改善する方法が開示されている。しかし、特許文献3に開示されたフラックス入りワイヤでは、溶接速度が1.0m/min以上になると、溶融プール4の表面を被包する溶融スラグ5が不足するため、凝固スラグ6が溶接ビード7を均一に被包することができず、ピット13の発生を十分に抑えることができないという問題があった。   As a method for solving these problems, in Patent Document 3, in the horizontal fillet gas shield arc welding in the two-electrode one-pool method, by limiting the content of the flux-cored wire used for the leading electrode and the trailing electrode, A method for improving the pore resistance when using a primer coated steel sheet is disclosed. However, in the flux-cored wire disclosed in Patent Document 3, when the welding speed is 1.0 m / min or more, the molten slag 5 that encapsulates the surface of the molten pool 4 is insufficient, so that the solidified slag 6 becomes the weld bead 7. Cannot be encapsulated uniformly, and the generation of pits 13 cannot be sufficiently suppressed.

特開昭63−235077号公報JP 63-235077 A 特開平2−280968号公報JP-A-2-280968 特開2009−190042号公報JP 2009-190042 A

そこで、本発明は、上述した問題点に鑑みて案出されたものであり、無機ジンクなどのプライマ塗装鋼板の2電極水平すみ肉ガスシールドアーク溶接において、アーク状態が良好で、スパッタが少なく、湯溜りが安定し、アンダーカットやオーバーラップがない健全な溶接ビードが得られ、スラグ被包性及びスラグ剥離性も良好で、ピットの発生が少なく、均等な脚長の溶接ビードを得ることができる2電極水平すみ肉ガスシールドアーク溶接方法を提供することを目的とする。   Therefore, the present invention has been devised in view of the above-described problems, and in a two-electrode horizontal fillet gas shielded arc welding of a primer-coated steel sheet such as inorganic zinc, the arc state is good, the spatter is small, A stable weld bead with stable puddle, no undercut or overlap, good slag encapsulation and slag peelability, less pits, and uniform leg length weld bead can be obtained. An object is to provide a two-electrode horizontal fillet gas shielded arc welding method.

上述した課題を解決するために、本発明は、2電極水平すみ肉ガスシールドアーク溶接方法において、先行電極に溶接用ソリッドワイヤ、後行電極に溶接用フラックス入りワイヤを用い、前記溶接用ソリッドワイヤは、ワイヤ全質量に対する質量%で、C:0.04〜0.10%、Si:0.5〜0.9%、Mn:1.4〜1.9%、Ti:0.15〜0.30%を含有し、残部はFe及び不可避不純物からなり、先行電極と後行電極との電極間距離を10〜40mm、先行電極及び後行電極のワイヤ径を1.2〜2.0mmとし、且つ、先行電極のワイヤ径は後行電極のワイヤ径以下で溶接することを特徴とする。   In order to solve the above-described problems, the present invention provides a two-electrode horizontal fillet gas shielded arc welding method in which a solid wire for welding is used as a leading electrode and a flux-cored wire for welding is used as a trailing electrode. Is mass% with respect to the total mass of the wire, C: 0.04 to 0.10%, Si: 0.5 to 0.9%, Mn: 1.4 to 1.9%, Ti: 0.15 to 0 .30%, the balance is made of Fe and inevitable impurities, the distance between the leading electrode and the trailing electrode is 10 to 40 mm, and the wire diameter of the leading electrode and the trailing electrode is 1.2 to 2.0 mm. And the wire diameter of a preceding electrode is welded below the wire diameter of a succeeding electrode, It is characterized by the above-mentioned.

また、本発明は、2電極水平すみ肉ガスシールドアーク溶接方法において、更に前記溶接用フラックス入りワイヤは、ワイヤ全質量に対する質量%で、フラックスに、スラグ形成剤の合計を3.5〜8.5%含有し、残部は鉄粉、合金粉及び不可避不純物であることも特徴とする。   In the two-electrode horizontal fillet gas shielded arc welding method, the welding flux-cored wire is mass% with respect to the total mass of the wire, and the total of the slag forming agents is 3.5 to 8. It is also characterized by containing 5%, the balance being iron powder, alloy powder and inevitable impurities.

本発明の2電極水平すみ肉ガスシールドアーク溶接方法によれば、無機ジンクなどのプライマ塗装鋼板を2電極水平すみ肉ガスシールドアーク溶接で溶接施工した場合において、アーク状態が良好で、スパッタが少なく、湯溜りが安定し、アンダーカットやオーバーラップがない健全な溶接ビードが得られ、スラグ被包性及びスラグ剥離性も良好で、ピットの発生が少なく、均等な脚長の溶接ビードを得ることができるので、溶接の高能率化及び溶接部の品質向上を図ることができる。   According to the two-electrode horizontal fillet gas shielded arc welding method of the present invention, when a primer-coated steel plate such as inorganic zinc is welded by two-electrode horizontal fillet gas shielded arc welding, the arc state is good and spatter is small. It is possible to obtain a weld bead with a stable puddle, a sound weld bead with no undercut or overlap, good slag encapsulation and slag peelability, few pits, and uniform leg length. Therefore, it is possible to improve the efficiency of welding and improve the quality of the welded portion.

2電極1プール方式の水平すみ肉ガスシールドアーク溶接の状況を示す模式図である。It is a schematic diagram which shows the condition of the horizontal fillet gas shield arc welding of a 2 electrode 1 pool system. 2電極水平すみ肉ガスシールドアーク溶接におけるビード形状の欠陥例を示した模式図である。It is the schematic diagram which showed the example of the defect of the bead shape in 2 electrode horizontal fillet gas shield arc welding.

本発明者らは、軟鋼及び490N/mm2級高張力鋼板をはじめとする各種鋼板を溶接する上で、前記課題を解決するため、無機ジンクなどのプライマ塗装鋼板を用いて2電極1プール方式での水平すみ肉ガスシールドアーク溶接の施工条件について種々検討した。その結果、先行電極用のワイヤとして溶接用ソリッドワイヤ、後行電極用のワイヤとして溶接用フラックス入りワイヤを用いることで、後行電極ワイヤの溶接用フラックス入りワイヤから発生する溶融スラグを溶接ビードの表面に均一被包させ、スラグ被包性、スラグ剥離性及びビード形状を良好にすることができることを見出した。 In order to solve the above-mentioned problems in welding various steel plates including mild steel and 490 N / mm 2 grade high-strength steel plate, the present inventors have used a two-electrode, one-pool system using a primer-coated steel plate such as inorganic zinc. Various construction conditions of horizontal fillet gas shielded arc welding were investigated. As a result, by using a welding solid wire as the leading electrode wire and a welding flux-cored wire as the trailing electrode wire, the molten slag generated from the welding flux-cored wire of the trailing electrode wire is removed from the welding bead. It has been found that the surface can be uniformly encapsulated to improve the slag encapsulation, slag peelability and bead shape.

また、先行電極ワイヤの溶接用ソリッドワイヤから発生するアーク力が強いので、先行電極ワイヤと後行電極ワイヤ間に形成される湯溜り内で激しい撹拌作用が発生し、プライマから発生する蒸気ガスを湯溜り外に多量に放出することを促すことができることを見出した。また、溶接用ソリッドワイヤのC、Si、Mnの成分を限定することで、溶融池の攪拌作用を高めるとともに湯溜りの粘性を調整して湯溜りの不安定化が抑えられ、脱酸不足によるピットの発生を抑えることができることも見出した。さらに、Tiの成分を限定することでアークを安定にしてワイヤ先端から溶滴が離脱する際に飛散するスパッタ発生量を抑えることができることも見出した。   In addition, since the arc force generated from the solid wire for welding the leading electrode wire is strong, a vigorous stirring action occurs in the hot water pool formed between the leading electrode wire and the trailing electrode wire, and the vapor gas generated from the primer is reduced. It has been found that a large amount can be urged to be released out of the puddle. Moreover, by limiting the components of C, Si, and Mn of the solid wire for welding, the stirring action of the molten pool is enhanced and the viscosity of the puddle is adjusted to suppress the destabilization of the puddle. It has also been found that the occurrence of pits can be suppressed. Furthermore, it has also been found that by limiting the Ti component, it is possible to stabilize the arc and suppress the amount of spatter generated when the droplets detach from the wire tip.

さらに、溶接用ソリッドワイヤは、溶接用フラックス入りワイヤに比べて溶融金属の酸素量が少ないので、先行電極ワイヤに溶接用ソリッドワイヤを用いた場合、2電極ともに溶接用フラックス入りワイヤを用いた場合に比べて湯溜り内の酸素量が下がり、後行電極ワイヤの後方に形成される溶融プールの表面張力が上がるので、溶接ビードの垂れが少なくなり、立板側の溶接ビード端部及び下板側の溶接ビード端部が均等な溶接ビードが得られることを見出した。   In addition, the solid wire for welding has less oxygen in the molten metal than the flux-cored wire for welding. Therefore, when the solid wire for welding is used for the lead electrode wire, the flux-cored wire for welding is used for both electrodes. Compared to the above, the amount of oxygen in the puddle is reduced, and the surface tension of the molten pool formed behind the trailing electrode wire is increased, so that the weld bead sag is reduced, and the weld bead end and lower plate on the vertical plate side are reduced. It has been found that a weld bead having a uniform weld bead end can be obtained.

また、先行電極ワイヤと後行電極ワイヤとの電極間距離(アーク発生点の間隔)、先行電極ワイヤのワイヤ径を後行電極ワイヤのワイヤ径以下とすることによって、溶接時のアーク及び湯溜りを安定させてスパッタを低減し、アンダーカットやオーバーラップがない健全な溶接ビードが得られ、スラグ剥離性も良好にできることを見出した。   Further, by setting the distance between the electrodes of the preceding electrode wire and the succeeding electrode wire (interval of arc generation point) and the wire diameter of the preceding electrode wire to be equal to or less than the wire diameter of the succeeding electrode wire, the arc and the hot water pool during welding It was found that a stable weld bead with no undercut or overlap was obtained and slag removability could be improved.

以下に、本発明における2電極水平すみ肉ガスシールドアーク溶接方法の施工条件の限定理由を述べる。以下、組成における質量%は、単に%と記載する。   The reasons for limiting the construction conditions of the two-electrode horizontal fillet gas shield arc welding method in the present invention will be described below. Hereinafter, the mass% in the composition is simply described as%.

[先行電極に溶接用ソリッドワイヤ、後行電極に溶接用フラックス入りワイヤを用いる]
溶接用ソリッドワイヤは、溶接用フラックス入りワイヤに比べて溶融金属の酸素量が少ない。無機ジンクなどのプライマ塗装鋼板を用いた2電極1プール方式での水平すみ肉ガスシールドアーク溶接で先行電極に溶接用ソリッドワイヤを用いると、先行電極及び後行電極ともに溶接用フラックス入りワイヤを用いた場合に比べて湯溜り内の酸素量が下がり、後行電極ワイヤの後方に形成される溶融プールの表面張力が上がるので、溶接ビードの垂れが少なくなり、脚長が均等な溶接ビードを得ることができる。また、先行電極の溶接用ソリッドワイヤからのアーク力が強いので、2電極間に形成される湯溜りが激しく攪拌され、無機ジンクなどのプライマ塗装鋼板から発生した蒸気ガスが湯溜り外に放出されるので、ピットを低減することができる。
[Use welding solid wire for leading electrode and welding flux-cored wire for trailing electrode]
The solid wire for welding has less oxygen in the molten metal than the flux-cored wire for welding. If a solid wire for welding is used for the leading electrode in horizontal fillet gas shielded arc welding with a two-electrode, one-pool system using a primer-coated steel plate such as inorganic zinc, a flux-cored wire for welding is used for both the leading and trailing electrodes. The amount of oxygen in the puddle is lower than that of the hot water pool and the surface tension of the molten pool formed behind the trailing electrode wire is increased, so that the weld bead sag is reduced and a weld bead with a uniform leg length is obtained. Can do. Moreover, since the arc force from the welding solid wire of the leading electrode is strong, the hot water pool formed between the two electrodes is vigorously stirred, and the vapor gas generated from the primer coated steel plate such as inorganic zinc is released outside the hot water pool. Therefore, pits can be reduced.

先行電極及び後行電極ともに溶接用フラックス入りワイヤを用いた場合、湯溜り中の酸素量が多くなるので、溶接ビードが垂れやすくなり、溶接ビードの脚長が不均等となる。また、先行電極のアークが溶接用ソリッドワイヤを用いた場合より弱いので、2電極間の湯溜りが十分に攪拌されず、ピットの発生を十分に抑えることができない。   When a flux-cored wire for welding is used for both the leading electrode and the trailing electrode, the amount of oxygen in the puddle increases, so that the weld bead tends to sag and the leg length of the weld bead becomes uneven. In addition, since the arc of the leading electrode is weaker than when the solid wire for welding is used, the hot water pool between the two electrodes is not sufficiently stirred, and the generation of pits cannot be sufficiently suppressed.

先行電極及び後行電極ともに溶接用ソリッドワイヤを用いた場合、先行電極のアークと後行電極のアークとの相互干渉によってアーク状態が不安定となり、スパッタが多発する。また、後行電極のアークが強いので、溶接ビードが凸状になり、ビード形状が不良になる。さらに、両電極から供給されるスラグ形成剤が極めて少ないので、溶融スラグが溶融プールを全面被包できず、溶接ビードの垂れを支えきれなくなり、溶接ビードの脚長が不均等となるとともに、スラグ被包性及びスラグ剥離性も不良となる。   When a solid wire for welding is used for both the preceding electrode and the succeeding electrode, the arc state becomes unstable due to the mutual interference between the arc of the preceding electrode and the arc of the succeeding electrode, resulting in frequent spattering. Further, since the arc of the trailing electrode is strong, the weld bead becomes convex and the bead shape becomes poor. Further, since the slag forming agent supplied from both electrodes is extremely small, the molten slag cannot encapsulate the entire molten pool, cannot support the drooping of the weld bead, the weld bead leg length becomes uneven, and the slag cover Packaging and slag peelability are also poor.

先行電極に溶接用フラックス入りワイヤ、後行電極に溶接用ソリッドワイヤを用いた場合、ビード形状を整える働きをする後行電極に溶接用ソリッドワイヤを用いているので、後行電極からのアークが強く、溶接ビードが凸状となり、ビード形状が不良となる。また、溶融スラグが溶融プール全面に均一に被包できないので、溶接ビードの脚長も不均等となり、スラグ被包性及びスラグ剥離性が不良となる。   When a flux-cored wire for welding is used as the leading electrode and a solid wire for welding is used as the trailing electrode, the welding electrode is used to adjust the bead shape. Strong, the weld bead becomes convex, and the bead shape becomes poor. Moreover, since molten slag cannot be uniformly encapsulated on the entire surface of the molten pool, the leg length of the weld bead becomes uneven, and the slag encapsulation and slag peelability are poor.

したがって、先行電極には溶接用ソリッドワイヤ、後行電極には溶接用フラックス入りワイヤを用いるものとする。   Therefore, a welding solid wire is used for the leading electrode, and a welding flux-cored wire is used for the trailing electrode.

[先行電極の溶接用ソリッドワイヤのC:0.04〜0.10%]
Cはアーク状態への影響が大きく、先行電極の溶接用ソリッドワイヤのCが0.04%未満では、アークが弱く、湯溜り内において十分な撹拌作用が得られないためピットが発生する。一方、先行電極の溶接用ソリッドワイヤのCが0.10%を超えると、アークが強くなりすぎて湯溜りが安定せずスパッタ発生量が多くなり、ビード形状も不良となる。したがって、先行電極の溶接用ソリッドワイヤのCは0.04〜0.10%とする。
[C of solid wire for welding of leading electrode: 0.04 to 0.10%]
C has a great influence on the arc state. When C of the solid wire for welding of the leading electrode is less than 0.04%, the arc is weak and a sufficient stirring action cannot be obtained in the puddle, and pits are generated. On the other hand, if the C of the solid wire for welding of the leading electrode exceeds 0.10%, the arc becomes too strong, the hot water pool is not stabilized, the amount of spatter is increased, and the bead shape is also poor. Therefore, C of the solid wire for welding of the leading electrode is set to 0.04 to 0.10%.

[先行電極の溶接用ソリッドワイヤのSi:0.5〜0.9%]
Siは、脱酸作用の強い元素であり、溶融金属の脱酸によって湯溜りの攪拌作用が高まることから、ガスの放出を促進する効果がある。また、アークを安定にする効果がある。Siが0.5%未満であると、アークが不安定になるとともに湯溜りの攪拌作用が低下することからピットが発生する。一方、Siが0.9%を超えると、湯溜りの粘性が高くなりプライマから発生するガスを放出できなくなってピットの発生量が多くなる。したがって、先行電極の溶接用ソリッドワイヤのSiは0.5〜0.9%とする。
[Si of solid wire for leading electrode welding: 0.5-0.9%]
Si is an element having a strong deoxidizing action, and the stirring action of the hot water pool is enhanced by deoxidation of the molten metal, so that it has an effect of promoting gas release. It also has the effect of stabilizing the arc. If Si is less than 0.5%, the arc becomes unstable and the stirring action of the hot water puddle is reduced, so that pits are generated. On the other hand, if Si exceeds 0.9%, the viscosity of the hot water pool becomes high and the gas generated from the primer cannot be released, resulting in an increase in the amount of pits generated. Therefore, the Si of the solid wire for welding of the leading electrode is set to 0.5 to 0.9%.

[先行電極の溶接用ソリッドワイヤのMn:1.4〜1.9%]
MnもSi同様脱酸作用のある元素であり、溶融金属の脱酸によって湯溜りの攪拌作用が高まることから、ガスの放出を促進する効果がある。また、湯溜りの粘性を高めて安定に形成し、ビード形状が良好で均等な脚長を得ることができる。Mnが1.4%未満では、湯溜りの攪拌作用が低下することからピットが発生する。また、湯溜りの変動が大きくなり、ビード形状が不良で均等な脚長が得られない。一方、Mnが1.9%を超えると、湯溜りの粘性が高くなりすぎてその湯溜りの形成が不安定になり、ビード形状も不良となる。したがって、先行電極の溶接用ソリッドワイヤのMnは1.4〜1.9%とする。
[Mn of solid wire for welding of leading electrode: 1.4 to 1.9%]
Mn is also an element having a deoxidizing action similar to Si, and has an effect of accelerating the release of gas because the stirring action of the hot water pool is enhanced by deoxidation of the molten metal. In addition, it is possible to increase the viscosity of the hot water pool and form it stably, and to obtain a uniform leg length with a good bead shape. If Mn is less than 1.4%, pits are generated because the stirring action of the hot water pool is reduced. In addition, the fluctuation of the hot water pool becomes large, the bead shape is poor, and a uniform leg length cannot be obtained. On the other hand, if Mn exceeds 1.9%, the viscosity of the puddle becomes too high, the formation of the puddle becomes unstable, and the bead shape becomes poor. Therefore, the Mn of the solid wire for welding of the leading electrode is set to 1.4 to 1.9%.

[先行電極の溶接用ソリッドワイヤのTi:0.15〜0.30%]
Tiは、アークを安定にしてスパッタ発生量を低減させる元素であり、先行電極ワイヤの先端から溶滴移行(離脱)する際のスパッタ飛散を抑える効果がある。Tiが0.15%未満では、その効果が得られずアークが不安定でスパッタ発生量が多い。一方、Tiが0.30%を超えると、アークが不安定になってスパッタ発生量が多くなる。したがって、先行電極の溶接用ソリッドワイヤのTiは0.15〜0.30%とする。
[Ti of solid wire for leading electrode welding: 0.15 to 0.30%]
Ti is an element that stabilizes the arc and reduces the amount of spatter generated, and has the effect of suppressing spatter scattering when droplets move (separate) from the tip of the preceding electrode wire. If Ti is less than 0.15%, the effect cannot be obtained, the arc is unstable, and the amount of spatter generated is large. On the other hand, if Ti exceeds 0.30%, the arc becomes unstable and the amount of spatter generated increases. Therefore, Ti of the solid wire for welding of the leading electrode is set to 0.15 to 0.30%.

なお、溶接用ソリッドワイヤのその他は、Fe及び不可避不純物である。そして、ワイヤ表面に銅めっきを0.2〜1μm施した溶接用ソリッドワイヤを用いることによってさらにアークが安定する。   Others of the welding solid wire are Fe and inevitable impurities. And the arc is further stabilized by using a solid wire for welding in which copper plating is applied to the wire surface by 0.2 to 1 μm.

[先行電極と後行電極の電極間距離:10〜40mm]
2電極1プール方式での水平すみ肉ガスシールドアーク溶接で安定した湯溜りを形成するためには、先行電極と後行電極の電極間距離(アーク発生点の間隔)を適正にする必要がある。先行電極と後行電極の電極間距離が10mm未満であると、2電極間に安定した湯溜りが形成されず、ビード形状が不良になる。さらに、先行電極のアークと後行電極のアークとの相互干渉によってアークが不安定になるので、スパッタ発生量及び鋼板へのスパッタ付着量も多くなる。一方、先行電極と後行電極の電極間距離が40mmを超えると、1プールの湯溜りが形成されず、先行電極で溶融したあとに凝固した金属の上に後行電極のアークが発生することになるので、アークが不安定となり、スパッタ発生量及び鋼板へのスパッタ付着量が多くなるとともに、ビード形状も不良となる。したがって、先行電極と後行電極の電極間距離は10〜40mmとする。
[Distance between leading electrode and trailing electrode: 10 to 40 mm]
In order to form a stable puddle by horizontal fillet gas shielded arc welding in the 2-electrode 1-pool method, it is necessary to make the distance between the leading electrode and the trailing electrode (interval of arc generation point) appropriate. . If the distance between the leading electrode and the trailing electrode is less than 10 mm, a stable puddle is not formed between the two electrodes, and the bead shape becomes poor. Further, since the arc becomes unstable due to the mutual interference between the arc of the preceding electrode and the arc of the succeeding electrode, the amount of spatter generated and the amount of spatter attached to the steel sheet also increase. On the other hand, if the distance between the leading electrode and the trailing electrode exceeds 40 mm, a pool of 1 pool is not formed, and an arc of the trailing electrode is generated on the solidified metal after melting at the leading electrode. As a result, the arc becomes unstable, the amount of spatter generated and the amount of spatter attached to the steel sheet increase, and the bead shape becomes poor. Therefore, the distance between the leading electrode and the trailing electrode is 10 to 40 mm.

[先行電極及び後行電極のワイヤ径:1.2〜2.0mm、且つ、先行電極のワイヤ径は後行電極のワイヤ径以下]
一般の船舶及び橋梁などの溶接構造物では、水平すみ肉溶接ビードの脚長は4mm超が必要とされ、先行電極及び後行電極のワイヤ径についても、脚長及び溶接速度に適応したワイヤ径を選定する必要がある。先行電極及び後行電極のワイヤ径が1.2mm未満であると、目標とする脚長(4mm以上)を確保するためにはワイヤ送給速度を上限近くまで上げなければならず、アークが不安定になり、スパッタの発生量が多くなり、ビード形状も不良となる。一方、先行電極及び後行電極のワイヤ径が2.0mmを超えると、通常のワイヤ送給装置ではワイヤが送給できず、専用のワイヤ送給装置を設置しなければならないので、設備コストが高くなる。さらに、先行電極のワイヤ径が後行電極のワイヤ径を超えると、アークの広がりが小さくなり、湯溜りが安定しないので、ビード形状が不良となる。したがって、先行電極及び後行電極のワイヤ径は1.2〜2.0mmとし、且つ、先行電極のワイヤ径は後行電極のワイヤ径以下とする。
[Wire diameters of the leading electrode and the trailing electrode: 1.2 to 2.0 mm, and the wire diameter of the leading electrode is equal to or smaller than the wire diameter of the trailing electrode]
For welded structures such as general ships and bridges, the leg length of the horizontal fillet weld bead is required to exceed 4 mm. For the wire diameter of the leading electrode and the trailing electrode, select a wire diameter suitable for the leg length and welding speed. There is a need to. If the wire diameter of the leading electrode and trailing electrode is less than 1.2 mm, the wire feed speed must be increased to near the upper limit to ensure the target leg length (4 mm or more), and the arc is unstable. As a result, the amount of spatter generated increases and the bead shape becomes poor. On the other hand, if the wire diameter of the leading electrode and the trailing electrode exceeds 2.0 mm, the wire cannot be fed with a normal wire feeding device, and a dedicated wire feeding device must be installed, so the equipment cost is low. Get higher. Furthermore, when the wire diameter of the leading electrode exceeds the wire diameter of the trailing electrode, the arc spread becomes small and the hot water pool is not stable, so that the bead shape becomes poor. Therefore, the wire diameter of the preceding electrode and the succeeding electrode is 1.2 to 2.0 mm, and the wire diameter of the preceding electrode is not more than the wire diameter of the succeeding electrode.

また、健全なビード外観を得るために先行電極及び後行電極の下板に対するトーチ角度を40〜60°、溶接進行方向に対する先行電極の後退角を1〜25°、溶接進行方向に対する後行電極の前進角を1〜25°にすることが好ましい。さらに、先行電極のアーク電圧は、スパッタ発生量を低減するためにフラックス入りワイヤ同士の組合せよりもアーク電圧を低くして、アークをいわゆる埋もれアークにすることが望ましい。   Further, in order to obtain a sound bead appearance, the torch angle with respect to the lower plate of the leading electrode and the trailing electrode is 40 to 60 °, the receding angle of the leading electrode with respect to the welding progress direction is 1 to 25 °, and the trailing electrode with respect to the welding progress direction The advancing angle is preferably 1 to 25 °. Further, it is desirable that the arc voltage of the leading electrode is made lower than the combination of flux-cored wires so as to reduce the amount of spatter, and the arc is a so-called buried arc.

[スラグ形成剤の合計:3.5〜8.5%]
前述の施工条件で2電極1プール方式での水平すみ肉ガスシールドアーク溶接を行うことで、アーク及び湯溜りが安定し、スパッタ発生量及び鋼板へのスパッタ付着量が少なく、スラグ被包性、スラグ剥離性が良好で、アンダーカットやオーバーラップのない均等な脚長の溶接ビードが得ることができ、溶接の高能率化を達成することができる。一方、黒皮鋼板での溶接の場合、更にスパッタ発生量と鋼板へのスパッタ付着量低減、スラグ被包性及びスラグ剥離性並びにビード形状を良好にするためには、後行電極に用いる溶接用フラックス入りワイヤのスラグ形成剤量を限定する必要がある。
[Total slag forming agent: 3.5 to 8.5%]
By performing horizontal fillet gas shielded arc welding with the 2-electrode 1-pool system under the above-mentioned construction conditions, the arc and the puddle are stabilized, the amount of spatter generated and the amount of spatter adhering to the steel sheet is small, slag encapsulation, A slag peelability is good, and a weld bead having an equal leg length without undercut or overlap can be obtained, so that high efficiency of welding can be achieved. On the other hand, in the case of welding with black skin steel plate, in order to further improve the spatter generation amount and spatter adhesion amount to the steel plate, slag encapsulation and slag peelability and bead shape, It is necessary to limit the amount of the slag forming agent of the flux-cored wire.

溶接用フラックス入りワイヤのスラグ形成剤は、2電極1プール方式での水平すみ肉ガスシールドアーク溶接で溶接ビードが形成される際、溶融スラグとなって溶接ビード全面を被包し、溶接ビードのビード形状を整えるとともに、溶融された金属が下板側に流れるのを防止し、溶接ビードの脚長を均等にする作用がある。ワイヤ全質量に対して、スラグ形成剤の合計が3.5%未満であると、スラグ生成量が不足して溶接ビード全面を均一に被包できないので、ビード形状が不良になるとともに、溶融スラグが溶接ビードに焼き付き、スラグ剥離性も不良となる。また、高電流高速度の溶接条件時にはスパッタ発生量が多くなり、鋼板への付着量も多くなる。一方、スラグ形成剤の合計がワイヤ全質量に対して8.5%を超えると、スラグ過多となってスラグ被包にムラが発生し、ビード形状が不良になる。したがって、溶接用フラックス入りワイヤにおけるフラックスに含まれるスラグ形成剤の合計はワイヤ全質量に対して3.5〜8.5%とする。   The slag forming agent for welding flux-cored wire becomes a molten slag when a weld bead is formed by horizontal fillet gas shielded arc welding in the two-electrode one-pool system, and encapsulates the entire surface of the weld bead. While adjusting the bead shape, the molten metal is prevented from flowing to the lower plate side, and the leg length of the weld bead is made uniform. If the total amount of the slag forming agent is less than 3.5% of the total mass of the wire, the slag generation amount is insufficient and the entire surface of the weld bead cannot be encapsulated uniformly. Will seize on the weld bead, resulting in poor slag removability. In addition, the amount of spatter generated increases during high current and high speed welding conditions, and the amount of adhesion to the steel sheet also increases. On the other hand, if the total amount of the slag forming agent exceeds 8.5% with respect to the total mass of the wire, the slag encapsulation becomes uneven and the bead shape becomes poor. Therefore, the sum total of the slag formation agent contained in the flux in the flux-cored wire for welding is 3.5 to 8.5% with respect to the total mass of the wire.

なお、スラグ形成剤は、TiO2、SiO2、ZrO2、Na2O、K2O、Al23、FeO、Fe23、MgOなどの酸化物及びCaF2、K2SiF6、Na3AlF6などの弗化物などの合計をいう。 The slag forming agent includes TiO 2 , SiO 2 , ZrO 2 , Na 2 O, K 2 O, Al 2 O 3 , FeO, Fe 2 O 3 , MgO and other oxides and CaF 2 , K 2 SiF 6 , This refers to the total of fluorides such as Na 3 AlF 6 .

以上、本発明の後行電極に用いる溶接用フラックス入りワイヤの構成成分の限定理由を述べたが、残部は、鋼製外皮成分のC、Si、Mn、Fe、フラックス中の鉄粉、合金粉及び不可避不純物である。鉄粉は、溶着速度を高める目的から適量添加することができる。また、合金粉は、Si、Mn、Ti、Al、Mgなどの金属粉や、Fe−Si、Fe−Mn、Fe−Si−Mn、Fe−Al、Fe−Tiなどの鉄合金粉などをいい、溶接金属の機械的性性質を向上などの目的から適量添加することができる。   The reasons for limiting the constituent components of the flux-cored wire for welding used for the trailing electrode of the present invention have been described above, the balance being steel outer shell components C, Si, Mn, Fe, iron powder in the flux, alloy powder And inevitable impurities. An appropriate amount of iron powder can be added for the purpose of increasing the welding speed. Further, the alloy powder refers to metal powder such as Si, Mn, Ti, Al, Mg, and iron alloy powder such as Fe-Si, Fe-Mn, Fe-Si-Mn, Fe-Al, Fe-Ti, and the like. An appropriate amount can be added for the purpose of improving the mechanical properties of the weld metal.

なお、前記の鋼製外皮は、フラックス充填した後の伸線加工性に優れる熱間圧延鋼帯で、鋼製外皮全質量に対して、質量%で、C:0.10%以下、Si:0.05%以下、Mn:0.20〜0.80%、P:0.050%以下、S:0.050%以下のものが適しており、特に、Cが0.005〜0.03%のものは、スパッタ低減及び低ヒューム化にも有効である。   The steel outer shell is a hot-rolled steel strip excellent in the wire drawing workability after flux filling, and is C: 0.10% or less in terms of mass% with respect to the total mass of the steel outer shell, Si: 0.05% or less, Mn: 0.20 to 0.80%, P: 0.050% or less, S: 0.050% or less are suitable, and in particular, C is 0.005 to 0.03. % Is also effective for reducing spatter and reducing fume.

また、溶接用フラックス入りワイヤのワイヤ断面形状は、かしめタイプまたはシームレスタイプのどちらでもよいが、ワイヤ表面に銅めっきを施すことができるシームレスタイプは、チップの摩耗が少なく、安定したアークが長時間維持することができ、溶接の高能率化を図ることができる。また、ワイヤに継ぎ目が無いので、吸湿性に優れており、長期間保管することができる。   The cross-sectional shape of the flux-cored wire for welding may be either a caulking type or a seamless type, but the seamless type that can be plated with copper on the wire surface has less wear on the tip and a stable arc for a long time. It is possible to maintain the efficiency of welding. Moreover, since there is no seam in a wire, it is excellent in hygroscopicity and can be stored for a long time.

さらに、溶接用フラックス入りワイヤ中の水素量及び窒素量は、耐気孔性及び溶接金属の衝撃靭性の低下を防止するため、ワイヤ全質量に対して40ppm以下にするのが望ましい。   Furthermore, it is desirable that the hydrogen content and the nitrogen content in the flux-cored wire for welding be 40 ppm or less with respect to the total mass of the wire in order to prevent deterioration of porosity resistance and impact toughness of the weld metal.

また、スラグ剥離剤として、SをFeSなどの形態で故意に添加するのは有効であるが、Sがワイヤ全質量に対して質量%で0.030%を超えると、スラグ被包性が悪くなり、ビード形状が不良となる。   In addition, it is effective to intentionally add S as a slag remover in the form of FeS or the like, but if S exceeds 0.030% by mass with respect to the total mass of the wire, the slag encapsulation is poor. Thus, the bead shape becomes defective.

本発明の2電極水平すみ肉ガスシールドアーク溶接方法で使用するシールドガスはCO2ガスとする。 The shielding gas used in the two-electrode horizontal fillet gas shielded arc welding method of the present invention is CO 2 gas.

以下、実施例により本発明をさらに具体的に説明する。   Hereinafter, the present invention will be described more specifically with reference to examples.

熱間圧延鋼帯の軟鋼外皮(C:0.02%、Si:0.01%、Mn:0.35%、Al:0.02%、N:0.0015%)に、表1に示すスラグ形成剤の含有率からなる各種フラックスをフラックス充填率17%で充填し、鋼製外皮の端面同士を溶接してシームレス状にした後、各種ワイヤ径に縮径した溶接用フラックス入りワイヤを各種試作した。   Table 1 shows the hot-rolled steel strip mild steel skin (C: 0.02%, Si: 0.01%, Mn: 0.35%, Al: 0.02%, N: 0.0015%) Various fluxes consisting of slag former content are filled at a flux filling rate of 17%, and the end surfaces of the steel outer shell are welded together to form a seamless shape. Prototype.

また、表2に示す各種試作した溶接用ソリッドワイヤの成分を示す。   In addition, the components of various types of solid welding wires shown in Table 2 are shown.

Figure 2015136720
Figure 2015136720

Figure 2015136720
Figure 2015136720

表1に示す溶接用フラックス入りワイヤを後行電極に用い、表2に示す溶接用ソリッドワイヤと組み合わせて表3に示す溶接施工条件で、2電極1プール方式での水平すみ肉ガスシールドアーク溶接(1パス両側同時溶接)を行い、溶接作業性を調査した。なお、シールドガスはCO2ガスを使用し、ガス流量25リットル/minで、溶接長750mmで溶接を行った。 Horizontal fillet gas shielded arc welding in a two-electrode, one-pool system using the welding flux-cored wire shown in Table 1 as the trailing electrode and the welding conditions shown in Table 3 in combination with the welding solid wire shown in Table 2. (Simultaneous welding on both sides of one pass) was performed to investigate welding workability. The shield gas was CO 2 gas, and welding was performed at a gas flow rate of 25 liters / min and a weld length of 750 mm.

Figure 2015136720
Figure 2015136720

試験体は、490N/mm2級高張力鋼表面に無機ジンクプライマを塗装した鋼板(プライマ膜厚は側面約15μm、端面はフライス加工、鋼板寸法:板幅100mm×長さ1000mm×板厚12mm)を用い、下板と立板との隙間がない状態でT字に組んだものを使用した。 Specimen is a steel plate with 490 N / mm grade 2 high-strength steel coated with inorganic zinc primer (primer film thickness is about 15 μm on the side, milled on the end face, steel plate dimensions: plate width 100 mm × length 1000 mm × plate thickness 12 mm) The one assembled in a T-shape with no gap between the lower plate and the standing plate was used.

溶接試験の評価は、各試験のアーク安定性、スパッタ発生量、2電極間の湯溜りの安定性、スラグ被包性、スラグ剥離性、ピット発生数、ビード形状、脚長(実測値)について調査した。それら結果を表4にまとめて示す。   Welding tests were evaluated for arc stability, spatter generation amount, stability of the puddle between electrodes, slag encapsulation, slag peelability, number of pits generated, bead shape, leg length (actual value). did. The results are summarized in Table 4.

Figure 2015136720
Figure 2015136720

表3及び表4中No.1〜8が本発明例、No.9〜21は比較例である。   In Table 3 and Table 4, No. 1-8 are examples of the present invention, No.1. 9 to 21 are comparative examples.

本発明例であるNo.1〜6は、先行電極に溶接用ソリッドワイヤ、後行電極に溶接用フラックス入りワイヤを用い、溶接用ソリッドワイヤの化学成分(C、Si、Mn、Ti量)が適正範囲で、先行電極と後行電極の電極間距離を10〜40mm、先行電極及び後行電極のワイヤ径を1.2〜2.0mmとし、且つ、先行電極のワイヤ径は後行電極のワイヤ径以下で後行電極の溶接用フラックス入りワイヤのスラグ形成剤の合計量が適正範囲であるので、アークが安定し、電極間の湯溜り、スラグ被包性およびスラグ剥離性が良好で、スパッタ発生量及び鋼板へのスパッタ付着量が少なく、アンダーカットやオーバーラップがない健全な溶接ビードを得ることができ、ピットの発生も無く極めて良好な結果であった。   No. which is an example of the present invention. Nos. 1-6 use a solid wire for welding as the leading electrode and a flux-cored wire for welding as the trailing electrode, and the chemical composition (C, Si, Mn, Ti amount) of the welding solid wire is within an appropriate range. The distance between the electrodes of the trailing electrode is 10 to 40 mm, the wire diameter of the leading electrode and the trailing electrode is 1.2 to 2.0 mm, and the wire diameter of the leading electrode is equal to or less than the wire diameter of the trailing electrode. Since the total amount of slag forming agent of the flux-cored wire for welding is within an appropriate range, the arc is stable, the hot water pool between electrodes, slag encapsulation and slag peelability are good, the amount of spatter generated and the It was possible to obtain a sound weld bead with little spatter deposition, no undercuts and no overlap, and very good results with no pits.

なお、No.7は、後行電極に用いた溶接用フラックス入りワイヤ(FC4)のスラグ形成剤が少ないので、スラグ被包性、スラグ剥離性及びビード形状がやや悪かったが、溶接部の品質上の問題は無かった。また、No.8は、後行電極に用いた溶接用フラックス入りワイヤ(FC5)のスラグ形成剤が多いのでスラグ被包性、ビード形状がやや悪かったが、溶接部の品質上の問題は無かった。   In addition, No. 7 has little slag forming agent for the flux-cored wire for welding (FC4) used for the trailing electrode, so the slag encapsulation, slag peelability and bead shape were somewhat poor. There was no. No. No. 8 had a slightly poor slag encapsulating property and bead shape because there was much slag forming agent for welding flux-cored wire (FC5) used for the trailing electrode, but there was no problem in quality of the welded part.

比較例中No.9は、先行電極に溶接用フラックス入りワイヤ、後行電極に溶接用ソリッドワイヤを用いたので、スラグ被包性、スラグ剥離性及びビード形状が不良で、脚長も不均等であった。   No. in the comparative examples. No. 9 used welding flux-cored wire for the leading electrode and solid welding wire for the trailing electrode, so the slag encapsulation, slag peelability and bead shape were poor, and the leg length was also uneven.

No.10は、先行電極の溶接用ソリッドワイヤ(SW6)のCが少ないので、アークが弱く湯溜りでの十分な撹拌作用が得られずピットが発生した。   No. No. 10 had a small amount of C in the solid wire (SW6) for welding of the leading electrode, so that the arc was weak and sufficient stirring action in the puddle could not be obtained, resulting in pits.

No.11は、先行電極の溶接用ソリッドワイヤ(SW7)のCが多いので、アークが強くスパッタ発生量が多く、湯溜りも安定化しなかったのでビード形状も不良であった。   No. No. 11 had a large bead shape because there was a lot of C in the solid wire for welding of the leading electrode (SW7), the arc was strong, the amount of spatter was large, and the hot water pool was not stabilized.

No.12は、先行電極の溶接用ソリッドワイヤ(SW8)のSiが少ないので、アークが不安定でピットも発生した。   No. In No. 12, since the Si of the solid wire for welding of the leading electrode (SW8) was small, the arc was unstable and pits were generated.

No.13は、先行電極の溶接用ソリッドワイヤ(SW9)のSiが多いので、ピットが発生した。また、溶接用フラックス入りワイヤ(FC4)のスラグ形成剤が少ないので、スラグ被包性、スラグ剥離性及びビード形状が不良であった。   No. In No. 13, pits occurred because of the large amount of Si in the solid wire for welding of the preceding electrode (SW9). Moreover, since there was little slag formation agent of the flux cored wire for welding (FC4), slag encapsulation, slag peelability, and bead shape were inferior.

No.14は、先行電極の溶接用ソリッドワイヤ(SW10)のMnが少ないので、湯溜りの変動が大きくなり、ビード形状が不良で均等な脚長も得られなかった。また、ピットも発生した。   No. In No. 14, since the Mn of the welding solid wire (SW10) of the leading electrode was small, the fluctuation of the hot water pool became large, the bead shape was poor, and the uniform leg length was not obtained. There were also pits.

No.15は、先行電極の溶接用ソリッドワイヤ(SW11)のMnが多いので、湯溜りの形成が不安定になり、ビード形状も不良であった。また、後行電極のワイヤ径が2.4mmであるので、専用の溶接電源及びワイヤ送給装置が必要となった。   No. No. 15 had a large amount of Mn in the welding solid wire (SW11) of the leading electrode, so the formation of the hot water pool became unstable and the bead shape was also poor. Further, since the wire diameter of the trailing electrode is 2.4 mm, a dedicated welding power source and a wire feeding device are required.

No.16は、先行電極の溶接用ソリッドワイヤ(SW12)のTiが少ないので、アークが不安定でスパッタ発生量が多かった。また、溶接用フラックス入りワイヤ(FC5)のスラグ形成剤が多いので、スラグ被包性及びビード形状が不良であった。   No. In No. 16, since the Ti of the solid wire for welding of the leading electrode (SW12) was small, the arc was unstable and the amount of spatter was large. Moreover, since there were many slag formation agents of the flux cored wire for welding (FC5), the slag encapsulation property and bead shape were inferior.

No.17は、先行電極の溶接用ソリッドワイヤ(SW13)のTiが多いので、アークが不安定でスパッタ発生量が多かった。   No. No. 17 had a large amount of Ti in the solid wire for welding of the leading electrode (SW13), so the arc was unstable and the amount of spatter was large.

No.18は、先行電極と後行電極の電極間距離が短いので、アーク状態及び湯溜り状態が不安定となり、スパッタが多発し、ビード形状も不良であった。   No. In No. 18, since the distance between the leading electrode and the trailing electrode was short, the arc state and the hot water pool state became unstable, spatter occurred frequently, and the bead shape was also poor.

No.19は、先行電極と後行電極の電極間距離が長いので、アーク状態及び湯溜り状態が不安定となり、スパッタが多発し、ビード形状も不良であった。   No. In No. 19, since the distance between the leading electrode and the trailing electrode was long, the arc state and the hot water pool state became unstable, spatter occurred frequently, and the bead shape was also poor.

No.20は、先行電極及び後行電極のワイヤ径が小さいので、アークが不安定となり、スパッタが多発し、ビード形状も不良であった。   No. In No. 20, since the wire diameters of the leading electrode and the trailing electrode were small, the arc became unstable, spattering occurred frequently, and the bead shape was poor.

No.21は、先行電極のワイヤ径が後行電極のワイヤ径を超えているので、湯溜り状態が不安定となり、ビード形状も不良であった。   No. In No. 21, since the wire diameter of the preceding electrode exceeded the wire diameter of the succeeding electrode, the hot water pool state became unstable and the bead shape was also poor.

1 先行電極ワイヤ
2 後行電極ワイヤ
3 湯溜り
4 溶融プール
5 溶融スラグ
6 凝固スラグ
7 溶接ビード
8 プライマ
9 立板
10 下板
11 アンダーカット
12 オーバーラップ
13 ピット
DESCRIPTION OF SYMBOLS 1 Lead electrode wire 2 Subsequent electrode wire 3 Hot water pool 4 Molten pool 5 Molten slag 6 Solidified slag 7 Weld bead 8 Primer 9 Standing plate 10 Lower plate 11 Undercut 12 Overlap 13 Pit

Claims (2)

2電極水平すみ肉ガスシールドアーク溶接方法において、
先行電極に溶接用ソリッドワイヤ、後行電極に溶接用フラックス入りワイヤを用い、
前記溶接用ソリッドワイヤは、ワイヤ全質量に対する質量%で、
C:0.04〜0.10%、
Si:0.5〜0.9%、
Mn:1.4〜1.9%、
Ti:0.15〜0.30%を含有し、
残部はFe及び不可避不純物からなり、
先行電極と後行電極との電極間距離を10〜40mm、
先行電極及び後行電極のワイヤ径を1.2〜2.0mmとし、
且つ、先行電極のワイヤ径は、後行電極のワイヤ径以下で溶接することを特徴とする2電極水平すみ肉ガスシールドアーク溶接方法。
In the two-electrode horizontal fillet gas shielded arc welding method,
Using a solid wire for welding as the leading electrode and a flux-cored wire for welding as the trailing electrode,
The welding solid wire is mass% with respect to the total mass of the wire,
C: 0.04 to 0.10%,
Si: 0.5-0.9%
Mn: 1.4 to 1.9%,
Ti: 0.15 to 0.30% is contained,
The balance consists of Fe and inevitable impurities,
The distance between the electrode between the leading electrode and the trailing electrode is 10 to 40 mm,
The wire diameter of the leading electrode and the trailing electrode is 1.2 to 2.0 mm,
In addition, the two-electrode horizontal fillet gas shielded arc welding method is characterized in that the wire diameter of the leading electrode is equal to or less than the wire diameter of the trailing electrode.
前記溶接用フラックス入りワイヤは、ワイヤ全質量に対する質量%で、フラックスに、
スラグ形成剤の合計を3.5〜8.5%含有し、
残部は鉄粉、合金粉及び不可避不純物であることを特徴とする請求項1記載の2電極水平すみ肉ガスシールドアーク溶接方法。
The welding flux-cored wire is the mass% with respect to the total mass of the wire.
Contains 3.5 to 8.5% of the total slag forming agent,
The two-electrode horizontal fillet gas shielded arc welding method according to claim 1, wherein the balance is iron powder, alloy powder and inevitable impurities.
JP2014010113A 2014-01-23 2014-01-23 Two electrode horizontal fillet gas shield arc welding method Pending JP2015136720A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014010113A JP2015136720A (en) 2014-01-23 2014-01-23 Two electrode horizontal fillet gas shield arc welding method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014010113A JP2015136720A (en) 2014-01-23 2014-01-23 Two electrode horizontal fillet gas shield arc welding method

Publications (1)

Publication Number Publication Date
JP2015136720A true JP2015136720A (en) 2015-07-30

Family

ID=53768100

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014010113A Pending JP2015136720A (en) 2014-01-23 2014-01-23 Two electrode horizontal fillet gas shield arc welding method

Country Status (1)

Country Link
JP (1) JP2015136720A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190118897A (en) * 2018-04-11 2019-10-21 현대종합금속 주식회사 Tandem gas shielded arc welding wire
KR102150974B1 (en) * 2019-05-09 2020-09-02 현대종합금속 주식회사 Tandem gas shielded arc welding wire having good low temperature toughness

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02280968A (en) * 1989-04-21 1990-11-16 Nippon Steel Corp Horizontal filter gas shielded arc welding method at high speed
JPH08332568A (en) * 1995-04-07 1996-12-17 Nippon Steel Weld Prod & Eng Co Ltd High speed horizontal fillet gas shield arc welding method
JP2007331006A (en) * 2006-06-16 2007-12-27 Nippon Steel & Sumikin Welding Co Ltd Copper plated wire for gas shielded arc welding

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02280968A (en) * 1989-04-21 1990-11-16 Nippon Steel Corp Horizontal filter gas shielded arc welding method at high speed
JPH08332568A (en) * 1995-04-07 1996-12-17 Nippon Steel Weld Prod & Eng Co Ltd High speed horizontal fillet gas shield arc welding method
JP2007331006A (en) * 2006-06-16 2007-12-27 Nippon Steel & Sumikin Welding Co Ltd Copper plated wire for gas shielded arc welding

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190118897A (en) * 2018-04-11 2019-10-21 현대종합금속 주식회사 Tandem gas shielded arc welding wire
KR102051960B1 (en) 2018-04-11 2019-12-04 현대종합금속 주식회사 Tandem gas shielded arc welding wire
KR102150974B1 (en) * 2019-05-09 2020-09-02 현대종합금속 주식회사 Tandem gas shielded arc welding wire having good low temperature toughness

Similar Documents

Publication Publication Date Title
US11426825B2 (en) Systems and methods for welding mill scaled workpieces
JP2009255125A (en) PURE Ar GAS SHIELDED WELDING MIG FLUX-CORED WIRE AND MIG ARC WELDING METHOD
CN108367393B (en) Low manganese tubular welding wire and method of forming a weld deposit
WO2017126657A1 (en) Consumable electrode gas-shielded arc welding method and arc weld
US20140263259A1 (en) Consumable for specially coated metals
US9102013B2 (en) Flux-cored welding wire for carbon steel and process for arc welding
JP5014189B2 (en) Two-electrode fillet gas shielded arc welding method
JP6188626B2 (en) Two-electrode horizontal fillet gas shielded arc welding method
JP2015139784A (en) Two-electrode horizontal fillet gas shielded arc welding method
JPH02280968A (en) Horizontal filter gas shielded arc welding method at high speed
JP2015136720A (en) Two electrode horizontal fillet gas shield arc welding method
JP2009148774A (en) Rutile type flux cored wire for gas shielded arc welding
JP2007083303A (en) Shielding gas for mig brazing and welding method using the shielding gas
JP5938375B2 (en) Flux-cored wire for 2-electrode horizontal fillet CO2 gas shielded arc welding
JP2015136719A (en) Two electrode horizontal fillet gas shield arc welding method
JP2005230912A (en) Arc welding flux cored wire superior in liquid metal embrittlement crack resistance, and arc welding method
JP3124439B2 (en) High speed horizontal fillet gas shielded arc welding method
JP3210609U (en) Consumable electrode for special coated metal
KR101856703B1 (en) Flux cored wire for galva-annealed steel welding
US20200189043A1 (en) Crack-resistant wire electrode containing added sulfur source and magnesium oxide
JPH03294092A (en) Flux cored wire electrode for gas shielded arc welding
JP2015073997A (en) Two-electrode horizontal fillet gas shielded arc welding method
JPH11226735A (en) Gas shield arc welding method
JPS62110897A (en) Iron power flux cored wire
JP5411796B2 (en) Solid wire for gas shielded arc welding

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160601

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170316

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170404

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20171003