JP2008184685A - Zn-Al-Mg BASE PLATED STEEL SHEET HAVING EXCELLENT MOLTEN METAL EMBRITTLEMENT CRACK RESISTANCE - Google Patents

Zn-Al-Mg BASE PLATED STEEL SHEET HAVING EXCELLENT MOLTEN METAL EMBRITTLEMENT CRACK RESISTANCE Download PDF

Info

Publication number
JP2008184685A
JP2008184685A JP2007021729A JP2007021729A JP2008184685A JP 2008184685 A JP2008184685 A JP 2008184685A JP 2007021729 A JP2007021729 A JP 2007021729A JP 2007021729 A JP2007021729 A JP 2007021729A JP 2008184685 A JP2008184685 A JP 2008184685A
Authority
JP
Japan
Prior art keywords
less
mass
steel sheet
molten metal
content
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007021729A
Other languages
Japanese (ja)
Other versions
JP5053652B2 (en
Inventor
Nobukazu Fujimoto
延和 藤本
Takashi Matsumoto
孝 松元
Tomonaga Iwazu
智永 岩津
Kentaro Hirata
健太郎 平田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Original Assignee
Nisshin Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisshin Steel Co Ltd filed Critical Nisshin Steel Co Ltd
Priority to JP2007021729A priority Critical patent/JP5053652B2/en
Publication of JP2008184685A publication Critical patent/JP2008184685A/en
Application granted granted Critical
Publication of JP5053652B2 publication Critical patent/JP5053652B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Coating With Molten Metal (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a Zn-Al-Mg base plated steel sheet provided with the properties that molten metal embrittlement cracks can be stably suppressed even under severe welding conditions. <P>SOLUTION: In the Zn-Al-Mg base plated steel sheet having excellent molten metal embrittlement crack resistance, a steel sheet substrate (plating original sheet) is composed of a steel having a composition comprising, by mass, 0.01 to 0.3% C, ≤1.5% Si, 0.05 to 2.0% Mn, ≤0.1% P, ≤0.005% N, ≤0.1% Ti, 0.0003 to 0.01% B and 0.5 to 3.0% Cr, and, if required, comprising one or more selected from ≤0.3% Nb, ≤1.0% V, ≤1.0% Mo and ≤1.0% Zr, or further comprising one or more selected from ≤1.0% Cu and ≤1.0% N, and the balance Fe with inevitable impurities, and satisfying inequality(1): Ti≥3.43×N (1). <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、溶接加工に供したとき、溶接熱影響部における溶融金属脆化割れの発生が抑止される溶融Zn−Al−Mg系めっき鋼板に関する。   The present invention relates to a hot-dip Zn—Al—Mg-based plated steel sheet in which the occurrence of molten metal embrittlement cracks in a weld heat affected zone is suppressed when subjected to welding.

Zn−Al−Mg系めっき鋼板は、一般的な亜鉛めっき鋼板と比べ耐食性に優れる。従来、高品質な溶融Zn−Al−Mg系めっき鋼板の製造は難しいとされていたが、近年、工業的規模での溶融Zn−Al−Mg系めっき鋼板の製造技術が確立され、最近では外装材のみならず各種構造部材の用途で溶融Zn−Al−Mg系めっき鋼板が使用されるようになってきた。   The Zn—Al—Mg based steel sheet is excellent in corrosion resistance as compared with a general galvanized steel sheet. Conventionally, it has been difficult to produce high-quality molten Zn-Al-Mg plated steel sheets, but in recent years, manufacturing technology for molten Zn-Al-Mg plated steel sheets on an industrial scale has been established. Hot-dip Zn—Al—Mg plated steel sheets have been used for various structural members as well as materials.

自動車部材や建材をはじめとする構造部材は、めっき鋼板を溶接して組み立てられる場合が多い。この場合、溶接時にめっき層が鋼素地の一部とともに溶融する。これまでの調査によれば、一般的な亜鉛めっき鋼板に比べ、Zn−Al−Mg系めっき鋼板を使用した場合には、溶接熱影響部(HAZ)に微細な粒界割れが生じやすいことが経験的にわかっている。この割れは、溶接時に材料の膨張・収縮に伴って生じる引張応力に起因するものであり、溶融金属脆化割れと呼ばれる現象の一種である。溶接時に溶融したZn−Al−Mg系めっきの成分が、亜鉛めっきの場合よりも溶融金属脆化割れの感受性を増大させているものと考えられる。   Structural members such as automobile members and building materials are often assembled by welding plated steel sheets. In this case, the plating layer melts together with a part of the steel base during welding. According to the investigations so far, when using a Zn-Al-Mg plated steel sheet, fine intergranular cracks are likely to occur in the weld heat affected zone (HAZ) as compared to a general galvanized steel sheet. I know empirically. This crack is caused by a tensile stress caused by the expansion and contraction of the material during welding, and is a kind of phenomenon called a molten metal embrittlement crack. It is considered that the Zn—Al—Mg-based plating component melted at the time of welding increases the sensitivity of molten metal embrittlement cracking compared to the case of zinc plating.

Zn−Al−Mg系めっき鋼板の耐溶融金属脆化割れ性を改善するため、これまで種々の検討がなされてきた。特許文献1、2には、下地鋼の金属組織をフェライトと、ベイナイト、パーライトあるいはマルテンサイトとの混合組織とし、結晶粒界を複雑化することによって溶融金属の粒界への侵入を抑制する手法が開示されている。特許文献3には、Ti、Nb、V、Mo、Zr等を添加した鋼板素材を用い、ピンニング作用のあるこれらの元素の析出物を分散させて溶接時のオーステナイト域における結晶粒の成長を抑制するとともに、これらの元素が溶接後に粒界に偏析する作用を利用することにより割れの防止を図る手法が開示されている。特許文献4には、Cr、Cu、Ni等がSiとともに濃化した強固で薄い皮膜が形成された下地鋼を使用することにより、鋼材表面の結晶粒界に溶融めっき金属が侵入することを抑制する手法が開示されている。   In order to improve the molten metal embrittlement cracking resistance of the Zn—Al—Mg plated steel sheet, various studies have been made so far. Patent Documents 1 and 2 disclose that the metal structure of the base steel is a mixed structure of ferrite and bainite, pearlite, or martensite, and suppresses intrusion of the molten metal into the grain boundary by complicating the crystal grain boundary. Is disclosed. Patent Document 3 uses steel plate materials to which Ti, Nb, V, Mo, Zr, etc. are added, and precipitates of these elements having a pinning action are dispersed to suppress the growth of crystal grains in the austenite region during welding. In addition, there is disclosed a technique for preventing cracks by utilizing the action of these elements segregating at grain boundaries after welding. Patent Document 4 uses a base steel on which a strong and thin film in which Cr, Cu, Ni and the like are concentrated together with Si is used to suppress the penetration of hot-dipped metal into crystal grain boundaries on the steel surface. A technique is disclosed.

特開2004−315847号公報JP 2004-315847 A 特開2004−315848号公報JP 2004-315848 A 特開2006−97129号公報JP 2006-97129 A 特開2006−89787号公報JP 2006-89787 A

上記各特許文献の手法はいずれも、Zn−Al−Mg系めっき鋼板の耐溶融金属脆化割れ性の向上に有効である。しかしながら、本発明者らの更なる調査によれば、実際の溶接施工においては、溶接条件によって、これらの文献の手法を採用しても溶融金属脆化割れを食い止めることができない場合があることがわかった。
本発明は、厳しい溶接条件でも溶融金属脆化割れを安定して抑止できる性質を備えたZn−Al−Mg系めっき鋼板を提供することを目的とする。
Any of the methods described in the above patent documents is effective in improving the resistance to molten metal embrittlement cracking of the Zn—Al—Mg based steel sheet. However, according to further investigations by the present inventors, in actual welding work, there are cases where molten metal embrittlement cracks cannot be stopped depending on the welding conditions even if the methods of these documents are adopted. all right.
An object of this invention is to provide the Zn-Al-Mg type plated steel plate with the property which can suppress a molten metal embrittlement crack stably also on severe welding conditions.

発明者らの詳細な検討の結果、素地鋼板として、TiとBを複合添加し、かつCrの含有量を一定以上に増量した鋼を採用することにより、上記目的が達成できることを知見した。すなわち本発明では、質量%でAl:3〜22%、Mg:1〜10%、残部実質的にZnからなる溶融めっきを施しためっき鋼板において、素地鋼板(めっき原板)を、質量%でC:0.01〜0.3%、Si:1.5%以下、Mn:0.05〜2.0%、P:0.1%以下、N:0.005%以下、Ti:0.1%以下、B:0.0003〜0.01%、Cr:0.5〜3.0%であり、場合によってはさらにNb:0.3%以下、V:1.0%以下、Mo:1.0%以下およびZr:1.0%以下の1種以上を含有し、あるいはさらにCu:1.0%以下およびNi:1.0%以下の1種以上を含有し、残部Feおよび不可避的不純物、かつ下記(1)式を満たす組成の鋼で構成したことを特徴とする耐溶融金属脆化割れ性に優れたZn−Al−Mg系めっき鋼板が提供される。
Ti≧3.43×N ……(1)
As a result of detailed studies by the inventors, it has been found that the above object can be achieved by adopting steel in which Ti and B are added in combination and the Cr content is increased to a certain level or more as a base steel sheet. That is, in the present invention, in a plated steel sheet that has been hot-plated consisting of Al: 3 to 22%, Mg: 1 to 10%, and the balance being substantially Zn in mass%, the base steel sheet (plating original sheet) is C in mass%. : 0.01-0.3%, Si: 1.5% or less, Mn: 0.05-2.0%, P: 0.1% or less, N: 0.005% or less, Ti: 0.1 %: B: 0.0003-0.01%, Cr: 0.5-3.0%, and in some cases, Nb: 0.3% or less, V: 1.0% or less, Mo: 1 1.0% or less and Zr: 1.0% or less of one or more, or Cu: 1.0% or less and Ni: 1.0% or less of one or more, the balance Fe and inevitable Zn-Al-Mg-based plated steel sheet having excellent resistance to molten metal embrittlement cracking, which is made of steel having a composition satisfying the following formula (1): It is provided.
Ti ≧ 3.43 × N (1)

ここで、溶融めっきが「残部実質的にZnからなる」とは、Zn−Al−Mg系めっきの耐食性を阻害せず、かつ溶融めっき鋼板の製造自体が可能な範囲で、Zn、Al、Mg以外の元素の混入を許容する趣旨である。例えば、溶融Zn−Al−Mg系めっき浴に一般的に含有される元素として、Ti、B、Si、Feが挙げられるが、これらはTi:0.1質量%以下、B:0.05質量%以下、Si:2%以下、Fe:2%以下の範囲で含有されて構わない。また「残部実質的にZnからなる」には「残部がZnおよび不可避的不純物からなる」場合が含まれ、「Ti、B、Si、Feの1種以上を上記の含有量範囲で含み、残部がZnおよび不可避的不純物からなる」場合も含まれる。(1)式の元素記号の箇所には、質量%で表される当該元素の含有量の値が代入される。   Here, the term “hot-plated substantially consisting of Zn” means that the corrosion resistance of the Zn—Al—Mg-based plating is not hindered and the hot-dip plated steel sheet can be manufactured itself. This is to allow mixing of elements other than. For example, Ti, B, Si, and Fe are included as elements generally contained in the molten Zn—Al—Mg plating bath, and these are Ti: 0.1 mass% or less, B: 0.05 mass. %, Si: 2% or less, Fe: 2% or less. In addition, “the balance is substantially composed of Zn” includes a case where “the balance is composed of Zn and inevitable impurities”, and includes “at least one of Ti, B, Si, and Fe in the above content range, Is comprised of Zn and inevitable impurities. The value of the content of the element represented by mass% is substituted for the element symbol in the formula (1).

本発明によれば、C含有量0.01〜0.3%の鋼が用いられる種々の用途において、耐食性に優れたZn−Al−Mg系めっき鋼板を使用した健全な溶接部を有する溶接構造部材が提供される。したがって本発明は、従来、亜鉛めっき鋼板が使用されていた各種溶接構造部材において、信頼性を維持しながら耐食性レベルの向上をもたらすものである。   According to the present invention, in various uses where steel having a C content of 0.01 to 0.3% is used, a welded structure having a sound welded portion using a Zn-Al-Mg plated steel sheet having excellent corrosion resistance. A member is provided. Accordingly, the present invention brings about an improvement in the corrosion resistance level while maintaining reliability in various welded structural members that have conventionally used galvanized steel sheets.

本発明では、めっき原板である素地鋼板として、Ti、B、およびCrを適量含有させた鋼を使用することにより、溶融Zn−Al−Mg系めっき鋼板の溶接時における溶融金属脆化割れを防止する。以下に素地鋼板の成分元素について説明する。   In the present invention, by using a steel containing an appropriate amount of Ti, B, and Cr as a base steel plate that is a plating base plate, molten metal embrittlement cracking during welding of a molten Zn-Al-Mg plated steel plate is prevented. To do. The component elements of the base steel sheet will be described below.

Cは、鋼材の強度を確保するために必要な元素であり、求められる強度レベルに応じてC含有量が調整される。例えば建材用途として、柱補強材や、骨組を接合する箇所の部材には、C含有量が0.07〜0.3質量%に調整された強度レベルの高い鋼が適している。また、自動車部材その他の比較的良好な加工性が要求される用途ではC含有量0.01〜0.07質量%未満の鋼が使用されることが多い。C含有量が高くなると延性低下に伴って加工性が低下するので、用途に応じてC含有量の上限を設定する必要がある。本発明ではC:0.01〜0.3質量%の鋼を対象とする。   C is an element necessary for ensuring the strength of the steel material, and the C content is adjusted according to the required strength level. For example, as a building material application, steel having a high strength level in which the C content is adjusted to 0.07 to 0.3% by mass is suitable for a column reinforcing material or a member where a frame is joined. Further, steels having a C content of 0.01 to less than 0.07% by mass are often used in automobile members and other applications that require relatively good workability. When the C content increases, the workability decreases with decreasing ductility, so it is necessary to set the upper limit of the C content according to the application. In the present invention, C: 0.01 to 0.3% by mass of steel is an object.

Siは、フェライト相に固溶し、鋼材の強度上昇に有効な元素である。その作用を十分に得るには0.01質量%以上のSi含有量を確保することが望ましい。ただし、Si含有量が増大すると、延性が低下したり、鋼材表面にSiが濃化してめっき性が低下したりする。このため本発明ではSi含有量は1.5質量%以下の範囲に制限され、0.5質量%以下とすることがより好ましい。   Si is an element that dissolves in the ferrite phase and is effective in increasing the strength of the steel material. In order to obtain the effect sufficiently, it is desirable to secure a Si content of 0.01% by mass or more. However, when the Si content is increased, ductility is reduced, or Si is concentrated on the surface of the steel material, thereby reducing the plating property. For this reason, in this invention, Si content is restrict | limited to the range of 1.5 mass% or less, and it is more preferable to set it as 0.5 mass% or less.

Mnは、S起因の脆化を防止するとともに強度向上に有効な元素である。これらの効果を得るために0.05質量%以上のMn含有量を確保する。ただし、Mn含有量が増大すると、加工性や溶接性が低下したり、鋼材表面にMnが濃化してめっき性が低下したりする。このため本発明ではMn含有量は2.0質量%以下の範囲に制限され、0.5質量%以下とすることがより好ましい。   Mn is an element that prevents embrittlement due to S and is effective in improving strength. In order to obtain these effects, a Mn content of 0.05% by mass or more is ensured. However, when the Mn content is increased, workability and weldability are deteriorated, or Mn is concentrated on the steel material surface and the plating property is decreased. For this reason, in this invention, Mn content is restrict | limited to the range of 2.0 mass% or less, and it is more preferable to set it as 0.5 mass% or less.

Pは、延性に悪影響を及ぼすので、高加工性が要求される用途では低い方がよい。ただ、Pには強度を上昇させる作用があるため、高強度化が必要な用途では加工性やめっき性に悪影響を及ぼさない範囲で添加することができる。例えば0.01質量%以上のP含有が高強度化には有利であるが、上限は上記のような理由から0.1質量%に制限され、0.05質量%以下とすることがより好ましい。   Since P adversely affects ductility, it is better for P to be used in applications where high workability is required. However, since P has an effect of increasing the strength, it can be added in a range that does not adversely affect the workability and the plating property in applications where high strength is required. For example, P content of 0.01% by mass or more is advantageous for increasing the strength, but the upper limit is limited to 0.1% by mass for the above reasons, and more preferably 0.05% by mass or less. .

Sは、鋼の脆化を招くので、S含有量は0.03質量%以下に抑えることが望ましい。   Since S causes embrittlement of the steel, the S content is preferably suppressed to 0.03 mass% or less.

Nは、鋼中のBと反応してBNを形成する。BNの形成によってBが消費されると、耐溶融金属脆化割れ性を改善するために重要な機能を担うBの鋼中含有量(有効B量)を十分に確保することが難しくなる。このため、Nの含有量をできるだけ低く抑えることが重要である。本発明では後述のTiによってNを固定することでBNの形成を抑制するのであるが、それでもN含有量は0.005質量%以下に抑えておく必要がある。   N reacts with B in the steel to form BN. When B is consumed due to the formation of BN, it becomes difficult to sufficiently secure the content (effective B amount) of B, which plays an important function in order to improve the resistance to molten metal embrittlement cracking. For this reason, it is important to keep the N content as low as possible. In the present invention, formation of BN is suppressed by fixing N with Ti described later, but the N content still needs to be suppressed to 0.005 mass% or less.

Tiは、強力な窒化物形成元素であり、上記のようにNをTiNとして固定することによりBNの形成を抑制する機能を有する。種々検討の結果、このようなTiの機能を十分に発揮させるには、下記(1)式を満たすようにTi含有量を確保する必要がある。
Ti≧3.43×N ……(1)
この(1)式は、鋼中に存在するNのほぼ全量を固定するために必要なTi含有量を示すものである。Ti含有量が(1)式を外れて低い場合は、有効B量を十分に確保することが難しくなる。
また、TiはCrの粒界偏析を促進させる作用があることがわかった。このため、後述のCrによる耐溶融金属脆化割れ性の改善効果を高める上でも有効である。ただし、過剰のTi含有は鋼材の加工性低下および製造コスト増大を招くので、Ti含有量は0.1質量%以下の範囲に制限される。
Ti is a strong nitride-forming element and has a function of suppressing the formation of BN by fixing N as TiN as described above. As a result of various studies, in order to sufficiently exhibit such a Ti function, it is necessary to ensure the Ti content so as to satisfy the following expression (1).
Ti ≧ 3.43 × N (1)
This formula (1) indicates the Ti content necessary for fixing almost the entire amount of N present in the steel. When the Ti content is low beyond the formula (1), it is difficult to sufficiently secure the effective B amount.
It was also found that Ti has the effect of promoting the grain boundary segregation of Cr. For this reason, it is effective also in enhancing the improvement effect of the resistance to molten metal embrittlement cracking by Cr described later. However, excessive Ti content causes a decrease in workability and an increase in manufacturing cost of the steel material, so the Ti content is limited to a range of 0.1% by mass or less.

Bは、溶融金属脆化割れの抑制に有効な元素である。その作用は、Bが結晶粒界に偏析して原子間結合力を高めることによると考えられる。SIMSによる分析では、本発明鋼を高温のオーステナイト域に加熱することにより、Bはオーステナイト粒界に顕著に偏析することが確認されている。このようなBによる粒界強化機能を発揮させるには、前述のように、Nの低減やTiによるNの固定によって、BN形成に伴うBの消費を抑制して有効B量を確保することが重要である。その上で、B含有量(トータル量)は0.0003質量%以上を確保する必要があり、0.001質量%以上とすることがより好ましい。ただし、過剰のB添加は加工性劣化の原因となるのでB含有量(トータル量)は0.01質量%以下に制限される。   B is an element effective for suppressing molten metal embrittlement cracking. The effect is considered to be due to the fact that B segregates at the grain boundaries and increases the interatomic bonding force. In the analysis by SIMS, it is confirmed that B is significantly segregated at the austenite grain boundary by heating the steel of the present invention to a high temperature austenite region. In order to exert such a grain boundary strengthening function by B, as described above, by reducing N or fixing N by Ti, it is possible to suppress the consumption of B accompanying BN formation and secure an effective B amount. is important. In addition, the B content (total amount) must be 0.0003 mass% or more, and more preferably 0.001 mass% or more. However, since excessive addition of B causes deterioration of workability, the B content (total amount) is limited to 0.01% by mass or less.

Crは、高温でのオーステナイト粒界に偏析することにより、溶融金属脆化割れの抑制に顕著に寄与することがわかった。特許文献4に示されるように、従来、Zn−Al−Mg系めっき鋼板の素地鋼板として、CrとBを含有するものも存在した。しかし、そのような従来鋼を用いた場合、実際の溶接施工で溶融金属脆化割れが生じた事例が見られた。発明者らは詳細な研究の結果、従来鋼よりもCr含有量レベルを高めること、および、Tiを添加することによって、上記の問題が解消できることを突き止めた。具体的には、TiおよびBの添加量については上述の通りであり、Crの添加量については0.5質量%以上好ましくは0.5質量%を超えるCr含有量を確保することが極めて有効であることがわかった。このようにTi、Bの添加とCrの増量によって耐溶融金属脆化割れ性が顕著に改善されるメカニズムについては、現時点で明確にはなっていないが、一定量以上のBとCrが同時に高温のオーステナイト粒界に偏析することによって、BとCrの相乗効果によって従来鋼の場合よりも粒界エネルギーが低下し、粒界における原子間結合力が高められ、その結果、溶融金属脆化割れに対する抵抗力が顕著に増大したものと推察される。ただし、過剰にCrを含有させると鋼材の加工性が低下し、また靭性にも悪影響を及ぼすので、Cr含有量は3.0質量%以下の範囲に制限される。   It has been found that Cr significantly contributes to the suppression of molten metal embrittlement cracking by segregating at austenite grain boundaries at high temperatures. As shown in Patent Document 4, conventionally, there has been a steel containing Cr and B as a base steel plate of a Zn—Al—Mg based steel plate. However, when such conventional steel was used, there were cases where molten metal embrittlement cracks occurred in actual welding work. As a result of detailed studies, the inventors have found that the above problem can be solved by increasing the Cr content level compared to the conventional steel and adding Ti. Specifically, the addition amount of Ti and B is as described above, and the addition amount of Cr is extremely effective to ensure a Cr content of 0.5% by mass or more, preferably more than 0.5% by mass. I found out that Thus, the mechanism by which the resistance to molten metal embrittlement is remarkably improved by adding Ti and B and increasing the amount of Cr is not clarified at the present time, but a certain amount or more of B and Cr are simultaneously high in temperature. By segregating at the austenite grain boundaries, the synergistic effect of B and Cr lowers the grain boundary energy than in the case of conventional steel and increases the interatomic bonding force at the grain boundaries. It is inferred that the resistance increased significantly. However, if Cr is excessively contained, the workability of the steel material is lowered and the toughness is also adversely affected, so the Cr content is limited to a range of 3.0% by mass or less.

Nb、V、Mo、Zr、Cu、Niの各元素も、高温のオーステナイト粒界に偏析することにより溶融金属脆化割れを抑制する作用を有するので、必要に応じてこれらの1種以上を添加することができる。その効果はBおよびCrとの複合添加によって一層顕著になる。各元素の上記作用を十分に引き出すためには、それぞれNb:0.01質量%以上、V:0.05質量%以上、Mo:0.05質量%以上、Zr:0.05質量%以上、Cu:0.05質量%以上、Ni:0.05%以上とすることが特に効果的である。ただし、これらの元素を過剰に添加しても溶融金属脆化割れの抑制効果は飽和し、鋼材の靭性や加工性の低下、製造コストの増大を招くので、これらの元素を添加する場合は、Nb:0.3%以下、V:1.0%以下、Mo:1.0%以下、Zr:1.0%以下、Cu:1.0質量%以下、Ni:1.0質量%以下の範囲で行う。   Each element of Nb, V, Mo, Zr, Cu, and Ni also has the effect of suppressing molten metal embrittlement cracks by segregating at high temperature austenite grain boundaries, so one or more of these elements may be added as necessary can do. The effect becomes more remarkable by the combined addition with B and Cr. In order to sufficiently bring out the above-described action of each element, Nb: 0.01% by mass or more, V: 0.05% by mass or more, Mo: 0.05% by mass or more, Zr: 0.05% by mass or more, It is particularly effective to set Cu: 0.05% by mass or more and Ni: 0.05% or more. However, even if these elements are added excessively, the effect of suppressing molten metal embrittlement cracking is saturated, resulting in a decrease in the toughness and workability of the steel material and an increase in manufacturing costs. Nb: 0.3% or less, V: 1.0% or less, Mo: 1.0% or less, Zr: 1.0% or less, Cu: 1.0% by mass or less, Ni: 1.0% by mass or less Do in range.

以上の組成を有する素地鋼板は、一般的な鋼板製造ラインにおいて常法により製造することができる。その後、公知の方法により溶融Zn−Al−Mg系めっきを施してめっき鋼板を得る。本発明に適用されるZn−Al−Mg系めっきは以下のようなものである。   The base steel plate having the above composition can be produced by a conventional method in a general steel plate production line. Thereafter, hot-dip Zn—Al—Mg plating is performed by a known method to obtain a plated steel sheet. The Zn—Al—Mg based plating applied to the present invention is as follows.

めっき層中のAlは、めっき鋼板の耐食性を向上させる作用を有する。また、めっき浴中にAlを含有させることでMg酸化物系ドロス発生を抑制する作用もある。これらの作用を十分に得るには溶融めっきのAl含有量を3質量%以上とする必要があり、4質量%以上とすることがより好ましい。一方、Al含有量が22質量%を超えると、めっき層と素地鋼板との界面でFe−Al合金層の成長が著しくなり、めっき密着性が悪くなる。優れためっき密着性を確保するには15質量%以下のAl含有量とすることが好ましく、10質量%以下とすることがより好ましい。   Al in a plating layer has the effect | action which improves the corrosion resistance of a plated steel plate. Moreover, it has the effect | action which suppresses generation | occurrence | production of Mg oxide type dross by containing Al in a plating bath. In order to obtain these effects sufficiently, the Al content of the hot dipping needs to be 3% by mass or more, and more preferably 4% by mass or more. On the other hand, if the Al content exceeds 22% by mass, the growth of the Fe—Al alloy layer becomes remarkable at the interface between the plating layer and the base steel sheet, and the plating adhesion deteriorates. In order to ensure excellent plating adhesion, the Al content is preferably 15% by mass or less, and more preferably 10% by mass or less.

めっき層中のMgは、めっき層表面に均一な腐食生成物を生成させて当該めっき鋼板の耐食性を著しく高める作用を呈する。その作用を十分に発揮させるには溶融めっきのMg含有量を1質量%以上とする必要があり、2質量%以上を確保することが望ましい。一方、Mg含有量が10質量%を超えると、Mg酸化物系ドロスが発生し易くなる弊害が大きくなる。より高品質のめっき層を得るには5質量%以下のMg含有量とすることが好ましく、4質量%以下とすることがより好ましい。   Mg in the plating layer exhibits a function of generating a uniform corrosion product on the surface of the plating layer and remarkably increasing the corrosion resistance of the plated steel sheet. In order to fully exert its action, the Mg content of the hot-dip plating needs to be 1% by mass or more, and it is desirable to ensure 2% by mass or more. On the other hand, when the Mg content exceeds 10% by mass, an adverse effect of easily generating Mg oxide-based dross increases. In order to obtain a higher quality plating layer, the Mg content is preferably 5% by mass or less, and more preferably 4% by mass or less.

溶融めっき浴中にTi、Bを含有させると、溶融Zn−Al−Mg系めっき鋼板において斑点状の外観不良を与えるZn11Mg2相の生成・成長が抑制される。Ti、Bはそれぞれ単独で含有させてもZn11Mg2相の抑制効果は生じるが、製造条件の自由度を大幅に緩和させる上で、TiおよびBを複合で含有させることが望ましい。これらの効果を十分に得るには、溶融めっきのTi含有量は0.0005質量%以上、B含有量は0.0001質量%以上とすることが効果的である。ただし、Ti含有量が多くなりすぎると、めっき層中にTi−Al系の析出物が生成し、めっき層に「ブツ」と呼ばれる凹凸が生じて外観を損なうようになる。このため、めっき浴にTiを添加する場合は0.1質量%以下の含有量範囲とする必要があり、0.01質量%以下とすることが望ましい。また、B含有量が多くなりすぎると、めっき層中にAl−B系あるいはTi−B系の析出物が生成・粗大化し、やはり「ブツ」と呼ばれる凹凸が生じて外観を損なうようになる。このため、めっき浴にBを添加する場合は0.05質量%以下の含有量範囲とする必要があり、0.005質量%以下とすることが望ましい。 When Ti and B are contained in the hot dipping bath, the generation and growth of the Zn 11 Mg 2 phase which gives speckled appearance defects in the hot-dip Zn—Al—Mg based steel sheet are suppressed. Even if Ti and B are each contained alone, the effect of suppressing the Zn 11 Mg 2 phase is produced, but it is desirable to contain Ti and B in combination in order to greatly relax the degree of freedom of the production conditions. In order to sufficiently obtain these effects, it is effective that the Ti content of the hot dipping is 0.0005 mass% or more and the B content is 0.0001 mass% or more. However, if the Ti content is excessively large, Ti—Al-based precipitates are generated in the plating layer, and irregularities called “bumps” are generated in the plating layer, thereby impairing the appearance. For this reason, when adding Ti to a plating bath, it is necessary to make it the content range of 0.1 mass% or less, and it is desirable to set it as 0.01 mass% or less. On the other hand, when the B content is excessively large, Al—B or Ti—B based precipitates are generated and coarsened in the plating layer, and irregularities called “bumps” are also generated to impair the appearance. For this reason, when adding B to a plating bath, it is necessary to make it the content range of 0.05 mass% or less, and it is desirable to set it as 0.005 mass% or less.

溶融めっき浴中にSiを含有させると、前記Fe−Al合金層の成長を抑制し、溶融Zn−Al−Mg系めっき鋼板の加工性を向上させる作用を有する。また、めっき層中のSiは、めっき層の黒変化を防止し、表面の光沢性を維持する上でも有効である。このようなSiの作用を十分に引き出すためには溶融めっきのSi含有量を0.005質量%以上とすることが効果的である。ただし、過剰にSiを添加すると溶融めっき浴中のドロス量が多くなるので、めっき浴にSiを含有させる場合は2.0質量%以下の含有量範囲とする。   When Si is contained in the hot dipping bath, the growth of the Fe—Al alloy layer is suppressed, and the workability of the hot dipped Zn—Al—Mg plated steel sheet is improved. Moreover, Si in the plating layer is effective in preventing the black change of the plating layer and maintaining the gloss of the surface. In order to sufficiently bring out such an action of Si, it is effective to set the Si content of the hot dipping to 0.005 mass% or more. However, since the amount of dross in the hot dipping bath increases when Si is added excessively, the content range is 2.0% by mass or less when Si is contained in the plating bath.

溶融めっき浴中には、素地鋼板を浸漬・通板する関係上、一般にはFeの混入が避けられない。Zn−Al−Mg系めっきにおいて、Feは概ね2質量%程度まで含有が許容される。めっき浴中には、その他の元素として例えば、Ca、Sr、Na、希土類元素、Ni、Co、Sn、Cu、Cr、Mnの1種以上が含まれていても構わないが、それらの合計含有量は1質量%以下であることが望ましい。   In general, it is unavoidable to mix Fe in the hot dipping bath because the base steel plate is immersed and passed. In the Zn—Al—Mg based plating, Fe is allowed to be contained up to about 2% by mass. The plating bath may contain, as other elements, for example, one or more of Ca, Sr, Na, rare earth elements, Ni, Co, Sn, Cu, Cr, and Mn, but their total content The amount is desirably 1% by mass or less.

めっき付着量は、鋼板片面あたり20〜300g/m2の範囲で調整することが望ましい。めっき付着量の制御は、一般的な亜鉛めっき鋼板の製造に準じてガスワイピングノズルを用いて行うことができる。ワイピングガスやめっき層凝固時の雰囲気ガスは空気(大気)とすることができる。すなわち空冷方式が採用できる。なお、めっき浴温が550℃を超えると、浴からの亜鉛の蒸発が顕著になるため、めっき欠陥が発生しやすく、かつ浴表面の酸化ドロス量が増大するので好ましくない。 It is desirable to adjust the plating adhesion amount within a range of 20 to 300 g / m 2 per one side of the steel plate. The amount of plating adhesion can be controlled using a gas wiping nozzle in accordance with the production of a general galvanized steel sheet. The wiping gas or the atmosphere gas during solidification of the plating layer can be air (atmosphere). That is, an air cooling method can be adopted. If the plating bath temperature exceeds 550 ° C., the evaporation of zinc from the bath becomes remarkable, so that plating defects are likely to occur and the amount of oxidized dross on the bath surface increases, which is not preferable.

表1〜表4に示す組成の鋼を真空溶解炉にて溶製してインゴットを作製し、熱間鍛造→熱間圧延→酸洗→冷間圧延の工程にて板厚3.2mmの冷延板を作製した。冷延板を水素−窒素混合ガス中700℃で焼鈍した後、大気に触れない状態を保ったまま、直ちに以下に示すいずれかのめっき浴に浸漬し、溶融Zn−Al−Mg系めっきを施した。下記の「%」は質量%である。
〔めっき浴a〕Al:6%、Mg:3%、Zn:残部
〔めっき浴b〕Al:6%、Mg:3%、Ti:0.002%、B:0.0005%、Si:0.01%、Fe:0.1%、Zn:残部
〔めっき浴c〕Al:6%、Mg:3%、Si:0.1%、Fe:0.1%、Zn:残部
〔めっき浴d〕Al:12%、Mg:8%、Si:0.1%、Fe:0.1%、Zn:残部
Steels having the compositions shown in Tables 1 to 4 are melted in a vacuum melting furnace to produce an ingot, and a steel sheet having a thickness of 3.2 mm is cooled by a process of hot forging → hot rolling → pickling → cold rolling. A rolled sheet was produced. After annealing the cold-rolled plate in a hydrogen-nitrogen mixed gas at 700 ° C., keep it in a state where it is not exposed to the air, and immediately immerse it in one of the following plating baths to perform hot-dip Zn—Al—Mg plating. did. The “%” below is mass%.
[Plating bath a] Al: 6%, Mg: 3%, Zn: balance [Plating bath b] Al: 6%, Mg: 3%, Ti: 0.002%, B: 0.0005%, Si: 0 0.01%, Fe: 0.1%, Zn: balance [Plating bath c] Al: 6%, Mg: 3%, Si: 0.1%, Fe: 0.1%, Zn: balance [Plating bath d ] Al: 12%, Mg: 8%, Si: 0.1%, Fe: 0.1%, Zn: balance

めっき浴温は約400℃であり、めっき浴から引き上げてめっき付着量を鋼板片面当たり約90g/m2に調整した溶融Zn−Al−Mg系めっき鋼板を得た。めっき層凝固時の冷却は空気冷却である。 The plating bath temperature was about 400 ° C., and a hot-dip Zn—Al—Mg-based plated steel sheet was obtained by pulling up from the plating bath and adjusting the plating adhesion amount to about 90 g / m 2 per one side of the steel sheet. The cooling when the plating layer is solidified is air cooling.

得られためっき鋼板から100mm×75mmのサンプルを切り出し、これを溶融金属脆化に起因する溶接最大割れ長さを評価するための試験片とした。
溶接試験は図1に示すような外観のボス溶接部材を作製する「ボス溶接」を行い、その溶接部断面を観察して割れの発生状況を調べる方法で行った。すなわち試験片3の板面中央部に直径20mm×長さ25mmの棒鋼からなるボス(突起)1を垂直に立て、このボス1を試験片3にアーク溶接にて接合した。溶接ワイヤは、YGW12を用い、溶接開始点からボスの周囲を1周して、溶接開始点を過ぎた後もさらにビードを重ねて少し溶接を進めたところで溶接終了とした。すなわち、溶接開始点と溶接終了点の間に溶接ビード6が重なるようにした。溶接条件は、溶接電流:217A、溶接電圧25V、溶接速度0.2m/min、シールドガス:CO2、シールドガス流量:20L/minとした。ボス1と試験片3と溶接ビード6からなる溶接後の部材をここでは「ボス溶接部材」と呼んでいる。
A 100 mm × 75 mm sample was cut out from the obtained plated steel sheet, and this was used as a test piece for evaluating the maximum weld crack length caused by molten metal embrittlement.
The welding test was performed by “boss welding” for producing a boss welded member having an appearance as shown in FIG. 1 and examining the cross section of the welded portion to examine the occurrence of cracks. That is, a boss (projection) 1 made of a steel bar having a diameter of 20 mm and a length of 25 mm was set up vertically at the center of the plate surface of the test piece 3, and the boss 1 was joined to the test piece 3 by arc welding. As the welding wire, YGW12 was used. After the welding start point, the circumference of the boss was made one round, and after passing the welding start point, the bead was further piled up and the welding was completed when the welding proceeded a little. That is, the weld bead 6 overlaps between the welding start point and the welding end point. The welding conditions were a welding current: 217 A, a welding voltage of 25 V, a welding speed of 0.2 m / min, a shielding gas: CO 2 , and a shielding gas flow rate: 20 L / min. A member after welding composed of the boss 1, the test piece 3, and the weld bead 6 is called a “boss welded member”.

ただし、溶接に際しては実験的に溶接割れを起こりやすくする目的で、図2に示すように試験片3を拘束した状態で行った。すなわち、試験片3を、120mm×95mm×板厚4mmの拘束板4(JISに規定されるSS400鋼材)の板面中央部に置き、予め試験片3の全周を拘束板4に溶接した。そして一体となった試験片3/拘束板4の接合体を水平な実験台5の上に2個のクランプ2によって固定し、この状態で上記のボス溶接を行った。本明細書ではこのような拘束状態で行うボス溶接を「拘束ボス溶接」と呼んでいる。この方法によれば、試験片3は拘束板4と全周溶接により一体となっていることから、ボス溶接時の入熱によって起こる膨張・収縮が拘束されるので、試験片3に作用する熱応力によってボス溶接時に溶接割れが生じやすくなり、溶接割れの明瞭な評価が可能になる。   However, the welding was performed in a state where the test piece 3 was restrained as shown in FIG. That is, the test piece 3 was placed at the center of the plate surface of the restraint plate 4 (SS400 steel material defined in JIS) having a size of 120 mm × 95 mm × 4 mm, and the entire circumference of the test piece 3 was welded to the restraint plate 4 in advance. The integrated test piece 3 / restraint plate 4 assembly was fixed on a horizontal test bench 5 by two clamps 2, and the boss welding was performed in this state. In this specification, the boss welding performed in such a restrained state is referred to as “restraint boss welding”. According to this method, since the test piece 3 is integrated with the restraint plate 4 by all-around welding, the expansion / contraction caused by heat input during boss welding is restrained. Stress makes it easier for weld cracks to occur during boss welding, enabling clear evaluation of weld cracks.

拘束ボス溶接後に、ボス1の中心軸を通り、かつ前記の溶接ビードの重なり部分8を通る切断面9で、ボス1/試験片3/拘束板4の接合体を切断し、その切断面9について溶接ビード近傍の試験片3(すなわちめっき鋼板母材である素地鋼板)部分の金属組織を顕微鏡観察した。顕微鏡観察によって当該断面内の試験片3の部分に観測される割れについて、試験片3のボス溶接側の表面から割れの先端までの割れの長さを測定し、最も長い割れについての測定値を「最大割れ長さ」とした。溶接部の強度や疲労特性を考慮し、最大割れ長さが0.2mm以下のものを合格とした。このような素地鋼板の割れは溶接熱影響部の旧オーステナイト粒界に沿って生じており、これは「溶融金属脆化割れ」であると判断される。
結果を表1〜4中に示す。また、図3には表1、表4に示される鋼について素地鋼板のCr含有量と最大割れ長さの関係を例示する。なお、各素地鋼板のS含有量はいずれも0.03質量%以下である。
After welding the restraint boss, the joined surface of the boss 1 / test piece 3 / restraint plate 4 is cut at the cut surface 9 passing through the central axis of the boss 1 and passing through the overlap portion 8 of the weld bead. About the metal structure of the test piece 3 (namely, the base steel plate which is a plating steel plate base material) part of the welding bead vicinity was observed with the microscope. About the crack observed in the part of the test piece 3 in the cross section by the microscopic observation, the length of the crack from the surface on the boss weld side of the test piece 3 to the tip of the crack is measured, and the measured value for the longest crack is obtained. “Maximum crack length”. Considering the strength and fatigue characteristics of the welded part, those having a maximum crack length of 0.2 mm or less were accepted. Such a crack in the base steel sheet occurs along the prior austenite grain boundary of the weld heat affected zone, and this is judged to be a “molten metal embrittlement crack”.
The results are shown in Tables 1-4. FIG. 3 illustrates the relationship between the Cr content of the base steel sheet and the maximum crack length for the steels shown in Tables 1 and 4. In addition, all S content of each base steel plate is 0.03 mass% or less.

Figure 2008184685
Figure 2008184685

Figure 2008184685
Figure 2008184685

Figure 2008184685
Figure 2008184685

Figure 2008184685
Figure 2008184685

Ti、B、Crを適正範囲で含有する本発明例の素地鋼板は、いずれも溶接部近傍での溶融金属脆化割れが顕著に抑制され、最大割れ長さ0.2mmを超えるような割れは生じなかった。この拘束ボス溶接試験において、このように安定して溶融金属脆化割れが抑止されるZn−Al−Mg系めっき鋼板は、従来の同系めっき鋼板と比較して溶接部の強度および疲労特性についての信頼性が大幅に向上しており、建材、自動車をはじめとする種々の部材用途に好適なものである。   In the base steel sheet of the present invention example containing Ti, B, and Cr in an appropriate range, any of the molten metal embrittlement cracks in the vicinity of the weld is remarkably suppressed, and cracks that exceed the maximum crack length of 0.2 mm Did not occur. In this restraint boss welding test, the Zn-Al-Mg-based plated steel sheet, in which molten metal embrittlement cracking is stably suppressed in this way, has a strength and fatigue characteristics of the welded portion as compared with the conventional similar-plated steel sheet. The reliability is greatly improved, and it is suitable for various materials such as building materials and automobiles.

これに対し、比較例であるB1鋼、B5鋼(これは特許文献3の発明に相当する鋼である)、およびB6鋼(これは特許文献1の発明に相当する鋼である)はCr含有量が不足しているかあるいはCrを添加していないことにより、この拘束ボス溶接試験で最大割れ長さ0.2mmを超える溶融金属脆化割れが生じた。B2鋼はB含有量が不足していることにより、やはり最大割れ長さ0.2mmを超える溶融金属脆化割れが生じた。B3鋼、B4鋼、B8鋼、B9鋼、B10鋼はTi含有量が(1)式を外れて低かったことによりBNが生成して有効B量が十分に確保できなかったと考えられ、B含有量およびCr含有量は適正であるにも関わらずZn−Al−Mg系めっき鋼板の溶接に伴う溶融金属脆化割れを抑制することができなかった。B7鋼(これは特許文献4の発明に相当する鋼である)はCr含有量が少なく、またTi含有量が(1)式を外れて低かったことにより、やはり最大割れ長さ0.2mmを超える溶融金属脆化割れが生じた。   In contrast, B1 steel, B5 steel (which is a steel corresponding to the invention of Patent Document 3), and B6 steel (which is a steel corresponding to the invention of Patent Document 1) are Cr-containing. Due to the insufficient amount or the addition of Cr, molten metal embrittlement cracking exceeding the maximum crack length of 0.2 mm occurred in this constrained boss welding test. Due to the lack of B content in the B2 steel, molten metal embrittlement cracks exceeding the maximum crack length of 0.2 mm were generated. B3 steel, B4 steel, B8 steel, B9 steel, and B10 steel are considered to have been unable to ensure sufficient effective B amount due to the generation of BN due to the Ti content deviating from formula (1) and low. Although the amount and the Cr content were appropriate, it was not possible to suppress molten metal embrittlement cracking accompanying welding of the Zn—Al—Mg based steel sheet. B7 steel (which is a steel corresponding to the invention of Patent Document 4) has a low Cr content, and the Ti content is too low from the formula (1), so that the maximum crack length is 0.2 mm. Excessive molten metal embrittlement cracking occurred.

ボス溶接部材の形状を模式的に示した図。The figure which showed typically the shape of the boss | hub welding member. 拘束ボス溶接を行う際の試験片の拘束方法を模式的に示した断面図。Sectional drawing which showed typically the restraint method of the test piece at the time of performing restraint boss welding. 素地鋼板のCr含有量と最大割れ深さの関係を例示したグラフ。The graph which illustrated the relationship between Cr content and the maximum crack depth of a base steel plate.

符号の説明Explanation of symbols

1 ボス
2 クランプ
3 試験片
4 拘束板
5 実験台
6 溶接ビード
7 試験片全周溶接部の溶接ビード
8 溶接ビードの重なり部分
9 切断面
DESCRIPTION OF SYMBOLS 1 Boss 2 Clamp 3 Test piece 4 Restraint plate 5 Test bench 6 Weld bead 7 Weld bead of all-around weld part of test piece 8 Overlap part of weld bead 9 Cut surface

Claims (4)

質量%でAl:3〜22%、Mg:1〜10%、残部実質的にZnからなる溶融めっきを施しためっき鋼板において、素地鋼板を、質量%でC:0.01〜0.3%、Si:1.5%以下、Mn:0.05〜2.0%、P:0.1%以下、N:0.005%以下、Ti:0.1%以下、B:0.0003〜0.01%、Cr:0.5〜3.0%、残部Feおよび不可避的不純物、かつ下記(1)式を満たす組成の鋼で構成したことを特徴とする耐溶融金属脆化割れ性に優れたZn−Al−Mg系めっき鋼板。
Ti≧3.43×N ……(1)
In a plated steel sheet that has been hot-plated with Al: 3 to 22% in mass%, Mg: 1 to 10%, and the balance substantially consisting of Zn, the base steel sheet is C: 0.01 to 0.3% in mass%. , Si: 1.5% or less, Mn: 0.05-2.0%, P: 0.1% or less, N: 0.005% or less, Ti: 0.1% or less, B: 0.0003- 0.01%, Cr: 0.5 to 3.0%, balance Fe and unavoidable impurities, and made of steel having a composition satisfying the following formula (1) Excellent Zn-Al-Mg plated steel sheet.
Ti ≧ 3.43 × N (1)
素地鋼板を、さらにNb:0.3%以下、V:1.0%以下、Mo:1.0%以下およびZr:1.0%以下の1種以上を含有する鋼で構成したことを特徴とする請求項1に記載の耐溶融金属脆化割れ性に優れたZn−Al−Mg系めっき鋼板。   The base steel plate is further composed of steel containing at least one of Nb: 0.3% or less, V: 1.0% or less, Mo: 1.0% or less, and Zr: 1.0% or less. The Zn-Al-Mg-based plated steel sheet having excellent resistance to molten metal embrittlement cracking according to claim 1. 素地鋼板を、さらにCu:1.0%以下およびNi:1.0%以下の1種以上を含有する鋼で構成したことを特徴とする請求項1または2に記載の耐溶融金属脆化割れ性に優れたZn−Al−Mg系めっき鋼板。   3. The molten metal embrittlement crack resistance according to claim 1, wherein the base steel plate is made of steel containing at least one of Cu: 1.0% or less and Ni: 1.0% or less. Zn-Al-Mg plated steel sheet with excellent properties. 前記溶融めっきは、質量%でAl:3〜22%、Mg:1〜10%を含有し、さらにTi:0.1質量%以下、B:0.05質量%以下、Si:2%以下、Fe:2%以下の1種以上を含有し、残部がZnおよび不可避的不純物からなるものである請求項1〜3のいずれかに記載の耐溶融金属脆化割れ性に優れたZn−Al−Mg系めっき鋼板。   The hot-dip plating contains Al: 3 to 22% and Mg: 1 to 10% by mass, and further Ti: 0.1% by mass or less, B: 0.05% by mass or less, Si: 2% or less, The Zn-Al- having excellent resistance to molten metal embrittlement cracking according to any one of claims 1 to 3, wherein Fe: one or more of 2% or less is contained, and the balance is composed of Zn and inevitable impurities. Mg-based plated steel sheet.
JP2007021729A 2007-01-31 2007-01-31 Zn-Al-Mg plated steel sheet with excellent resistance to molten metal embrittlement cracking Active JP5053652B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007021729A JP5053652B2 (en) 2007-01-31 2007-01-31 Zn-Al-Mg plated steel sheet with excellent resistance to molten metal embrittlement cracking

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007021729A JP5053652B2 (en) 2007-01-31 2007-01-31 Zn-Al-Mg plated steel sheet with excellent resistance to molten metal embrittlement cracking

Publications (2)

Publication Number Publication Date
JP2008184685A true JP2008184685A (en) 2008-08-14
JP5053652B2 JP5053652B2 (en) 2012-10-17

Family

ID=39727923

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007021729A Active JP5053652B2 (en) 2007-01-31 2007-01-31 Zn-Al-Mg plated steel sheet with excellent resistance to molten metal embrittlement cracking

Country Status (1)

Country Link
JP (1) JP5053652B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010144193A (en) * 2008-12-16 2010-07-01 Nisshin Steel Co Ltd Multilayer-plated steel sheet and method for manufacturing the same
KR101543876B1 (en) * 2013-12-06 2015-08-11 주식회사 포스코 Manufacturing Method of High Strength Zn-Al-Mg Hot-dip Galvanized Steel Sheet Having Excellent Zn Adhesion Property
CN113718173A (en) * 2021-08-12 2021-11-30 西安隆基绿能建筑科技有限公司 Metal plate, metal roof and BIPV system

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003003238A (en) * 2001-06-22 2003-01-08 Nisshin Steel Co Ltd Zn-Al-Mg BASED HOT DIP PLATED STEEL HAVING EXCELLENT CORROSION RESISTANCE
JP2005113233A (en) * 2003-10-09 2005-04-28 Nippon Steel Corp Zn-BASED PLATED STEEL FOR HOT PRESS

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003003238A (en) * 2001-06-22 2003-01-08 Nisshin Steel Co Ltd Zn-Al-Mg BASED HOT DIP PLATED STEEL HAVING EXCELLENT CORROSION RESISTANCE
JP2005113233A (en) * 2003-10-09 2005-04-28 Nippon Steel Corp Zn-BASED PLATED STEEL FOR HOT PRESS

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010144193A (en) * 2008-12-16 2010-07-01 Nisshin Steel Co Ltd Multilayer-plated steel sheet and method for manufacturing the same
KR101543876B1 (en) * 2013-12-06 2015-08-11 주식회사 포스코 Manufacturing Method of High Strength Zn-Al-Mg Hot-dip Galvanized Steel Sheet Having Excellent Zn Adhesion Property
CN113718173A (en) * 2021-08-12 2021-11-30 西安隆基绿能建筑科技有限公司 Metal plate, metal roof and BIPV system

Also Published As

Publication number Publication date
JP5053652B2 (en) 2012-10-17

Similar Documents

Publication Publication Date Title
EP3725904B1 (en) Steel sheet, hot-dip zinc-coated steel sheet, and alloyed hot-dip zinc-coated steel sheet
JP5936390B2 (en) Hot-dip Zn-Al-Mg-based plated steel sheet and manufacturing method
JP4949497B2 (en) Zinc-based alloy plated steel with excellent resistance to molten metal embrittlement cracking
JP2006265671A (en) High tensile galvannealed steel sheet having excellent workability and molten metal embrittlement crack reistance
JP5826321B2 (en) Manufacturing method of hot dip galvanized steel sheet with excellent plating adhesion
JP5641741B2 (en) High strength Zn-Al-Mg plated steel sheet with excellent bendability and molten metal embrittlement resistance
WO2014156671A1 (en) High-strength plated steel sheet for welded structural member and method for manufacturing said sheet
JP5264235B2 (en) High yield ratio type Zn-Al-Mg plated steel sheet having excellent resistance to molten metal embrittlement cracking and method for producing the same
JP6694961B2 (en) Austenitic hot-dip aluminized steel sheet having excellent plating property and weldability, and method for producing the same
JP5264234B2 (en) Zn-Al-Mg-based plated steel sheet having excellent resistance to molten metal embrittlement cracking and method for producing the same
JP5283402B2 (en) Zn-Al-Mg plated steel sheet with excellent resistance to molten metal embrittlement cracking
JP5053652B2 (en) Zn-Al-Mg plated steel sheet with excellent resistance to molten metal embrittlement cracking
JP4173990B2 (en) Zinc-based alloy-plated steel for welding and its ERW steel pipe
JP2010235989A (en) High strength zn-al-mg based plated steel sheet excellent in liquid metal embrittlement resistant characteristics and production method therefor
JP4721221B2 (en) Zn-Al-Mg alloy-plated steel sheet with excellent resistance to molten metal embrittlement cracking
JP6801496B2 (en) High-strength molten Zn-Al-Mg-based plated steel sheet with excellent bending workability and its manufacturing method
JP4610272B2 (en) Method for producing Zn-Al-Mg alloy-plated steel sheet excellent in resistance to molten metal embrittlement cracking
JP2014169503A (en) HIGH-STRENGTH Zn-Al-Mg-BASED PLATED STEEL PLATE HAVING HIGH RESISTANCE PROPERTIES TO MOLTEN METAL EMBRITTLEMENT, AND MANUFACTURING METHOD THEREOF
JP6958459B2 (en) Fused Zn-Al-Mg alloy plated steel sheet and its manufacturing method
JP2018145500A (en) HIGH STRENGTH MOLTEN Zn-Al-Mg-BASED PLATED STEEL SHEET FOR AUTOMOBILE COMPONENT EXCELLENT IN FLEXURE PROCESSABILITY AND AUTOMOBILE COMPONENT USING THE SAME
JP3577890B2 (en) High-strength steel excellent in plating crack resistance and method of manufacturing the same
JP2016006230A (en) Hot-dip galvanized steel plate excellent in plating adhesion
JPH10102182A (en) High toughness steel for welded structure, excellent in resistance to galvanizing crack, and its production

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100126

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120306

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120410

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120724

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120726

R150 Certificate of patent or registration of utility model

Ref document number: 5053652

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150803

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350