JP6801496B2 - High-strength molten Zn-Al-Mg-based plated steel sheet with excellent bending workability and its manufacturing method - Google Patents

High-strength molten Zn-Al-Mg-based plated steel sheet with excellent bending workability and its manufacturing method Download PDF

Info

Publication number
JP6801496B2
JP6801496B2 JP2017027632A JP2017027632A JP6801496B2 JP 6801496 B2 JP6801496 B2 JP 6801496B2 JP 2017027632 A JP2017027632 A JP 2017027632A JP 2017027632 A JP2017027632 A JP 2017027632A JP 6801496 B2 JP6801496 B2 JP 6801496B2
Authority
JP
Japan
Prior art keywords
less
steel sheet
phase
strength
molten
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017027632A
Other languages
Japanese (ja)
Other versions
JP2018131668A (en
Inventor
藤原 進
進 藤原
真也 植杉
真也 植杉
智治 重富
智治 重富
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2017027632A priority Critical patent/JP6801496B2/en
Publication of JP2018131668A publication Critical patent/JP2018131668A/en
Application granted granted Critical
Publication of JP6801496B2 publication Critical patent/JP6801496B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Coating With Molten Metal (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Description

本発明は、高耐食性が要求される用途で、かつ、主に曲げ加工が施されて使用される部材や鋼管の素材に適した、引張強度780MPa以上の曲げ加工性に優れた溶融Zn−Al−Mg系めっき鋼板に関するものである。 INDUSTRIAL APPLICABILITY The present invention is a molten Zn-Al having excellent bending workability with a tensile strength of 780 MPa or more, which is suitable for a member or a steel pipe material which is mainly used by being bent in an application requiring high corrosion resistance. -Mg-based plated steel sheet.

近年、環境問題に対する関心が一層高まっており、自動車用部材をはじめとして、種々の加工品において、高強度−薄肉化による軽量化が求められている。また、プレス加工、伸びフランジ加工など、様々な変形様式の加工が施される場合には、素材鋼板には、強度に加えて延性や高い穴広げ性等が要求される。そのため、高価な合金元素の添加に加え複雑な熱処理を組み合わせて、金属組織を緻密に制御した発明が多くなされている。これらの発明ではさらに、長寿命化や後めっき等の省略の点から高強度防錆鋼板が必要とされている場合も多い。 In recent years, there has been increasing interest in environmental issues, and various processed products, including automobile parts, are required to be lighter by increasing strength and thinning. Further, when various deformation styles such as press working and stretch flange machining are performed, the material steel sheet is required to have ductility and high hole widening property in addition to strength. Therefore, many inventions have been made in which the metal structure is precisely controlled by combining the addition of an expensive alloy element and a complicated heat treatment. Further, in these inventions, a high-strength rust-preventive steel sheet is often required from the viewpoint of extending the life and omitting post-plating.

特許文献1〜3には、曲げ加工性に優れる高強度冷延鋼板、めっき鋼板およびその製造方法が開示されている。しかしながら、いずれも変態強化で高強度化を図るとともに残留オーステナイトを活用して高強度化と加工性の両立を図ったもので、Si、Mn等の高価な合金元素を多量に添加する必要があるため、製造コストが高くなる。また、変態強化では、硬質相と軟質相の大きな強度差に起因して、安定的に良好な曲げ性を確保するのは非常に困難である。 Patent Documents 1 to 3 disclose high-strength cold-rolled steel sheets, plated steel sheets, and methods for producing the same, which are excellent in bending workability. However, in each case, the strength is increased by strengthening the transformation, and the retained austenite is utilized to achieve both high strength and workability, and it is necessary to add a large amount of expensive alloying elements such as Si and Mn. Therefore, the manufacturing cost is high. Further, in the transformation strengthening, it is very difficult to stably secure good bendability due to the large difference in strength between the hard phase and the soft phase.

特許文献4には、マルテンサイトや残留オーステナイトを利用せず、フェライト組織をベースに微細析出物および転位強化を活用した高比例源かつ曲げ加工性に優れる冷延鋼板を開示している。しかしながら、C含有量が高く曲げ加工性のレベルは、必ずしも十分ではないことがわかった。本発明者らは、マルテンサイトや残留オーステナイトを用いずにフェライトまたはベイナイト組織をベースとしてTi等の微細析出物を用いて析出強化するとともに、粗大な硬質第2相やセメンタイトの析出を抑制することで高強度化と局部延性の指標となる穴広げ性を向上させた熱延めっき鋼板を特許文献5に開示している。しかし、特許文献5では非常に良好な曲げ加工性が得られるものの、必ずしも十分な強度が得られない。 Patent Document 4 discloses a cold-rolled steel sheet that does not utilize martensite or retained austenite, has a highly proportional source that utilizes fine precipitates and dislocation strengthening based on a ferrite structure, and is excellent in bending workability. However, it was found that the C content was high and the level of bendability was not always sufficient. The present inventors strengthen precipitation using fine precipitates such as Ti based on a ferrite or bainite structure without using martensite or retained austenite, and suppress the precipitation of coarse hard second phase and cementite. Patent Document 5 discloses a hot-rolled plated steel plate having improved hole expandability, which is an index of high strength and local ductility. However, in Patent Document 5, although very good bending workability can be obtained, sufficient strength cannot always be obtained.

特開2009−270126号公報JP-A-2009-270126 特開2013−117042号公報Japanese Unexamined Patent Publication No. 2013-117042 特開2015−193897号公報Japanese Unexamined Patent Publication No. 2015-193897 特開2015−147959号公報JP 2015-147959 国際公開第2015/093596号International Publication No. 2015/093596

本発明は、上述の問題に鑑み、780MPa以上の引張強度を有し、製造コストの過大な上昇を抑制しつつ強度と曲げ加工性を同時に向上させた、耐食性に優れる溶融Zn−Al−Mg系めっき鋼板およびその製造方法を提供することを目的とする。 In view of the above-mentioned problems, the present invention is a molten Zn-Al-Mg system having a tensile strength of 780 MPa or more, suppressing an excessive increase in manufacturing cost, and simultaneously improving strength and bending workability, and having excellent corrosion resistance. An object of the present invention is to provide a plated steel sheet and a method for producing the same.

本発明者らは、鋭意検討の結果、以下の構成を有するめっき鋼板が上記課題を解決できることを見出した。 As a result of diligent studies, the present inventors have found that a plated steel sheet having the following structure can solve the above problems.

具体的に、本発明は、素材鋼板が、質量%で、C:0.01〜0.08%、Si:0.8%以下、Mn:0.5〜1.8%、P:0.05%以下、S:0.005%以下、N:0.001〜0.005%、Ti:0.02〜0.2%、B:0.0005〜0.010%、Al:0.005〜0.1%以下を含有し、残部がFeおよび不可避的不純物からなり、下記(1)式で表されるTi/C当量比が0.4〜1.5であり、転位密度が1.8×1014/m〜5.7×1014/mである、ベイニティックフェライト相もしくはフェライト相のいずれか単相またはベイニティックフェライト相とフェライト相からなる相を主相とし、かつ硬質第2相およびセメンタイトの面積率が3%以下であり、平均粒子径20nm以下のTiを含む炭化物が分散析出しており、全伸びT.Elが7%〜15%である、引張強度が780〜1100MPaの曲げ加工性に優れた高強度溶融Zn−Al−Mg系めっき鋼板を提供する。 Specifically, in the present invention, the material steel sheet is based on mass%, C: 0.01 to 0.08%, Si: 0.8% or less, Mn: 0.5 to 1.8%, P: 0. 05% or less, S: 0.005% or less, N: 0.001 to 0.005%, Ti: 0.02 to 0.2%, B: 0.0005 to 0.010%, Al: 0.005 It contains ~ 0.1% or less, the balance consists of Fe and unavoidable impurities, the Ti / C equivalent ratio represented by the following equation (1) is 0.4 to 1.5, and the dislocation density is 1. The main phase is either a single phase of a bainitic ferrite phase or a ferrite phase, which is 8 × 10 14 / m 2 to 5.7 × 10 14 / m 2 , or a phase composed of a bainitic ferrite phase and a ferrite phase. Moreover, carbides containing Ti having an area ratio of the hard second phase and cementite of 3% or less and an average particle diameter of 20 nm or less are dispersed and precipitated, and the total elongation T.I. Provided is a high-strength molten Zn-Al-Mg-based galvanized steel sheet having an El of 7% to 15% and a tensile strength of 780 to 1100 MPa and excellent bending workability.

さらに、TiとCの関係において、下記(1)式に表されるTi/C当量比が0.4〜1.5に制御されていることを条件とする。
Ti/C当量比=(Ti/48)/(C/12)・・・(1)
ただし、(1)式の元素記号の箇所には素材鋼板中における当該元素の含有量(質量%)が代入される。
Further, in the relationship between Ti and C, it is a condition that the Ti / C equivalent ratio represented by the following equation (1) is controlled to 0.4 to 1.5.
Ti / C equivalent ratio = (Ti / 48) / (C / 12) ... (1)
However, the content (mass%) of the element in the material steel sheet is substituted in place of the element symbol in the formula (1).

前記素材鋼板が、さらに、質量%で、Nb:0.1%以下、V:0.1%以下の1種以上を含有してもよい。 The material steel sheet may further contain one or more of Nb: 0.1% or less and V: 0.1% or less in mass%.

また、前記のめっき組成は、例えば、質量%で、Al:3.0〜22.0%、Mg:0.05〜10.0%、Ti:0〜0.10%、B:0〜0.05%、Si:0〜2.0%、Fe:0〜2.0%、残部Znおよび不可避的不純物からなる。 Further, the plating composition is, for example, in mass%, Al: 3.0 to 22.0%, Mg: 0.05 to 10.0%, Ti: 0 to 0.10%, B: 0 to 0. It consists of 0.05%, Si: 0 to 2.0%, Fe: 0 to 2.0%, the balance Zn and unavoidable impurities.

また、前記の溶融Zn−Al−Mg系めっき鋼板の製造方法として、前記組成を有する素材鋼板に、熱間圧延、酸洗、冷間圧延、連続溶融めっきラインでの焼鈍および溶融Zn−Al−Mg系めっきを順次行う工程を施し、熱間圧延での巻取温度を500℃から650℃、冷間圧延率を30%〜60%、連続溶融めっきラインでの焼鈍温度を550℃から750℃とする。 Further, as a method for producing the molten Zn-Al-Mg-based plated steel sheet, hot rolling, pickling, cold rolling, annealing in a continuous hot-dip plating line, and molten Zn-Al- on a material steel sheet having the above composition. The process of sequentially performing Mg-based plating is performed, the winding temperature in hot rolling is 500 ° C to 650 ° C, the cold rolling rate is 30% to 60%, and the annealing temperature in the continuous hot-dip plating line is 550 ° C to 750 ° C. And.

本発明は、製造コストが抑えられ、十分な強度を有し、曲げ加工性に優れた溶融Zn−Al−Mg系めっき鋼板およびその製造方法を提供することができる。特に、本発明の溶融Zn−Al−Mg系めっき鋼板は、先端R:1.0mm、135°曲げが可能であり、優れた加工性を有する。 INDUSTRIAL APPLICABILITY The present invention can provide a molten Zn-Al-Mg-based galvanized steel sheet having a sufficient manufacturing cost, sufficient strength, and excellent bending workability, and a manufacturing method thereof. In particular, the molten Zn-Al-Mg-based plated steel sheet of the present invention has a tip R: 1.0 mm, can be bent by 135 °, and has excellent workability.

ボス溶接試験材の形状を説明する斜視図である。It is a perspective view explaining the shape of the boss welding test material. ボス溶接試験材を作製する手順を説明する断面図である。It is sectional drawing explaining the procedure for manufacturing a boss welding test material.

以下、本発明の成分、金属組織および製造方法について詳細に説明する。鋼組成及びめっき組成における「%」は特に断らない限り「質量%」を意味する。 Hereinafter, the components, metallographic structure, and manufacturing method of the present invention will be described in detail. “%” In the steel composition and plating composition means “mass%” unless otherwise specified.

<C:0.01〜0.08%>
Cは、Tiを含む炭化物を形成し、ベイニティックフェライトまたはフェライト組織中に微細析出し、高強度化に有効な元素である。C含有量が0.01%未満では780MPa以上の強度を得るのが困難であり、0.08%を越えて添加すると析出物の粗大化や硬質第2相およびセメンタイトの形成により、曲げ加工性が低下する。また、好ましくは、0.01〜0.06%、さらに好ましくは0.01〜0.04%である。
<C: 0.01 to 0.08%>
C is an element that forms a carbide containing Ti and is finely precipitated in bainitic ferrite or a ferrite structure, which is effective for increasing the strength. If the C content is less than 0.01%, it is difficult to obtain a strength of 780 MPa or more, and if it is added in excess of 0.08%, bending workability is caused by coarsening of the precipitate and formation of the hard second phase and cementite. Decreases. Further, it is preferably 0.01 to 0.06%, more preferably 0.01 to 0.04%.

<Si:0.8%以下>
Siは、固溶強化に有効な元素である。しかし、過剰に添加すると、溶融めっきラインでの加熱時に鋼板表面に酸化物を形成し、めっき性を阻害するとともに製造コストの上昇を招くので、添加量の上限を0.8%とする。また、好ましくは、0.4%以下、さらに好ましくは0.2%以下である。
<Si: 0.8% or less>
Si is an element effective for strengthening solid solution. However, if it is added in excess, an oxide is formed on the surface of the steel sheet during heating in the hot-dip galvanizing line, which hinders the plating property and increases the manufacturing cost. Therefore, the upper limit of the addition amount is set to 0.8%. Further, it is preferably 0.4% or less, more preferably 0.2% or less.

<Mn:0.5〜1.8%>
Mnは、高強度化に有効な元素である。0.5%未満では780MPa以上の強度を得るのが難しく、1.8%を超えて添加すると、偏析が生じやすくなり、曲げ加工性が低下する。また、製造コストの上昇を招く。したがって、添加量の上限を1.8%とする。また、好ましくは、1.0〜1.7%、さらに好ましくは1.0〜1.5%である。
<Mn: 0.5 to 1.8%>
Mn is an element effective for increasing the strength. If it is less than 0.5%, it is difficult to obtain a strength of 780 MPa or more, and if it is added in excess of 1.8%, segregation is likely to occur and the bending workability is lowered. In addition, the manufacturing cost will increase. Therefore, the upper limit of the addition amount is set to 1.8%. Further, it is preferably 1.0 to 1.7%, more preferably 1.0 to 1.5%.

<P:0.05%以下>
Pは固溶強化に有効な元素であるが、0.05%を超えて添加すると、偏析が生じやすくなり、曲げ加工性が低下する。したがって、添加量の上限を0.05%とする。また、好ましくは、0.03%以下、さらに好ましくは0.02%以下である。なお、Pの含有量は0を含まない。
<P: 0.05% or less>
P is an element effective for strengthening the solid solution, but if it is added in an amount exceeding 0.05%, segregation is likely to occur and the bending workability is lowered. Therefore, the upper limit of the addition amount is set to 0.05%. Further, it is preferably 0.03% or less, more preferably 0.02% or less. The content of P does not include 0.

<S:0.005%以下>
SはMnと硫化物を形成し曲げ加工性を始めとする局部延性を劣化させる。このため、Sは極力低減すべき元素であるが、0.005%までは許容できるので、含有量の上限を0.005%に限定する。また、好ましくは、0.003%以下、さらに好ましくは0.002%以下である。なお、Sは不可避不純物であり、その含有量は0を含まない。
<S: 0.005% or less>
S forms sulfide with Mn and deteriorates local ductility including bending workability. Therefore, S is an element that should be reduced as much as possible, but since 0.005% is acceptable, the upper limit of the content is limited to 0.005%. Further, it is preferably 0.003% or less, more preferably 0.002% or less. Note that S is an unavoidable impurity, and its content does not include 0.

<N:0.001〜0.005%>
Nは、鋼中に固溶Nとして残存するとBNを生成し、耐溶融金属脆化割れ性に有効なB量の減少につながる。検討の結果、N含有量は0.005%以下に制限されるが、通常は0.001%程度のNが存在していても問題ない。N含有量の範囲は、好ましくは、0.001〜0.004%である。
<N: 0.001 to 0.005%>
When N remains as a solid solution N in steel, BN is generated, which leads to a decrease in the amount of B effective for embrittlement cracking resistance of molten metal. As a result of the examination, the N content is limited to 0.005% or less, but usually there is no problem even if N of about 0.001% is present. The range of N content is preferably 0.001 to 0.004%.

<Ti:0.02〜0.2%>
TiはCと結合して、微細なTiの炭化物として析出し、高強度化とセメンタイトの析出抑制に有効な元素である。また、TiはNとの親和性が高く、鋼中のNをTiNとして固定するため、Tiを添加することは耐溶融金属脆化割れ性を高めるB量を確保する上で極めて有効である。これらの作用を十分得るためには0.02%以上の添加が必要である。一方、0.2%を超えて添加してもその効果は飽和するとともに、製造コストの上昇を招く。そのため、0.02から0.20%の範囲に限定する。Ti含有量は好ましくは、0.05〜0.20%、さらに好ましくは、0.08〜0.20%である。
<Ti: 0.02-0.2%>
Ti is an element that binds to C and precipitates as a fine carbide of Ti, which is effective in increasing the strength and suppressing the precipitation of cementite. Further, since Ti has a high affinity with N and N in steel is fixed as TiN, adding Ti is extremely effective in securing the amount of B that enhances the embrittlement cracking resistance of the molten metal. In order to obtain these effects sufficiently, it is necessary to add 0.02% or more. On the other hand, even if it is added in excess of 0.2%, the effect is saturated and the manufacturing cost is increased. Therefore, it is limited to the range of 0.02 to 0.20%. The Ti content is preferably 0.05 to 0.20%, more preferably 0.08 to 0.20%.

<B:0.0005〜0.010%>
Bは結晶粒界に偏析して原子間結合力を高め、溶融金属脆化割れの抑制に有効な元素である。また、Bは粒界に偏析して変態を抑制し、ベイニティックフェライト組織を通じた高強度化に有効な元素である。0.0005%未満ではこれらの効果が無く、0.01%を超えて添加してもその効果は飽和するとともに製造コストの上昇を招く。そのため、添加範囲を0.0005%から0.010%に限定する。
<B: 0.0005 to 0.010%>
B is an element that segregates at the grain boundaries to increase the atomic bond force and is effective in suppressing embrittlement cracking of the molten metal. Further, B is an element that segregates at the grain boundaries to suppress transformation and is effective for increasing the strength through the bainitic ferrite structure. If it is less than 0.0005%, these effects are not obtained, and even if it is added in excess of 0.01%, the effect is saturated and the manufacturing cost is increased. Therefore, the addition range is limited to 0.0005% to 0.010%.

<Al:0.005〜0.1%以下>
Alは、製鋼時に脱酸材として添加される。その効果を得るためには、0.005%以上の添加が必要である。一方、0.1%を超えて添加してもその効果は飽和するとともにかえって製造コストの上昇を招く。
<Al: 0.005-0.1% or less>
Al is added as a deoxidizing material during steelmaking. In order to obtain the effect, it is necessary to add 0.005% or more. On the other hand, even if it is added in excess of 0.1%, the effect is saturated and the manufacturing cost is rather increased.

<V:1.0%以下、Nb:0.1%以下の1種以上>
Nb、Vは加熱および熱延中のγ粒の粗大化を防止し、フェライト粒の微細化に有効である。また、Tiと同様にCを含む複合炭化物を形成し、強度上昇にも寄与する。このため必要に応じてこれらの元素の1種以上を含有することができる。
<V: 1.0% or less, Nb: 0.1% or less, one or more types>
Nb and V prevent coarsening of γ grains during heating and hot spreading, and are effective for refining ferrite grains. Further, like Ti, it forms a composite carbide containing C and contributes to an increase in strength. Therefore, one or more of these elements can be contained as needed.

<Ti/C当量比:0.4〜1.5>
Ti/C当量比は、曲げ加工性を向上させるのに重要な値である。Ti/C当量比は、(1)式によって定義される。
Ti/C当量比=(Ti/48)/(C/12)・・・(1)
ただし、(1)式の元素記号の箇所には素材鋼板中における当該元素の含有量(質量%)が代入される。
<Ti / C equivalent ratio: 0.4 to 1.5>
The Ti / C equivalent ratio is an important value for improving bending workability. The Ti / C equivalent ratio is defined by Eq. (1).
Ti / C equivalent ratio = (Ti / 48) / (C / 12) ... (1)
However, the content (mass%) of the element in the material steel sheet is substituted in place of the element symbol in the formula (1).

Ti/C当量比が0.4未満では、硬質第2相やセメンタイト量が増加するため、曲げ加工性が低下する。一方、Ti/C当量比が1.5を超え手添加してもその効果が飽和するとともに、製造コストの上昇を招く。そのため、0.4〜1.5の範囲に限定する。 When the Ti / C equivalent ratio is less than 0.4, the amount of the hard second phase and cementite increases, so that the bending workability decreases. On the other hand, even if the Ti / C equivalent ratio exceeds 1.5 and is manually added, the effect is saturated and the manufacturing cost is increased. Therefore, it is limited to the range of 0.4 to 1.5.

<引張強度>
本発明では、建築用構造部材および自動車部品等に使用される高強度鋼板に関するものであり、780MPa以上の引張強度の鋼板を対象としている。しかしながら、引張強度が1100MPaを超えると135°曲げにて割れを生じる。したがって、引張強度の範囲は780〜1100MPaの範囲に規定する。
<Tensile strength>
The present invention relates to a high-strength steel sheet used for structural members for construction, automobile parts, and the like, and is intended for a steel sheet having a tensile strength of 780 MPa or more. However, if the tensile strength exceeds 1100 MPa, cracks occur at 135 ° bending. Therefore, the range of tensile strength is defined in the range of 780 to 1100 MPa.

<金属組織>
本発明に関わる高強度溶融Zn−Al−Mg系めっき鋼板のミクロ組織は、転位密度が1.8×1014/m〜5.7×1014/mであるベイニティックフェライト相またはフェライト相のいずれか単相またはベイニティックフェライト相とフェライト相を含む相を主相とするとともに、硬質第2相及びセメンタイトの面積率が3%以下であり、平均粒子径20nm以下のTiを含む炭化物が分散析出している。以下、これらについて説明する。
<Metal structure>
The microstructure of the high-strength molten Zn-Al-Mg-based galvanized steel sheet according to the present invention is a bainitic ferrite phase having a dislocation density of 1.8 × 10 14 / m 2 to 5.7 × 10 14 / m 2. A single phase of the ferrite phase or a phase containing a bainitic ferrite phase and a ferrite phase is used as the main phase, and Ti having an area ratio of the hard second phase and cementite of 3% or less and an average particle diameter of 20 nm or less is used. Carbides contained are dispersed and precipitated. These will be described below.

転位密度が1.8×1014/m〜5.7×1014/mであるベイニティックフェライトまたはフェライトのいずれか単相またはベイニティックフェライト相もしくはフェライト相のいずれか単相またはベイニティックフェライト相とフェライト相を含む相を主相とするとともに、硬質第2相及びセメンタイトの面積率を3%以下としたのは、780MPa以上の引張強度と良好な曲げ加工性を両立させるためである。
即ち硬質第2相およびセメンタイトの面積率が3%以下のフェライト及び/又はベイナイト組織とすることで、先端R:1.0mmの135°曲げで割れを生じない良好な曲げ加工性が得られ、転位密度を1.8×1014/m〜5.7×1014/mとすることで、780MPa以上の引張強度を確保可能となる。セメンタイトは曲げ加工の際にフェライト相またはベイナイト相との界面で微小亀裂を生じ易く、曲げ割れの起点となるため曲げ加工性が大きく低下する。面積率で3%までは許容できるため、上限を3%以下とした。
なお、「主相」とは、本発明の鋼板の金属組織において、硬質第2相およびセメンタイトを除いた残りの相を意味する。
Either single phase of bainitic ferrite or ferrite having a dislocation density of 1.8 × 10 14 / m 2 to 5.7 × 10 14 / m 2 or either single phase of bainitic ferrite phase or ferrite phase or The main phase is a bainitic ferrite phase and a phase containing a ferrite phase, and the area ratio of the hard second phase and cementite is 3% or less, which achieves both a tensile strength of 780 MPa or more and good bending workability. Because.
That is, by forming a ferrite and / or bainite structure having a hard second phase and cementite area ratio of 3% or less, good bending workability without cracking can be obtained by 135 ° bending at a tip R: 1.0 mm. By setting the dislocation density to 1.8 × 10 14 / m 2 to 5.7 × 10 14 / m 2 , it is possible to secure a tensile strength of 780 MPa or more. Cementite is prone to microcracks at the interface with the ferrite phase or bainite phase during bending, and becomes the starting point of bending cracks, so that bending workability is greatly reduced. Since the area ratio can be up to 3%, the upper limit is set to 3% or less.
The "main phase" means the remaining phase excluding the hard second phase and cementite in the metal structure of the steel sheet of the present invention.

Tiを含む炭化物の平均粒径を20nm以下にしたのは、Tiを含む炭化物は熱間圧延時に析出し、その析出強化作用により強度が上昇する。また、曲げ加工性の向上には微細析出することが有効である。種々検討の結果、ベイニティックフェライト及び/又はフェライト相中に分散している炭化物の平均粒子径が20nm以下であることが極めて有効で20nmを超えると良好な曲げ加工性が得られなくなる。なお、Tiを含む炭化物とは、Nb、V等の炭化物も含んでいる。 The reason why the average particle size of the carbide containing Ti is set to 20 nm or less is that the carbide containing Ti precipitates during hot rolling, and the strength is increased by the precipitation strengthening action. Further, fine precipitation is effective for improving bending workability. As a result of various studies, it is extremely effective that the average particle size of the carbides dispersed in the bainitic ferrite and / or the ferrite phase is 20 nm or less, and if it exceeds 20 nm, good bending workability cannot be obtained. The carbide containing Ti also includes carbides such as Nb and V.

・製造方法
上記加工性に優れた高強度溶融Zn−Al−Mg系めっき鋼板は、例えば成分調整された鋼材(連続鋳造スラブなど)に、熱間圧延、酸洗、冷間圧延、連続溶融めっきラインでの焼鈍および溶融Zn−Al−Mg系めっきを順次行う工程により製造することができる。以下、その場合の製造条件を例示する。
-Manufacturing method The high-strength hot-dip Zn-Al-Mg-based plated steel plate with excellent workability is, for example, hot-rolled, pickled, cold-rolled, or continuously hot-dip galvanized on a steel material whose composition has been adjusted (continuously cast slab, etc.) It can be manufactured by a process of sequentially performing annealing on a line and hot-dip Zn-Al-Mg plating. Hereinafter, the manufacturing conditions in that case will be illustrated.

上記の成分組成を満たす鋼スラブを1150〜1300℃の加熱温度で加熱し、850〜950℃の仕上温度で熱間圧延後、下記の巻取温度で巻き取る。以降、下記の巻取温度で熱延鋼帯を得る。さらに、この鋼帯を酸洗後、下記の条件で冷間圧延し、連続溶融めっきラインでめっき工程に付する。 A steel slab satisfying the above composition is heated at a heating temperature of 1150 to 1300 ° C., hot rolled at a finishing temperature of 850 to 950 ° C., and then wound at the following winding temperature. After that, a hot-rolled steel strip is obtained at the following winding temperature. Further, after pickling this steel strip, it is cold-rolled under the following conditions and subjected to a plating process on a continuous hot-dip galvanizing line.

<熱間圧延での巻取温度を500℃から650℃>
巻取温度が500℃未満では、Tiを含む炭化物の析出量が不十分となり強度が低下する。一方、巻取温度が650℃を超えるとTiを含む炭化物の粗大化が起こり、強度低下および曲げ加工性が低下する。
<Take-up temperature for hot rolling from 500 ° C to 650 ° C>
If the winding temperature is less than 500 ° C., the amount of carbides containing Ti is insufficiently precipitated and the strength is lowered. On the other hand, when the winding temperature exceeds 650 ° C., the carbide containing Ti is coarsened, and the strength and bending workability are lowered.

<冷間圧延率:30〜60%>
熱間圧延後は、連続酸洗ラインを通板して、表面のスケールを除去し、冷間圧延を施す。その際、冷間圧延の圧延率が30%未満では、連続溶融めっきラインでの焼鈍後の転位密度が1.8×1014/m未満となり、780MPa以上の引張強度が得られなくなる場合がある。一方、60%を越えると転位密度が5.7×1014/mを越えて延性の低下が大きくなり、曲げ加工性が劣化する場合がある。したがって、冷間圧延率は30%〜50%以下の範囲が好ましい。
<Cold rolling rate: 30-60%>
After hot rolling, a continuous pickling line is passed through the plate to remove surface scale, and cold rolling is performed. At that time, if the rolling ratio of cold rolling is less than 30%, the dislocation density after annealing in the continuous hot dip galvanizing line becomes less than 1.8 × 10 14 / m 2, and the tensile strength of 780 MPa or more may not be obtained. is there. On the other hand, if it exceeds 60%, the dislocation density exceeds 5.7 × 10 14 / m 2 and the decrease in ductility becomes large, and the bending workability may deteriorate. Therefore, the cold rolling ratio is preferably in the range of 30% to 50% or less.

<連続溶融めっきラインでの焼鈍温度:550〜750℃>
焼鈍温度が550℃未満では鋼板表面が十分に還元せずめっき性が低下する。一方、焼鈍温度が750℃を超えると再結晶を生じて転位密度が1.8×1014/m未満となり、強度低下を招く。すなわち、本発明は再結晶焼鈍以下の温度で焼鈍を施して、高い転位密度を維持することを特徴とするものであり、母材の金属組織は、熱延終了後時点の組織を基本としている。
<Annealing temperature in continuous hot dip galvanizing line: 550 to 750 ° C>
If the annealing temperature is less than 550 ° C., the surface of the steel sheet is not sufficiently reduced and the plating property is deteriorated. On the other hand, when the annealing temperature exceeds 750 ° C., recrystallization occurs and the dislocation density becomes less than 1.8 × 10 14 / m 2 , which causes a decrease in strength. That is, the present invention is characterized in that it is annealed at a temperature equal to or lower than recrystallization annealing to maintain a high dislocation density, and the metal structure of the base metal is based on the structure at the time after the completion of hot spreading. ..

<溶融Zn−Al−Mg系めっき>
本発明では、公知の溶融Zn−Al−Mg系めっきの手法を適用することができる。
めっき層中のAlは、めっき鋼板の耐食性を向上させる作用を有する。また、めっき浴中にAlを含有させることでMg酸化物系ドロス発生を抑制する作用もある。これらの作用を十分に得るには溶融めっきのAl含有量を3.0%以上とする必要があり、4.0%以上とすることがより好ましい。一方、Al含有量が22.0%を超えると、めっき層と素材鋼板との界面でFe−Al合金層の成長が著しくなり、めっき密着性が悪くなる。優れためっき密着性を確保するには15.0%以下のAl含有量とすることが好ましく、10.0%以下とすることがより好ましい。
<Fused Zn-Al-Mg plating>
In the present invention, a known method of molten Zn-Al-Mg plating can be applied.
Al in the plating layer has an action of improving the corrosion resistance of the plated steel sheet. In addition, the inclusion of Al in the plating bath also has the effect of suppressing the generation of Mg oxide-based dross. In order to sufficiently obtain these effects, the Al content of the hot dip galvanizing needs to be 3.0% or more, and more preferably 4.0% or more. On the other hand, when the Al content exceeds 22.0%, the Fe—Al alloy layer grows remarkably at the interface between the plating layer and the material steel sheet, and the plating adhesion deteriorates. In order to ensure excellent plating adhesion, the Al content is preferably 15.0% or less, and more preferably 10.0% or less.

めっき層中のMgは、めっき層表面に均一な腐食生成物を生成させて当該めっき鋼板の耐食性を著しく高める作用を呈する。その作用を十分に発揮させるには溶融めっきのMg含有量を0.05%以上とする必要があり、2.0%以上を確保することが望ましい。一方、Mg含有量が10.0%を超えるとMg酸化物系ドロスが発生し易くなる弊害が大きくなる。より高品質のめっき層を得るには5.0%以下のMg含有量とすることが好ましく、4.0%以下とすることがより好ましい。 Mg in the plating layer has an action of generating a uniform corrosion product on the surface of the plating layer and remarkably enhancing the corrosion resistance of the plated steel sheet. In order to fully exert its action, the Mg content of hot dip galvanizing needs to be 0.05% or more, and it is desirable to secure 2.0% or more. On the other hand, if the Mg content exceeds 10.0%, the harmful effect that Mg oxide-based dross is likely to occur becomes large. In order to obtain a higher quality plating layer, the Mg content is preferably 5.0% or less, and more preferably 4.0% or less.

溶融めっき浴中にTi、Bを含有させると、溶融Zn−Al−Mg系めっき鋼板において斑点状の外観不良を与えるZn11Mg相の生成・成長が抑制される。Ti、Bはそれぞれ単独で含有させてもZn11Mg相の抑制効果は生じるが、製造条件の自由度を大幅に緩和させる上で、TiおよびBを複合で含有させることが望ましい。これらの効果を十分に得るには、溶融めっきのTi含有量は0.0005%以上、B含有量は0.0001%以上とすることが効果的である。ただし、Ti含有量が多くなりすぎると、めっき層中にTi−Al系の析出物が生成し、めっき層に「ブツ」と呼ばれる凹凸が生じて外観を損なうようになる。このため、めっき浴にTiを添加する場合は0.10%以下の含有量範囲とする必要があり、0.01%以下とすることがより好ましい。また、B含有量が多くなりすぎると、めっき層中にAl−B系あるいはTi−B系の析出物が生成・粗大化し、やはり「ブツ」と呼ばれる凹凸が生じて外観を損なうようになる。このため、めっき浴にBを添加する場合は0.05%以下の含有量範囲とする必要があり、0.005%以下とすることがより好ましい。 When Ti and B are contained in the hot-dip galvanizing bath, the formation and growth of Zn 11 Mg two- phase, which gives a speckled appearance defect in the hot-dip Zn-Al-Mg-based plated steel sheet, is suppressed. Even if Ti and B are contained alone, the effect of suppressing the Zn 11 Mg two- phase is produced, but it is desirable that Ti and B are contained in a composite manner in order to greatly reduce the degree of freedom in the production conditions. In order to sufficiently obtain these effects, it is effective that the Ti content of the hot dip galvanizing is 0.0005% or more and the B content is 0.0001% or more. However, if the Ti content is too high, Ti—Al-based precipitates are formed in the plating layer, and unevenness called “butsu” is generated in the plating layer, which impairs the appearance. Therefore, when Ti is added to the plating bath, the content range needs to be 0.10% or less, and more preferably 0.01% or less. On the other hand, if the B content is too large, Al-B-based or Ti-B-based precipitates are formed and coarsened in the plating layer, and irregularities called "butsu" are also generated, which impairs the appearance. Therefore, when B is added to the plating bath, the content range needs to be 0.05% or less, and more preferably 0.005% or less.

溶融めっき浴中にSiを含有させると前記Fe−Al合金層の成長が抑制され、溶融Zn−Al−Mg系めっき鋼板の加工性が向上する。また、めっき層中のSiはめっき層の黒変化を防止し、表面の光沢性を維持する上でも有効である。このようなSiの作用を十分に引き出すためには溶融めっきのSi含有量を0.005%以上とすることが効果的である。ただし、過剰にSiを添加すると溶融めっき浴中のドロス量が多くなるので、めっき浴にSiを含有させる場合は2.0%以下の含有量範囲とする。 When Si is contained in the hot-dip galvanizing bath, the growth of the Fe—Al alloy layer is suppressed, and the workability of the hot-dip Zn—Al—Mg-based plated steel sheet is improved. Further, Si in the plating layer is effective in preventing the blackening of the plating layer and maintaining the glossiness of the surface. In order to fully bring out the action of Si, it is effective to set the Si content of hot dip galvanizing to 0.005% or more. However, if Si is added in excess, the amount of dross in the hot-dip galvanizing bath increases. Therefore, when Si is contained in the plating bath, the content is set to 2.0% or less.

溶融めっき浴中には素材鋼板やポット構成部材などからある程度のFeが混入してくる。Zn−Al−Mg系めっきにおいて、めっき浴中のFeは2.0%程度まで含有が許容される。めっき浴中には、その他の元素として例えば、Ca、Sr、Na、希土類元素、Ni、Co、Sn、Cu、Cr、Mnの1種以上が混入しても構わないが、それらの合計含有量は1質量%以下であることが望ましい。なお、溶融めっき浴組成はほぼそのまま溶融めっき鋼板のめっき層組成に反映される。 A certain amount of Fe is mixed in the hot-dip galvanizing bath from the material steel plate and the pot constituent members. In Zn-Al-Mg-based plating, Fe in the plating bath is allowed to be contained up to about 2.0%. For example, one or more of Ca, Sr, Na, rare earth elements, Ni, Co, Sn, Cu, Cr, and Mn may be mixed in the plating bath as other elements, but the total content thereof. Is preferably 1% by mass or less. The hot-dip galvanized bath composition is reflected in the plating layer composition of the hot-dip galvanized steel sheet almost as it is.

[実施例1]
表1に組成を示す各鋼を溶製し、そのスラブを1250℃に加熱した後、仕上げ圧延温度880℃、巻取温度520〜680℃で熱間圧延し、板厚2.6mmの熱延鋼帯を得た。各熱延鋼帯の巻取温度は表2中にそれぞれ示してある。
[Example 1]
Each steel whose composition is shown in Table 1 is melted, the slab is heated to 1250 ° C., hot-rolled at a finish rolling temperature of 880 ° C. and a winding temperature of 520 to 680 ° C., and hot-rolled with a plate thickness of 2.6 mm. Obtained a steel strip. The winding temperature of each hot-rolled steel strip is shown in Table 2.

Figure 0006801496
Figure 0006801496

熱延鋼帯を酸洗して30%および50%の冷延率で冷間圧延を施した後、連続溶融めっきラインにて、水素−窒素混合ガス中500〜790℃で焼鈍行い、約420℃まで平均冷却速度5℃/secで冷却して素材鋼板(めっき原板)とし、その後、鋼板表面が大気に触れない状態のまま下記のめっき浴組成を有する溶融Zn−Al−Mg系めっき浴中に浸漬した後引き上げ、ガスワイピング法にてめっき付着量を片面あたり約90g/mに調整した溶融Zn−Al−Mg系めっき鋼板を得た。めっき浴温は約410℃であった。各鋼の冷延率、焼鈍温度も、表2に併せて示してある。 The hot-rolled steel strip is pickled and cold-rolled at 30% and 50% cold-rolling rates, and then annealed in a hydrogen-nitrogen mixed gas at 500 to 790 ° C. on a continuous hot-dip plating line to approximately 420. In a molten Zn-Al-Mg-based plating bath having the following plating bath composition, the material steel plate (plating original plate) is obtained by cooling to ℃ at an average cooling rate of 5 ° C./sec, and then the steel plate surface is not exposed to the atmosphere. A molten Zn-Al-Mg-based plated steel sheet was obtained in which the amount of plating adhered to about 90 g / m 2 per side was adjusted by a gas wiping method. The plating bath temperature was about 410 ° C. The cold spreading ratio and annealing temperature of each steel are also shown in Table 2.

〔めっき浴組成(質量%)〕
Al:6.0%、Mg:3.0%、Ti:0.002%、B:0.0005%、Si:0.01%、Fe:0.1%、Zn:残部
[Plating bath composition (mass%)]
Al: 6.0%, Mg: 3.0%, Ti: 0.002%, B: 0.0005%, Si: 0.01%, Fe: 0.1%, Zn: balance

〔Ti含有炭化物の平均粒子径〕
採取した溶融Zn−Al−Mg系めっき鋼板サンプルから作製した薄膜を透過型電子顕微鏡(TEM)により観察し、Ti含有炭化物が30個以上含まれる一定の領域内の当該炭化物の粒子径(長径)を測定し、その平均値をTi含有炭化物の平均粒子径とした。
[Average particle size of Ti-containing carbide]
A thin film prepared from the collected molten Zn-Al-Mg-based plated steel plate sample was observed with a transmission electron microscope (TEM), and the particle size (major axis) of the carbide in a certain region containing 30 or more Ti-containing carbides was observed. Was measured, and the average value was taken as the average particle size of the Ti-containing carbide.

〔転位密度〕
採取した溶融Zn−Al−Mg系めっき鋼板サンプルから切出した試料の表層部から板厚の1/4まで機械研磨後、化学研磨を施して加工歪を除去し、X線解析により転位密度を計算により求めた。X線回折には、Co管球のKα1線を用い、<110>、<211>、<220>の3つの回折ピークの半価幅から局所歪ηを求め、次式を用いて転位密度を計算した。
ρ=14.4×η2/b2
ここで、ρが転位密度でbはバーガースベクトル(0.25nm)である。なお、転位密度の計算は、Modified Williamson-Hall/Warren-Averbach法を用いた。計算した転位密度は表2に併記する。
[Dislocation density]
After mechanical polishing from the surface layer of the sample cut out from the collected molten Zn-Al-Mg plated steel sheet sample to 1/4 of the plate thickness, chemical polishing is performed to remove processing strain, and the dislocation density is calculated by X-ray analysis. Obtained by. For X-ray diffraction, Kα1 line of a Co tube is used, the local strain η is obtained from the half-value widths of the three diffraction peaks <110>, <211>, and <220>, and the dislocation density is calculated using the following equation. I calculated.
ρ = 14.4 × η 2 / b 2
Here, ρ is the dislocation density and b is the Burgers vector (0.25 nm). The modified Williamson-Hall / Warren-Averbach method was used to calculate the dislocation density. The calculated dislocation densities are also shown in Table 2.

〔セメンタイトの面積率〕
硬質第2相およびセメンタイトの面積率は、採取した溶融Zn−Al−Mg系めっき鋼板サンプルから切出した試料を圧延方向断面に研磨し、ピクラール試薬にてエッチングしてSEM観察し、観察された組織から画像解析によって算出した。測定された硬質第2相及びセメンタイトの面積率を表2に併記する。
[Area ratio of cementite]
The area ratios of the hard second phase and cementite were observed by polishing the sample cut out from the collected molten Zn-Al-Mg galvanized steel sheet sample in the rolling direction cross section, etching it with a picral reagent, and observing it by SEM. It was calculated from the image analysis. The measured area ratios of the hard second phase and cementite are also shown in Table 2.

〔引張特性〕
試験片の長手方向が素材鋼板の圧延方向に対し直角になるように採取したJIS5号試験片を用い、JISZ2241に準拠して引張強さTS、全伸びT.Elを求めた。
[Tensile characteristics]
Using a JIS No. 5 test piece collected so that the longitudinal direction of the test piece was perpendicular to the rolling direction of the material steel sheet, the tensile strength TS and the total elongation T.El were determined in accordance with JISZ2241.

〔曲げ加工性〕
溶融Zn−Al−Mg系めっき鋼板から圧延方向と直角方向に20×50mmのサンプルを採取し、これを135°曲げ試験に供した。即ち、採取したサンプルの長手方向の中央部で圧延方向が曲げの軸となるように先端R1.0mm、先端角度45°のV型パンチ、ダイスを用いて、20kNの押し付け力で曲げ加工を施し、曲げ加工部先端の外表面における割れの発生有無を○×で評価した。
[Bending workability]
A sample of 20 × 50 mm was taken from the molten Zn-Al-Mg-based plated steel sheet in the direction perpendicular to the rolling direction, and this was subjected to a 135 ° bending test. That is, bending is performed with a pressing force of 20 kN using a V-shaped punch and a die with a tip R1.0 mm and a tip angle of 45 ° so that the rolling direction is the axis of bending at the center of the sample sample in the longitudinal direction. The presence or absence of cracks on the outer surface of the tip of the bent portion was evaluated by ○ ×.

〔溶融金属脆化割れ性の評価〕
溶融金属脆化特性は、次の手順により溶接試験を行って評価した。
溶融Zn−Al−Mg系めっき鋼板から100mm×75mmのサンプルを切り出し、これを溶融金属脆化に起因する最大割れ深さを評価するための試験片とした。溶接試験は、図1に示す外観のボス溶接材を作成する「ボス溶接」を行い、その溶接部断面を観察して割れの発生状況を調べた。すなわち、試験片3の板面中央部に直径20mm×長さ25mmの棒鋼(JISに規定されるSS400材)からなるボス(突起)1を垂直に立て、このボス1を試験片3にアーク溶接にて接合した。溶接ワイヤーはYGW12を用い、溶接開始点から溶接ビード6がボスの周囲を1周し、溶接始点を過ぎた後もさらに少し溶接を進めて溶接開始点を過ぎて溶接ビードの重なり部分8ができたところで溶接を終了とした。溶接条件は、190A,23V,溶接速度0.3m/min、シールドガス:Ar−20vol.%CO、シールドガス流量:20L/minとした。
[Evaluation of molten metal embrittlement crackability]
The embrittlement characteristics of molten metal were evaluated by performing a welding test according to the following procedure.
A 100 mm × 75 mm sample was cut out from a molten Zn-Al-Mg-based plated steel sheet, and this was used as a test piece for evaluating the maximum crack depth due to embrittlement of the molten metal. In the welding test, "boss welding" was performed to prepare the boss welded material having the appearance shown in FIG. 1, and the cross section of the welded portion was observed to investigate the occurrence of cracks. That is, a boss (protrusion) 1 made of steel bar (SS400 material specified in JIS) having a diameter of 20 mm and a length of 25 mm is vertically erected at the center of the plate surface of the test piece 3, and this boss 1 is arc-welded to the test piece 3. Welded at. YGW12 is used as the welding wire, and the welding bead 6 goes around the boss once from the welding start point, and even after the welding start point is passed, the welding is further advanced and the welding start point is passed to form the overlapping portion 8 of the welding bead. Welding was finished at that point. Welding conditions are 190A, 23V, welding speed 0.3m / min, shield gas: Ar-20vol. % CO 2 and shield gas flow rate: 20 L / min.

なお、溶接に際しては、図2に示すように、あらかじめ試験片3を拘束板4と接合しておいたものを用いた。接合体は、まず120mm×95mm×板厚4mmの拘束板4(JISに規定されるSS400材)を用意し、この板面中央部に試験片3を置き、その後、試験片3の全周を拘束板4に溶接したものである。上記のボス溶接材の作製は、この接合体(試験片3と拘束板4)を水平な実験台5の上にクランプ2にて固定し、この状態でボス溶接を行ったものである。 At the time of welding, as shown in FIG. 2, a test piece 3 to which the test piece 3 was previously joined to the restraint plate 4 was used. For the joint, first prepare a restraint plate 4 (SS400 material specified in JIS) having a thickness of 120 mm × 95 mm × 4 mm, place the test piece 3 in the center of the plate surface, and then cover the entire circumference of the test piece 3. It is welded to the restraint plate 4. In the above-mentioned production of the boss welded material, the joint body (test piece 3 and restraint plate 4) is fixed on a horizontal laboratory table 5 with a clamp 2 and boss welded in this state.

ボス溶接後、ボス1の中心軸を通り、かつ前記のビードの重なり合う部分8を通る切断面9で、ボス1/試験片3/拘束板4の接合体を切断し、その切断面9について顕微鏡観察を行い、試験片3に観察された割れの最大深さを測定し、これを最大母材割れ深さとした。この割れは溶融金属脆化割れに該当するものである。最大母材割れ深さが0.1mm以下を合格、0.1mmを超えるものを不合格として評価した。 After boss welding, the joint body of the boss 1 / test piece 3 / restraint plate 4 is cut at the cut surface 9 passing through the central axis of the boss 1 and passing through the overlapping portion 8 of the beads, and the cut surface 9 is microscopic. Observation was performed, and the maximum crack depth observed in the test piece 3 was measured, and this was defined as the maximum crack depth of the base metal. This crack corresponds to a molten metal embrittlement crack. Those with a maximum cracking depth of 0.1 mm or less were evaluated as acceptable, and those with a maximum crack depth of more than 0.1 mm were evaluated as rejected.

Figure 0006801496
Figure 0006801496

本発明範囲であるNo.1〜15は、転位密度が1.8×1014/m〜5.7×1014/mで引張強度が780〜1100MPaであるとともに、先端曲げR1.0mmの135°曲げが可能な高強度溶融Zn−Al−Mg系めっき鋼板である。
しかし、No.16はC量が多く、またNo.17はTi量が低くてTi/C当量比が低いため、硬質第2相+セメンタイト面積率が高く、曲げ加工性に劣る。No.18はMn量が多いため、硫化物の析出に起因して曲げ加工性に劣る。No.19はBが低いため、十分な引張強さが得られておらず、また、耐LMEC性が劣る。No.20はP量が多いため、曲げ加工性に劣る。No.21はC量が低く、十分な引張強さが得られない。No.22はMn量が低いため、十分な引張強さが得られていない。No.23は熱間圧延での巻取り温度が高いためTi炭化物の粒子径が大きく、曲げ加工性に劣る。No.24はめっきラインでの焼鈍温度が高すぎて転位密度が低くなり、引張強度に劣る。
No. which is the scope of the present invention. Dislocation densities 1 to 15 are 1.8 × 10 14 / m 2 to 5.7 × 10 14 / m 2 , tensile strength is 780 to 1100 MPa, and tip bending R1.0 mm can be bent by 135 °. It is a high-strength molten Zn-Al-Mg-based plated steel sheet.
However, No. In No. 16, the amount of C is large, and in No. 17, the amount of Ti is low and the Ti / C equivalent ratio is low, so that the hard second phase + cementite area ratio is high and the bending workability is inferior. No. Since 18 has a large amount of Mn, it is inferior in bending workability due to precipitation of sulfide. No. Since B is low in No. 19, sufficient tensile strength is not obtained, and LMEC resistance is inferior. No. Since 20 has a large amount of P, it is inferior in bending workability. No. No. 21 has a low amount of C, and sufficient tensile strength cannot be obtained. No. Since the amount of Mn of No. 22 is low, sufficient tensile strength is not obtained. No. In No. 23, since the winding temperature in hot rolling is high, the particle size of Ti carbide is large and the bending workability is inferior. No. In No. 24, the annealing temperature at the plating line is too high, the dislocation density is low, and the tensile strength is inferior.

[実施例2]
表1のA鋼、F鋼を実施例1と同様にスラブを1250℃に加熱した後、仕上げ圧延温度880℃、巻取温度590℃で熱間圧延し、板厚2.6mmの熱延鋼帯を得た。得られた熱延鋼帯を酸洗して10%、30%、50%、60%および70%の冷延率で冷間圧延を施した後、連続溶融めっきラインにて、水素−窒素混合ガス中620、630℃で焼鈍行い、約420℃まで平均冷却速度5℃/secで冷却して素材鋼板(めっき原板)とし、その後、鋼板表面が大気に触れない状態のまま、実施例1と同じめっき浴組成を有する溶融Zn−Al−Mg系めっき浴中に浸漬した後引き上げ、ガスワイピング法にてめっき付着量を片面あたり約90g/mに調整した溶融Zn−Al−Mg系めっき鋼板を得た。めっき浴温は約410℃であった。
[Example 2]
The steels A and F in Table 1 were heated to 1250 ° C. in the same manner as in Example 1, and then hot-rolled at a finish rolling temperature of 880 ° C. and a winding temperature of 590 ° C., and hot-rolled steel having a plate thickness of 2.6 mm. I got a band. The obtained hot-rolled steel strip is pickled and cold-rolled at 10%, 30%, 50%, 60% and 70% cold rolling ratios, and then hydrogen-nitrogen mixed in a continuous hot-dip plating line. It is annealed in gas at 620 and 630 ° C. and cooled to about 420 ° C. at an average cooling rate of 5 ° C./sec to obtain a material steel sheet (plated original plate). Fused Zn-Al-Mg-based plated steel sheet that has the same plating bath composition, is immersed in a molten Zn-Al-Mg-based plating bath, pulled up, and the amount of plating adhesion is adjusted to about 90 g / m 2 per side by the gas wiping method. Got The plating bath temperature was about 410 ° C.

得られためっき鋼板の引張特性、曲げ加工性、耐溶融金属脆化割れ性を調査し、表3にまとめて示した。
表3より、冷延率が30〜60%であれば、780〜1100MPaの引張強度と良好な曲げ加工性が得られるが、冷延率が30%未満では、引張強度が不足する場合がある。また、冷延率が60%を超えると、良好な曲げ加工性が得られない場合があることがわかる。
The tensile properties, bending workability, and melt metal embrittlement cracking resistance of the obtained plated steel sheet were investigated and summarized in Table 3.
From Table 3, when the cold spreading ratio is 30 to 60%, a tensile strength of 780 to 1100 MPa and good bending workability can be obtained, but when the cold spreading ratio is less than 30%, the tensile strength may be insufficient. .. Further, it can be seen that if the cold spreading ratio exceeds 60%, good bending workability may not be obtained.

Figure 0006801496
Figure 0006801496

1 ボス
2 クランプ
3 試験片
4 拘束板
5 実験台
6 溶接ビード
7 試験片全周溶接部の溶接ビード
8 溶接ビードの重なり部分
9 切断面
1 Boss 2 Clamp 3 Test piece 4 Restraint plate 5 Laboratory table 6 Welding bead 7 Welding bead on the entire circumference of the test piece 8 Overlapping part of the welding bead 9 Cut surface

Claims (5)

素材鋼板の表面に溶融Zn−Al−Mg系めっき層を有するめっき鋼板において、素材鋼板が、質量%で、C:0.01〜0.08%、Si:0.8%以下、Mn:0.5〜1.8%、P:0.05%以下、S:0.005%以下、N:0.001〜0.005%、Ti:0.02〜0.2%、B:0.0005〜0.010%、Al:0.005〜0.1%以下を含有し、残部がFeおよび不可避的不純物からなり、下記(1)式で表されるTi/C当量比が0.4〜1.5であり、転位密度が1.8×1014/m〜5.7×1014/mである、ベイニティックフェライト相もしくはフェライト相のいずれか単相またはベイニティックフェライト相とフェライト相からなる相を主相とし、かつ硬質第2相およびセメンタイトの面積率が3%以下であり、平均粒子径20nm以下のTiを含む炭化物が分散析出しており、全伸びT.Elが7%〜15%である、引張強度が780〜1100MPaの曲げ加工性に優れた高強度溶融Zn−Al−Mg系めっき鋼板。
Ti/C当量比=(Ti/48)/(C/12)…(1)
ただし、(1)式の元素記号の箇所には素材鋼板中における当該元素の含有量(質量%)が代入される。
In a plated steel sheet having a molten Zn-Al-Mg based plating layer on the surface of the material steel sheet, the material steel sheet is C: 0.01 to 0.08%, Si: 0.8% or less, Mn: 0 in mass%. .5 to 1.8%, P: 0.05% or less, S: 0.005% or less, N: 0.001 to 0.005%, Ti: 0.02 to 0.2%, B: 0. It contains 0005 to 0.010%, Al: 0.005 to 0.1% or less, the balance is Fe and unavoidable impurities, and the Ti / C equivalent ratio represented by the following equation (1) is 0.4. Either a single phase of a bainitic ferrite phase or a ferrite phase or a bainitic ferrite having a dislocation density of 1.8 × 10 14 / m 2 to 5.7 × 10 14 / m 2. Carbides containing Ti having an area ratio of the hard second phase and cementite of 3% or less and an average particle diameter of 20 nm or less are dispersed and precipitated with a phase composed of a phase and a ferrite phase as the main phase . A high-strength hot-dip Zn-Al-Mg-based galvanized steel sheet having an El of 7% to 15% and a tensile strength of 780 to 1100 MPa and excellent bending workability.
Ti / C equivalent ratio = (Ti / 48) / (C / 12) ... (1)
However, the content (mass%) of the element in the material steel sheet is substituted in place of the element symbol in the formula (1).
素材鋼板が、さらに、質量%で、Nb:0.1%以下、V:0.1%以下の1種以上を含有する組成を有する請求項1に記載の、引張強度が780〜1100MPaの曲げ加工性に優れた高強度溶融Zn−Al−Mg系めっき鋼板。 The bending according to claim 1, wherein the material steel sheet further contains at least one of Nb: 0.1% or less and V: 0.1% or less in mass%, and has a tensile strength of 780 to 1100 MPa. High-strength molten Zn-Al-Mg-based galvanized steel sheet with excellent workability. 前記溶融Zn−Al−Mg系めっき鋼板のめっき組成は、質量%で、Al:3.0〜22.0%、Mg:0.05〜10.0%、Ti:0〜0.10%、B:0〜0.05%、Si:0〜2.0%、Fe:0〜2.0%、残部Znおよび不可避的不純物からなることを特徴とする請求項1又は2に記載の引張強度が780〜1100MPaの曲げ加工性に優れた高強度溶融Zn−Al−Mg系めっき鋼板。 The plating composition of the molten Zn-Al-Mg-based galvanized steel sheet is, in mass%, Al: 3.0 to 22.0%, Mg: 0.05 to 10.0%, Ti: 0 to 0.10%, The tensile strength according to claim 1 or 2, wherein B: 0 to 0.05%, Si: 0 to 2.0%, Fe: 0 to 2.0%, the balance Zn and unavoidable impurities. A high-strength molten Zn-Al-Mg-based galvanized steel sheet having excellent bending workability of 780 to 1100 MPa. 素材鋼板が、C:0.01〜0.08%、Si:0.8%以下、Mn:0.5〜1.8%、P:0.05%以下、S:0.005%以下、N:0.001〜0.005%、Ti:0.02〜0.2%、B:0.0005〜0.010%、Al:0.005〜0.1%以下を含有し、残部がFeおよび不可避的不純物からなり、かつ、下記(1)式で表されるTi/C当量比が0.4から1.5である鋼材に、熱間圧延、酸洗、冷間圧延、連続溶融めっきラインでの焼鈍および溶融Zn−Al−Mg系めっきを順次行う工程において、熱間圧延での巻取温度を500℃から650℃、冷間圧延率を30%〜60%、連続溶融めっきラインでの焼鈍温度を550℃から750℃とする、引張強度が780〜1100MPaの曲げ加工性に優れた高強度溶融Zn−Al−Mg系めっき鋼板の製造方法であって、
溶融Zn−Al−Mg系めっき鋼板は、転位密度が1.8×10 14 /m 〜5.7×10 14 /m である、ベイニティックフェライト相もしくはフェライト相のいずれか単相またはベイニティックフェライト相とフェライト相からなる相を主相とし、かつ硬質第2相およびセメンタイトの面積率が3%以下であり、平均粒子径20nm以下のTiを含む炭化物が分散析出しており、全伸びT.Elが7%〜15%である、前記製造方法。
Ti/C当量比=(Ti/48)/(C/12)・・・(1)
ただし、(1)式の元素記号の箇所には素材鋼板中における当該元素の含有量(質量%)が代入される。
The material steel plate is C: 0.01 to 0.08%, Si: 0.8% or less, Mn: 0.5 to 1.8%, P: 0.05% or less, S: 0.005% or less, N: 0.001 to 0.005%, Ti: 0.02 to 0.2%, B: 0.0005 to 0.010%, Al: 0.005 to 0.1% or less, and the balance is Hot rolling, pickling, cold rolling, continuous melting on a steel material consisting of Fe and unavoidable impurities and having a Ti / C equivalent ratio of 0.4 to 1.5 represented by the following equation (1). In the process of sequential annealing and hot-dip Zn-Al-Mg-based plating on the plating line, the winding temperature in hot rolling is 500 ° C to 650 ° C, the cold rolling rate is 30% to 60%, and the continuous hot rolling line. A method for producing a high-strength molten Zn-Al-Mg-based plated steel sheet having an annealing temperature of 550 ° C. to 750 ° C. and an excellent bending workability with a tensile strength of 780 to 1100 MPa .
The fused Zn-Al-Mg-based plated steel sheet has a dislocation density of 1.8 × 10 14 / m 2 to 5.7 × 10 14 / m 2 , whichever is a single phase of a bainitic ferrite phase or a ferrite phase. Carbides containing Ti having a bainitic ferrite phase and a ferrite phase as the main phase, the hard second phase and cementite having an area ratio of 3% or less, and an average particle diameter of 20 nm or less are dispersed and precipitated. Full growth T. The production method, wherein El is 7% to 15%.
Ti / C equivalent ratio = (Ti / 48) / (C / 12) ... (1)
However, the content (mass%) of the element in the material steel sheet is substituted in place of the element symbol in the formula (1).
素材鋼板が、さらに質量%で、Nb:0.1%以下、V:0.1%以下の1種以上を含有することを特徴とする、請求項4に記載の引張強度が780〜1100MPa曲げ加工性に優れる高強度溶融Zn−Al−Mg系めっき鋼板の製造方法。 The tensile strength according to claim 4, wherein the material steel sheet further contains one or more of Nb: 0.1% or less and V: 0.1% or less in mass% . A method for manufacturing a high-strength molten Zn-Al-Mg-based galvanized steel sheet having excellent bending workability.
JP2017027632A 2017-02-17 2017-02-17 High-strength molten Zn-Al-Mg-based plated steel sheet with excellent bending workability and its manufacturing method Active JP6801496B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017027632A JP6801496B2 (en) 2017-02-17 2017-02-17 High-strength molten Zn-Al-Mg-based plated steel sheet with excellent bending workability and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017027632A JP6801496B2 (en) 2017-02-17 2017-02-17 High-strength molten Zn-Al-Mg-based plated steel sheet with excellent bending workability and its manufacturing method

Publications (2)

Publication Number Publication Date
JP2018131668A JP2018131668A (en) 2018-08-23
JP6801496B2 true JP6801496B2 (en) 2020-12-16

Family

ID=63249456

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017027632A Active JP6801496B2 (en) 2017-02-17 2017-02-17 High-strength molten Zn-Al-Mg-based plated steel sheet with excellent bending workability and its manufacturing method

Country Status (1)

Country Link
JP (1) JP6801496B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MX2021015870A (en) * 2019-06-27 2022-02-03 Nippon Steel Corp Plated steel material.
CN114921728A (en) * 2022-07-21 2022-08-19 北京科技大学 High-strength steel and preparation method and application thereof

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5347738B2 (en) * 2009-06-11 2013-11-20 新日鐵住金株式会社 Method for producing precipitation strengthened cold rolled steel sheet
JP5527051B2 (en) * 2010-06-30 2014-06-18 新日鐵住金株式会社 Bake-hardening hot-rolled steel sheet excellent in burring properties and method for producing the same
JP6264176B2 (en) * 2013-04-23 2018-01-24 新日鐵住金株式会社 Cold rolled steel sheet and method for producing the same
WO2015093596A1 (en) * 2013-12-19 2015-06-25 日新製鋼株式会社 Steel sheet hot-dip-coated with zn-al-mg-based system having excellent workability and method for manufacturing same
JP6209175B2 (en) * 2015-03-03 2017-10-04 日新製鋼株式会社 Manufacturing method of hot-dip Zn-Al-Mg-based plated steel sheet with excellent plating surface appearance and burring properties

Also Published As

Publication number Publication date
JP2018131668A (en) 2018-08-23

Similar Documents

Publication Publication Date Title
CN111492075B (en) Steel sheet, hot-dip galvanized steel sheet, and alloyed hot-dip galvanized steel sheet
JP6238474B2 (en) Hot-worked Zn-Al-Mg plated steel sheet with excellent workability and method for producing the same
JP6777173B2 (en) High-strength galvanized steel sheet for spot welding
JP6525114B1 (en) High strength galvanized steel sheet and method of manufacturing the same
WO2019189842A1 (en) High-strength galvanized steel sheet, high-strength member, and manufacturing methods therefor
JP5936390B2 (en) Hot-dip Zn-Al-Mg-based plated steel sheet and manufacturing method
WO2014156671A1 (en) High-strength plated steel sheet for welded structural member and method for manufacturing said sheet
JP4949497B2 (en) Zinc-based alloy plated steel with excellent resistance to molten metal embrittlement cracking
JP7364933B2 (en) Steel plate and its manufacturing method
JP6052145B2 (en) Bake-hardening hot-dip galvanized steel sheet
JP5264235B2 (en) High yield ratio type Zn-Al-Mg plated steel sheet having excellent resistance to molten metal embrittlement cracking and method for producing the same
JP7044196B2 (en) Steel sheet manufacturing method and member manufacturing method
JP5264234B2 (en) Zn-Al-Mg-based plated steel sheet having excellent resistance to molten metal embrittlement cracking and method for producing the same
JP6801496B2 (en) High-strength molten Zn-Al-Mg-based plated steel sheet with excellent bending workability and its manufacturing method
JP5283402B2 (en) Zn-Al-Mg plated steel sheet with excellent resistance to molten metal embrittlement cracking
JP2018145500A (en) HIGH STRENGTH MOLTEN Zn-Al-Mg-BASED PLATED STEEL SHEET FOR AUTOMOBILE COMPONENT EXCELLENT IN FLEXURE PROCESSABILITY AND AUTOMOBILE COMPONENT USING THE SAME
JP7311808B2 (en) Steel plate and its manufacturing method
JP2021055135A (en) HOT-DIP Zn-Al-Mg BASED PLATED STEEL SHEET AND METHOD FOR PRODUCING SAME
JP6958459B2 (en) Fused Zn-Al-Mg alloy plated steel sheet and its manufacturing method
JP2018145504A (en) HIGH STRENGTH MOLTEN Zn-Al-Mg-BASED PLATED STEEL SHEET FOR BUILDING COMPONENT EXCELLENT IN FLEXURE PROCESSABILITY AND BUILDING COMPONENT USING THE SAME

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190805

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200528

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200623

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20200813

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20200901

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200903

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200917

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201027

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201109

R151 Written notification of patent or utility model registration

Ref document number: 6801496

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151