JP3577890B2 - High-strength steel excellent in plating crack resistance and method of manufacturing the same - Google Patents

High-strength steel excellent in plating crack resistance and method of manufacturing the same Download PDF

Info

Publication number
JP3577890B2
JP3577890B2 JP14805597A JP14805597A JP3577890B2 JP 3577890 B2 JP3577890 B2 JP 3577890B2 JP 14805597 A JP14805597 A JP 14805597A JP 14805597 A JP14805597 A JP 14805597A JP 3577890 B2 JP3577890 B2 JP 3577890B2
Authority
JP
Japan
Prior art keywords
less
steel
plating
temperature
toughness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP14805597A
Other languages
Japanese (ja)
Other versions
JPH10330837A (en
Inventor
友彰 池田
一志 大西
昭夫 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP14805597A priority Critical patent/JP3577890B2/en
Publication of JPH10330837A publication Critical patent/JPH10330837A/en
Application granted granted Critical
Publication of JP3577890B2 publication Critical patent/JP3577890B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Heat Treatment Of Steel (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、寒冷地において溶融亜鉛めっきを施して、大型構造物、たとえば主として送電鉄塔用等に使用されるに適した低温靱性と耐めっき割れ性に優れた高張力鋼とその製造方法に関する。
【0002】
【従来の技術】
溶融亜鉛めっきは従来から、鋼材の防食を目的として広く用いられている。しかしながら、溶接構造物は溶融亜鉛めっき浴に浸漬した場合、鋼材の組成、めっき浴への浸漬の仕方により、特に溶接熱影響部 (以下HAZ という) に割れが発生することがある。
【0003】
このような割れは、めっき割れと呼ばれており、本明細書でも単に「めっき割れ」と称するが、これは鋼の粒界に亜鉛などの液体金属が進入し、脆化を起こすためと考えられており、たとえば、大きな残留応力が特にHAZ に加わった状態で、溶融亜鉛めっき浴に浸漬した場合に発生しやすいことが知られている。
例えば、JIS G 3129に限定される鉄塔用高張力鋼材においては、鋼板の溶融亜鉛めっき割れ感受性当量の計算式が次の通り開示されている。
【0004】
(溶融亜鉛めっき割れ感受性当量)
=C+Si/17+Mn/7.5+Cu/13+Ni/17+Cr/4.5+Mo/3+V/1.5+Nb/2+Ti/4.5+420B しかしながら、JIS G 3129に規定の溶融亜鉛めっき割れ感受性当量の規定を満たした場合においても、溶接構造物を溶融亜鉛めっき浴に浸漬した場合にめっき割れの発生する場合がある。このようなめっき割れを防止する方法としては、めっき浸漬法、溶接構造物の形状などで種々工夫しているが、十分な対策とはいえないのが現状である。
【0005】
一方、新たなめっき割れ防止法としては、鋼材そのものから改善する方法が提案されている。
たとえば、C:0.04〜0.11%、Si:0.05〜0.30%、Mn:0.90〜1.70%、Nb:0.01〜0.08%、V:0.02〜0.09%、Ti:0.005 〜0.030 %、Al:0.005 〜0.050 %を含み、
同時に93−8.8×103C(C−0.1)−63Si−38Mn−340V≧42を満足し、残部Feおよび不可避的不純物からなる高強度低合金鋼 (特公平2−5814号公報) 、C:0.20%以下、Si:0.03〜0.35%、Mn:1.8 %以下、Al:0.005 〜0.07%を含有し、不純物として存在するBを0.0002%以下に制限し、残部Feおよび不可避的不純物からなりかつこれらの元素の組み合わせが、炭素当量の形にして
Ceq.(B)=C+Mn/10+Si/30+Cr/10+Mo/20+V/3+Nb/3+Tl/3+1/40000B≦0.19
の関係にある高張力鋼 (特公平6−86649 号公報) が提案されている。
【0006】
このように鋼材成分を限定するのは、めっき割れ感受性を抑制し、めっき割れを防止することが目的である。しかしながら、工業的に生産される鋼については、必ず中心偏析が存在するため、局所的な合金濃度の増加に起因して、溶融亜鉛めっき浴に浸漬時に中心偏析部から割れが発生することがある。
【0008】
【発明が解決しようとする課題】
鉄塔用高張力鋼材の使用環境は、寒冷地の山中といったように過酷になってきており、耐めっき割れ性に加え低温靱性が要求されている。
【0009】
低温靱性については、上記特公平2−5814号公報、特公平6−86649 号公報に開示の高強度低合金鋼や高張力鋼は、鉄塔用として使用するには、耐めっき割れ性を満足させても、低温靱性を満足させることはできないという問題を有している。
また、中心偏析軽減による母材の耐めっき割れ性向上について現在までに開示されていない。
【0010】
したがって、本発明の目的は上記従来技術の欠点を解消するため、優れた耐めっき割れ性および低温靱性を兼ね備えた高張力鋼とその製造方法を提供することにある。
具体的には、本発明は、引張り強さ570 N/mm以上 (ただし780N/mm以上の場合は除く) 、vTrs−50℃、継手vTrs−10℃、εZc2%以上を満足する高張力鋼とその製造方法を提供することである。
【0011】
【課題を解決するための手段】
本発明者らは、上記目的を満足するために種々試験研究を重ねた。その結果、鋼中に含まれるTiとNとの比を所定値に管理するとともに、圧延条件による中心偏析度制御およびTi/Nを特定することによる結晶粒の微細化によりHAZ 靱性・めっき割れ性を向上させることができ、耐めっき割れ性を損なうことなく、590 N/mm以上の引張強さを確保しながら、結晶粒度が微細化することにより、低温靱性を向上できることを見い出し、本発明に到達した。
【0012】
ここに、本発明によれば、重量%で、
C:0.04〜0.10%、Si:0.05〜0.40%、Mn:1.00〜2.0 %、
P:0.025 %以下、S:0.010 %以下、Al:0.050 %以下、
Ti:0.030 〜0.050 %、Nb:0.01〜0.10%、N:0.002 〜0.005 %、
かつ、Ti/N:6.0 〜20.0を満足させることにより粗大なTiN の生成を抑制して、微細な炭窒化物の析出が促進され、特に溶接時のHAZ における結晶成長を抑制し、HAZ の靱性を向上させることができる。
【0013】
さらに、V:0.10%以下、Cu:1.0 %以下、Ni:1.0 %以下、Cr:1.0 %以下、Mo:1.0 %以下のうち1種または2種以上を含有してもよく、この場合にも、Ti/N:6.0 〜20.0を満足させることにより、粗大なTiN の生成を抑制して、微細な炭窒化物の析出が促進され、特に溶接時のHAZ における結晶成長を抑制し、HAZ の靱性を向上させることができる。
【0014】
また、めっき割れ性を向上させるため、上記鋼板組成を有するスラブを1050〜1250℃の範囲の温度に加熱し、Ar点以上の温度で仕上げ圧延を行い、さらに引き続いて550 ℃以下の温度にまで水冷を行うことで中心偏析を軽減させ、めっき割れ性を向上させることができる。さらに母材靱性を改善させるため、450 ℃以下の焼戻しを行う。
【0015】
【発明の実施の形態】
次に本発明における鋼組成および製造条件を上述のように規定した理由について説明する。
【0016】
Cは鋼の強度を高めるために必須の元素であるが、0.04%未満では必要とされる590 N/mm 以上の引張強さを確保することができず、また0.10%を超えると母材および溶接部の靱性およびHAZ の耐めっき割れ性が低下するだけでなく、中心偏析度も悪化するため、0.04〜0.10%とした。好ましくは上限は0.08%である。
【0017】
Siは脱酸作用に加え、強度確保のために必要な元素であるが0.05%未満ではその効果が十分でなく、また0.40%を超えると溶接部の靱性およびHAZ の耐めっき割れ性が低下するので、0.05〜0.40%とした。好ましくは0.10〜0.30%である。
【0018】
Mnは鋼の強度と靱性を確保する上で、有効な元素であるが、1.00%未満ではその効果が十分でなく、また2.0 %を超えると溶接部の靱性およびHAZ の耐めっき割れ性が低下するばかりでなく、中心偏析度にも悪影響を及ぼすので1.00〜2.0 %とした。
【0019】
Pは鋼材の靱性を低下させる元素であり、極力低い方がよいので0.025 %以下とした。
SはPと同様に鋼材の靱性を低下させる元素であり、極力低い方がよいので0.010 %以下とした。
【0020】
Alは脱酸元素として添加するが、低い方が好ましく、また、0.050 %を超えて含有させてもその効果が飽和し、介在物が増加して鋼の清浄性が損なわれるため、0.050 %以下とした。
【0021】
Tiは後述するようにN含有量を限定することの相乗効果によって、鋼中で微細な炭窒化物を生成し、析出硬化により強度を向上させるとともに、結晶粒を微細化することにより母材およびHAZ の靱性を向上させるが、0.030 %未満では、低温靱性の改善効果が発揮されず、また0.050 %を超えると過度の析出硬化によってかえって靱性を劣化させるので 0.030 〜0.050 %とした
【0022】
NbはTiと同様に鋼中で微細な炭窒化物を生成し、析出硬化により強度を向上させるとともに結晶粒を微細化することにより母材、HAZ の靱性を向上させるが、0.01%未満ではその効果が十分でなく、また0.10%を超えると過度の析出によってかえって靱性を劣化させるので0.01〜0.10%とした。好ましくは0.02〜0.05%である。
【0023】
NはTiと同時に0.002 %以上含有し、かつTi/Nを6.0 以上とすることによって、微細な炭窒化物の析出を促進し、特に溶接時のHAZ における結晶粒成長を抑制し、HAZ の靱性を向上させるが、0.005 %を超えて含有しかつTi/Nが20を超えると粗大なTi/Nを生成し、結晶粒成長を抑制する効果が得られなくなるので、0.002 〜0.005 %、Ti/Nは6〜20とした。好ましくは下限は0.003 %、上限は0.004 %であり、Ti/Nも15以下が好ましい。
【0024】
本発明にあっては、さらにV、Cu、Ni、CrおよびMoを1種または2種以上含有させ鋼の強度を一層高めた高張力鋼としてもよい。◇
Vは0.1 %、Cu、Ni、CrおよびMoはそれぞれが1.0 %を超えると、母材および溶接部の靱性およびHAZ の耐めっき割れ性が低下するので、Vについては0.1 %以下、Cu、Ni、Cr、Moはそれぞれ1.0 %以下とした。
【0025】
本発明ではさらに鋼材の圧延条件を規定することで、溶接部の耐めっき割れ性を向上させるものである。以下に圧延条件の限定理由について述べる。
まず加熱温度については、1050℃未満の温度では目標とする母材強度が得られず、1250℃超にスラブを加熱した場合には、初期γ粒の増大により母材靱性が低下するため、1250℃以下に規定した。
【0026】
次に、圧延条件については、Ar点以上の高温で圧延を終了し、即水冷することで、中心偏析の軽減が図られる。これは、中心偏析の原因となるCおよびMn等の元素が、フェライト変態時に拡散・濃縮することを防止するため、Ar点以上での圧延終了および水冷開始を行うのである。
さらに引き続いて550 ℃以下の温度にまで水冷を行えば割れは発生しない。
【0027】
また、冷却速度が5℃/sec未満の場合、母材強度確保が困難であるばかりでなく、加速冷却による炭化物析出抑制効果がなく母材靱性および母材の耐めっき割れ性が劣化するとともに、拡散抑制効果がなく中心偏析度も悪くなり、溶接部の耐めっき割れ性が劣化する。上限は特に制限ないが、30℃/secを越えると母材靱性が劣化する傾向があるから、好ましくは30℃/sec以下、より実用的な観点からは20℃/sec以下である。
【0028】
上記加速冷却を行った鋼材はそのままでも耐Znめっき割れ性の優れた鋼材として使用できる。しかし、この鋼材をZnめっき浴中に浸漬したとき引張強度や靱性等の機械的性質が変化するのを防ぐために前もって溶融亜鉛浴の温度(450℃) に近い温度で焼戻しを行っておくのが望ましい。ただし、焼戻し温度が450 ℃を超えると前の加速冷却で固溶した炭化物が析出して耐亜鉛めっき性が低下する。従って焼戻しを行う場合には、450 ℃以下の温度で行う。
【0029】
【実施例】
表1に示す化学成分を有する鋼No.1〜30の鋼50kgを真空溶解炉で溶製し、引張強さおよそ590 〜690 N/mm で、板厚16tの鋼板を製造した。
【0030】
この各鋼板から、試験片を切り出しJIS Z 2241に規定の金属材料引張試験方法による引張強さ、低温靱性としてシャルピー衝撃試験によるエネルギー遷移温度 (以下、vTrsという) をJIS Z 2242に規定の金属材料衝撃試験方法で調査した。
【0031】
また、溶融部の耐めっき割れ性は通常用いられるSLM400およびεZcにより評価した。
SLM400については、図1(a) に示す通り、前記各鋼板より直径(D) 10mm、全長170 mmの丸棒1を切り出し、高周波加熱により加熱温度1400℃、800 〜500 ℃の冷却時間8秒の再現熱サイクルを付与した後、図1(b) に示す通り、角度60度深さ2mmの円周切り欠き2を施したものを試験片とした。この試験片切欠部に溶融亜鉛めっきを施した後、図2に示すとおり、室温から30秒間で470 ℃に昇温して保持し、試験開始から30秒間に所定の引張応力に高めたのち、0.5 kgf/mm/min で上昇させて熱応力サイクルを与え、
(溶融亜鉛メッキ 時の破断応力)/(溶融亜鉛メッキ がない時の破断応力) ×100(%)
で定義されるSLM と破断時間の関係を得る。
【0032】
耐めっき割れ性の評価としては、実際の溶融亜鉛めっき作業を考慮して400 秒時のSLM すなわちSLM400≧42%であれば、めっき割れ性は発生しないとの知見がある (例えば、鉄と鋼、Vol.79(1993)No.9、P96)のでSLM400により求めた。その結果を表2に示す。
【0033】
一方、εZc値については、1250℃にて10分保持後、800 〜500 ℃を15秒で冷却する熱サイクルを付与し、図1(c) に示す試験片4を作成した。図中の数字は寸法(mm)を表わす。厚みは7mmであった。作成した試験片は450 ℃の亜鉛浴中で引っ張り、亀裂の発生しない限界歪み量を求め、εZc値≧2.0 %を目標とした。
【0034】
以上のような試験の結果、SLM400については表2に示すとおり鋼No.1〜17の本発明鋼は、いずれもめっき割れ性が発生しないといわれている42%以上を示しており、しかもvTrsは−62℃以下となっているのに対し、鋼No.18 〜30の比較鋼のSLM400はいずれもめっき割れ性が発生しないといわれている42%以上を示しているが、vTrsは−49℃以上であって、鋼No.1〜17の本発明鋼に比較して、低温靱性が劣っていることは明白である。
【0035】
また、圧延条件が本発明外のNo.31 、32およびNo.34 、35については母材強度または靱性が不芳であり、No.33 は中心偏析度の悪化により、No.35 については析出した炭化物の影響によりεZc値が不芳である。また、Ti/Nが本発明範囲外のNo.24 、No.26 〜28の鋼については全てεZc値が不芳であることがわかる。
【0036】
【表1】

Figure 0003577890
【0037】
【表2】
Figure 0003577890
【0038】
【発明の効果】
本発明にかかる高張力鋼は、耐めっき割れ性を損なうことなく、優れた低温靱性を示しており、寒冷地において溶融亜鉛めっきを施して送電鉄塔等の大型構造物に使用する高張力鋼として極めて重要である。また、圧延条件を限定し中心偏析を改善することで、母材靱性、耐めっき割れ性の向上がはかれた。さらに従来以上に合金元素を添加でき、安定製造をも可能となる。
【図面の簡単な説明】
【図1】実施例で耐めっき割れ性の測定に用いた試験片を示すもので、図1(a) 、(b) はSLM400を求めるのに使用した試験片のそれぞれ全体平面図、円柱切り欠き部の拡大説明図であり、図1(c) はεZc値を求めるのに使用した試験片形状の説明図である。
【図2】実施例でSLM400を測定するための切り欠き丸棒引張試験における経過時間と熱応力サイクルとの関係を示すグラフである。
【符号の説明】
1:丸棒
2:円周切り欠き
4:試験片[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to galvanized in a cold district, a large structure, a method of manufacturing a high strength steel and its superior in low temperature toughness and resistance to plating cracking resistance which is suitable for example are used primarily transmission tower for such .
[0002]
[Prior art]
Conventionally, hot-dip galvanizing has been widely used for the purpose of preventing corrosion of steel materials. However, when the welded structure is immersed in a hot dip galvanizing bath, cracks may occur particularly in the weld heat affected zone (hereinafter referred to as HAZ) depending on the composition of the steel material and the manner of immersion in the galvanizing bath.
[0003]
Such cracks are referred to as plating cracks, and are simply referred to as “plating cracks” in this specification . This is thought to be because liquid metal such as zinc enters the grain boundaries of steel and causes embrittlement. For example, it is known that a large residual stress is liable to occur when immersed in a hot-dip galvanizing bath particularly in a state of being applied to HAZ.
For example, in a high-strength steel material for a steel tower limited to JIS G 3129, a calculation formula of a galvanizing crack susceptibility equivalent of a steel sheet is disclosed as follows.
[0004]
(Equivalent to galvanizing crack sensitivity)
= C + Si / 17 + Mn / 7.5 + Cu / 13 + Ni / 17 + Cr / 4.5 + Mo / 3 + V / 1.5 + Nb / 2 + Ti / 4.5 + 420B However, even when the stipulation of the hot-dip galvanizing crack susceptibility specified in JIS G 3129 is satisfied. When the welded structure is immersed in a hot-dip galvanizing bath, plating cracks may occur. Various methods have been devised to prevent such plating cracks, such as a plating immersion method and the shape of a welded structure. However, at present, these measures cannot be said to be sufficient measures.
[0005]
On the other hand, as a new plating crack prevention method, a method of improving the steel material itself has been proposed.
For example, C: 0.04 to 0.11%, Si: 0.05 to 0.30%, Mn: 0.90 to 1.70%, Nb: 0.01 to 0.08%, V: 0. 02-0.09%, Ti: 0.005 to 0.030%, Al: 0.005 to 0.050%,
At the same time, 93-8.8 × 103C (C-0.1) -63Si-38Mn-340V ≧ 42 is satisfied, and a high-strength low-alloy steel composed of the balance Fe and unavoidable impurities (Japanese Patent Publication No. 2-5814), C: 0.20% or less, Si: 0.03 to 0.35%, Mn: 1.8% or less, Al: 0.005 to 0.07%, and 0.0002 of B existing as an impurity. % Or less, the balance consisting of Fe and unavoidable impurities and the combination of these elements being expressed in Ceq. (B) = C + Mn / 10 + Si / 30 + Cr / 10 + Mo / 20 + V / 3 + Nb / 3 + Tl / 3 + 1 / 40000B ≦ 0.19
(Japanese Patent Publication No. Hei 6-86649) has been proposed.
[0006]
The purpose of limiting the steel component in this way is to suppress plating cracking susceptibility and prevent plating cracking. However, for steel produced industrially, since center segregation always exists, cracks may occur from the center segregation part when immersed in a hot dip galvanizing bath due to local increase in alloy concentration. .
[0008]
[Problems to be solved by the invention]
The use environment of high-strength steel materials for steel towers is becoming harsh, such as in the mountains in cold regions, and low-temperature toughness is required in addition to plating crack resistance.
[0009]
Regarding the low-temperature toughness, the high-strength low-alloy steel and high-strength steel disclosed in the above-mentioned Japanese Patent Publication No. 2-5814 and Japanese Patent Publication No. 6-86649 satisfy the plating crack resistance when used for steel towers. However, there is a problem that low-temperature toughness cannot be satisfied.
Further, there is no disclosure of improving the base material's resistance to plating cracking by reducing center segregation.
[0010]
Accordingly, an object of the present invention is to overcome the drawbacks of the prior art and to provide a high strength steel and a manufacturing method thereof that combines beauty low temperature toughness Oyo excellent plating cracking.
Specifically, the present invention is, tensile strength 570 N / mm 2 or more (except in the case of 780N / mm 2 or more), vTrs-50 ° C., joint vTrs-10 ° C., high tension satisfying the above IpushironZc2% The object is to provide steel and its manufacturing method.
[0011]
[Means for Solving the Problems]
The present inventors have conducted various tests and studies in order to satisfy the above object. As a result, while controlling the ratio of Ti to N contained in the steel to a predetermined value, controlling the center segregation degree by rolling conditions and refining crystal grains by specifying Ti / N, HAZ toughness and plating cracking It has been found that the low-temperature toughness can be improved by reducing the crystal grain size while ensuring a tensile strength of 590 N / mm 2 or more without impairing the plating cracking resistance. Reached.
[0012]
Here, according to the invention, in weight%:
C: 0.04 to 0.10%, Si: 0.05 to 0.40%, Mn: 1.00 to 2.0%,
P: 0.025% or less, S: 0.010% or less, Al: 0.050% or less,
Ti: 0.030 to 0.050 %, Nb: 0.01 to 0.10%, N: 0.002 to 0.005%,
Further, by satisfying Ti / N: 6.0 to 20.0, generation of coarse TiN is suppressed, and precipitation of fine carbonitride is promoted. In particular, crystal growth in HAZ during welding is suppressed. , HAZ can be improved in toughness.
[0013]
Further, one or more of V: 0.10% or less, Cu: 1.0% or less, Ni: 1.0% or less, Cr: 1.0% or less, and Mo: 1.0% or less In this case as well, by satisfying Ti / N: 6.0 to 20.0, the formation of coarse TiN 2 is suppressed, and the precipitation of fine carbonitrides is promoted. Crystal growth in the HAZ during welding can be suppressed, and the toughness of the HAZ can be improved.
[0014]
Further, in order to improve the plating crack resistance, the slab having the above steel sheet composition is heated to a temperature in the range of 1050 to 1250 ° C., is subjected to finish rolling at a temperature of 3 points or more of Ar, and is subsequently heated to a temperature of 550 ° C. or less. By performing water cooling to, center segregation can be reduced and plating crack resistance can be improved. In order to further improve the base material toughness, tempering at 450 ° C or less is performed.
[0015]
BEST MODE FOR CARRYING OUT THE INVENTION
Next, the reason for defining the steel composition and the production conditions in the present invention as described above will be described.
[0016]
C is an essential element for increasing the strength of steel, but if it is less than 0.04%, the required tensile strength of 590 N / mm 2 or more cannot be secured, and 0.10% If it exceeds, not only the toughness of the base metal and the weld and the plating crack resistance of the HAZ are lowered, but also the degree of center segregation is deteriorated. Preferably, the upper limit is 0.08%.
[0017]
Si is an element necessary for securing the strength in addition to the deoxidizing action, but if it is less than 0.05%, its effect is not sufficient, and if it exceeds 0.40%, the toughness of the welded portion and the plating cracking resistance of the HAZ. Therefore, the content was set to 0.05 to 0.40% because the property deteriorated. Preferably it is 0.10 to 0.30%.
[0018]
Mn is an effective element in securing the strength and toughness of steel, but if it is less than 1.00%, its effect is not sufficient, and if it exceeds 2.0%, the toughness of the weld and the plating resistance of HAZ Since not only the cracking property is lowered but also the center segregation degree is adversely affected, the content is set to 1.00 to 2.0%.
[0019]
P is an element that lowers the toughness of the steel material, and the lower the better, the better.
S is an element that lowers the toughness of the steel material like P, and is preferably as low as possible.
[0020]
Al is added as a deoxidizing element, but it is preferable that the content be lower. If the content exceeds 0.050%, the effect is saturated, and inclusions increase to impair the cleanliness of the steel. 0.050% or less.
[0021]
Ti produces a fine carbonitride in steel by a synergistic effect of limiting the N content as described later, improves strength by precipitation hardening, and refines crystal grains to form a base material and improves the HAZ toughness, it is less than 0.030% or effect of improving the low temperature toughness is not exerted, and since rather deteriorates the toughness by curing excessive precipitation exceeds 0.050% 0. Was 030 to 0.050 percent.
[0022]
Nb forms fine carbonitrides in steel like Ti, improves the strength by precipitation hardening, and improves the toughness of the base metal and HAZ by refining the crystal grains, but less than 0.01% In this case, the effect is not sufficient, and if it exceeds 0.10%, the toughness is rather deteriorated due to excessive precipitation. Preferably it is 0.02-0.05%.
[0023]
By containing N at 0.002% or more simultaneously with Ti and making Ti / N 6.0 or more, precipitation of fine carbonitrides is promoted, and in particular, crystal grain growth in HAZ at the time of welding is suppressed. , HAZ is improved, but if the content exceeds 0.005% and Ti / N exceeds 20, coarse Ti / N is generated, and the effect of suppressing the crystal grain growth cannot be obtained. 0.002 to 0.005%, and Ti / N was 6 to 20. Preferably, the lower limit is 0.003%, the upper limit is 0.004%, and the Ti / N is also preferably 15 or less.
[0024]
In the present invention, a high-strength steel may be used in which one or more of V, Cu, Ni, Cr and Mo are further contained to further increase the strength of the steel. ◇
If V exceeds 0.1% and each of Cu, Ni, Cr and Mo exceeds 1.0%, the toughness of the base material and the welded portion and the plating crack resistance of the HAZ are reduced. %, Cu, Ni, Cr, and Mo were each set to 1.0% or less .
[0025]
In the present invention, the plating crack resistance of the welded portion is improved by further defining the rolling conditions of the steel material. The reasons for limiting the rolling conditions are described below.
First, as for the heating temperature, the target base material strength cannot be obtained at a temperature lower than 1050 ° C., and when the slab is heated to more than 1250 ° C., the base material toughness decreases due to an increase in the initial γ grains. It was specified below ° C.
[0026]
Next, as for the rolling conditions, the center segregation is reduced by finishing the rolling at a high temperature of 3 or more Ar and immediately cooling with water. In order to prevent elements such as C and Mn that cause center segregation from diffusing and concentrating during ferrite transformation, rolling is completed at three or more points of Ar and water cooling is started.
Subsequently, if water cooling is performed to a temperature of 550 ° C. or less, no crack occurs.
[0027]
If the cooling rate is less than 5 ° C./sec, not only is it difficult to secure the base metal strength, but also there is no effect of suppressing carbide precipitation by accelerated cooling, and the base material toughness and the plating crack resistance of the base material deteriorate, There is no diffusion suppression effect, the degree of center segregation also worsens, and the plating crack resistance of the welded part deteriorates. The upper limit is not particularly limited, but if it exceeds 30 ° C / sec, the base material toughness tends to deteriorate. Therefore, it is preferably 30 ° C / sec or less, and more preferably 20 ° C / sec or less from a practical viewpoint.
[0028]
The steel material subjected to the accelerated cooling can be used as it is as a steel material having excellent resistance to cracking of Zn plating. However, in order to prevent changes in mechanical properties such as tensile strength and toughness when this steel material is immersed in a Zn plating bath, it is necessary to perform tempering in advance at a temperature close to the temperature of the molten zinc bath (450 ° C). desirable. However, if the tempering temperature exceeds 450 ° C., carbides dissolved in the solid solution by the accelerated cooling before will precipitate, and the galvanization resistance will decrease. Therefore, when performing tempering, it is performed at a temperature of 450 ° C. or less.
[0029]
【Example】
Steel No. 1 having the chemical components shown in Table 1 was used. 50 kg of steel of 1 to 30 was melted in a vacuum melting furnace, and a steel plate having a tensile strength of approximately 590 to 690 N / mm 2 and a thickness of 16 t was manufactured.
[0030]
From each steel plate, a test piece is cut out, and the tensile strength according to the metal material tensile test method specified in JIS Z 2241 and the energy transition temperature (hereinafter referred to as vTrs) determined by Charpy impact test as the low-temperature toughness specified in JIS Z 2242 are used as the metal material specified in JIS Z 2242. The impact test method was used.
[0031]
In addition, the plating crack resistance of the melted portion was evaluated using SLM400 and εZc which are usually used.
As shown in FIG. 1 (a), a round bar 1 having a diameter (D) of 10 mm and a total length of 170 mm was cut out from each of the above steel plates, and a high-frequency heating was performed at a heating temperature of 1400 ° C. and a cooling time of 800 to 500 ° C. for 8 seconds, as shown in FIG. After applying the reproducible heat cycle, a test piece having a circumferential notch 2 with an angle of 60 degrees and a depth of 2 mm as shown in FIG. 1B was used as a test piece. After the hot-dip galvanizing was applied to the cutout of the test piece, as shown in FIG. 2, the temperature was raised from room temperature to 470 ° C. in 30 seconds, and the temperature was increased to a predetermined tensile stress in 30 seconds from the start of the test. 0.5 kgf / mm 2 / min to give a thermal stress cycle,
(Rupture stress during hot-dip galvanizing) / (rupture stress without hot-dip galvanizing) x 100 (%)
To obtain the relationship between the SLM defined by
[0032]
Regarding the evaluation of plating cracking resistance, there is a knowledge that plating cracking does not occur if the SLM at 400 seconds, ie, SLM400 ≧ 42%, in consideration of actual hot-dip galvanizing work (for example, iron and steel , Vol. 79 (1993) No. 9, P96). Table 2 shows the results.
[0033]
On the other hand, with respect to the εZc value, a heat cycle of cooling at 800 to 500 ° C. for 15 seconds was applied after holding at 1250 ° C. for 10 minutes to prepare a test piece 4 shown in FIG. 1 (c). The numbers in the figure represent dimensions (mm). The thickness was 7 mm. The prepared test piece was pulled in a zinc bath at 450 ° C., and a critical strain amount at which no crack was generated was determined, and an εZc value of 2.0% was targeted.
[0034]
As a result of the above test, as shown in Table 2, steel No. The steels of the present invention Nos. 1 to 17 all show 42% or more, which is said to be free from plating cracking, and have a vTrs of -62 ° C or less. The SLM400 of the comparative steels Nos. 18 to 30 each showed 42% or more, which is said to be free from plating cracking. It is clear that the low-temperature toughness is inferior to those of the inventive steels Nos. 1 to 17.
[0035]
In addition, when the rolling conditions were No. out of the invention, 31, 32 and No. With respect to Nos. 34 and 35, the base metal strength or toughness was poor. No. 33 was No. 33 due to the deterioration of the degree of center segregation. With regard to No. 35, the εZc value was unfavorable due to the influence of the precipitated carbide. In addition, Ti / N is No. out of the range of the present invention. 24, no. It can be seen that all of the steels Nos. 26 to 28 have poor εZc values.
[0036]
[Table 1]
Figure 0003577890
[0037]
[Table 2]
Figure 0003577890
[0038]
【The invention's effect】
The high-strength steel according to the present invention has excellent low-temperature toughness without impairing plating crack resistance, and is subjected to hot-dip galvanizing in a cold region and used as a high-tensile steel for large structures such as power transmission towers. Very important. In addition, by limiting the rolling conditions and improving the center segregation, the base material toughness and plating crack resistance were improved. Furthermore, alloy elements can be added more than before, and stable production can be achieved.
[Brief description of the drawings]
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 shows test pieces used for measuring plating crack resistance in Examples, and FIGS. 1 (a) and 1 (b) are respectively an overall plan view and a cylinder cut of a test piece used for obtaining an SLM400. FIG. 1 (c) is an explanatory view of the shape of a test piece used for obtaining an εZc value.
FIG. 2 is a graph showing a relationship between an elapsed time and a thermal stress cycle in a notched round bar tensile test for measuring SLM400 in an example.
[Explanation of symbols]
1: Round bar 2: Circular notch 4: Test piece

Claims (4)

重量%で、
C:0.04〜0.10%、Si:0.05〜0.40%、Mn:1.00〜2.0 %、
P:0.025 %以下、S:0.010 %以下、Al:0.050 %以下、
Ti:0.030 〜0.050 %、Nb:0.01〜0.10%、N:0.002 〜0.005 %、
Ti/N:6.0 〜20.0、
を含有する鋼組成を有する引張り強さ570N/mm以上(ただし780N/mm以上の場合は除く)の送電線用鉄塔などの大型構造物に用いる低温靱性および耐めっき割れ性に優れた高張力
鋼。
In weight percent,
C: 0.04 to 0.10%, Si: 0.05 to 0.40%, Mn: 1.00 to 2.0%,
P: 0.025% or less, S: 0.010% or less, Al: 0.050% or less,
Ti: 0.030 to 0.050%, Nb: 0.01 to 0.10%, N: 0.002 to 0.005%,
Ti / N: 6.0-20.0,
Excellent in low-temperature toughness and plating crack resistance for large structures such as power transmission towers with a tensile strength of 570 N / mm 2 or more (excluding 780 N / mm 2 or more) having a steel composition containing Tension steel.
重量%で、
C:0.04〜0.10%、Si:0.05〜0.40%、Mn:1.00〜2.0 %、
P:0.025 %以下、S:0.010 %以下、Al:0.050 %以下、
Ti:0.030 〜0.050 %、Nb:0.01〜0.10%、N:0.002 〜0.005 %、
Ti/N:6.0 〜20.0、からなる鋼組成を有し、
さらに、V:0.10%以下、Cu:1.0 %以下、Ni:1.0 %以下、
Cr:1.0 %以下、Mo:1.0 %以下のうち1種または2種以上
を含有する鋼組成を有する引張り強さ570N/mm以上(ただし780N/mm以上の場合は除く)の送電線用鉄塔などの大型構造物に用いる低温靱性および耐めっき割れ性に優れた高張力鋼。
In weight percent,
C: 0.04 to 0.10%, Si: 0.05 to 0.40%, Mn: 1.00 to 2.0%,
P: 0.025% or less, S: 0.010% or less, Al: 0.050% or less,
Ti: 0.030 to 0.050%, Nb: 0.01 to 0.10%, N: 0.002 to 0.005%,
Ti / N: having a steel composition consisting of 6.0 to 20.0,
Further, V: 0.10% or less, Cu: 1.0% or less, Ni: 1.0% or less,
Cr: 1.0% or less, Mo: for transmission lines than 1.0% of one or tensile strength having a steel composition containing two or more 570N / mm 2 or more (except in the case of 780N / mm 2 or higher) High-strength steel with excellent low-temperature toughness and plating crack resistance for large structures such as steel towers.
求項1または2記載の鋼組成を有するスラブを1050〜1250℃の範囲の
温度に加熱し、Ar点以上の温度で仕上げ圧延を行い、さらに引き続いて5℃/sec以上の冷却速度で、550 ℃以下の温度にまで水冷をすることを特徴とする、引張り強さ570N/mm以上(ただし780N/mm以上の場合は除く)であって、送電線用鉄塔などの大型構造物に用いる低温靱性および耐めっき割れ性に優れた高張力鋼の製造方法。
Slabs having the steel composition of Motomeko 1, wherein heating to a temperature in the range of 1,050-1,250 ° C., subjected to finish rolling at Ar 3 point or higher, further followed by at 5 ° C. / sec or more cooling rate , characterized by a water-cooled to a temperature of 550 ° C. or less, a tensile strength of 570N / mm 2 or more (except in the case of 780N / mm 2 or more), large structures such as towers for power lines method for producing a high strength steel excellent in low temperature toughness and resistance to plating cracking resistance for use in.
さらに550 ℃以下の温度にまで水冷を行った後、450 ℃以下の温度で焼き戻しを行うことを特徴とする請求項3記載の送電線用鉄塔などの大型構造物に用いる低温靱性および耐めっき割れ性に優れた高張力鋼の製造方法。Further After water cooling down to 550 ° C. temperature below, 450 ° C. beauty Oyo low temperature toughness for use in large structures, such as claim 3 transmission lines towers of wherein the performing tempering at a temperature of Manufacturing method of high tensile steel with excellent plating crack resistance .
JP14805597A 1997-06-05 1997-06-05 High-strength steel excellent in plating crack resistance and method of manufacturing the same Expired - Fee Related JP3577890B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14805597A JP3577890B2 (en) 1997-06-05 1997-06-05 High-strength steel excellent in plating crack resistance and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14805597A JP3577890B2 (en) 1997-06-05 1997-06-05 High-strength steel excellent in plating crack resistance and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JPH10330837A JPH10330837A (en) 1998-12-15
JP3577890B2 true JP3577890B2 (en) 2004-10-20

Family

ID=15444165

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14805597A Expired - Fee Related JP3577890B2 (en) 1997-06-05 1997-06-05 High-strength steel excellent in plating crack resistance and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP3577890B2 (en)

Also Published As

Publication number Publication date
JPH10330837A (en) 1998-12-15

Similar Documents

Publication Publication Date Title
JP4311740B2 (en) Thick steel plate with high heat input welded joint toughness
JP5641741B2 (en) High strength Zn-Al-Mg plated steel sheet with excellent bendability and molten metal embrittlement resistance
US20120138194A1 (en) High strength, hot dip coated, dual phase, steel sheet and method of manufacturing same
JP2021507989A (en) High-strength steel for polar environment with excellent fracture resistance at low temperature and its manufacturing method
JP4310591B2 (en) Method for producing high-strength steel sheet with excellent weldability
JP4112733B2 (en) Method for producing 50 kg (490 MPa) to 60 kg (588 MPa) thick high-tensile steel sheet having excellent strength and low temperature toughness
JP3233828B2 (en) High-strength PC steel rod excellent in delayed fracture characteristics of spot welds and method of manufacturing the same
JP2020019995A (en) Thick steel sheet, manufacturing method therefor, and weldment structure
JP4948710B2 (en) Welding method of high-tensile thick plate
JP6923104B1 (en) Thick steel plate and its manufacturing method
JP5053652B2 (en) Zn-Al-Mg plated steel sheet with excellent resistance to molten metal embrittlement cracking
JP3577890B2 (en) High-strength steel excellent in plating crack resistance and method of manufacturing the same
JPH1121623A (en) Manufacture of steel product for welded structure, having excellent atmospheric corrosion resistance and low yield ratio
JP3233827B2 (en) High-strength PC steel rod excellent in delayed fracture characteristics of spot welds and method of manufacturing the same
WO2016068094A1 (en) High-tensile steel sheet having excellent low-temperature toughness in weld heat-affected zone, and method for manufacturing same
JP3233829B2 (en) High-strength PC steel rod excellent in delayed fracture characteristics of spot welds and method of manufacturing the same
JP3895002B2 (en) Non-tempered high-tensile steel with excellent resistance to hot-dip galvanizing cracking
JP2827842B2 (en) Manufacturing method of galvanized ERW steel pipe
JP2573109B2 (en) Method for producing high-strength steel for Zn plating crack resistant structure
JP2004052062A (en) High strength pc steel bar having excellent delayed fracture property in spot weld zone and method of producing the same
JP2587487B2 (en) Steel material with welds
JPH0987802A (en) High tensile strength steel plate excellent in plating crack resistance and its production
JP4000940B2 (en) High strength steel plate with excellent spot weldability and method for producing the same
JPH09279292A (en) High tensile strength steel excellent in low temperature toughness and plating cracking resistance
JP5003179B2 (en) Manufacturing method of high-tensile steel plate

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20020312

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040531

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040705

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070723

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080723

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080723

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090723

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090723

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100723

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees