JP2587487B2 - Steel material with welds - Google Patents

Steel material with welds

Info

Publication number
JP2587487B2
JP2587487B2 JP3909789A JP3909789A JP2587487B2 JP 2587487 B2 JP2587487 B2 JP 2587487B2 JP 3909789 A JP3909789 A JP 3909789A JP 3909789 A JP3909789 A JP 3909789A JP 2587487 B2 JP2587487 B2 JP 2587487B2
Authority
JP
Japan
Prior art keywords
steel
steel material
welding
haz
corrosion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP3909789A
Other languages
Japanese (ja)
Other versions
JPH02217172A (en
Inventor
修嗣 高嶋
隆司 下畑
豊明 塩飽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP3909789A priority Critical patent/JP2587487B2/en
Publication of JPH02217172A publication Critical patent/JPH02217172A/en
Application granted granted Critical
Publication of JP2587487B2 publication Critical patent/JP2587487B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Arc Welding In General (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、溶接部を有する鋼材に関し、詳細には、鋼
材を溶接接合或いは溶接補修してなる溶接部(溶接接合
部或いは溶接補修部)を有する鋼材、即ち、鋼材の溶接
継手に関し、構造部材として鋼材が使用される海洋構造
物や船舶、特に氷海域で稼働される海洋構造物や船舶の
建造時或いは稼働途中に適用される。
Description: TECHNICAL FIELD The present invention relates to a steel material having a welded portion, and more particularly, to a welded portion formed by welding or repairing a steel material (welded joint or weld repaired portion). The present invention relates to a steel material having the following characteristics, that is, a welded joint of a steel material, which is applied to a marine structure or a ship in which the steel material is used as a structural member, particularly when a marine structure or a ship operated in an icy sea area is being constructed or in operation.

(従来の技術) 海洋構造物や船舶は塗装されて稼働されるが、稼働中
に流木等の衝突により塗装が剥がれることがある。特
に、氷海域で稼働される海洋構造物や破氷船等の船舶の
場合には、氷の衝突により塗装が剥がれ易い。
(Prior Art) Offshore structures and ships are painted and operated, but during operation, the paint may come off due to collision with driftwood or the like. In particular, in the case of a marine structure or a ship such as an icebreaker operated in an ice sea area, the paint is easily peeled off by the collision of ice.

塗装が剥がれると、鋼材は海水に曝され、腐食が生じ
るようになる。特に、鋼材の溶接部の塗装が剥がれる
と、溶接金属部(以降、Depo部という)あるいは溶接熱
影響部(以降、HAZ部という)で深く溝状の局部腐食
(以降、溝状腐食という)が生じ、該腐食による損傷な
深刻な問題となっており、その防止対策が要望されてい
る。
When the paint comes off, the steel is exposed to seawater and becomes corrosive. In particular, if the coating on the welded portion of the steel material is peeled off, deep groove-shaped local corrosion (hereinafter referred to as grooved corrosion) will occur in the weld metal (hereinafter referred to as Depo) or the weld heat affected zone (hereinafter referred to as HAZ). This is a serious problem that is caused by the corrosion and damage is required.

例えば、「鉄と鋼,S1266(1986)」には、フェライト
・パーライト鋼を低い溶接入熱量で溶接したものは、HA
Z部で溝状腐食が生じる事が示されている。
For example, “Iron and Steel, S1266 (1986)” shows that ferrite-pearlite steel with low welding heat input is HA
It is shown that groove corrosion occurs in the Z part.

かかる腐食の防止に関し、「Scandinaviam Journal o
f Metallurgy,vol.7(1978),P.11」には、フェライト
・パーライト組織を有する焼ならし型高張力鋼:HT−50
を溶接する場合、HAZ部腐食防止のため鋼中Mn量を1.1%
未満にしておき、且つ溶接入熱量を大きくしてHAZ部が
低温変態組織になるのを防止し、Depo部での溝状腐食防
止のため溶接材料にCu−Ni含有材を使用すればよいと記
載されている(以降、かかる方法を従来技術Aとい
う)。
Regarding the prevention of such corrosion, see "Scandinaviam Journal o
f Metallurgy, vol.7 (1978), P.11 ”includes a normalized high-strength steel with a ferrite-pearlite structure: HT-50.
When welding steel, Mn content in steel is 1.1% to prevent HAZ corrosion
It is necessary to use a Cu-Ni-containing material as the welding material to prevent the HAZ part from becoming a low-temperature transformation structure by increasing the welding heat input and to prevent the groove corrosion at the Depo part. (Hereinafter, such a method is referred to as “prior art A”).

又、特開昭60−228618号公報には、焼入・焼戻し処理
された鋼材を溶接した後、溶接部の表層を局部焼戻し処
理する方法(以降、従来技術Bという)が提案されてい
る。
Also, Japanese Patent Application Laid-Open No. 60-228618 proposes a method of welding a quenched and tempered steel material and then locally tempering the surface layer of the welded portion (hereinafter referred to as prior art B).

(発明が解決しようとする課題) ところが、前記従来技術Aは、鋼中Mn量を1.1%未満
にする必要があるので、鋼材強度の確保が困難になり、
又、溶接入熱量を大きくする必要があるので、通常の手
溶接を適用出来ないという事が問題となる。
(Problems to be Solved by the Invention) However, in the prior art A, since the Mn content in the steel needs to be less than 1.1%, it is difficult to secure the strength of the steel material.
Further, since it is necessary to increase the welding heat input, there is a problem that ordinary manual welding cannot be applied.

前記従来技術Bは、溶接前後とも熱処理を必要とする
ので製造コストが高く、且つ工期が長くなる他、溶接後
の局部焼戻し処理が煩雑であるので作業性の低下を招
き、且つ焼戻しの確実性に欠けるという問題点がある。
The prior art B requires heat treatment before and after welding, so that the production cost is high, the construction period is long, and the local tempering process after welding is complicated, so that the workability is reduced and the tempering reliability is increased. There is a problem that lacks.

本発明はこの様な事情に着目してなされたものであっ
て、その目的は従来技術A及び従来技術Bがもつ以上の
ような問題点を解消し、製造コスト・工期の増大および
作業性の低下を招く事なく得られ、所要の高強度が確保
され、又、耐溝状腐食性に優れ、更に製造に際し手溶接
をも適用できる鋼材の溶接継手、即ち溶接部(鋼材溶接
接合部及び/又は溶接補修部)を有する鋼材を提供しよ
うとするものである。
The present invention has been made in view of such circumstances, and has as its object to solve the above problems of the prior art A and the prior art B, to increase the manufacturing cost and the construction period, and to improve the workability. A welded joint made of steel that can be obtained without lowering, ensures the required high strength, is excellent in groove corrosion resistance, and can be applied to manual welding in production, that is, a welded portion (steel welded joint and / or Or a welded part).

(課題を解決するための手段) 上記目的を達成するために、本発明に係る溶接部を有
する鋼材は、次のような構成としている。
(Means for Solving the Problems) In order to achieve the above object, a steel material having a weld according to the present invention has the following configuration.

即ち、請求項1に記載の溶接部を有する鋼材は、下記
式で求められるC当量が0.30〜0.38%である鋼を制御
圧延、加速冷却しベーナイト相含有組織とした圧延鋼材
を溶接してなる溶接部を有する鋼材であって、前記溶接
部の溶接金属中Ni量が下記式を満足する値であること
を特徴とする溶接部を有する鋼材である。
That is, the steel material having a welded portion according to claim 1 is obtained by welding a rolled steel material having a bainite phase-containing structure by controlled rolling, accelerated cooling, and steel having a C equivalent of 0.30 to 0.38% determined by the following equation. A steel material having a weld portion, wherein the amount of Ni in the weld metal at the weld portion is a value satisfying the following expression.

C当量=C量+Si量/24+Mn量/6+Ni量/40+V量/14 …
… 但し、式において、C量,Si量,Mn量,Ni量およびV
量は、全てwt%での値である。
C equivalent = C amount + Si amount / 24 + Mn amount / 6 + Ni amount / 40 + V amount / 14…
... However, in the formulas, C content, Si content, Mn content, Ni content and V
All amounts are in wt%.

−0.3≦Ni(D)−Ni(M)≦0.8 …… 但し、式において、Ni(D)は溶接金属中Ni量
(%),Ni(M)は母材の鋼材中のNi量(%)である。
−0.3 ≦ Ni (D) −Ni (M) ≦ 0.8 where Ni (D) is the Ni content (%) in the weld metal, and Ni (M) is the Ni content (%) in the base steel material. ).

請求項2に記載の溶接部を有する鋼材は、前記鋼がC:
0.02〜0.12wt%,Si:0.05〜0.50wt%,Mn:1.10〜2.00wt
%,Sol.Al:0.005〜0.050wt%,Ni:0.01〜5.00wt%,Nb:0.
005〜0.100wt%,Ti:0.005〜0.020wt%,N:0.0020〜0.006
0wt%を含有し、残部が鉄及び不可避的不純物からなる
組成を有する第1請求項に記載の溶接部を有する鋼材で
ある。
The steel material having a weld according to claim 2, wherein the steel is C:
0.02 ~ 0.12wt%, Si: 0.05 ~ 0.50wt%, Mn: 1.10 ~ 2.00wt
%, Sol.Al: 0.005 to 0.050 wt%, Ni: 0.01 to 5.00 wt%, Nb: 0.
005 ~ 0.100wt%, Ti: 0.005 ~ 0.020wt%, N: 0.0020 ~ 0.006
The steel material having a welded portion according to claim 1, which contains 0 wt% and the balance has a composition consisting of iron and unavoidable impurities.

請求項3に記載の溶接部を有する鋼材は、前記鋼が、
C:0.02〜0.12wt%,Si:0.05〜0.50wt%,Mn:1.10〜2.00wt
%,Sol.Al:0.005〜0.050wt%,Ni:0.01〜5.00wt%,Nb:0.
005〜0.100wt%,Ti:0.005〜0.020wt%,N:0.0020〜0.006
0wt%を含有し、さらにCu:0.05〜1.00wt%,V:0.005〜0.
100wt%,B:0.0005〜0.0030wt%から選択される1種また
は2種以上を含有し、残部が鉄及び不可避的不純物から
なる組成を有する第1請求項に記載の溶接部を有する鋼
材である。
The steel material having a weld according to claim 3, wherein the steel is:
C: 0.02-0.12wt%, Si: 0.05-0.50wt%, Mn: 1.10-2.00wt
%, Sol.Al: 0.005 to 0.050 wt%, Ni: 0.01 to 5.00 wt%, Nb: 0.
005 ~ 0.100wt%, Ti: 0.005 ~ 0.020wt%, N: 0.0020 ~ 0.006
0 wt%, Cu: 0.05-1.00 wt%, V: 0.005-0.
The steel material according to claim 1, wherein the steel material contains one or more selected from 100 wt%, B: 0.0005 to 0.0030 wt%, and the balance has a composition consisting of iron and unavoidable impurities. .

請求項4に記載の溶接部を有する鋼材は、前記鋼がC:
0.02〜0.12wt%,Si:0.05〜0.50wt%,Mn:1.10〜2.00wt
%,Sol.Al:0.005〜0.050wt%,Ni:0.01〜5.00wt%,Nb:0.
005〜0.100wt%,Ti:0.005〜0.020wt%,N:0.0020〜0.006
0wt%を含有し、さらにCa:0.0005〜0.0030wt%,希土類
元素:0.005〜0.030wt%から選択される1種または2種
を含有し、残部が鉄及び不可避的不純物からなる組成を
有する第1請求項に記載の溶接部を有する鋼材である。
The steel material having a weld according to claim 4, wherein the steel is C:
0.02 ~ 0.12wt%, Si: 0.05 ~ 0.50wt%, Mn: 1.10 ~ 2.00wt
%, Sol.Al: 0.005 to 0.050 wt%, Ni: 0.01 to 5.00 wt%, Nb: 0.
005 ~ 0.100wt%, Ti: 0.005 ~ 0.020wt%, N: 0.0020 ~ 0.006
1 wt. It is a steel material having a welded portion according to the claims.

請求項5に記載の溶接部を有する鋼材は、前記鋼がC:
0.02〜0.12wt%,Si:0.05〜0.50wt%,Mn:1.10〜2.00wt
%,Sol.Al:0.005〜0.050wt%,Ni:0.01〜5.00wt%,Nb:0.
005〜0.100wt%,Ti:0.005〜0.020wt%,N:0.0020〜0.006
0wt%を含有し、さらにCu:0.05〜1.00wt%,V:0.005〜0.
100wt%,B:0.0005〜0.0030wt%から選択される1種また
は2種以上,Ca:0.0005〜0.0030wt%,希土類元素:0.005
〜0.030wt%から選択される1種または2種を含有し、
残部が鉄及び不可避的不純物からなる組成を有する第1
請求項に記載の溶接部を有する鋼材である。
The steel material having a weld according to claim 5, wherein the steel is C:
0.02 ~ 0.12wt%, Si: 0.05 ~ 0.50wt%, Mn: 1.10 ~ 2.00wt
%, Sol.Al: 0.005 to 0.050 wt%, Ni: 0.01 to 5.00 wt%, Nb: 0.
005 ~ 0.100wt%, Ti: 0.005 ~ 0.020wt%, N: 0.0020 ~ 0.006
0 wt%, Cu: 0.05-1.00 wt%, V: 0.005-0.
100 wt%, B: one or more selected from 0.0005 to 0.0030 wt%, Ca: 0.0005 to 0.0030 wt%, rare earth element: 0.005
Contains one or two selected from ~ 0.030wt%,
The first having a composition in which the balance consists of iron and unavoidable impurities
It is a steel material having a welded portion according to the claims.

(作 用) 本発明は、種々の条件で製造された熱延鋼材を母材と
し、該母材を種々の溶接材料を用いて溶接接合して溶接
継手を得、該継手について各種試験を行い、主に耐溝状
腐食性,強度に及ぼす成分,組織の影響を克明に調査
し、その結果得られた知見に基づき完成されたものであ
る。以下、この知見に基づきながら使用を説明する。
(Operation) In the present invention, a hot-rolled steel material manufactured under various conditions is used as a base material, and the base material is welded and joined using various welding materials to obtain a welded joint. It has been completed based on the findings obtained by carefully examining the effects of components and microstructure mainly on groove corrosion resistance and strength. Hereinafter, the use will be described based on this finding.

即ち、溶接継手の腐食に関し、母材鋼がフェライト・
パーライト組織の場合はHAZ部で溝状腐食が生じる。こ
れは、HAZ部は母材組織と大変異なる低温変態組織(マ
ルテンサイト又は/及びベーナイト組織)を有するの
で、母材−HAZ部間での電位差が大きくなって腐食が促
進されるからである。一方、母材鋼がベーナイト相含有
組織の場合は、母材,HAZ部とも低温変態組織となり、母
材−HAZ部間での電位差が比較的小さくなるので、HAZ部
だけが特に腐食されるのではなく、軽度の全面腐食が生
じるようになり、そのため腐食深さが小さくなる。従っ
て、母材組織をHAZ部組織と殆ど同様の低温変態組織に
すれば、HAZ部での溝状腐食を防止し得るようになる。
In other words, regarding the corrosion of welded joints,
In the case of a pearlite structure, groove-like corrosion occurs at the HAZ. This is because the HAZ portion has a low-temperature transformation structure (martensite and / or bainite structure) that is very different from the base material structure, so that the potential difference between the base material and the HAZ portion increases to promote corrosion. On the other hand, when the base steel has a bainite phase-containing structure, both the base material and the HAZ have a low-temperature transformation structure, and the potential difference between the base material and the HAZ is relatively small, so that only the HAZ is particularly corroded. Rather, mild general corrosion occurs, which reduces the corrosion depth. Therefore, if the base metal structure is a low-temperature transformed structure almost similar to the structure of the HAZ portion, groove-like corrosion in the HAZ portion can be prevented.

そこで、本発明に係る溶接部を有する鋼材は、鋼の組
織をベーナイト相含有組織とした圧延鋼材を溶接するよ
うにしているのである。即ち、かかる圧延鋼材を溶接し
てなる溶接部を有するものとしているのである。
Therefore, in the steel material having a welded portion according to the present invention, a rolled steel material in which the structure of the steel is a structure containing a bainite phase is welded. That is, it has a welded portion formed by welding such a rolled steel material.

例えば、溶接継手を4ケ月間海水浸漬した場合、母材
鋼がフェライト・パーライト組織の場合は、第1図に示
す如くHAZ部(2)で溝状腐食(4)が生じる。これに
対し、母材鋼がベーナイト相含有組織の場合は、第2図
に示す如くHAZ部(2)から母材部(1)にかけて一様
に腐食され、その腐食(4)深さが小さい。尚、両者と
も溶接材料は同一であり、Ni量が高い材料であるので、
Depo部(3)では腐食が生じていない。第2図で(5)
は海水浸漬前の溶接継手表面位置を示すものである。
For example, when the welded joint is immersed in seawater for 4 months, when the base steel has a ferrite-pearlite structure, groove-like corrosion (4) occurs in the HAZ (2) as shown in FIG. On the other hand, when the base steel has a bainite phase-containing structure, it is uniformly corroded from the HAZ portion (2) to the base material portion (1) as shown in FIG. 2, and the corrosion (4) has a small depth. . In addition, since the welding material is the same for both materials and the Ni content is high,
No corrosion occurred in the Depo part (3). In Fig. 2 (5)
Indicates the surface position of the welded joint before immersion in seawater.

溶接継手の腐食は、前記の如き母材−HAZ部間での電
位差に起因する他、母材(HAZ部を含む)とDepo部間で
の電位差に起因しても生じる。母材−Depo部間での電位
差に起因する腐食は、組織の相違により生ずる場合が多
い。溶接材料は強度,靱性等も考慮して使用されるの
で、その溶接材料の種類によりDepo部の組成は変化す
る。
The corrosion of the welded joint is caused not only by the potential difference between the base material and the HAZ portion as described above, but also by the potential difference between the base material (including the HAZ portion) and the Depo portion. Corrosion due to a potential difference between the base material and the Depo portion is often caused by a difference in structure. Since the welding material is used in consideration of strength, toughness, etc., the composition of the depo portion changes depending on the type of the welding material.

ところで、本発明に係る鋼の組成は、詳細は後述する
が主に強度確保の観点から設定されており、その組成は
前記の通りである。かかる鋼の成分の中、Niが最も前記
腐食に影響し、母材−Depo部間でのNi量の差が大きい
程、母材−Depo部間での電位差に起因する溝状腐食が生
じ易くなる。尚、溝状腐食はNi量の低い側で生じる。
Incidentally, the composition of the steel according to the present invention will be described later in detail, but is set mainly from the viewpoint of securing the strength, and the composition is as described above. Among such steel components, Ni most affects the corrosion, and the larger the difference in the amount of Ni between the base material and the Depo portion, the more easily groove-like corrosion due to the potential difference between the base material and the Depo portion occurs. Become. Note that the groove-like corrosion occurs on the side where the amount of Ni is low.

上記Ni量の基づく溝状腐食は、Ni量差を小さくする
と、溝状腐食が生じ難くなる。ここで母材鋼中のNi量
(%):Ni(M)と、Depo部のNi量(%):Ni(D)との
差、即ち、Ni(D)−Ni(M)を−0.3〜0.8にすると、
溝状腐食が生じなくし得るようになる。
Groove corrosion based on the above-mentioned Ni content is less likely to occur when the difference in Ni content is reduced. Here, the difference between the Ni content (%) of the base steel: Ni (M) and the Ni content (%) of the depo portion: Ni (D), that is, Ni (D) -Ni (M) is -0.3. When set to ~ 0.8,
Groove corrosion can be prevented from occurring.

そこで、本発明に係る溶接部を有する鋼材は、溶接金
属中Ni量(即ちNi(M))が−0.3≦Ni(D)−Ni
(M)≦0.8を満足する値になるようにしているのであ
る。かかるNi量の調整は、母材鋼中Ni量に基づき溶接材
料を選定して溶接することにより可能である。
Therefore, in the steel material having a welded portion according to the present invention, the Ni content in the weld metal (that is, Ni (M)) is −0.3 ≦ Ni (D) −Ni
The value satisfies (M) ≦ 0.8. Such adjustment of the amount of Ni can be performed by selecting and welding a welding material based on the amount of Ni in the base steel.

例えば、上記Ni量差が種々異なる溶接継手を4ケ月間
海水浸漬した場合、第3図に示す如く、Ni(D)≦Ni
(M)のときDepo部のみが腐食し、Ni(M)−Ni(D)
が大きくなると溝状腐食となる。Ni(D)≧Ni(M)の
ときHAZ部のみが腐食し、Ni(D)−Ni(M)が大きく
なると溝状腐食となる。尚、第3図において、●は母材
鋼がベーナイト相含有組織の場合の結果、○は母材鋼が
フェライト・パーライト組織の場合の結果を示すもので
ある。
For example, when the above-described welded joints having various Ni content differences are immersed in seawater for 4 months, Ni (D) ≦ Ni, as shown in FIG.
In the case of (M), only the Depo part corrodes and Ni (M) -Ni (D)
Becomes large, groove corrosion occurs. When Ni (D) ≧ Ni (M), only the HAZ portion corrodes, and when Ni (D) −Ni (M) increases, groove corrosion occurs. In FIG. 3, ● shows the results when the base steel has a bainite phase-containing structure, and ○ shows the results when the base steel has a ferrite-pearlite structure.

又、第3図から判るように、HAZ部での溝状腐食を実
質上防止するには、母材鋼がベートナイト相含有組織の
場合はNi(D)−Ni(M)≦0.8にすればよいが、フェ
ライト・パーライト組織の場合は、Ni(D)−Ni(M)
≦0.2にする必要がある。故に、前者の場合はNi(D)
−Ni(M)の範囲が広いのでよいが、後者の場合はNi
(D)−Ni(M)の範囲が狭いので溶接施工が極めて難
しくなるという問題点が残る。
As can be seen from FIG. 3, in order to substantially prevent groove-like corrosion in the HAZ, Ni (D) −Ni (M) ≦ 0.8 when the base steel has a structure containing a bainite phase. However, in the case of a ferrite-pearlite structure, Ni (D) -Ni (M)
It must be ≦ 0.2. Therefore, in the former case, Ni (D)
The range of -Ni (M) is good, but in the latter case, Ni
Since the range of (D) -Ni (M) is narrow, there remains a problem that welding work becomes extremely difficult.

上記の如く実際の溶接施工性を考慮すると、母材鋼を
ベーナイト相含有組織にする必要がある。ここにも、鋼
材組織を予めベーナイト相含有組織にしておく理由があ
るのである。即ち、溝状腐食防止のためには、溶接前に
鋼材をベーナイト相含有組織にしておく事と、溶接後に
−0.3≦Ni(D)−Ni(M)≦0.8にする事とが必要であ
り、これら両者の効果により実用的な溝状腐食技術とな
るものである。
In consideration of the actual welding workability as described above, the base steel must have a bainite phase-containing structure. Here also, there is a reason why the structure of the steel material is previously set to the structure containing the bainite phase. In other words, in order to prevent groove corrosion, it is necessary that the steel material has a bainite phase-containing structure before welding and that -0.3≤Ni (D) -Ni (M) ≤0.8 after welding. The effect of both of these provides a practical groove corrosion technique.

かかるベーナイト相含有組織を有する鋼材にするた
め、本発明では鋼としてC当量(=C量+Si量/24+Mn
量/6+Ni量/40+V量/14)を0.30〜0.38wt%に調整した
鋼を用い、又、該鋼を制御圧延し、加速冷却するように
しているのである。即ち、これにより得られる圧延鋼材
を用いるようにしているのである。ここで、制御圧延・
加速冷却とは、通常の熱延の場合に比較し、圧延仕上温
度を低くして熱延し、該熱延後の冷却は急冷して行い、
ベーナイト変態を生じさせ易くするものである。
In order to obtain a steel material having such a bainite phase-containing structure, in the present invention, C equivalent (= C amount + Si amount / 24 + Mn) is used as steel.
The amount of steel + Ni amount / 40 + V amount / 14) is adjusted to 0.30 to 0.38 wt%, and the steel is rolled by controlled rolling and accelerated cooling. That is, the rolled steel material obtained by this is used. Here, control rolling
With accelerated cooling, compared to the case of normal hot rolling, hot rolling by lowering the rolling finish temperature, cooling after the hot rolling is performed by rapid cooling,
It is intended to facilitate bainite transformation.

C当量の上下限値の設定理由を述べる。C当量が0.30
wt%未満では、鋼材組織がフェライト・パーライト組織
となり、ベーナイト変態が生じ易く、充分な強度が得ら
れず、0.38wt%超では拘束の大きい場合や予熱をしない
とき、溶接割れが発生し易くなり、又、手溶接等の低入
熱溶接を適用した際、HAZ部がマルテンサイト組織とな
り、母材組織と異なり、溝状腐食が生じるようになるか
らである。
The reasons for setting the upper and lower limits of the C equivalent will be described. C equivalent is 0.30
If it is less than wt%, the steel structure becomes a ferrite / pearlite structure, and bainite transformation is apt to occur, and sufficient strength cannot be obtained. If it exceeds 0.38 wt%, welding cracks are liable to occur when the constraint is large or when preheating is not performed. Also, when low heat input welding such as manual welding is applied, the HAZ portion has a martensite structure, and unlike the base metal structure, groove-like corrosion occurs.

上記圧延仕上温度は700〜850℃にするのが好ましい。
850℃超では靱性が劣化し、700℃未満ではベーナイト変
態が生じ難くなるからである。又、熱延後の冷却速度は
2〜20℃/minにするのが好ましい。2℃/min未満ではベ
ーナイト変態が生じ難くなり、20℃/min超ではマルテン
サイト変態が生じて鋼材の延靱性の低下や、鋼材の変形
が生じ易くなるからである。
The rolling finishing temperature is preferably set to 700 to 850 ° C.
If the temperature exceeds 850 ° C., the toughness deteriorates, and if the temperature is lower than 700 ° C., bainite transformation hardly occurs. The cooling rate after hot rolling is preferably 2 to 20 ° C / min. If the temperature is lower than 2 ° C./min, bainite transformation hardly occurs. If the temperature exceeds 20 ° C./min, martensitic transformation occurs, and the ductility of the steel material is reduced and the steel material is easily deformed.

前記鋼の組成に関し、C:0.02〜0.12wt%,Si:0.05〜0.
50wt%,Mn:1.10〜2.00wt%,Sol.Al:0.005〜0.050wt%,N
i:0.01〜5.00wt%,Nb:0.005〜0.100wt%,Ti:0.005〜0.0
20wt%,N:0.0020〜0.0060wt%を含有し、残部が鉄及び
不可避的不純物からなるものにするのが望ましい。確実
に鋼材をベーナイト相含有組織にし得、高強度,高靱性
にでき、溶接性良好にし得るようになるからである。こ
の場合の上下限値の設定理由を以下に述べる。
Regarding the composition of the steel, C: 0.02 to 0.12 wt%, Si: 0.05 to 0.
50wt%, Mn: 1.10 ~ 2.00wt%, Sol.Al: 0.005 ~ 0.050wt%, N
i: 0.01 ~ 5.00wt%, Nb: 0.005 ~ 0.100wt%, Ti: 0.005 ~ 0.0
It is desirable to contain 20 wt%, N: 0.0020 to 0.0060 wt%, with the balance being iron and unavoidable impurities. This is because the steel material can surely have a bainite phase-containing structure, can have high strength and high toughness, and can have good weldability. The reason for setting the upper and lower limits in this case will be described below.

Cは強度向上に有効であるが、0.02wt%未満では充分
な強度が得られず、0.12wt%超では溶接性およびHAZ部
靱性が低下するからである。
C is effective for improving the strength, but if it is less than 0.02 wt%, sufficient strength cannot be obtained, and if it exceeds 0.12 wt%, the weldability and the toughness of the HAZ portion decrease.

Siは脱酸および強度向上に有効であるが、0.05wt%未
満では充分な脱酸効果が得られず、0.50wt%超では溶接
性が低下するからである。
Si is effective for deoxidation and strength improvement, but if it is less than 0.05 wt%, a sufficient deoxidizing effect cannot be obtained, and if it exceeds 0.50 wt%, the weldability decreases.

Mnは強度向上に有効であるが、充分な強度確保のため
には1.10wt%以上必要であり、2.00wt%超では溶接性が
低下するからである。
Although Mn is effective for improving the strength, 1.10 wt% or more is necessary for securing sufficient strength, and if it exceeds 2.00 wt%, the weldability is reduced.

Alは脱酸のために最低0.005wt%とする必要があり、
0.050wt%超ではHAZ部靱性が低下するからである。
Al must be at least 0.005wt% for deoxidation,
If the content exceeds 0.050 wt%, the toughness of the HAZ portion is reduced.

Niは強度および低温靱性向上に有効であるが、0.01wt
%未満では効果がなく、5.00wt%超では高価なNi添加量
に対する強度の比(即ち、経済的効果指標)が悪くなる
からである。
Ni is effective in improving strength and low-temperature toughness, but 0.01 wt%
% Is ineffective, and if it exceeds 5.00 wt%, the ratio of the strength to the amount of expensive Ni added (that is, the economic effect index) deteriorates.

Nbは組織微細化による靱性向上、固溶Nbの焼入性増大
作用とNb(C,N)の析出とによる強度向上、及び、ベー
ナイト相含有組織の導入に有効であるが、0.005wt%未
満では効果が小さく、0.100wt%超ではHAZ部靱性が低下
するからである。
Nb is effective in improving toughness by refining the structure, increasing the hardenability of solid-solution Nb and increasing the strength by precipitation of Nb (C, N), and introducing a bainite phase-containing structure, but less than 0.005 wt%. This is because the effect is small, and if it exceeds 0.100 wt%, the toughness of the HAZ portion is reduced.

Tiは、TiNとして微細析出してオーステナイト粒粗大
化を防止するので、鋼材の靱性向上に有効であり、ま
た、溶接後冷却時にTiNがHAZ部のフェライト変態核とな
るので、HAZ部の靱性向上に有効であり、更に、マルテ
ンサイト変態を抑制するので、手溶接等の低入熱溶接を
適用した場合でもHAZ部をベーナイト相含有組織にし得
るという効果があるが、0.005wt%未満ではこれらの効
果が小さく、0.020wt%超では硬いTiNの析出量が多くな
り過ぎ、鋼材の延靱性が低下するからである。
Since Ti is finely precipitated as TiN and prevents austenite grain coarsening, it is effective in improving the toughness of steel materials.In addition, during cooling after welding, TiN becomes a ferrite transformation nucleus in the HAZ part, so the toughness of the HAZ part is improved. In addition, since it suppresses martensitic transformation, even when low heat input welding such as manual welding is applied, there is an effect that the HAZ portion can have a bainite phase-containing structure. This is because the effect is small, and if it exceeds 0.020 wt%, the precipitation amount of hard TiN becomes too large, and the ductility of the steel material decreases.

NはTiと結合し上記TiNを形成させるために必要であ
るが、0.0020wt%未満では上記の如き効果が得られず、
0.0060wt%超ではTiN量が多くなり過ぎ、鋼材の延靱性
が低下するからである。
N is necessary for bonding with Ti to form the above TiN, but if less than 0.0020 wt%, the above effects cannot be obtained.
If the content exceeds 0.0060 wt%, the amount of TiN becomes too large, and the ductility of the steel material decreases.

更に高強度,高延靱性を要する場合は以上の元素に加
えてCu,V,B,Ca,希土類元素(以降、REMという)から選
択される1種又は2種以上を0.0005〜1.00wt%含有させ
るとよい。尚、このときCuは0.05〜1.00wt%,Vは0.005
〜0.100wt%,Bは0.0005〜0.0030wt%,Caは0.0005〜0.00
30wt%,REMは0.005〜0.030wt%の範囲にするのが好まし
い。1種または2種以上を含有させる場合の上下限値の
設定理由を以下に述べる。
When high strength and high ductility are required, in addition to the above elements, one or more selected from Cu, V, B, Ca, and rare earth elements (hereinafter referred to as REM) are contained in 0.0005 to 1.00 wt%. It is good to let. In this case, Cu is 0.05 to 1.00 wt%, and V is 0.005%.
~ 0.100wt%, B is 0.0005 ~ 0.0030wt%, Ca is 0.0005 ~ 0.00
It is preferable that 30% by weight and REM be in the range of 0.005 to 0.030% by weight. The reasons for setting the upper and lower limits when one or more kinds are contained will be described below.

CuはHAZ部靱性を低下させずに強度を向上させるとい
う効果を有するが、0.05wt%未満ではその効果が得られ
ず、一方1.00wt%超では溶接性が劣下するからである。
This is because Cu has the effect of improving the strength without lowering the toughness of the HAZ, but if less than 0.05 wt%, the effect cannot be obtained, while if it exceeds 1.00 wt%, the weldability deteriorates.

Vは強度向上に有効であるが、0.005wt%未満ではそ
の効果が得られず、0.100wt%超では溶接性が劣下する
からである。
V is effective for improving the strength, but if less than 0.005 wt%, the effect cannot be obtained, and if it exceeds 0.100 wt%, the weldability is inferior.

Ca及びREMは介在物のMnSの形態を制御する作用を有
し、延靱性や耐割れ性向上に有効であるが、Ca:0.0005w
t%未満、REM:0.005wt%未満ではその効果が得られず、
Ca:0.0030wt%超、REM:0.030wt%超では介在物が増え、
却って延靱性や耐割れ性が低下するようになるからであ
る。
Ca and REM have the effect of controlling the morphology of MnS inclusions and are effective in improving toughness and crack resistance, but Ca: 0.0005w
Less than t%, REM: less than 0.005wt%, the effect is not obtained,
If Ca: more than 0.0030 wt%, REM: more than 0.030 wt%, inclusions increase,
This is because the toughness and the crack resistance are rather reduced.

本発明は、製造工程的には制御圧延、加速冷却した圧
延鋼材を溶接するものであるので、従来技術Bの如く工
程が増えるものではなく、圧延ラインで実施できる。故
に、製造コスト・工期の増大および作業性の低下を招く
ものではない。
Since the present invention involves welding a rolled steel material subjected to controlled rolling and accelerated cooling in the manufacturing process, the number of steps is not increased as in the prior art B, and the present invention can be carried out in a rolling line. Therefore, it does not lead to an increase in manufacturing cost / construction period and a decrease in workability.

(実施例) 組成が種々異なる鋼を1150℃に加熱した後、制御圧延
し、加速冷却し、ベーナイト相含有組織を有する板厚:3
0mmの圧延鋼材を得た。ここで、制御圧延の圧延率は87
%、圧延仕上温度は750℃、又、熱延後冷却速度は10℃/
minにした。
(Example) After heating steel having various compositions to 1150 ° C., controlled rolling, accelerated cooling, and a plate thickness having a bainite phase-containing structure: 3
0 mm rolled steel was obtained. Here, the rolling rate of controlled rolling is 87
%, The finishing temperature of the rolling is 750 ° C, and the cooling rate after hot rolling is 10 ° C /
min.

また、比較のため、上記加速冷却に代えて空冷にて自
然冷却したものも実施した。更に、上記制御圧延・加速
冷却に代えて通常法により圧延・空冷したものも実施し
た。
For comparison, an air-cooled one was also used instead of the above-mentioned accelerated cooling. Further, instead of the above-mentioned controlled rolling / accelerated cooling, rolling / air cooling was also performed by a usual method.

上記圧延鋼材を種々の溶接材料を用いて溶接して溶接
継手(本発明の実施例に係る溶接継手及び比較例に係る
溶接継手)を得た。ここで、溶接は手溶接法あるいはSA
W(サブマージアーク自動溶接法)により行い、溶接入
熱量を種々変化させた。又、Depo部Ni量を種々変えて母
材−Depo部間でのNi量の差を種々変化させた。尚、溶接
継手を得る前に、斜めY形溶接割れ試験を行い、割れ防
止のための予熱温度を求めた。
The above-mentioned rolled steel materials were welded using various welding materials to obtain welded joints (welded joints according to examples of the present invention and welded joints according to comparative examples). Here, welding is performed by manual welding or SA
The welding heat input was varied by W (submerged arc automatic welding). Also, the Ni amount between the base material and the Depo portion was variously changed by variously changing the Ni amount of the Depo portion. Before obtaining a welded joint, an oblique Y-shaped weld cracking test was performed to determine a preheating temperature for preventing cracking.

上記溶接継手について、Ni量差の確認、引張り試験、
Vノッチ衝撃試験、組織観察、及び、4ケ月間海水浸漬
による耐食性試験を行った。
For the above welded joints, check the Ni content difference, tensile test,
A V notch impact test, a structure observation, and a corrosion resistance test by immersion in seawater for 4 months were performed.

第1〜3表に、鋼組成、C当量および圧延・冷却法を
示す。第4表に、母材の強度(0.2%耐力,引張強さ)
および衝撃破面遷移温度、溶接割れ防止予熱温度、及
び、HAZ部の衝撃値を示す。第5表に、溶接材料および
溶接法の種類、溶接入熱量、並びに、Depo部Ni量、Ni量
差、及び、耐食性を示す。尚、耐食性はDepo部板厚から
HAZ部板厚を差引いた値で表示した。これら表におい
て、実験No.1,4,5,6,9,11,14,16のものは本発明の実施
例に係る溶接継手についての鋼組成、強度等の特性であ
り、実験No.2,3,7,8,10,12,13,15,17,18のものは比較例
に係る溶接継手についての鋼組成、強度等の特性であ
る。
Tables 1 to 3 show steel compositions, C equivalents, and rolling / cooling methods. Table 4 shows the strength of the base material (0.2% proof stress, tensile strength)
It also shows the impact fracture surface transition temperature, welding crack prevention preheating temperature, and the impact value of the HAZ. Table 5 shows the types of welding materials and welding methods, the welding heat input, the Ni content in the Depo portion, the Ni content difference, and the corrosion resistance. The corrosion resistance is based on the thickness of the Depo part.
The value was obtained by subtracting the HAZ plate thickness. In these tables, those of Experiment Nos. 1, 4, 5, 6, 9, 11, 14, and 16 show the properties such as the steel composition and strength of the welded joint according to the example of the present invention, and those of Experiment No. 2 , 3,7,8,10,12,13,15,17,18 are characteristics such as steel composition and strength of the welded joint according to the comparative example.

これらの表から判るように、比較例に係る溶接継手の
中、実験No.2,3及び10に係る溶接継手は、母材鋼の特性
は良好である。しかし、Depo部Ni量が過多であるため、
耐食性試験後におけるDepo部板厚からHAZ部板厚を差引
いた値が大きく、HAZ部が深く腐食されている。これはH
AZ部で溝状腐食が生じている事を示している。
As can be seen from these tables, among the welded joints according to the comparative examples, the welded joints according to Experiments Nos. 2, 3 and 10 have good properties of the base steel. However, because the amount of Ni in the Depo part is excessive,
The value obtained by subtracting the thickness of the HAZ part from the thickness of the Depo part after the corrosion resistance test is large, and the HAZ part is deeply corroded. This is H
This indicates that groove corrosion has occurred in the AZ portion.

実験No.15及び17に係る溶接継手は、逆にDepo部Ni量
が過少であるため、Depo部が深く腐食されており、これ
はDepo部で溝状腐食が生じていることを示している。
Conversely, the welded joints according to Experiments Nos. 15 and 17 had a low Ni content in the Depo portion, and the Depo portion was deeply corroded, indicating that groove corrosion occurred in the Depo portion. .

実験No.7,8,12及び13に係る溶接継手は、制御圧延後
空冷或いは通常圧延・空冷により得られた圧延鋼材を用
いた場合であり、いづれの場合も加速冷却されていない
ので、鋼材組織がベーナイト相含有組織にならず、フェ
ライト・パーライト組織になり、そのため鋼材強度が低
く、又HAZ部が深く腐食されている。このようにHAZ部で
溝状腐食が生じたのは、上記鋼材組織がフェライト・パ
ーライト組織であるためであるが、Depo部Ni量が過多で
あり、HAZ部Ni量との差が大きい事がかかる溝状腐食の
成長を加速させている。
The welded joints according to Experiments Nos. 7, 8, 12, and 13 are the cases where rolled steel materials obtained by air cooling or normal rolling / air cooling after controlled rolling are used. The structure does not become a bainite phase-containing structure, but becomes a ferrite-pearlite structure, so that the steel material strength is low and the HAZ portion is deeply corroded. The reason why the groove-like corrosion occurred in the HAZ portion is that the steel structure is a ferrite-pearlite structure, but the Ni content in the Depo portion is excessive and the difference from the Ni content in the HAZ portion is large. This accelerates the growth of such groove corrosion.

実験No.18に係る溶接継手は、鋼組成が本発明に係る
組成と異なり、特にCが多い。従って、割れ防止のため
の予熱温度が高くて溶接性が悪く、又、HAZ部靱性が劣
っている。更に、圧延・圧延後冷却を通常圧延・空冷に
より行っているので、鋼材組織がベーナイト相含有組織
にならず、フェライト・パーライト組織になり、そのた
め鋼材強度が低く、又HAZ部が深く腐食されている。
The welded joint according to Experiment No. 18 has a steel composition different from the composition according to the present invention, and particularly has a large amount of C. Therefore, the preheating temperature for preventing cracking is high and the weldability is poor, and the toughness of the HAZ is poor. Furthermore, since rolling and cooling after rolling are usually performed by rolling and air cooling, the steel structure does not become a bainite phase-containing structure, but becomes a ferrite pearlite structure, so the steel material strength is low and the HAZ part is deeply corroded. I have.

これらに対し、実験No.1,4,5,6,9,11,14及び16に係る
溶接継手(本発明の実施例に係る溶接継手)は、母材鋼
の特性、溶接性及びHAZ部靱性が良好である。又、鋼材
組織がベーナイト相含有組織であり、且つDepo部Ni量と
HAZ部Ni量との差が小さく、そのため耐食性試験後にお
けるDepo部板厚とHAZ部板厚との差が小さい。これはHAZ
部、Depo部とも溝状腐食が生じていない事を示してい
る。
On the other hand, the welded joints according to Experiments Nos. 1, 4, 5, 6, 9, 11, 14, and 16 (welded joints according to the examples of the present invention) show the properties, weldability, and HAZ Good toughness. In addition, the steel material structure is a structure containing a bainite phase, and the Ni content in the depo part is
The difference between the Ni amount in the HAZ portion and the plate thickness in the Depo portion and the HAZ portion after the corrosion resistance test is small. This is HAZ
It shows that no groove-like corrosion has occurred in the part and the Depo part.

(発明の効果) 本発明に係る溶接部を有する鋼材は、製造コスト・工
期の増大および作業性の低下を招くことなく得ることが
でき、鋼材の所要高強度を確保し得て高強度を有すると
共に、鋼材溶接部の耐溝状腐食性に優れている。更に
は、その製造に際し手溶接法の如き溶接入熱量の低い溶
接方法を適用し得、その場合でも上記の如き所要高強度
及び耐溝状腐食性が得られる。従って、経済性および作
業性を低下させることなく、所要高強度と優れた耐溝状
腐食性が得られ、引いては長寿命で安全性が優れた海洋
構造物や船舶などの溶接鋼構造物が得られるようになる
という効果を奏し得る。
(Effect of the Invention) A steel material having a welded portion according to the present invention can be obtained without increasing production cost and construction time and lowering workability, and can secure required high strength of steel material and have high strength. At the same time, it is excellent in groove corrosion resistance of the welded portion of steel. Further, in the production, a welding method having a low welding heat input such as a manual welding method can be applied, and even in such a case, the required high strength and groove corrosion resistance as described above can be obtained. Therefore, welded steel structures, such as marine structures and ships, which have the required high strength and excellent groove-like corrosion resistance without deteriorating economic efficiency and workability, and have long life and excellent safety. Can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

第1図は、母材鋼組織がフェライト・パーライト組織で
ある場合の溶接継手を4ケ月間海水浸漬した後の溝状腐
食状況を示す溶接継手断面図、第2図は、母材鋼組織が
ベーナイト相含有組織である場合の溶接継手を4ケ月間
海水浸漬した後の溝状腐食状況を示す図、第3図は、溶
接継手のNi量差(:Depo部Ni量からHAZ部Ni量を差引いた
値)と、溶接継手の4ケ月間海水浸漬後の腐食の程
度(:Depo部板厚からHAZ部板厚を差引いた値)との関係
を示す図である。尚、第3図において、●は母材鋼組織
がベートナイト相含有組織である場合の結果、○は母材
鋼組織がフェライト・パーライト組織である場合の結果
を示すものである。 (1)……母材鋼、(2)……HAZ部、(3)……Depo
部、(4)……腐食部、(5)……海水浸漬前の溶接継
手表面位置
FIG. 1 is a cross-sectional view of a welded joint showing the state of groove corrosion after immersing the welded joint in seawater for 4 months when the base metal structure is a ferrite / pearlite structure, and FIG. Fig. 3 shows the groove corrosion state after immersing the welded joint in seawater for 4 months in the case of the bainite phase-containing structure, and Fig. 3 shows the difference in the Ni content of the welded joint (from the Ni content in the Depo portion to the Ni content in the HAZ portion). It is a figure which shows the relationship between the degree of corrosion after the seawater immersion of the welded joint for 4 months (the value which subtracted the HAZ part thickness from the Depo part thickness). In FIG. 3, ● shows the results when the base steel structure is a structure containing a baitite phase, and ○ shows the results when the base steel structure is a ferrite-pearlite structure. (1) Base steel, (2) HAZ, (3) Depo
Part, (4) Corrosion part, (5) ... Surface position of welded joint before immersion in seawater

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】下記式で求められるC当量が0.30〜0.38
%である鋼を制御圧延、加速冷却しベーナイト相含有組
織とした圧延鋼材を溶接してなる溶接部を有する鋼材で
あって、前記溶接部の溶接金属中Ni量が下記式を満足
する値であることを特徴とする溶接部を有する鋼材。 C当量=C量+Si量/24+Mn量/6+Ni量/40+V量/14 …
… 但し、式において、C量,Si量,Mn量,Ni量およびV量
は、全てwt%での値である。 −0.3≦Ni(D)−Ni(M)≦0.8 …… 但し、式において、Ni(D)は溶接金属中Ni量
(%),Ni(M)は母材の鋼材中のNi量(%)である。
1. The C equivalent obtained by the following equation is 0.30 to 0.38.
% Is a steel having a welded portion obtained by welding a rolled steel having a bainite phase-containing structure by controlled rolling and accelerated cooling of a steel having a Ni content in the weld metal of the welded portion satisfying the following formula. A steel material having a welded part. C equivalent = C amount + Si amount / 24 + Mn amount / 6 + Ni amount / 40 + V amount / 14…
... However, in the formula, the amounts of C, Si, Mn, Ni and V are all values in wt%. −0.3 ≦ Ni (D) −Ni (M) ≦ 0.8 where Ni (D) is the Ni content (%) in the weld metal, and Ni (M) is the Ni content (%) in the base steel material. ).
【請求項2】前記鋼が、C:0.02〜0.12wt%,Si:0.05〜0.
50wt%,Mn:1.10〜2.00wt%,Sol.Al:0.005〜0.050wt%,N
i:0.01〜5.00wt%,Nb:0.005〜0.100wt%,Ti:0.005〜0.0
20wt%,N:0.0020〜0.0060wt%を含有し、残部が鉄及び
不可避的不純物からなる組成を有する第1請求項に記載
の溶接部を有する鋼材。
2. The steel according to claim 1, wherein C: 0.02-0.12 wt%, Si: 0.05-0.
50wt%, Mn: 1.10 ~ 2.00wt%, Sol.Al: 0.005 ~ 0.050wt%, N
i: 0.01 ~ 5.00wt%, Nb: 0.005 ~ 0.100wt%, Ti: 0.005 ~ 0.0
The steel material having a weld according to claim 1, wherein the steel material contains 20 wt%, N: 0.0020 to 0.0060 wt%, and has a balance of iron and unavoidable impurities.
【請求項3】前記鋼が、C:0.02〜0.12wt%,Si:0.05〜0.
50wt%,Mn:1.10〜2.00wt%,Sol.Al:0.005〜0.050wt%,N
i:0.01〜5.00wt%,Nb:0.005〜0.100wt%,Ti:0.005〜0.0
20wt%,N:0.0020〜0.0060wt%を含有し、さらにCu:0.05
〜1.00wt%,V:0.005〜0.100wt%,B:0.0005〜0.0030wt%
から選択される1種または2種以上を含有し、残部が鉄
及び不可避的不純物からなる組成を有する第1請求項に
記載の溶接部を有する鋼材。
3. The steel according to claim 1, wherein C: 0.02-0.12 wt%, Si: 0.05-0.
50wt%, Mn: 1.10 ~ 2.00wt%, Sol.Al: 0.005 ~ 0.050wt%, N
i: 0.01 ~ 5.00wt%, Nb: 0.005 ~ 0.100wt%, Ti: 0.005 ~ 0.0
20 wt%, N: 0.0020 to 0.0060 wt%, and Cu: 0.05
~ 1.00wt%, V: 0.005 ~ 0.100wt%, B: 0.0005 ~ 0.0030wt%
The steel material having a weld according to claim 1, comprising one or more selected from the group consisting of: iron and unavoidable impurities.
【請求項4】前記鋼が、C:0.02〜0.12wt%,Si:0.05〜0.
50wt%,Mn:1.10〜2.00wt%,Sol.Al:0.005〜0.050wt%,N
i:0.01〜5.00wt%,Nb:0.005〜0.100wt%,Ti:0.005〜0.0
20wt%,N:0.0020〜0.0060wt%を含有し、さらにCa:0.00
05〜0.0030wt%,希土類元素:0.005〜0.030wt%から選
択される1種または2種を含有し、残部が鉄及び不可避
的不純物からなる組成を有する第1請求項に記載の溶接
部を有する鋼材。
4. The steel according to claim 1, wherein C: 0.02-0.12 wt%, Si: 0.05-0.
50wt%, Mn: 1.10 ~ 2.00wt%, Sol.Al: 0.005 ~ 0.050wt%, N
i: 0.01 ~ 5.00wt%, Nb: 0.005 ~ 0.100wt%, Ti: 0.005 ~ 0.0
20wt%, N: 0.0020 ~ 0.0060wt%, Ca: 0.00
The welded part according to claim 1, which contains one or two selected from 05 to 0.0030 wt% and a rare earth element: 0.005 to 0.030 wt%, with the balance having a composition consisting of iron and unavoidable impurities. Steel.
【請求項5】前記鋼が、C:0.02〜0.12wt%,Si:0.05〜0.
50wt%,Mn:1.10〜2.00wt%,Sol.Al:0.005〜0.050wt%,N
i:0.01〜5.00wt%,Nb:0.005〜0.100wt%,Ti:0.005〜0.0
20wt%,N:0.0020〜0.0060wt%を含有し、さらにCu:0.05
〜1.00wt%,V:0.005〜0.100wt%,B:0.0005〜0.0030wt%
から選択される1種または2種以上,Ca:0.0005〜0.0030
wt%,希土類元素:0.005〜0.030wt%から選択される1
種または2種を含有し、残部が鉄及び不可避的不純物か
らなる組成を有する第1請求項に記載の溶接部を有する
鋼材。
5. The steel according to claim 1, wherein C: 0.02-0.12 wt%, Si: 0.05-0.
50wt%, Mn: 1.10 ~ 2.00wt%, Sol.Al: 0.005 ~ 0.050wt%, N
i: 0.01 ~ 5.00wt%, Nb: 0.005 ~ 0.100wt%, Ti: 0.005 ~ 0.0
20 wt%, N: 0.0020 to 0.0060 wt%, and Cu: 0.05
~ 1.00wt%, V: 0.005 ~ 0.100wt%, B: 0.0005 ~ 0.0030wt%
One or more selected from Ca, 0.0005 to 0.0030
wt%, rare earth element: 1 selected from 0.005 to 0.030 wt%
The steel material having a weld according to claim 1, wherein the steel material contains one or two kinds and the balance has iron and inevitable impurities.
JP3909789A 1989-02-17 1989-02-17 Steel material with welds Expired - Fee Related JP2587487B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3909789A JP2587487B2 (en) 1989-02-17 1989-02-17 Steel material with welds

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3909789A JP2587487B2 (en) 1989-02-17 1989-02-17 Steel material with welds

Publications (2)

Publication Number Publication Date
JPH02217172A JPH02217172A (en) 1990-08-29
JP2587487B2 true JP2587487B2 (en) 1997-03-05

Family

ID=12543576

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3909789A Expired - Fee Related JP2587487B2 (en) 1989-02-17 1989-02-17 Steel material with welds

Country Status (1)

Country Link
JP (1) JP2587487B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000096187A (en) * 1998-09-22 2000-04-04 Sumitomo Metal Ind Ltd High-strength welded steel tube

Also Published As

Publication number Publication date
JPH02217172A (en) 1990-08-29

Similar Documents

Publication Publication Date Title
KR0157540B1 (en) High tensile strength steel having superior fatigue strength and weldability at welds and method for manufacturing the same
JP4926406B2 (en) Steel sheet with excellent fatigue crack propagation characteristics
US6315946B1 (en) Ultra low carbon bainitic weathering steel
JP3545980B2 (en) Ultra high strength electric resistance welded steel pipe with excellent delayed fracture resistance and manufacturing method thereof
JP4767590B2 (en) Production method of low yield ratio high strength steel and low yield ratio high strength steel
US20100226813A1 (en) High tensile strength steel and marine structure having excellent weld toughness
JP3704306B2 (en) Hot-dip galvanized high-strength steel sheet excellent in weldability, hole expansibility and corrosion resistance, and method for producing the same
KR20190076758A (en) High strength steel for arctic environment having excellent resistance to fracture in low temperature, and method for manufacturing the same
JP4264177B2 (en) Method for producing a steel material having a coarse ferrite layer on the surface layer
JPH05186823A (en) Production of cu-containing high tensile strength steel with high toughness
JP3487262B2 (en) High strength thick steel plate excellent in CTOD characteristics and method for producing the same
KR100361472B1 (en) Structural steel excellent in wear resistance and fatigue resistance property and method of producing the same
JP7322932B2 (en) Thick steel plate, manufacturing method thereof, and structure
JP2002129280A (en) Ni ALLOY STEEL FOR LOW TEMPERATURE AND ITS PRODUCTION METHOD
JP2587487B2 (en) Steel material with welds
JP2688312B2 (en) High strength and high toughness steel plate
RU2269587C1 (en) Cold-resistant steel with enhanced strength
JPH08253821A (en) Production of welded joint having excellent fatigue strength
JP2007277714A (en) Hot dip plated high strength steel sheet for deep drawing and its production method
JPH06293914A (en) Production of low alloy steel plate for line pipe excellent in co2 corrosion resistance and haz toughness
JP3336877B2 (en) Method for manufacturing thick high strength steel sheet with excellent brittle fracture arrestability and weldability
JP7311808B2 (en) Steel plate and its manufacturing method
JP2573109B2 (en) Method for producing high-strength steel for Zn plating crack resistant structure
JP2002294398A (en) High tensile strength galvanized steel sheet having excellent resistance weldability
JP3371714B2 (en) Method for producing TS780 MPa class steel excellent in hot-dip galvanizing crack resistance

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071205

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 12

Free format text: PAYMENT UNTIL: 20081205

LAPS Cancellation because of no payment of annual fees