JPH02217172A - Steel welding method - Google Patents

Steel welding method

Info

Publication number
JPH02217172A
JPH02217172A JP3909789A JP3909789A JPH02217172A JP H02217172 A JPH02217172 A JP H02217172A JP 3909789 A JP3909789 A JP 3909789A JP 3909789 A JP3909789 A JP 3909789A JP H02217172 A JPH02217172 A JP H02217172A
Authority
JP
Japan
Prior art keywords
steel
welding
amount
corrosion
groove
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3909789A
Other languages
Japanese (ja)
Other versions
JP2587487B2 (en
Inventor
Nobutsugu Takashima
高嶋 修嗣
Takashi Shimohata
下畑 隆司
Toyoaki Shiaku
塩飽 豊明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP3909789A priority Critical patent/JP2587487B2/en
Publication of JPH02217172A publication Critical patent/JPH02217172A/en
Application granted granted Critical
Publication of JP2587487B2 publication Critical patent/JP2587487B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Arc Welding In General (AREA)

Abstract

PURPOSE:To obtain a welded structure excellent in safety with a long service life by specifying Ni in welding metal of a welding zone at the time of welding steel of specific C equivalent. CONSTITUTION:Steel adjusted to 0.30-0.38% C equivalent obtained by equation I is subjected to heating, control rolling and acceleration cooling. By this method, the rolled steel is adjusted to structure containing bainite phase. The steel is then welded. Welding is performed so that the Ni quantity in the weld metal of the welding zone attains a value to satisfy inequality II. In equation I, the C quantity, Si quantity, Mn quantity, Ni quantity, Ni quantity and V quantity are all shown with the values of wt.%. In inequality II, Ni (D) and Ni (M) denote the Ni quantity (%) in the welding metal and the Ni quantity (%) in the steel of base metal, respectively. By this method, resistance to groove- shape corrosion of the welding zone of the steel is improved.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、鋼材の溶接方法に関し、詳細には、構造部材
として鋼材が使用される海洋構造物や船舶、特に氷海域
で稼働される海洋構造物や船舶の建造時の鋼材の溶接接
合の際、或いは稼働途中の鋼材部の溶接補修の際に適用
する鋼材の溶接方法に関する。
Detailed Description of the Invention (Field of Industrial Application) The present invention relates to a method for welding steel materials, and more particularly, to marine structures and ships in which steel materials are used as structural members, particularly marine structures operated in icy waters. The present invention relates to a method for welding steel materials, which is applied when welding and joining steel materials during the construction of structures and ships, or when repairing steel material parts during operation.

(従来の技術) 海洋構造物や船舶は塗装されて稼働されるが、稼働中に
流木等の衝突により塗装が剥がれることがある。特に、
氷海域で稼働される海洋構造物や砕氷船等の船舶の場合
には、氷の衝突により塗装が剥がれ易い。
(Prior Art) Marine structures and ships are painted and operated, but the paint may peel off due to collisions with driftwood or the like during operation. especially,
In the case of ships such as marine structures and icebreakers operated in icy waters, the paint tends to peel off due to ice collisions.

塗装が剥がれると、鋼材は海水に曝され、腐食が生じる
ようになる。特に、鋼材の溶接部の塗装が剥がれると、
溶接金属部(以降、Depo部という)あるいは溶接熱
影響部(以降、IIAZ部という)で深く渦状の局部腐
食(以降、溝状腐食という)が生じ、該腐食による損傷
は深刻な問題となっており、その防止対策が要望されて
いる。
Once the paint is removed, the steel is exposed to seawater and begins to corrode. In particular, if the paint peels off on the welded parts of steel,
Deep spiral localized corrosion (hereinafter referred to as groove corrosion) occurs in the weld metal part (hereinafter referred to as the Depo part) or the weld heat affected zone (hereinafter referred to as the IIAZ part), and damage caused by this corrosion has become a serious problem. Therefore, preventive measures are required.

例えば、[鉄と鋼、 31266 (1986)Jには
、フェライト・パーライト鋼を低い溶接入熱量で溶接し
たものは、tIAZ部で溝状腐食が生しる事が示されて
いる。
For example, [Tetsu to Hagane, 31266 (1986) J] states that when ferrite/pearlite steel is welded with a low welding heat input, groove-like corrosion occurs in the tIAZ part.

かかる腐食の防止法に関し、rscandinavia
mJournal of Metallurgy、 v
ol、7 (197B)+ P、11 Jには、フェラ
イト・パーライト組織を有する焼ならし型高張力鋼:H
T〜50を溶接する場合、IIAZ部腐食防止のため鋼
中Mn量を1.1χ未満にしておき、且つ溶接入熱量を
大きくしてHAZ部が低温変態組織になるのを防止し、
Depo部での溝状腐食防止のため溶接材料にCu−N
i含有材を使用すればよいと記載されている(以降、か
かる方法を従来法Aという)。
Regarding methods for preventing such corrosion, rscandinavia
mJournal of Metallurgy, v
ol, 7 (197B) + P, 11 J is a normalized high tensile strength steel with a ferrite/pearlite structure: H
When welding T~50, the Mn amount in the steel is kept below 1.1χ to prevent corrosion of the IIAZ part, and the welding heat input is increased to prevent the HAZ part from becoming a low-temperature transformed structure,
Cu-N is added to the welding material to prevent groove-like corrosion at the Depo part.
It is stated that it is sufficient to use an i-containing material (hereinafter, such method will be referred to as conventional method A).

又、特開昭60−228618号公報には、焼入・焼戻
し処理された鋼材を溶接した後、溶接部の表層を局部焼
戻し処理する方法(以降、従来法Bという)が提案され
ている。
Further, Japanese Patent Application Laid-open No. 60-228618 proposes a method (hereinafter referred to as conventional method B) in which after welding quenched and tempered steel materials, the surface layer of the welded portion is locally tempered.

(発明が解決しようとする課題) ところが、前記従来法Aは、鋼中Mn量を1.1χ未満
にする必要があるので、鋼材強度の確保が困難になり、
又、溶接入熱量を大きくする必要があるので、通常の手
溶接を適用出来ないという事が問題となる。
(Problems to be Solved by the Invention) However, in the conventional method A, it is necessary to reduce the Mn content in the steel to less than 1.1χ, which makes it difficult to ensure the strength of the steel material.
Another problem is that ordinary manual welding cannot be applied because it is necessary to increase the welding heat input.

前記従来法Bは、溶接前後とも熱処理を必要とするので
製造コストが高く、且つ工期が長くなる他、溶接後の局
部焼戻し処理が煩雑であるので作業性の低下を招き、且
つ焼戻しの確実性に欠けるという問題点がある。
Conventional method B requires heat treatment both before and after welding, resulting in high manufacturing costs and a long construction period.In addition, the local tempering treatment after welding is complicated, resulting in a decrease in workability, and the reliability of tempering is low. The problem is that it lacks.

本発明はこの様な事情に着目してなされたものであって
、その目的は従来法人及び従来法Bがもつ以上のような
問題点を解消し、製造コスト・工期の増大および作業性
の低下を招く事なく、所要の高強度を確保でき、又、優
れた耐溝状腐食性を有する鋼材溶接部が得られ、更に手
溶接をも適用できる鋼材の溶接方法を提供しようとする
ものである。
The present invention has been made in view of these circumstances, and its purpose is to solve the above-mentioned problems of conventional corporations and conventional method B, and to solve the problems of increasing manufacturing cost and construction time and decreasing workability. The purpose of the present invention is to provide a method for welding steel materials that can secure the required high strength without causing corrosion, can obtain a steel welded part with excellent groove corrosion resistance, and can also be applied to manual welding. .

(課題を解決するための手段) 上記目的を達成するために、本発明に係る鋼材の溶接方
法は、次の様な構成としている。
(Means for Solving the Problems) In order to achieve the above object, the method for welding steel materials according to the present invention has the following configuration.

即ち、第1請求項に記載の方法は、下記0式で求められ
るC当量が0.30=0.38wtχに調整されている
鋼を加熱し、制御圧延し、加速冷却することにより、該
圧延鋼材の組織をヘーナイト相含有組織に調整しておき
、次いで該組織調整された鋼材を溶接する鋼材の溶接方
法であって、溶接部の溶接金属中Ni量が下記0式を満
足する値になるように前記溶接を行うことを特徴とする
鋼材の溶接方法である。
That is, the method described in the first claim heats the steel whose C equivalent determined by the following equation 0 is adjusted to 0.30=0.38wtχ, performs controlled rolling, and accelerates cooling. A method for welding steel materials in which the structure of the steel material is adjusted to a heenite phase-containing structure, and then the steel material with the adjusted structure is welded, the amount of Ni in the weld metal at the welding zone being a value that satisfies the following formula 0. This is a method for welding steel materials, characterized in that the welding is performed as described above.

C当量=Ci+Si量/24+Mn量/6+Ni量/4
0十■量/14−−−■ 但し、0式において、C量、 Si量、 Mn1l、 
Ni量およびり量は、全てwtχでのイ直である。
C equivalent=Ci+Si amount/24+Mn amount/6+Ni amount/4
01■ amount/14---■ However, in formula 0, the amount of C, the amount of Si, the amount of Mn1l,
The amount of Ni and the amount of Ni are all the same as wtχ.

0.3≦Ni(D) −Ni(M) ≦0.8−−−■
但し、■式において、N1(D)は溶接金属中Ni量(
χL Ni(M)は母材の鋼材中のNi量(′1)であ
る。
0.3≦Ni(D) −Ni(M)≦0.8---■
However, in formula (■), N1(D) is the amount of Ni in the weld metal (
χL Ni (M) is the amount of Ni ('1) in the base steel material.

第2請求項に記載の方法は、前記鋼がC:0.02〜0
.12wt%、 Si : 0.05〜0.50wt%
、  Mn : 1.10〜2、OOwtZ   So
l.Al:0.005〜0.05htχ 、  Ni:
0.01〜5.00wt%、  Nb : :0.00
5〜0.100wt%、 Ti:0.005〜0.02
0wt%、 N : 0.0020〜0.0060劃t
χを含有し、残部が鉄及び不可避的不純物からなる組成
を有する第1請求項に記載の鋼材の溶接方法である。
The method according to claim 2 is characterized in that the steel has a C: 0.02 to 0.
.. 12wt%, Si: 0.05-0.50wt%
, Mn: 1.10~2, OOwtZ So
l. Al: 0.005~0.05htχ, Ni:
0.01-5.00wt%, Nb: :0.00
5-0.100wt%, Ti: 0.005-0.02
0wt%, N: 0.0020-0.0060t
The method of welding a steel material according to claim 1, wherein the steel material has a composition in which the steel material contains .chi. and the remainder consists of iron and unavoidable impurities.

第3請求項に記載の方法は前記鋼が、C:0.02〜0
.12wt%  、Si:0.05 〜0.50wtχ
 、Mn :  1.10 〜2、OOwtX 、So
l、Al:0.005〜0.050wt%  、  N
i:0.01〜5.00wt%、  Nt+: :0.
005〜O,lOOwtX  、Ti:0.005〜0
.020iyt%、 N : 0.0020〜0.00
60讐tχを含有し、さらにCu:0.05〜1.00
wt%、 V:0.005〜0.100 wt”A 、
 B:0.0005〜0.0030wtχから選択され
る1種または2種以上を含有し、残部が鉄及び不可避的
不純物からなる組成を有する第1請求項に記載の鋼材の
溶接方法である。
The method according to claim 3 is characterized in that the steel has a carbon content of 0.02 to 0.
.. 12wt%, Si: 0.05 ~ 0.50wtχ
, Mn: 1.10 ~ 2, OOwtX, So
l, Al: 0.005-0.050wt%, N
i: 0.01-5.00wt%, Nt+: :0.
005~O, lOOwtX, Ti:0.005~0
.. 020iyt%, N: 0.0020-0.00
Contains 60% x and further Cu: 0.05 to 1.00
wt%, V: 0.005-0.100 wt”A,
B: 0.0005 to 0.0030 wtχ The method of welding steel materials according to claim 1, wherein the composition contains one or more selected from 0.0005 to 0.0030 wtχ, and the remainder is iron and unavoidable impurities.

第4請求項に記載の方法は、前記鋼がC:0.02〜0
.12wtχ Si:0.05〜0.50wt5X  
Mn:  1.10〜2.00wt%、 Sol、Al
:0.005〜0.050wt% 、  Ni:0.0
1〜5.00wt%、 Nb : :0.005〜0.
100讐tχ Ti :0.005〜0.020碕t%
、 N : 0.0020〜0.0060ivtχを含
有し、さらにCa: 0.0005〜0.0030wt
% 、希土類元素=0.005〜0.030讐tχから
選択される1種または2種を含有し、残部が鉄及び不可
避的不純物からなる組成を有する第1請求項に記載の鋼
材の溶接方法である。
The method according to claim 4 is characterized in that the steel has a C: 0.02 to 0.
.. 12wtχ Si: 0.05-0.50wt5X
Mn: 1.10-2.00wt%, Sol, Al
:0.005-0.050wt%, Ni:0.0
1-5.00wt%, Nb: 0.005-0.
100%
, N: 0.0020 to 0.0060 ivtχ, and Ca: 0.0005 to 0.0030 wt.
%, rare earth element = 0.005 to 0.030 %, rare earth element = 0.005 to 0.030 %, rare earth element = 0.005 to 0.030 %, rare earth element = 0.005 to 0.030 %, the method for welding a steel material according to the first claim, which has a composition consisting of iron and inevitable impurities. It is.

第5請求項に記載の方法は前記鋼が、C:0.02〜O
,12wtχ 、Si:0.05 〜0.50wtχ 
 Mn:1.10 〜2、OOwtX 、Sol、^l
:o、005〜0.050wtχ   Ni:0.01
〜5.OOwt%、  Nb : :0.005〜0.
100讐tχ   Ti:0.005〜0.020wt
%、 N : 0.0020〜0.0060讐tχを含
有し、さらにCu:0.05〜1.OOwt%、 V 
:o、oo5〜0.100讐t%、 B:0.0005
〜0.0030讐tχから選択される1種または2種以
上、 Ca:0.0005〜0.0030wt%、希土
類元素: 0.005〜0.030讐tχから選択され
る1種または2種を含存し、残部が鉄及び不可避的不純
物からなる組成を有する第1請求項に記載の鋼材の溶接
方法である。
The method according to claim 5 is characterized in that the steel has C: 0.02 to O.
, 12wtχ, Si: 0.05 ~ 0.50wtχ
Mn: 1.10 ~ 2, OOwtX, Sol, ^l
:o, 005-0.050wtχ Ni: 0.01
~5. OOwt%, Nb: :0.005~0.
100% Ti: 0.005~0.020wt
%, N: 0.0020 to 0.0060, and Cu: 0.05 to 1. OOwt%, V
:o, oo5~0.100%, B:0.0005
- One or two or more selected from 0.0030 tχ, Ca: 0.0005 to 0.0030 wt%, rare earth element: one or two selected from 0.005 to 0.030 tχ The method of welding a steel material according to claim 1, wherein the steel material has a composition in which the remainder is iron and unavoidable impurities.

(作 用) 本発明は、種々の条件で製造された熱延鋼材を母材とし
、該母材を種々の溶接材料を用いて溶接接合して溶接継
手を得、該継手について各種試験を行い、主に耐溝状腐
食性1強度に及ぼす成分組織の影響を克明に調査し、そ
の結果得られた知見に基づき完成されたものである。以
下、この知見に基づきながら作用を説明する。
(Function) The present invention uses hot rolled steel manufactured under various conditions as a base material, welds and joins the base materials using various welding materials to obtain a welded joint, and conducts various tests on the joint. This work was completed based on the findings obtained through a thorough investigation of the effects of component structures on groove corrosion resistance 1 strength. The action will be explained below based on this knowledge.

即ち、溶接継手の腐食に関し、母材鋼がフェライト・パ
ーライト組織の場合は11^Z部で溝状腐食が生じる。
That is, regarding corrosion of welded joints, when the base steel has a ferrite-pearlite structure, groove-like corrosion occurs at the 11^Z portion.

これは、HAZ部は母材組織と大変異なる低温変態組織
(マルテンサイト又は/及びベーナイト組織)を有する
ので、母材−11AZ部間での電位差が大きくなって腐
食が促進されるからである。一方、母材鋼がベーナイト
相含有組織の場合は、母材、 HAZ部とも低温変態組
織となり、母材HAZ部間での電位差が比較的小さくな
るので、HAZ部だけが特に腐食されるのではなく、軽
度の全面腐食が生じるようになり、そのため腐食深さが
小さくなる。従って、母材組織を)IAZ部組織組織殆
ど同様の低温変態組織にすれば、HAZ部での溝状腐食
を防止し得るようになる。
This is because the HAZ part has a low-temperature transformation structure (martensite and/or bainite structure) that is very different from the base metal structure, so the potential difference between the base metal and the 11AZ part becomes large and corrosion is promoted. On the other hand, if the base metal steel has a structure containing a bainite phase, both the base metal and the HAZ part will have a low-temperature transformed structure, and the potential difference between the base metal HAZ parts will be relatively small, so it is likely that only the HAZ part will be particularly corroded. Instead, mild general corrosion occurs, which reduces the corrosion depth. Therefore, if the base metal structure is made to have a low-temperature transformed structure that is almost the same as the IAZ part structure, groove-like corrosion in the HAZ part can be prevented.

そこで、本発明に係る鋼材の溶接方法は、鋼材の組織を
予めベーナイト相含有組織にしておき、溶接するように
しているのである。
Therefore, in the method for welding steel materials according to the present invention, the structure of the steel material is made into a bainite phase-containing structure in advance, and welding is performed.

例えば、溶接継手を4ケ月間海水浸漬した場合、母材鋼
がフェライト・パーライト組織の場合は、第1図に示す
如< HAZ部(2)で溝状腐食(4)が生じる。これ
に対し、母材鋼がベーナイト相含有組織の場合は、第2
図に示す如< HAZ部(2)から母材部(1)にかけ
て−様に腐食され、その腐食(4)深さが小さい。尚、
両者とも溶接材料は同一であり、NiNが高い材料であ
るので、Depo部(3)では腐食が生じていない。第
2図で(5)は海水浸漬前の溶接継手表面位置を示すも
のである。
For example, when a welded joint is immersed in seawater for 4 months and the base steel has a ferrite-pearlite structure, groove-like corrosion (4) occurs in the HAZ portion (2) as shown in FIG. On the other hand, when the base steel has a bainitic phase-containing structure, the second
As shown in the figure, the corrosion occurs from the HAZ part (2) to the base metal part (1) in a manner similar to that shown in FIG. still,
The welding material in both cases is the same and is high in NiN, so no corrosion occurs in the Depo part (3). In FIG. 2, (5) shows the surface position of the welded joint before immersion in seawater.

溶接継手の腐食は、前記の如き母材−HAZ部間での電
位差に起因する他、母材(IIAZ部を含む)とDep
o部間での電位差に起因しても生じる。母材Depo部
間での電位差に起因する腐食は、組成の相違により生ず
る場合が多い。溶接材料は強度。
Corrosion of welded joints is caused not only by the potential difference between the base metal and the HAZ section as described above, but also due to the potential difference between the base metal (including the IIAZ section) and the Dep.
It also occurs due to the potential difference between the o parts. Corrosion caused by a potential difference between the base material Depo parts is often caused by a difference in composition. Welding materials are strong.

靭性等も考慮して使用されるので、その溶接材料の種類
によりDepo部の組成は変化する。
Since toughness etc. are also taken into account when using the welding material, the composition of the Depo part changes depending on the type of welding material.

ところで、本発明の鋼材の溶接方法に係る鋼材の組成は
、詳細は後述するが主に強度確保の観点から設定されて
おり、その組成は前記の通りである。かかる鋼材の成分
の中、Niが最も前記腐食に影響し、母材−Depo部
間でのNi量の差が大きい程、母材−Depo部間での
電位差に起因する溝状腐食が生じ易くなる。尚、溝状腐
食はNi量の低い側で■ 生じる。
By the way, the composition of the steel material according to the method of welding steel materials of the present invention is set mainly from the viewpoint of ensuring strength, although the details will be described later, and the composition is as described above. Among the components of such steel materials, Ni has the greatest effect on the corrosion, and the larger the difference in the amount of Ni between the base metal and the Depo part, the more likely groove-like corrosion will occur due to the potential difference between the base metal and the Depo part. Become. Note that groove-like corrosion occurs on the side where the Ni content is low.

上記Ni量の差に基づく溝状腐食は、Ni量差を小さく
すると、溝状腐食が生じ難くなる。ここで、母材鋼中の
Ni量(χ):Ni(M)と、Depo部のNi量(χ
)=Ni(D) との差、即ち、Ni(D)−Ni(M
)を−0,3〜0.8にすると、溝状腐食が生しなくし
得るようになる。
As for the groove-like corrosion based on the difference in the amount of Ni, when the difference in the amount of Ni is made smaller, the groove-like corrosion becomes less likely to occur. Here, the amount of Ni in the base steel (χ): Ni (M) and the amount of Ni in the Depo part (χ
)=Ni(D), that is, Ni(D)−Ni(M
) is set to -0.3 to 0.8, groove-like corrosion can be prevented.

そこで、本発明に係る鋼材の溶接方法は、溶接金属中N
i量(即ち、Ni(M) )が、−0,3≦Ni(D)
Ni(M)≦0.8を満足する値になるようにして溶接
を行うようにしているのである。かかるNi量の調整は
、母材鋼中Ni量に基づき溶接材料を選定することによ
り可能である。
Therefore, in the method for welding steel materials according to the present invention, N in the weld metal is
i amount (i.e. Ni(M)) is -0,3≦Ni(D)
Welding is performed so that Ni(M)≦0.8 is satisfied. Such adjustment of the Ni content is possible by selecting the welding material based on the Ni content in the base steel.

例えば、上記Ni量差が種々異なる溶接継手を4ケ月間
海水浸漬した場合、第3図に示す如く、Ni([1)≦
Ni(M)のときDepo部のみが腐食し、Ni (M
)Ni(D)が大きくなると溝状腐食となる。N1(D
)≧Ni(M)のときHAZ部のみが腐食し、N1(D
) −Ni(M)が大きくなると溝状腐食となる。尚、
第3図において、・は母材鋼がベーナイト相含有組織の
場合の結果、○は母材鋼がフェライト・パーライト組織
の場合の結果を示すものである。
For example, when welded joints with various Ni content differences are immersed in seawater for 4 months, as shown in Figure 3, Ni([1)≦
When using Ni (M), only the Depo part corrodes;
) When Ni(D) becomes large, groove-like corrosion occurs. N1(D
)≧Ni(M), only the HAZ part corrodes, and N1(D
) - When Ni(M) becomes large, groove-like corrosion occurs. still,
In FIG. 3, * indicates the results when the base steel has a bainitic phase-containing structure, and ○ indicates the results when the base steel has a ferrite-pearlite structure.

又、第3図から判るように、IIAZ部での溝状腐食を
実質上防止するには、母材鋼がベーナイト相含有組織の
場合はNi(D)−Ni(M)≦0.8にすればよいが
、フェライト・パーライト組織の場合は、N1(D) 
 Ni(M)≦0.2にする必要がある。故に、前者の
場合はN1(D)  Ni(M)の範囲が広いのでよい
が、後者の場合はNi(D)−Ni(M)の範囲が狭い
ので溶接施工が極めて難しくなるという問題点が残る。
Furthermore, as can be seen from Fig. 3, in order to substantially prevent groove-like corrosion in the IIAZ section, if the base steel has a bainitic phase-containing structure, Ni(D)-Ni(M)≦0.8. However, in the case of ferrite/pearlite structure, N1(D)
It is necessary to satisfy Ni(M)≦0.2. Therefore, in the former case, the range of N1(D)Ni(M) is wide, which is good, but in the latter case, the range of Ni(D)-Ni(M) is narrow, making welding work extremely difficult. remain.

上記の如く実際の溶接施工性を考慮すると、母材鋼をベ
ーナイト相含有組織にする必要がある。
Considering actual welding workability as described above, the base steel needs to have a structure containing a bainite phase.

ここにも、鋼材組織を予めベーナイト相含有組織にして
おく理由があるのである。即ち、溝状腐食防止のために
は、溶接前に鋼材をベーナイト相含有組織にしておく事
と、溶接後に−0,3≦Ni(D)Ni(M)≦0.8
にする事とが必要であり、これら両者の効果により実用
的な溝状腐食防止方法となるものである。
Here too, there is a reason why the steel structure is made into a bainite phase-containing structure in advance. That is, in order to prevent groove corrosion, it is necessary to make the steel material into a bainite phase-containing structure before welding, and after welding, -0.3≦Ni(D)Ni(M)≦0.8
Both of these effects make it a practical method for preventing groove-like corrosion.

かかるベーナイト相含有組織を有する鋼材にするため、
本発明では鋼材としてC当量(=CiJ+Sl量/24
+Mn量/6 +Ni’It/40+V量/14)を0
.30〜0.38w1χに調整した鋼を用い、又、該鋼
材を制御圧延し、加速冷却するようにしているのである
。ここで、制御圧延・加速冷却とは、通常の熱延の場合
に比較し、圧延仕上温度を低くして熱延し、該熱延後の
冷却は急冷して行い、ヘーナイト変態を生じさせ易くす
るものである。
In order to make a steel material having such a bainitic phase-containing structure,
In the present invention, the steel material has C equivalent (=CiJ+Sl amount/24
+Mn amount/6 +Ni'It/40+V amount/14) to 0
.. Steel adjusted to 30 to 0.38 w1χ is used, and the steel material is subjected to controlled rolling and accelerated cooling. Here, controlled rolling/accelerated cooling refers to hot rolling at a lower finish rolling temperature than in normal hot rolling, and cooling after the hot rolling is performed by rapid cooling, which tends to cause heenite transformation. It is something to do.

C当量の上下限値の設定理由を以下述べる。C当量が0
.30wtχ未満では、鋼材組織がフェライト・パーラ
イト組織となり、ヘーナイト変態が生じ難く、充分な強
度が得られず、0.38wtχ超では拘束の大きい場合
や予熱をしないとき、溶接割れが発生し易くなり、又、
手溶接等の低入熱溶接を適用した際、IIAZ部がマル
テンサイト組織となり、母材組織と異なり、溝状腐食が
生じるようになるからである。
The reason for setting the upper and lower limits of C equivalent will be described below. C equivalent is 0
.. If it is less than 30wtχ, the steel structure will become a ferrite/pearlite structure, making it difficult to cause haenite transformation, and sufficient strength will not be obtained; if it exceeds 0.38wtχ, weld cracking will easily occur when the restraint is large or when preheating is not performed. or,
This is because when low heat input welding such as manual welding is applied, the IIAZ part becomes a martensitic structure, which is different from the base metal structure and causes groove-like corrosion.

上記圧延仕上温度は700〜850°Cにするのが好ま
しい。850°C超では靭性が劣下し、700’C未満
ではヘーナイト変態が生じ難くなるからである。
The finishing rolling temperature is preferably 700 to 850°C. This is because if the temperature exceeds 850°C, the toughness deteriorates, and if the temperature is lower than 700°C, heenite transformation becomes difficult to occur.

又、熱延後の冷却速度は2〜20°C/minにするの
が好ましい。2°C/min未満ではヘーナイト変態が
生じ難くなり、20°C/min超ではマルテンサイト
変態が生じて鋼材の延靭性の低下や、鋼材の変形が生じ
易くなるからである。
Further, the cooling rate after hot rolling is preferably 2 to 20°C/min. This is because at less than 2°C/min, heenite transformation is difficult to occur, and at more than 20°C/min, martensitic transformation occurs, resulting in a decrease in ductility and deformation of the steel material.

前記鋼の組成に関し、C:0.02〜O,12wt%、
 Si:0.05−0.50wt% 、 Mn:1.1
0〜2.00wt%、 Sol、Al:0.005〜0
.050wt% 、  Ni:0.01〜5.OOwt
X 、 Nb:0.005〜0.100wt%、 Ti
:0.005〜0.020wt%、N:0.0020〜
0.006htχを含有し、残部が鉄及び不可避的不純
物からなるものにするのが望ましい。確実に鋼材をベー
ナイト相含有組織にし得、高強度高靭性にでき、溶接性
良好にし得るようになるからである。この場合の上下限
値の設定理由を以下に述べる。
Regarding the composition of the steel, C: 0.02 to O, 12 wt%,
Si: 0.05-0.50wt%, Mn: 1.1
0-2.00wt%, Sol, Al: 0.005-0
.. 050wt%, Ni: 0.01-5. OOwt
X, Nb: 0.005-0.100wt%, Ti
:0.005~0.020wt%, N:0.0020~
It is desirable to contain 0.006 htχ, with the remainder consisting of iron and unavoidable impurities. This is because the steel material can be reliably made into a bainitic phase-containing structure, and can be made to have high strength and toughness, and can be made to have good weldability. The reason for setting the upper and lower limits in this case will be described below.

Cは強度向上に有効であるが、0.02wtχ未満では
充分な強度が得られず、0.12wtχ超では溶接性お
よびIIAZ部靭性が低下するからである。
Although C is effective in improving strength, if it is less than 0.02 wtχ, sufficient strength cannot be obtained, and if it exceeds 0.12 wtχ, weldability and IIAZ section toughness will decrease.

Siは脱酸および強度向上に有効であるが、0.05w
tχ未満では充分な脱酸効果が得られず、0.50wt
χ超では溶接性が低下するからである。
Si is effective in deoxidizing and improving strength, but at 0.05w
If it is less than tχ, sufficient deoxidizing effect cannot be obtained, and 0.50wt
This is because if it exceeds χ, weldability deteriorates.

Mnは強度向上に有効であるが、充分な強度確保のため
には1.10wt%以上必要であり、2.0htχ超で
は溶接性が低下するからである。
Although Mn is effective in improving strength, 1.10wt% or more is required to ensure sufficient strength, and if it exceeds 2.0htχ, weldability deteriorates.

AIは脱酸のために最低0.005wt″Aとする必要
があり、0.050wtχ超ではHAZ部靭性が低下す
るからである。
This is because AI needs to be at least 0.005wt″A for deoxidation, and if it exceeds 0.050wtχ, the toughness of the HAZ part will decrease.

Niは強度および低温靭性向上に有効であるが、0.0
1wtχ未満では効果がなく 、5.00wtχ超では
高価なNi添加量に対する強度の比(即ち、経済的効果
指標)が悪くなるからである。
Ni is effective in improving strength and low-temperature toughness, but 0.0
This is because if it is less than 1 wtχ, there is no effect, and if it exceeds 5.00 wtχ, the ratio of strength to the amount of expensive Ni added (ie, the economic effect index) becomes poor.

Nbは組織微細化による靭性向上、固溶Nbの焼入性増
大作用とNb(C,N)の析出とによる強度向上、及び
、ベーナイト相含有組織の導入に有効であるが、0.0
05wtχ未満では効果が小さく、0.100wtχ超
ではHAZ部靭性が低下するからである。
Nb is effective in improving toughness through microstructural refinement, improving strength through the hardenability increasing effect of solid solution Nb and precipitation of Nb(C,N), and introducing a bainitic phase-containing structure, but 0.0
This is because if it is less than 0.05 wtχ, the effect will be small, and if it exceeds 0.100 wtχ, the HAZ toughness will decrease.

Tiは、TiNとして微細析出してオーステナイト粒粗
大化を防止するので、鋼材の靭性向上に有効であり、又
、溶接後冷却時にTiNがHAZ部のフェロ ライト変態核となるので、IIAZ部の靭性向上に有効
であり、更に、マルテンサイト変態を抑制するので、手
溶接等の低入熱溶接を適用した場合でも11AZ部をベ
ーナイト相含有組織にし得るという効果があるが、0.
005wtχ未満ではこれらの効果が小さく、0.02
0wtχ超では硬いTiNの析出量が多くなり過ぎ、鋼
材の延靭性が低下するからである。
Ti is effective in improving the toughness of steel materials because it precipitates finely as TiN and prevents coarsening of austenite grains.Also, since TiN becomes ferrolite transformation nuclei in the HAZ part during cooling after welding, it improves the toughness of the IIAZ part. Furthermore, since it suppresses martensitic transformation, it has the effect of making the 11AZ part a bainite phase-containing structure even when low heat input welding such as manual welding is applied.
Below 0.05 wtχ, these effects are small, and 0.02
This is because if it exceeds 0 wtχ, the amount of hard TiN precipitated becomes too large and the ductility and toughness of the steel material decreases.

NはTiと結合し上記TiNを形成させるために必要で
あるが、0.0020wtχ未満では上記の如き効果が
得られず、0.0060wtχ超ではTiN量が多くな
り過ぎ、鋼材の延靭性が低下するからである。
N is necessary to combine with Ti to form the above-mentioned TiN, but if it is less than 0.0020wtχ, the above effect cannot be obtained, and if it exceeds 0.0060wtχ, the amount of TiN becomes too large and the ductility of the steel material decreases. Because it does.

更に高強度、高延靭性を要する場合は以上の元素に加え
てCu、 V、  B、 Ca+希土類元素(以降、R
E)Iという)から選択される1種または2種以上を0
.0005〜1.00wtχ含有させるとよい。尚、こ
のときCuは0.05〜1.0(ht%、■は0.00
5〜0.100wtχBは0.0005〜0.0030
wt%、 Caは0.0005〜0.0030呵χ R
EFIは0.005〜0.030wtχの範囲にするの
が好ましい。1種または2種以上を含有させる場合の上
下限値の設定理由を以下に述べる。
If even higher strength and high elongation toughness are required, in addition to the above elements, Cu, V, B, Ca + rare earth elements (hereinafter referred to as R) may be added.
E) One or more types selected from I) are 0.
.. It is preferable to contain 0005 to 1.00wtχ. In addition, at this time, Cu is 0.05 to 1.0 (ht%, ■ is 0.00
5-0.100wtχB is 0.0005-0.0030
wt%, Ca is 0.0005 to 0.0030 χ R
EFI is preferably in the range of 0.005 to 0.030 wtχ. The reason for setting the upper and lower limits when one or more types are contained will be described below.

CuはIIAZ部靭性を低下させずに強度を向上させる
という効果を有するが、0.05wtχ未満ではその効
果が得られず、1.00wtχ超では溶接性が劣下する
からである。
This is because Cu has the effect of improving the strength without reducing the toughness of the IIAZ portion, but if it is less than 0.05 wtχ, this effect cannot be obtained, and if it exceeds 1.00 wtχ, weldability deteriorates.

■は強度向上に有効であるが、0.00511tχ未満
ではその効果が得られず、0.100wtχ超では溶接
性が劣下するからである。
(2) is effective in improving strength, but if it is less than 0.00511tχ, the effect cannot be obtained, and if it exceeds 0.100wtχ, weldability deteriorates.

Ca及びREMは介在物のMnSの形態を制御する作用
を有し、延靭性や耐割れ性向上に有効であるが、Ca:
O,0005wtχ未満、REM:0.005wtχ未
満ではその効果が得られず、Ca:0.0030wtχ
超、REM:0.030wtχ超では介在物が増%、却
って延靭性や耐割れ性が低下するようになるからである
Ca and REM have the effect of controlling the morphology of MnS inclusions and are effective in improving ductility and cracking resistance, but Ca:
The effect cannot be obtained with less than O,0005wtχ, REM: less than 0.005wtχ, and Ca:0.0030wtχ
REM: If it exceeds 0.030 wtχ, the inclusions will increase, and the ductility and cracking resistance will deteriorate.

本発明の方法は、製造工程的には制御圧延、加速冷却し
た鋼材を溶接する方法であるので、従来法Bの如く工程
が増えるものではなく、圧延ラインで実施できる。故に
、製造コスト・工期の増大および作業性の低下を招くも
のではない。
The method of the present invention is a method of welding steel materials that have been subjected to controlled rolling and accelerated cooling in terms of the manufacturing process, so unlike conventional method B, the number of steps is not increased and it can be carried out on a rolling line. Therefore, it does not cause an increase in manufacturing cost and construction period, or a decrease in workability.

(実施例) 組成が種々異なる鋼を1150°Cに加熱した後、制御
7 御圧延し、加速冷却し、ベーナイト相含有組織を有する
板厚:30mmの圧延鋼材を得た。ここで、制御圧延の
圧延率は87%、圧延仕上温度は750°C1又、熱延
後冷却速度は10°C/minにした。
(Example) Steels having various compositions were heated to 1150°C, then rolled under control 7, and accelerated cooled to obtain rolled steel materials having a thickness of 30 mm and having a bainitic phase-containing structure. Here, the rolling rate of controlled rolling was 87%, the finishing temperature of rolling was 750° C., and the cooling rate after hot rolling was 10° C./min.

又、比較のため、上記加速冷却に代えて空冷にて自然冷
却したものも実施した。更に、上記制御圧延・加速冷却
に代えて通常法により圧延・空冷したものも実施した。
For comparison, instead of the accelerated cooling described above, natural cooling was performed using air cooling. Furthermore, instead of the above-mentioned controlled rolling and accelerated cooling, rolling and air cooling were performed using a conventional method.

上記圧延鋼材を種々の溶接材料を用いて溶接して溶接継
手を得た。ここで、溶接は手溶接法あるいはSIV (
サブマージアーク自動溶接法)により行い、溶接入熱量
を種々変化させた。又、Depo部Ni量を種々変えて
母材−0epo部間でのNi量の差を種・−変化させた
。尚、溶接継手を得る前に、斜めY形溶接割れ試験を行
い、割れ防止のための予熱温度を求めた。
Welded joints were obtained by welding the above rolled steel materials using various welding materials. Here, welding is done by manual welding method or SIV (
The welding heat input was varied using the submerged arc automatic welding method (submerged arc automatic welding method). Furthermore, the amount of Ni in the Depo part was varied to vary the difference in the amount of Ni between the base material and the 0epo part. Before obtaining the welded joint, a diagonal Y-shaped weld cracking test was conducted to determine the preheating temperature for preventing cracking.

上記溶接継手について、Ni量差の確認、引張り試験、
■ノツチ衝撃試験、組織観察、及び、4ケ月間海水浸漬
による耐食性試験を行った。
Regarding the above welded joints, confirmation of Ni content difference, tensile test,
■A notch impact test, microstructural observation, and a corrosion resistance test by immersion in seawater for 4 months were conducted.

第1〜3表に鋼組成、C当量および圧延・冷却法を示す
。第4表に母材の強度(0,2″y、耐力、引張強さ)
および衝撃破面遷移温度、溶接割れ防止予熱温度、及び
、HAZ部の衝撃値を示す。第5表に溶接材料および溶
接法の種類、溶接入熱量、並びに、Depo部Ni量、
Ni量差、及び、耐食性を示す。
Tables 1 to 3 show the steel composition, C equivalent, and rolling/cooling method. Table 4 shows the strength of the base material (0,2″y, yield strength, tensile strength)
and impact fracture surface transition temperature, weld crack prevention preheating temperature, and impact value of the HAZ part. Table 5 shows the types of welding materials and welding methods, the amount of welding heat input, and the amount of Ni in the Depo part.
Shows the difference in Ni content and corrosion resistance.

尚、耐食性はDepo部板厚からHAZ部板厚を差引い
た値で表示した。
Note that the corrosion resistance was expressed as a value obtained by subtracting the thickness of the HAZ section from the thickness of the Depo section.

これらの表から判るように、実験No、2.3及び10
に係る溶接継手は、母材鋼の特性は良好である。しかし
、Depo部Ni量が過多であるため、耐食性試験後に
おけるDepo部板厚からHAZ部板厚を差引いた値が
大きく、HAZ部が深く腐食されている。
As can be seen from these tables, Experiment Nos. 2.3 and 10
The welded joint according to the above has good properties of the base steel. However, since the amount of Ni in the Depo part is excessive, the value obtained by subtracting the HAZ part plate thickness from the Depo part plate thickness after the corrosion resistance test is large, and the HAZ part is deeply corroded.

これはHAZ部で溝状腐食が生じている事を示している
This indicates that groove-like corrosion has occurred in the HAZ.

実験No、15及び17に係る溶接継手は、逆にDep
The welded joints according to Experiment Nos. 15 and 17 were, on the contrary, Dep.
.

部Ni量が過少であるため、Depo部が深く腐食され
ており、これはDepo部で溝状腐食が生じている事を
示している。
Since the amount of Ni in the part is too small, the Depo part is deeply corroded, which indicates that groove-like corrosion has occurred in the Depo part.

実験No、7.8+ 12及び13に係る溶接継手は、
制御圧延後空冷、或いは通常圧延・空冷により得られた
圧延鋼材を用いた場合であり、いづれの場合も加速冷却
されていないので、鋼材組織がベーナイト相含有組織に
ならず、フェライト・パーライト組織になり、そのため
鋼材強度が低く、又11AZ部が深く腐食されている。
The welded joints related to Experiment No. 7.8+ 12 and 13 are:
This is a case where rolled steel obtained by air cooling after controlled rolling or normal rolling and air cooling is used. In either case, accelerated cooling is not performed, so the steel structure does not become a bainitic phase-containing structure, but instead changes to a ferrite/pearlite structure. Therefore, the strength of the steel material is low, and the 11AZ section is deeply corroded.

このようにHAZ部で溝状腐食が生じたのは、上記鋼材
組織がフェライト・パーライト組織であるためであるが
、Depo部Ni量が過多であり、HAZ部NiN土量
差が大きい事がかかる溝状腐食の成長を加速させている
The reason why groove-like corrosion occurred in the HAZ part is because the above-mentioned steel structure is a ferrite/pearlite structure, but this is because the amount of Ni in the Depo part is excessive and the difference in the amount of NiN in the HAZ part is large. This accelerates the growth of groove corrosion.

実験No、18に係る溶接継手は、鋼組成が本発明に係
る組成と異なり、特にCが多い。従って、割れ防止のた
めの予熱温度が高くて溶接性が悪く、又、IIAZ部靭
性が劣っている。更に、圧延・圧延後冷却を通常圧延・
空冷により行っているので、鋼材組織がベーナイト相含
有組織にならず、フェライト・パーライト組織になり、
そのため鋼材強度が低く、又11AZ部が深く腐食され
ている。
The welded joint according to Experiment No. 18 had a steel composition different from the composition according to the present invention, and in particular contained a lot of C. Therefore, the preheating temperature for preventing cracking is high, resulting in poor weldability and poor IIAZ toughness. Furthermore, rolling and post-rolling cooling are performed using normal rolling and rolling.
Because air cooling is used, the steel structure does not become a bainite phase-containing structure, but instead becomes a ferrite/pearlite structure.
Therefore, the strength of the steel material is low, and the 11AZ section is deeply corroded.

これらに対し、実験No、1.4.5.6.9.11.
14及び16に係る溶接継手は、母材鋼の特性、溶接性
およびHAZ部靭性が良好である。又、鋼材組織が第1
表 (以下、余白) 第 表 (以下、余白) 第 表 (以下、余白) 第 表 (以下、余白) 第 表 (以下、余白) ヘーナイト相含有組織であり、且つDepo部Ni量と
H舵部Ni量との差が小さく、そのため耐食性試験後に
おけるDepo部板厚とHAZ部板厚との差が小さい。
In contrast, experiment No. 1.4.5.6.9.11.
The welded joints according to Nos. 14 and 16 have good properties of the base steel, weldability, and HAZ toughness. Also, the steel structure is the first
Table (hereinafter, margin) Table (hereinafter, margin) Table (hereinafter, margin) Table (hereinafter, margin) Table (hereinafter, margin) Table (hereinafter, margin) Haenite phase-containing structure, Depo part Ni amount and H rudder part The difference with the amount of Ni is small, and therefore the difference between the thickness of the Depo portion and the thickness of the HAZ portion after the corrosion resistance test is small.

これはIIAZ部、Depo部とも溝状腐食が生してい
ない事を示している。
This shows that groove-like corrosion did not occur in either the IIAZ part or the Depo part.

(発明の効果) 本発明に係る鋼材の溶接方法によれば、製造コスト・工
期の増大および作業性の低下を招くことなく、鋼材の所
要高強度を確保でき、且つ鋼材溶接部の耐溝状腐食性を
優れたものにし得る。更には、手溶接法の如き溶接人熱
量の低い溶接方法を適用した場合でも、かかる効果を得
ることができる。従って、経済性および作業性を低下さ
せることなく、長寿命で安全性が優れた海洋構造物や船
舶などの溶接鋼構造物が得られるようになる。
(Effects of the Invention) According to the method for welding steel materials according to the present invention, the required high strength of the steel materials can be ensured without increasing production costs, construction time, or reducing workability, and the groove-resistant shape of the welded portions of the steel materials can be maintained. Can have excellent corrosive properties. Furthermore, such effects can be obtained even when a welding method that requires a low amount of heat by the welder, such as a manual welding method, is applied. Therefore, welded steel structures such as marine structures and ships that have a long life and excellent safety can be obtained without reducing economic efficiency and workability.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、母材鋼組織がフェライト・パーライト組織で
ある場合の溶接継手を4ケ月間海水浸漬した後の溝状腐
食状況を示す溶接継手断面図、第2図は、母材鋼組織か
ヘーナイト相含有組織である場合の溶接継手を4ケ月間
海水浸漬した後の溝状腐食状況を示す図、第3図は、溶
接継手のNi量差(: Depo部Ni量からIIAZ
部Niiを差引いた値)と、溶接継手の4ケ月間海水浸
漬後の腐食の程度(: Depo部板厚からIIAZ部
板厚を差引いた値)との関係を示す図である。尚、第3
図において、・は母材鋼組織かヘーナイト相含有組織で
ある場合の結果、○は母材鋼組織がフェライト・パーラ
イト組織である場合の結果を示すものである。
Figure 1 is a cross-sectional view of a welded joint where the base material steel structure is a ferrite/pearlite structure and shows the groove-like corrosion after immersing the welded joint in seawater for 4 months. Figure 3 shows the groove-like corrosion state after immersing a welded joint in seawater for 4 months in the case of a heenite phase-containing structure.
Fig. 3 is a diagram showing the relationship between the corrosion rate (value obtained by subtracting the thickness of the IIAZ section from the thickness of the Depo section) of a welded joint after being immersed in seawater for 4 months. Furthermore, the third
In the figure, . indicates the result when the base material steel structure is a structure containing a heenite phase, and ○ indicates the result when the base material steel structure is a ferrite/pearlite structure.

Claims (5)

【特許請求の範囲】[Claims] (1)下記[1]式で求められるC当量が0.30〜0
.38%に調整されている鋼を加熱し、制御圧延し、加
速冷却することにより、該圧延鋼材の組織をベーナイト
相含有組織に調整しておき、次いで該組織調整された鋼
材を溶接する鋼材の溶接方法であって、溶接部の溶接金
属中Ni量が下記[2]式を満足する値になるように前
記溶接を行うことを特徴とする鋼材の溶接方法。 C当量=C量+Si量/24+Mn量/6+Ni量/4
0+V量/14・・・[1] 但し、[1]式において、C量、Si量、Mn量、Ni
量およびり量は、全てwt%での値である。 −0.3≦Ni(D)−Ni(M)≦0.8・・・[2
]但し、[2]式において、Ni(D)は溶接金属中N
i量(%)、Ni(M)は母材の鋼材中のNi量(%)
である。
(1) C equivalent determined by the following formula [1] is 0.30 to 0
.. By heating the steel adjusted to 38%, controlled rolling, and accelerated cooling, the structure of the rolled steel material is adjusted to a bainite phase-containing structure, and then the steel material with the adjusted structure is welded. A welding method for steel materials, characterized in that the welding is performed such that the amount of Ni in the weld metal in the welded portion satisfies the following formula [2]. C equivalent = C amount + Si amount / 24 + Mn amount / 6 + Ni amount / 4
0+V amount/14...[1] However, in formula [1], C amount, Si amount, Mn amount, Ni
All amounts and amounts are in wt%. -0.3≦Ni(D)-Ni(M)≦0.8...[2
] However, in formula [2], Ni (D) is N in the weld metal.
i amount (%), Ni (M) is the Ni amount (%) in the base steel material
It is.
(2)前記鋼が、C:0.02〜0.12wt%、Si
:0.05〜0.50wt%、Mn:1.10〜2.0
0wt%、Sol.Al:0.005〜0.050wt
%、Ni:0.01〜5.00wt%、Nb::0.0
05〜0.100wt%、Ti:0.005〜0.02
0wt%、N:0.0020〜0.0060wt%を含
有し、残部が鉄及び不可避的不純物からなる組成を有す
る第1請求項に記載の鋼材の溶接方法。
(2) The steel contains C: 0.02 to 0.12 wt%, Si
:0.05~0.50wt%, Mn:1.10~2.0
0 wt%, Sol. Al: 0.005~0.050wt
%, Ni: 0.01-5.00wt%, Nb::0.0
05-0.100wt%, Ti: 0.005-0.02
0 wt%, N: 0.0020 to 0.0060 wt%, and the remainder is iron and unavoidable impurities.
(3)前記鋼が、C:0.02〜0.12wt%、Si
:0.05〜0.50wt%、Mn:1.10〜2.0
0wt%、Sol.Al:0.005〜0.050wt
%、Ni:0.01〜5.00wt%、Nb::0.0
05〜0.100wt%、Ti:0.005〜0.02
0wt%、N:0.0020〜0.0060wt%を含
有し、さらにCu:0.05〜1.00wt%、V:0
.005〜0.100wt%、B:0.0005〜0.
0030wt%から選択される1種または2種以上を含
有し、残部が鉄及び不可避的不純物からなる組成を有す
る第1請求項に記載の鋼材の溶接方法。
(3) The steel contains C: 0.02 to 0.12 wt%, Si
:0.05~0.50wt%, Mn:1.10~2.0
0 wt%, Sol. Al: 0.005~0.050wt
%, Ni: 0.01-5.00wt%, Nb::0.0
05-0.100wt%, Ti: 0.005-0.02
0 wt%, N: 0.0020 to 0.0060 wt%, further Cu: 0.05 to 1.00 wt%, V: 0
.. 005-0.100wt%, B: 0.0005-0.
The method for welding steel materials according to claim 1, having a composition containing one or more selected from 0,030 wt %, and the remainder consisting of iron and inevitable impurities.
(4)前記鋼が、C:0.02〜0.12wt%、Si
:0.05〜0.50wt% 、Mn:1.10〜2.
00wt%、Sol.Al:0.005〜0.050w
t%、Ni:0.01〜5.00wt%、Nb:0.0
05〜0.100wt%、Ti:0.005〜0.02
0wt%、N:0.0020〜0.0060wt%を含
有し、さらにCa:0.0005〜0.0030wt%
、希土類元素:0.005〜0.030wt%から選択
される1種または2種を含有し、残部が鉄及び不可避的
不純物からなる組成を有する第1請求項に記載の鋼材の
溶接方法。
(4) The steel contains C: 0.02 to 0.12 wt%, Si
:0.05~0.50wt%, Mn:1.10~2.
00wt%, Sol. Al: 0.005~0.050w
t%, Ni: 0.01-5.00wt%, Nb: 0.0
05-0.100wt%, Ti: 0.005-0.02
0 wt%, N: 0.0020 to 0.0060 wt%, and further Ca: 0.0005 to 0.0030 wt%.
, rare earth elements: 0.005 to 0.030 wt%, and the remainder is iron and unavoidable impurities.
(5)前記鋼が、C:0.02〜0.12wt%、Si
:0.05〜0.50wt%、Mn:1.10〜2.0
0wt%、Sol.Al:0.005〜0.050wt
%、Ni:0.01〜5.00wt%、Nb:0.00
5〜0.100wt%、Ti:0.005〜0.020
wt%、N:0.0020〜0.0060wt%を含有
し、さらにCu:0.05〜1.00wt%、V:0.
005〜0.100wt%、B:0.0005〜0.0
030wt%から選択される1種または2種以上、Ca
:0.0005〜0.0030wt%、希土類元素:0
.005〜0.030wt%から選択される1種または
2種を含有し、残部が鉄及び不可避的不純物からなる組
成を有する第1請求項に記載の鋼材の溶接方法。
(5) The steel contains C: 0.02 to 0.12 wt%, Si
:0.05~0.50wt%, Mn:1.10~2.0
0 wt%, Sol. Al: 0.005~0.050wt
%, Ni: 0.01-5.00wt%, Nb: 0.00
5-0.100wt%, Ti: 0.005-0.020
wt%, N: 0.0020 to 0.0060 wt%, Cu: 0.05 to 1.00 wt%, V: 0.
005-0.100wt%, B: 0.0005-0.0
One or more selected from 030wt%, Ca
:0.0005-0.0030wt%, rare earth element: 0
.. The method for welding steel materials according to claim 1, having a composition containing one or two selected from 0.005 to 0.030 wt%, and the remainder consisting of iron and unavoidable impurities.
JP3909789A 1989-02-17 1989-02-17 Steel material with welds Expired - Fee Related JP2587487B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3909789A JP2587487B2 (en) 1989-02-17 1989-02-17 Steel material with welds

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3909789A JP2587487B2 (en) 1989-02-17 1989-02-17 Steel material with welds

Publications (2)

Publication Number Publication Date
JPH02217172A true JPH02217172A (en) 1990-08-29
JP2587487B2 JP2587487B2 (en) 1997-03-05

Family

ID=12543576

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3909789A Expired - Fee Related JP2587487B2 (en) 1989-02-17 1989-02-17 Steel material with welds

Country Status (1)

Country Link
JP (1) JP2587487B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000096187A (en) * 1998-09-22 2000-04-04 Sumitomo Metal Ind Ltd High-strength welded steel tube

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000096187A (en) * 1998-09-22 2000-04-04 Sumitomo Metal Ind Ltd High-strength welded steel tube

Also Published As

Publication number Publication date
JP2587487B2 (en) 1997-03-05

Similar Documents

Publication Publication Date Title
KR0157540B1 (en) High tensile strength steel having superior fatigue strength and weldability at welds and method for manufacturing the same
US4629504A (en) Steel materials for welded structures
US4591396A (en) Method of producing steel having high strength and toughness
JPH0518888B2 (en)
US10316385B2 (en) High-tensile-strength steel plate and process for producing same
JPH0453929B2 (en)
JP4112733B2 (en) Method for producing 50 kg (490 MPa) to 60 kg (588 MPa) thick high-tensile steel sheet having excellent strength and low temperature toughness
JPS631369B2 (en)
JP3487262B2 (en) High strength thick steel plate excellent in CTOD characteristics and method for producing the same
JPS626730B2 (en)
JPH09194991A (en) Welded steel tube excellent in sour resistance and carbon dioxide gas corrosion resistance
JP5008879B2 (en) High strength steel plate with excellent strength and low temperature toughness and method for producing high strength steel plate
JPH0873983A (en) Thick steel plate for welded structure, excellent in fatigue strength in weld joint, and its production
JP2004162085A (en) Steel plate with excellent fatigue crack propagation resistance, and its manufacturing method
JP2541070B2 (en) Method for producing high nickel alloy clad steel sheet with excellent brittle fracture propagation stopping properties of base material
JPH03211230A (en) Production of low alloy steel for line pipe with high corrosion resistance
JPH0225968B2 (en)
JPH11131177A (en) Steel plate for medium-or ordinary-temperature pressure vessel, capable of omitting post weld heat treatment, and its production
JPH08253821A (en) Production of welded joint having excellent fatigue strength
JPH02217172A (en) Steel welding method
JP3367388B2 (en) High ductility and high toughness steel sheet and manufacturing method thereof
JPS60149722A (en) Manufacture of cu added steel having superior toughness at low temperature in weld zone
JPH10121131A (en) Manufacture of thick high tensile steel plate excellent in brittle fracture propagation stop characteristic and weldability
JP2001011566A (en) High tensile strength steel excellent in toughness of weld zone and its production
JP4044862B2 (en) Composite structure type high strength steel plate excellent in earthquake resistance and weldability and method for producing the same

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071205

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081205

Year of fee payment: 12

LAPS Cancellation because of no payment of annual fees