JP2014119607A - 透過型スクリーン、背面投射型表示装置、多画面表示装置 - Google Patents

透過型スクリーン、背面投射型表示装置、多画面表示装置 Download PDF

Info

Publication number
JP2014119607A
JP2014119607A JP2012274953A JP2012274953A JP2014119607A JP 2014119607 A JP2014119607 A JP 2014119607A JP 2012274953 A JP2012274953 A JP 2012274953A JP 2012274953 A JP2012274953 A JP 2012274953A JP 2014119607 A JP2014119607 A JP 2014119607A
Authority
JP
Japan
Prior art keywords
light
screen
display device
layer
image
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012274953A
Other languages
English (en)
Inventor
Hiroshi Sekiguchi
博 関口
Masahiro Goto
正浩 後藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dai Nippon Printing Co Ltd
Original Assignee
Dai Nippon Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dai Nippon Printing Co Ltd filed Critical Dai Nippon Printing Co Ltd
Priority to JP2012274953A priority Critical patent/JP2014119607A/ja
Publication of JP2014119607A publication Critical patent/JP2014119607A/ja
Pending legal-status Critical Current

Links

Images

Abstract

【課題】明るく、コントラストの高い、良好な映像を表示でき、省スペース化できる透過型スクリーン、背面投射型表示装置、多画面表示装置を提供する。
【解決手段】透過型スクリーン10は、略三角柱状の単位プリズム111が複数配列されて形成されたプリズム層11と、これよりも出光側に形成され、光を吸収する作用を有する光吸収部123とを備え、単位プリズム111は、一方の面111a(又は111b)から入射した光の少なくとも一部を他方の面111b(又は111a)で全反射してスクリーン面の法線方向へ偏向し、単位プリズム111の配列方向におけるプリズム層11の中央の領域Aでは、配列方向の一方側から投射された光L1と、他方側から投射された光L2とが、同一の単位プリズム111に入射して、スクリーン面の略法線方向へ偏向されて観察者側へ向かうものとし、これを備える背面投射型表示装置1及び多画面表示装置M1とした。
【選択図】図1

Description

本発明は、透過型スクリーン、これを備える背面投射型表示装置及び多画面表示装置に関するものである。
従来、背面投射型表示装置を用いた多画面表示装置は、様々に開発されている(例えば、特許文献1,2参照)。
このような多画面表示装置では、各映像源から投射された映像間のつなぎ目を目立たなくするために、例えば、エッジブレンディングという処理が広く知られている(例えば、特許文献2参照)。これは、映像のつなぎ目近傍となる領域は、つなぎ目を含む複数の映像を所定の幅だけ重複させ、重複領域の映像の明るさを調整することにより、映像のつなぎ目を目立ちにくくするものである。
特開平5−188477号公報 特開2008−216427号公報
上述のような背面投射型表示装置及び多画面表示装置等において、明るくコントラストの高い良好な映像を表示することは、常々求められていることである。また、より奥行きの小さい背面投射型表示装置及び多画面表示装置とすることも、要求されている。
前述の特許文献1,2には、上述のような良好な映像を表示する手法や省スペース化等に関しては、一切開示されていない。
本発明の課題は、明るく、コントラストの高い、良好な映像を表示でき、省スペース化できる透過型スクリーン、背面投射型表示装置、多画面表示装置を提供することである。
本発明は、以下のような解決手段により、前記課題を解決する。なお、理解を容易にするために、本発明の実施形態に対応する符号を付して説明するが、これに限定されるものではない。
請求項1の発明は、背面側から投射された映像光を観察者側へ透過して映像を表示する透過型スクリーンであって、映像光(L1,L2)の入光側の面に、入光側に凸となる略三角柱状の単位光学要素(111)が、1方向に複数配列されて形成された偏向光学層(11)と、前記偏向光学層よりも出光側に形成され、光を吸収する作用を有する光吸収部(123,15)と、を備え、前記単位光学要素は、一方の斜面(111a,111b)から入射した光の少なくとも一部を他方の斜面(111b,111a)で全反射して出光側の所定の方向へ偏向し、前記単位光学要素の配列方向における前記偏向光学層の一部の領域では、前記配列方向の一方側から投射された光(L1)と、前記配列方向の他方側から投射された光(L2)とが、同一の単位光学要素に入射し、略同一方向に偏向されて観察者側へ向かうこと、を特徴とする透過型スクリーン(10)である。
請求項2の発明は、請求項1に記載の透過型スクリーンにおいて、前記一部の領域内の前記配列方向の一方側及び他方側から投射された光のスクリーン面に対する入射角度が等しい点(T3)においては、前記単位光学要素(111)の配列方向に平行であってスクリーン面に直交する断面での前記単位光学要素の断面形状は、略二等辺三角形状であること、を特徴とする透過型スクリーン(10)である。
請求項3の発明は、請求項1又は請求項2に記載の透過型スクリーンにおいて、前記光吸収部(15)は、前記偏向光学層(11)で偏向された光が透過しない領域に形成されること、を特徴とする透過型スクリーン(10)である。
請求項4の発明は、請求項1又は請求項2に記載の透過型スクリーンにおいて、前記偏向光学層(11)よりも出光側に、光を透過する光透過部(122)と前記光吸収部(123)とがスクリーン面に沿って交互に配置された光制御層(12)を備え、前記光吸収部は、前記光吸収部及び前記光透過部の配列方向に平行であってスクリーン面に直交する断面における断面形状が、出光側に向けて寸法が大きくなる楔形形状であり、前記光吸収部の屈折率は、光透過部の屈折率よりも小さいこと、を特徴とする透過型スクリーン(10)である。
請求項5の発明は、請求項1から請求項4までのいずれか1項に記載の透過型スクリーン(10)において、光を拡散する作用を有する光拡散層(13)を備えること、を特徴とする透過型スクリーン(10)である。
請求項6の発明は、請求項1から請求項5までのいずれか1項に記載の透過型スクリーン(10)と、前記透過型スクリーンよりも背面側に位置し、前記単位光学要素(111)の配列方向の一方側及び他方側からそれぞれ映像光(L1,L2)を照射する2つの映像源(LS1,LS2)と、を備える背面投射型表示装置(1)である。
請求項7の発明は、請求項6に記載の背面投射型表示装置(1)を複数備え、各前記透過型スクリーン(10)の表示画面が隣接するように複数配列した多画面表示装置(M1)である。
本発明によれば、明るく、コントラストの高い、良好な映像を表示でき、省スペース化できる透過型スクリーン、背面投射型表示装置、多画面表示装置を提供できるという効果を奏する。
実施形態の背面投射型表示装置1を説明する図である。 実施形態の多画面表示装置M1を説明する図である。 実施形態の透過型スクリーン10の層構成を説明する図である。 実施形態の単位プリズム111を説明する図である。 実施形態の単位プリズム111の角度α、γについて説明する図である。 実施形態の光制御層12を説明する図である。 他の実施形態の透過型スクリーンの一例を示す図である。 他の実施形態の透過型スクリーンの一例を示す図である。 変形形態の多画面表示装置M2を説明する図である。
以下、図面等を参照して、本発明の実施形態について説明する。なお、図1を含め、以下に示す各図は、模式的に示した図であり、各部の大きさ、形状は、理解を容易にするために、適宜誇張している。
また、シート状等の言葉を使用しているが、これらは、一般的な使い方として、厚さの厚い順に、板、シート、フィルムの順で使用されており、本明細書中でもそれに倣って使用している。しかし、このような使い分けには、技術的な意味は無いので、これらの文言は、適宜置き換えることができるものとする。
本明細書中に記載する各部材の寸法等の数値及び材料名等は、実施形態としての一例であり、これに限定されるものではなく、適宜選択して使用してよい。
また、本明細書中において、形状や幾何学的条件を特定する用語、例えば、平行や直交等の用語については、厳密に意味するところに加え、同様の光学的機能を奏し、平行や直交と見なせる程度の誤差を有する状態も含むものとする。
(実施形態)
図1は、本実施形態の背面投射型表示装置1を説明する図である。図1(a)は、背面投射型表示装置1の斜面図、図1(b)は、背面投射型表示装置1の側面図である。
図2は、本実施系形態の多画面表示装置M1を説明する図である。
図1に示すように、背面投射型表示装置1は、透過型スクリーン10と、映像源LS1,LS2とを備えており、透過型スクリーン10の背面側に位置する映像源LS1,LS2から投射された映像光L1,L2を観察者側へ透過して、映像をその画面に表示している。
図2に示すように、多画面表示装置M1は、複数の背面投射型表示装置1が、透過型スクリーン10の表示画面を隣接させて配列されて形成される。本実施形態では、多画面表示装置M1は、3つの背面投射型表示装置1を画面左右方向(水平方向)へ連接して配置して形成される例を挙げて説明するが、その連接される方向や数は、適宜自由に設定してよい。
また、この背面投射型表示装置1は、1台のみで一般的な表示装置として使用することも可能である。さらに、背面投射型表示装置1は、透過型スクリーン10を保持し、その内部に映像源LS1、LS2を配置可能な不図示の筐体部を備えるが、図1等では、理解を容易にするために、筐体部の形状等は示していない。
図1に示すように、本実施形態の背面投射型表示装置1では、透過型スクリーン10は、使用状態において、その長辺方向が画面上下方向に平行であり、短辺方向が画面左右方向に平行な略矩形状であり、映像源LS1,LS2は、透過型スクリーン10の背面側であって、画面上下方向の下方、及び、上方に位置し、透過型スクリーン10に対して、画面上下方向において斜め方向から照射する。
この映像源LS1,LS2としては、汎用の短焦点型プロジェクタを用いることができる。映像源LS1,LS2は、透過型スクリーン10に対する映像光の投射角度が大きく、透過型スクリーン10のスクリーン面に直交する方向(奥行き方向)における距離は、従来の汎用プロジェクタ等に比べて大幅に短い。
ここで、画面上下方向において、上方側には、映像源LS2からの映像光L2が到達し、下方側には、映像源LS1からの映像光L1が到達する。また、画面上下方向の中央となる領域Aでは、映像源LS1,LS2からの映像光L1,L2の双方が到達する。
映像源LS1,LS2は、不図示の制御部により、領域Aに到達する光の明るさ等が制御され、エッジブレンディング処理が施されている。従って、この透過型スクリーン10は、領域Aと領域B1,B2との明るさの差が殆ど無く、明るさの均一性の高い映像を表示できる。
図1(b)に示すように、透過型スクリーン10と映像源LS1,LS2との奥行き方向の距離がS1であり、透過型スクリーン10の下端、上端から映像源LS1,LS2までの画面上下方向における距離がS2である。
また、画面上下方向における領域Aの寸法がS3、領域B1、B2の寸法がそれぞれS4,S5である。
図3は、本実施形態の透過型スクリーン10の層構成を説明する図である。
図3では、透過型スクリーン10の画面上下方向に平行であってスクリーン面に直交する断面の一部を拡大して示している。ここで、スクリーン面とは、透過型スクリーン10全体として見たときにおける、透過型スクリーン10の平面方向となる面を示すものであり、本明細書中、及び、特許請求の範囲においても同一の定義として用いている。本実施形態において、このスクリーン面は、透過型スクリーン10の画面(表示面)に平行であり、スクリーン面に直交する方向は、透過型スクリーン10の厚み方向に平行であるとする。
図3に示すように、透過型スクリーン10は、その厚み方向において、入光側から順に、プリズム層11、光制御層12、光拡散層13を備え、接合層14で適宜一体に積層されている。
プリズム層11は、単位プリズム111が複数配列された光学形状部112と、プリズム基材部113とを有している。
光学形状部112は、入光側(背面側)の面に、入光側に凸となる単位プリズムが複数配列されて形成されている。
この単位プリズム111は、略三角柱状であり、画面左右方向を長手方向(稜線方向)とし、画面上下方向に配列されている。
図4は、本実施形態の単位プリズム111を説明する図である。図4では、画面上下方向に平行であってスクリーン面に直交する断面での光学形状部112の断面形状を示しており、図4(a)は、領域B2での単位プリズム111を示し、図4(b)は、領域Aでの単位プリズム111を示し、図4(c)は、領域B1での単位プリズム111を示している。
単位プリズム111において、画面上下方向上側に位置する面111a,下側に位置する面111bを備えている。
図4(a)に示すように、領域B2の単位プリズム111では、映像源LS2から投射された映像光L2は、面111aに入射し、面111aから入射した映像光L2の少なくとも一部が面111bで全反射する。単位プリズム111のこのような作用により、映像光L2は、略スクリーン面に直交する方向である略正面方向へ偏向され、出光側(観察者側)へ向かう。従って、領域B2では、面111aが入射面であり、面111bが全反射面となる。
また、図4(c)に示すように、領域B1の単位プリズム111では、映像源LS1から投射された映像光L1は、面111bに入射し、面111bから入射した映像光L1の少なくとも一部が面111aで全反射する。単位プリズム111のこのような作用により、映像光L1は、略正面方向へ偏向され、出光側へ向かう。従って、領域B1では、面111bが入射面であり、面111aが全反射面となる。
次に、図4(b)に示すように、映像源LS1,LS2から投射された映像光L1,L2が到達する領域Aでは、映像源LS2からの映像光L2に対しては、面111aが、映像光L2が入射する入射面となり、面111bが、入射面から入射した映像光L2の少なくとも一部を全反射する全反射面となる。そして、面111bで全反射した映像光L1は、略正面方向へ偏向され、出光側へ向かう。
また、領域Aでは、映像源LS1からの映像光に対しては、面111bが、映像光L1が入射する入射面となり、面111aが、入射面から入射した映像光L1の少なくとも一部を全反射する全反射面となる。そして、面111aで全反射した映像光L1は、略正面方向へ偏向され、出光側へ向かう。
従って、領域Aに位置する単位プリズム111は、その配列方向の一方側に位置する映像源LS1からの映像光L1と、他方側に位置する映像源LS2からの映像光L2とを、いずれも、略正面方向へ、即ち、略同一の方向へ偏向する作用を有している。
図4に示すように、単位プリズム111の配列ピッチはP1であり、頂角はβであり、面111aがスクリーン面に平行な面となす角度はα、面111bがスクリーン面に平行な面となす角度はγである。
単位プリズムの角度α,γは、単位プリズム111の配列方向、即ち、画面上下方向に沿って次第に変化している。角度αは、画面上下方向に沿って、領域B2の透過型スクリーン10の外周端となる点T2(図1(b)参照)から、領域B1の透過型スクリーン10の外周端となる点T1(図1(b)参照)側に向かうにつれて(上側から下側へ向かうにつれて)、次第に大きくなっている。また、角度γは、画面上下方向に沿って点T2から点T1へ(上側から下側へ)向かうにつれて、次第に小さくなっている。
従って、画面上下方向上側の領域B2では、α<γとなる。また、画面上下方向中央の領域Aでは、角度αと角度γとが略等しく、特に、領域A内の映像源LS1,LS2からの映像光L1,L2のスクリーン面への入射角度が等しくなる点T3(スクリーン画面の画面上下方向の中央:図1(b)参照)に位置する単位プリズム111では、α=γとなる。また、画面上下方向下側の領域B1では、α>γとなる。
このような形態とすることにより、映像源LS1,LS2からの光を、効率よく観察者側へ向けることができる。
なお、本実施形態では、配列ピッチP1及び頂角βが一定である例を示したが、これに限らず、配列方向に沿って変化していてもよい。また、角度α,γの単位プリズム111の配列方向における変化は、段階的な変化としてもよい。
このプリズム層11は、ウレタンアクリレートやエポキシアクリレート等の紫外線硬化型樹脂や、電子線硬化型樹脂等の電離放射線硬化型樹脂を用いて形成される。なお、これに限らず、例えば、熱可塑性樹脂等により形成してもよい。
図5は、本実施形態の単位プリズム111の角度α及び角度γについて説明する図である。図5では、単位プリズム111の配列方向(画面上下方向)に平行であってスクリーン面に直交する断面における断面を拡大して模式的に示しており、図5(a)は、領域B1,図5(b)は、領域B2における単位プリズム111を示している。図5中に破線で示す直線Fは、単位プリズム111の配列方向(画面上下方向)に平行であってスクリーン面に直交する断面におけるスクリーン面に平行な面を示している。
図5(a)に示すように、領域B1において、単位プリズム111の面111bに入射する映像光L1が、スクリーン面の法線方向へ出射されるためには、以下の式1を満たすことが必要である。
式1:180°−2×α−γ−arcsin((sin(θ1−γ))/N)=0
上記式1において、Nは、単位プリズム111の屈折率であり、θ1は、その単位プリズム111に入射する映像光L1の映像源LS1からの投射角(スクリーン面への入射角)である。
また、同様に、領域B2において、単位プリズム111の面111aに入射する映像光L2が、スクリーン面の法線方向へ出射されるためには、以下の式2を満たすことが必要である。
式2:180°−2×γ−α−arcsin((sin(θ2−α))/N)=0
上記式2において、Nは、単位プリズム111の屈折率であり、θ2は、その単位プリズム111に入射する映像光L2の映像源LS2からの投射角(スクリーン面への入射角)である。
領域B1,B2では、各式1,2に基づいて、投射角θ1,θ2に応じた角度α,γを適宜設定することができる。
ここで、領域B1,B2では、角度α,γを含む式は1つであるが、変数は2つ(α,γ)である。仮に、頂角βを一定とした場合には、(α+γ)が一定となるので、角度α,γをより容易に設定することができる。また、角度βを一定とした場合には、単位プリズム111を賦形する成形型(金型)の切削作業において、1つの単位プリズム111を賦形する凹型を1種類のバイトによって容易に作製でき、容易にかつ低コストで成形型を作製できる。なお、これに限らず、頂角βは配列方向に沿って変化する形態としてもよい。
一方、領域Aでは、映像源LS1,LS2から投射された映像光L1,L2が、それぞれ単位プリズム111の面111b,111aに入射する。そのため、領域Aでは、上記式1及び式2をいずれも満たすことが必要である。このとき、領域Aでは式が2つで変数が2つ(α,γ)なので、投射角θ1,θ2に応じて、この2式を満たすα,γを算出することが可能である。
プリズム基材部113は、プリズム層11のベース(基材)となる部分である。
このプリズム基材部113は、光透過性を有する樹脂製のシート状の部材を用いることができる。プリズム基材部113に用いられる樹脂としては、PET(ポリエチレンテレフタレート)樹脂、PC(ポリカーボネート樹脂)や、MBS(メタクリル酸メチル・ブタジエン・スチレン)樹脂、MS(メタクリル酸メチル・スチレン)樹脂、アクリル系樹脂であるが、これに限らず、適宜選択して使用してよい。
プリズム基材部113は、その屈折率が光学形状部112と同等、若しくは、光学形状部112との屈折率差が非常に小さいことが好ましい。
このプリズム基材部113は、スクリーンの画面サイズにもよるが、その厚さを約50〜250μmとすることができる。
図3に戻って、光制御層12は、プリズム層11よりも出光側に配置される層であり、基材部121、光透過部122、光吸収部123を備えている。本実施形態では、光制御層12は、プリズム層11の出光側に、接合層14を介して、一体に積層されている。
図6は、本実施形態の光制御層12を説明する図である。図6では、画面上下方向に平行であってスクリーン面に直交する断面の一部を拡大して示している。
基材部121は、この光制御層12のベース(基材)となる部分である。この基材部121は、光透過性を有する樹脂製のシート状の部材を用いることができる。基材部121に用いられる樹脂としては、PET樹脂、PCや、MBS樹脂、MS樹脂、アクリル系樹脂等が挙げられるが、これに限らず、適宜選択して使用してよい。
基材部121は、その屈折率が光透過部122と同等、若しくは、光透過部122との屈折率差が非常に小さいことが好ましい。
基材部121は、スクリーンの画面サイズにもよるが、その厚さを約50〜250μmとすることができる。
光透過部122は、基材部121の出光側に複数配列されて形成されている。
光透過部122は、略多角柱状であって、画面左右方向を長手方向(稜線方向)とし、画面上下方向に配列されている。図6に示すように、本実施形態では、光透過部122の配列方向(画面上下方向)に平行であってスクリーン面に直交する断面での光透過部122の断面形状は、略台形形状であり、出光側の寸法が、入光側の寸法よりも小さい形態となっている。
光透過部122は、基材部121の出光側の面に、ウレタンアクリレート等の紫外線硬化型樹脂や電子線硬化型樹脂等の電離放射線硬化型樹脂により形成してもよいし、熱可塑性樹脂等により基材部121と一体に形成してもよい。
光吸収部123は、配列された光透過部122間に形成され、光を吸収する作用を有する部分である。光吸収部123の配列方向に平行であってスクリーン面に直交する断面での光吸収部123の断面形状は、楔形形状である。楔形形状とは、一方の端部の幅が広く、他方に向けて次第に幅が狭くなる形状をいい、三角形形状や台形形状等を含む。
本実施形態では、図6に示すように、光吸収部123の配列方向に平行であってスクリーン面に直交する断面での光吸収部123の断面形状は、略台形形状であり、出光側の寸法が入光側の寸法よりも大きい形態となっている。なお、これに限らず、光吸収部123は、上記断面形状が入光側を頂点とする略三角形形状である形態としてもよい。
光吸収部123は、光吸収材等を含有した光透過性を有する樹脂を、光透過部122間の谷部にワイピング(スキージング)して充填し、硬化させる等して形成される。
光吸収部123に用いられる光透過性を有する樹脂は、ウレタンアクリレート、エポキシアクリレート等の紫外線硬化型樹脂や電子線硬化型樹脂等の電離放射線硬化型樹脂が好適に用いられる。
また、光吸収部123に用いられる光吸収材は、可視光領域の光を吸収する機能を有する粒子状等の部材であり、例えば、カーボンブラック、グラファイト、黒色酸化鉄等の金属塩、顔料や染料、顔料や染料で着色された樹脂粒子等である。顔料や染料で着色された樹脂粒子を用いる場合には、その樹脂粒子は、アクリル系樹脂製や、PC樹脂製、PE樹脂製、PS樹脂製、MBS樹脂、MS樹脂等により形成されたものを用いることができる。
本実施形態の光吸収部123の屈折率は、光透過部122の屈折率よりも小さい。従って、光吸収部123に用いられる光透過性を有する樹脂は、光透過部122を形成する樹脂よりも屈折率が小さいものを用いている。
図6に示すように、光透過部122(光吸収部123)の配列ピッチがP2であり、光透過部122の厚みがD2であり、光透過部122の配列方向における光透過部122の上底の寸法がW1であり、配列方向における光吸収部123の下底の寸法がW2であり、上底の寸法がW3である。また、透過型スクリーン10の厚み方向における光吸収部123の寸法がH2であり、光透過部122と光吸収部123との界面が、透過型スクリーン10の厚み方向となす角度がθである。この角度θは、図6に示す断面において、スクリーン面の略法線方向からの光が光透過部122と光吸収部123との界面に入射する場合、その入射角が臨界角以上となるように設定される。この角度θは、約3°〜10°とすることが好ましい。
図6に示すように、本実施形態の光透過部122には、プリズム層11により正面方向(スクリーン面の法線方向)に偏向された映像光L3が入射する。ここで、映像光L3の一部は、そのまま光透過部122の出光側の面から出射する。また、映像光L3の一部は、光吸収部123と光透過部122との界面に入射する。このとき、上述のように、光吸収部123の屈折率が光透過部122の屈折率よりも低く、光吸収部123と光透過部122との界面への映像光L3の入射角が臨界角以上となるので、界面に入射した映像光L3は、その界面で全反射して、光透過部122の出光側の面から出射する。
従って、光制御層12は、映像光L3の一部を、光透過部122及び光吸収部123の配列方向(画面上下方向)において、拡散することができる。また、映像光L3の一部を全反射させるので、反射損失を抑え、映像の明るさを維持できる。
さらに、スクリーン面の法線方向に対して、映像光L3よりも大きな角度をなす光、例えば、透過型スクリーン10内で生じた迷光や、観察者側上方から入射する外光G等は、光吸収部123と光透過部122との界面に対する入射角が映像光L3よりも小さく、臨界角未満の角度で入射する。従って、これらの不要な迷光や外光Gは、光吸収部123で吸収される。よって、映像のコントラストや鮮明さを高めることができる。
なお、本実施形態では、光透過部122及び光吸収部123が、画面上下方向に配列されている例を示したが、これに限らず、使用環境や所望する光学性能等に応じて、画面左右方向に配列される形態としてもよい。
図3に戻って、光拡散層13は、光を拡散する作用を有する層である。
本実施形態の光拡散層13は、粒子状の光拡散材を含有する光透過性を有する樹脂製のシート状の部材であり、光制御層12の出光側に、接合層14を介して一体に積層されている。
光拡散層13の母材となる樹脂は、例えば、アクリル系樹脂、MBS樹脂、PC樹脂、PET樹脂等を用いることができる。
光拡散層13に含有される光拡散材としては、プラスチックビーズ等の有機フィラーであり、特に、透明度の高いものが好ましい。プラスチックビーズとしては、例えば、メラミン樹脂製、アクリル樹脂製、AS樹脂製、PC樹脂製等のものが挙げられる。また、シリコン系ビーズも光拡散材として使用可能である。さらに、所望する拡散性能等に合わせて、これらの光拡散材を適宜選択し、所定の割合で組み合わせる等してよい。
光拡散層13の厚さは、スクリーンの画面サイズにもよるが、0.05〜2.0mmの範囲内が好ましい。光拡散層13の厚みが、0.05mm未満となると、光拡散効果が不十分となる可能性があり、また、2.0mmを超えると、透過型スクリーン10に表示される映像がぼやけ、解像度が低下する可能性がある。従って、光拡散層13の厚さは、上記の範囲内が好ましい。
接合層14は、透過型スクリーン10の各層を適宜接合する層である。本実施形態では、プリズム層11と光制御層12との間、光制御層12と光拡散層13との間に設けられ、これらの層を一体に接合している。
接合層14は、感圧粘着型や感光粘着型の粘着剤や、接着剤等を適宜選択して用いることができる。
ここで、本実施形態の透過型スクリーン10における映像光や外光の様子について説明する。
図4等に示すように、映像源LS1,LS2から投射された映像光(映像光L1,L2参照)は、単位プリズム111の面111b,111aにそれぞれ入射し、面111a,111bでそれぞれ全反射して、スクリーン面の法線方向(正面方向)に偏向される。
そして、映像光は、プリズム基材部113や基材部121を透過して、光透過部122に入射する。図6に示すように、一部の映像光(映像光L3参照)は、そのままスクリーン面の法線方向へ進み、一部の映像光(映像光L3参照)は、光透過部122と光吸収部123との界面で全反射して、スクリーン面の法線方向において角度をなす方向へ進む。
そして、映像光は、さらに光拡散層13で拡散されて、透過型スクリーン10から出射する。
従って、本実施形態によれば、映像光L1,L2を効率よく観察者側へ偏向でき、適宜拡散されて出射するので、明るく、輝度ムラのない良好な映像を表示できる。
また、本実施形態によれば、外光(図6の外光G参照)は、スクリーン面の法線方向に対して比較的大きな角度をなす方向から透過型スクリーン10に入射するので、光透過部122と光吸収部123との界面への入射角が映像光よりも小さく、殆どが臨界角未満の角度で入射することとなり、光吸収部123に吸収される。
さらに、本実施形態によれば、透過型スクリーン10内で発生した迷光の多くも、その多くが光透過部122と光吸収部123との界面に臨界角未満の角度で入射して、光吸収部123に吸収される。
従って、本実施形態によれば、不要な外光や迷光を効率よく吸収できるので、映像のコントラストの向上や二重像抑制等を図ることができ、良好な映像を表示できる。
加えて、屈折型のフレネルレンズ層を備える透過型スクリーンでは、フレネルレンズ層の偏向作用を得るために、一般に映像源は、透過型スクリーンの背面側正面方向に配置され、映像源と透過型スクリーンとの距離を十分に確保する必要がある。そのため、背面投射型表示装置としての奥行き方向の寸法が大きくなる傾向にあり、映像源からの映像光をミラー部等で反射させて透過型スクリーンに投射する等して、奥行き方向の寸法を減らす工夫が必要となる。また、このような従来型の透過型スクリーンでは、斜め方向から映像光を投射すると、十分に映像光が偏向されず映像の輝度が低下する等の問題がある。
しかし、本実施形態によれば、透過型スクリーン10に対して大きな投射角度で斜め方向から映像光L1,L2を投射でき、映像源LS1,LS2と透過型スクリーン10との距離S1を短くできる。従って、背面投射型表示装置1の奥行き方向の寸法を低減でき、背面投射型表示装置1及び多画面表示装置M1の省スペース化を実現できる。
(実施例)
ここで、本実施形態の透過型スクリーン10及び背面投射型表示装置1の実施例を作製し、その映像を評価した。
実施例の透過型スクリーン10及び背面投射型表示装置1の各部の寸法等は、以下の通りである。
透過型スクリーン10の画面サイズ:約200インチ(3048×2032mm)
透過型スクリーン10の総厚:約1.2mm
映像源LS1,LS2と、透過型スクリーン10の出光側表面とのスクリーン面の法線方向の距離S1:300mm
映像源LS1,LS2と、透過型スクリーン10の下端及び上端とのスクリーン面に平行な方向における距離S2:250mm
単位プリズム111の配列方向における領域A,B1,B2の寸法S3,S4,S5:S3=200mm、S4=S5=1424mm
単位プリズム111の屈折率N:1.49
画面中心(点T3)での単位プリズム111の底角:α=54.6、γ=54.6
領域Aと領域B1との境界部における単位プリズム111の底角:α=54.8°、γ=54.4°
領域Aと領域B2との境界部における単位プリズム111の底角:α=54.4°、γ=54.8°
単位プリズム111の配列ピッチ:P1=250μm
プリズム基材部113:PET樹脂(屈折率1.6)製、厚さ150μm
基材部121:PET樹脂(屈折率1.6)製、厚さ150μm
光透過部122及び光吸収部123の配列ピッチ:P2=55μm
光透過部122及び光吸収部123の界面がスクリーン面の法線方向となす角度:θ=5°
光透過部122の高さ:H2=120μm
光透過部122の材料:ウレタンアクリレート樹脂(屈折率1.55)
光吸収部123の材料:平均粒径3μmの黒色粒子を25%w含有するウレタンアクリレート樹脂製(屈折率1.49)
光拡散層13:半値角(半値幅の1/2)の絶対値が20°となる等方性の拡散作用を有する拡散シート(拡散材(平均粒径12μm、アクリル樹脂製)含有のPC樹脂製)
接合層14:アクリル樹脂製(感光粘着型)
実施例の透過型スクリーン10及び背面投射型表示装置1、多画面表示装置M1を作成し、実際に映像源LS1,LS2から映像光L1,L2を投射し、透過型スクリーンに表示される映像を観察した。
実施例の透過型スクリーン10を用いる背面投射型表示装置1を備える多画面表示装置M1では、各透過型スクリーン10に表示される映像は、明るく、コントラストが高く、良好であった。また、実施例の多画面表示装置M1では、各映像源が投射する映像の境界が目立たず、ユニフォミティも良好であった。
さらに、透過型スクリーン10を用いる背面投射型表示装置1を備える多画面表示装置M1では、奥行きを薄くすることができ、省スペース化できる。
(他の実施形態)
上述の実施形態に限らず、以下のような実施形態としてもよい。
図7及び図8は、他の実施形態の透過型スクリーン10の一例を示す図である。なお、図7,図8及び以降の説明において、前述した実施形態と同様の機能を果たす部分には、同一の符号又は末尾に同一の符号を付して、重複する説明を適宜省略する。
図7では、他の実施形態の透過型スクリーン10のプリズム層11の画面上下方向に平行であってスクリーン面に直交する断面の一部を拡大して表示している。図7(a)は、領域Aに相当し、図7(b)は、領域B1に相当する。
透過型スクリーン10は、光制御層12を備えず、図7(a),(b)に示すように、光吸収作用を有する帯状の光吸収部であるブラックストライプ部15をプリズム層11の出光側の面に複数備える形態としてもよい。光拡散層13は、このブラックストライプ部15の出光側に接合層14を介して一体に積層可能である。
このブラックストライプ部15は、単位プリズム111によって偏向された光が透過しない領域(非透過領域)に形成されている。従って、映像光L1,L2を効率よく観察者側へ出射でき、かつ、不要な外光を吸収できる。
なお、領域B2のプリズム層11及びブラックストライプ部15に関しては、図示していないが、図7(b)に示す領域B1のプリズム層11及びブラックストライプ部15の上下方向を反転させたものに等しい。
このようなブラックストライプ部15は、以下のような製造方法により形成することができる。
例えば、ブラックストライプ部15は、所謂セルフアライメント法を用いてことができる。まず、初期状態では粘着性を有し、感光することにより粘着性を失い硬化するという性質を有する感光性粘着剤をプリズム層11の出光側の面に塗布又は転写して不図示の感光性粘着剤層を形成し、映像源LS1,LS2に相当する位置から、感光性粘着剤層が感光する光を照射する露光作業を行い、光が透過した部分を硬化させる。そして、感光性粘着剤層の感光済みとなった部分を洗浄等で除去し、粘着性を有する未感光の部分に黒色粒子や黒色インキ等を塗付することにより、ブラックストライプ部15を形成することができる。
なお、上記の例に限らず、感光性粘着剤層は、光吸収材を含有する感光性粘着剤を用いて形成してもよい。さらに、例えば、黒色等に着色された粘着性を有する感光性粘着剤が片面に塗付された透明基材を、プリズム層11の出光側の面にラミネートし、露光作業後に透明基材を剥離することにより、ブラックストライプ部15を形成することもできる。
感光性粘着剤層の感光済みの部分は、光透過性を有するならば、除去せずに残しておいてもよいし、感光済みの部分の除去方法は、特に限定しない。
また、ブラックストライプ部15は、例えば、レーザーアブレーション法を用いて形成することができる。まず、プリズム層11の出光側の面に、ラミネートや転写、塗布等により、黒色等のインキ層や黒色等に着色された樹脂層等を形成する。そして、映像源LS1,LS2に相当する位置からレーザ光を照射し、レーザ光が透過する部分に位置するインキ層や樹脂層を、溶融、昇華、燃焼、爆融、削摩等のアブレーションにより除去する。これにより、ブラックストライプ部15が形成される。
このような方法を用いることにより、ブラックストライプ部15と、単位プリズム111との位置あわせ作業が不要になり、容易にかつ安価に形成することができる。
図8では、他の実施形態の透過型スクリーン10の層構成等を説明している。
図8(a)に示すように、光拡散層13は、プリズム層11及び光制御層12とは別体とし、2枚ものの透過型スクリーン10−2としてもよい。
また、このような2枚ものの透過型スクリーンとするとき、図8(b)に示すように、光拡散層として、プリズム層11及び光制御層12の出光側に、入光側の面に単位レンズ161が配列されたレンチキュラーレンズシート16を配置してもよい。単位レンズ161は、円柱状又は楕円柱の一部形状であり、稜線方向(長手方向)を画面上下方向とし、画面左右方向に複数配列されている形態であり、画面左右方向において光を拡散することができ、画面左右方向の視野角を十分に確保することができる。なお、単位レンズ161の配列方向は、画面上下方向としてもよく、所望する光学性能や、光制御層12の光透過部122及び光吸収部123の配列方向等に応じて、適宜設定可能である。
さらに、図8(c),(d)に示すように、プリズム層11の出光側に、その出光側の面に単位レンズ171が配列されたリニアフレネルレンズ形状を有するリニアフレネルレンズ層17が接合層14等により一体に積層された偏向光学シートと、この偏向光学シートの出光側に配置され、レンチキュラーレンズシート16の出光側に光制御層12が不図示の接合層等により一体に積層された光学シートとを組み合わせた2枚ものの透過型スクリーン10−3としてもよい。このような形態としても、光線を効率よく制御でき、良好な映像を表示することができる。
透過型スクリーン10は、上述の例に限らず、所望する光学性能や使用環境等に応じて、各種層を選択して設けてもよい。
(変形形態)
以上説明した実施形態に限定されることなく、種々の変形や変更が可能であって、それらも本発明の範囲内である。
(1)本実施形態において、プリズム層11によって映像光L1,L2がスクリーン面の略法線方向(正面方向)へ偏向される例を示したが、透過型スクリーン10に対して想定される観察者の位置に応じて、スクリーン面の法線方向に対して画面上下方向において所定の角度をなす方向に偏向するものとしてもよい。
このとき、光制御層12の光透過部122及び光吸収部123の界面の角度θは、その偏向する方向に応じて、適宜設定すればよい。
(2)本実施形態において、光吸収部123は、光吸収材を含有する樹脂により形成される例を示したが、これに限らず、例えば、光透過部122間に、黒色ビーズ等をスキージングにより充填して形成する形態としてもよい。このとき、黒色ビーズの直径は、1〜10μm程度が望ましい。ビーズの直径は、上記範囲よりも小さいとスキージングによるかきとりが難しくなり、10μmを越えると光透過部122間への充填が困難となり、充填不足となる。
このような光吸収部123とした場合にも、黒色ビーズが充填される形態とすることにより、ビーズ間に空隙を有する形態となり、光吸収部123の屈折率が、光透過部122の屈折率よりも低くなる。
また、本実施形態において、光吸収部123は、光透過部122間に充填される形態を示したが、これに限らず、例えば、光透過部122よりも屈折率が低く、光吸収材を含有し、光透過部122の斜面に沿って所定の厚さで形成される樹脂膜を光吸収部123としてもよい。
さらに、本実施形態において、光吸収部123と光透過部122との界面部分に、光透過部122よりも屈折率が低い透光性を有する樹脂膜を形成し、その出光側に光吸収部123を形成する形態としてもよい。
(3)本実施形態において、プリズム基材部113は、光拡散作用を有していない例を挙げて説明したが、これに限らず、例えば、プリズム基材部113は、拡散材を含有し、光拡散作用を有する形態としてもよい。
(4)本実施形態において、透過型スクリーン10は、光制御層12を1層のみ備える例を示したが、これに限らず、光透過部122及び光吸収部123が画面左右方向に配列される第2の光制御層を、光制御層12の出光側や入光側に一体に積層する形態としてもよい。このような形態とすることにより、より外光や迷光を吸収でき、かつ、映像光の出射角度を画面上下方向及び画面左右方向の2方向において制御できる。
また、本実施形態において、光吸収部123は、図6等に示す断面形状が略等脚台形形状であり、画面上下方向において対称な形状である例を示したが、これに限らず、所望する光学性能や使用環境等に応じて、画面上下方向において非対称な形状としてもよい。
(5)本実施形態において、プリズム層11及び光制御層12が、接合層14により接合され、一体となっている例を示したが、これに限らず、例えば、プリズム基材部113(又は、基材部121)の入光側の面に光学形状部112を形成し、出光側の面に光透過部122及び光吸収部123を形成する形態としてもよい。このような層構成とすることにより、透過型スクリーン10を形成する部材数を減らし、低コスト化・薄型化を図ることができる。また、透過型スクリーン10の各層による界面の数が減るので、界面を透過する際の光の損失を低減することができる。
(6)本実施形態において、光拡散層13は、光を等方的に拡散する作用を有する例を示したが、これに限らず、例えば、画面上下方向における拡散作用が小さく、画面左右方向における拡散作用が大きいといった異方性を有する拡散作用を有する光拡散層を用いてもよい。このような光拡散層としては、例えば、針状や楕円状等の光拡散材を含有し、その光拡散材が所定の方向に配向されたものを用いることができる。
(7)本実施形態において、透過型スクリーン10は、例えば、光拡散層13の出光側や入光側等に、所定の透過率となるように黒色等の暗色径の顔料や染料等を含有し、着色された着色層を形成してもよい。このような着色層を設けることにより、外光や迷光の吸収効果を高め、コントラストを向上させることができる。
(8)本実施形態において、最も出光側に位置する層として、反射防止機能等の各種機能を備える表面層を備えていてもよい。この表面層は、例えば、ハードコート機能や、反射防止機能、帯電防止機能、防汚機能、紫外線吸収機能、防眩機能等の各種機能を適宜選択して備える形態としてよい。
(9)本実施形態において、多画面表示装置M1は、各透過型スクリーン10の表示面が同一平面状に位置するように配列される例を示したが、これに限らず、各表示面が所定の角度をなすように配置してもよい。
図9は、変形形態の多画面表示装置M2を説明する図である。図9では、理解を容易にするために、透過型スクリーン10のみを示している。
図9に示すように、例えば、各透過型スクリーン10の表示面が所定の角度をなし、観察者Oを3方から取り囲むように、背面投射型表示装置1を配置としてもよい。
また、本実施形態において、図1等に示すように、透過型スクリーン10に対して背面側の画面上下方向の上側・下側に映像源LS1,LS2が位置する形態を示したが、これに限らず、背面側の画面左右方向の左側・右側に映像源LS1,LS2が位置する形態としてもよい。即ち、背面投射型表示装置は、透過型スクリーン10の画面中央を通りスクリーン面の法線方向に伸びる直線を軸として、背面投射型表示装置1を90°回転させた形態としてもよい。このとき、背面投射型表示装置は、画面上下方向に配列されて、多画面表示装置を形成する。
なお、本実施形態及び変形形態は、適宜組み合わせて用いることもできるが、詳細な説明は省略する。また、本発明は以上説明した実施形態等によって限定されることはない。
1 背面投射型表示装置
10 透過型スクリーン
11 プリズム層
111 単位プリズム
112 光学形状部
113 プリズム基材部
12 光制御層
121 基材部
122 光透過部
123 光吸収部
13 光拡散層
LS1,LS2 映像源
M1 多画面表示装置

Claims (7)

  1. 背面側から投射された映像光を観察者側へ透過して映像を表示する透過型スクリーンであって、
    映像光の入光側の面に、入光側に凸となる略三角柱状の単位光学要素が、1方向に複数配列されて形成された偏向光学層と、
    前記偏向光学層よりも出光側に形成され、光を吸収する作用を有する光吸収部と、
    を備え、
    前記単位光学要素は、一方の斜面から入射した光の少なくとも一部を他方の斜面で全反射して出光側の所定の方向へ偏向し、
    前記単位光学要素の配列方向における前記偏向光学層の一部の領域では、前記配列方向の一方側から投射された光と、前記配列方向の他方側から投射された光とが、同一の単位光学要素に入射し、略同一方向に偏向されて観察者側へ向かうこと、
    を特徴とする透過型スクリーン。
  2. 請求項1に記載の透過型スクリーンにおいて、
    前記一部の領域内の前記配列方向の一方側及び他方側から投射された光のスクリーン面に対する入射角度が等しい点では、前記単位光学要素の配列方向に平行であってスクリーン面に直交する断面での前記単位光学要素の断面形状は、略二等辺三角形状であること、
    を特徴とする透過型スクリーン。
  3. 請求項1又は請求項2に記載の透過型スクリーンにおいて、
    前記光吸収部は、前記偏向光学層で偏向された光が透過しない領域に形成されること、
    を特徴とする透過型スクリーン。
  4. 請求項1又は請求項2に記載の透過型スクリーンにおいて、
    前記偏向光学層よりも出光側に、光を透過する光透過部と前記光吸収部とがスクリーン面に沿って交互に配置された光制御層を備え、
    前記光吸収部は、前記光吸収部及び前記光透過部の配列方向に平行であってスクリーン面に直交する断面における断面形状が、出光側に向けて寸法が大きくなる楔形形状であり、
    前記光吸収部の屈折率は、光透過部の屈折率よりも小さいこと、
    を特徴とする透過型スクリーン。
  5. 請求項1から請求項4までのいずれか1項に記載の透過型スクリーンにおいて、
    光を拡散する作用を有する光拡散層を備えること、
    を特徴とする透過型スクリーン。
  6. 請求項1から請求項5までのいずれか1項に記載の透過型スクリーンと、
    前記透過型スクリーンよりも背面側に位置し、前記単位光学要素の配列方向の一方側及び他方側からそれぞれ映像光を照射する2つの映像源と、
    を備える背面投射型表示装置。
  7. 請求項6に記載の背面投射型表示装置を複数備え、各前記透過型スクリーンの表示画面が隣接するように複数配列した多画面表示装置。
JP2012274953A 2012-12-17 2012-12-17 透過型スクリーン、背面投射型表示装置、多画面表示装置 Pending JP2014119607A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012274953A JP2014119607A (ja) 2012-12-17 2012-12-17 透過型スクリーン、背面投射型表示装置、多画面表示装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012274953A JP2014119607A (ja) 2012-12-17 2012-12-17 透過型スクリーン、背面投射型表示装置、多画面表示装置

Publications (1)

Publication Number Publication Date
JP2014119607A true JP2014119607A (ja) 2014-06-30

Family

ID=51174489

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012274953A Pending JP2014119607A (ja) 2012-12-17 2012-12-17 透過型スクリーン、背面投射型表示装置、多画面表示装置

Country Status (1)

Country Link
JP (1) JP2014119607A (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107329359A (zh) * 2017-08-29 2017-11-07 成都菲斯特科技有限公司 背投影透光投影屏幕及投影系统
WO2018074623A1 (ko) * 2016-10-19 2018-04-26 주식회사 케이티 굴절식 광학 스크린 및 이를 이용한 플로팅 홀로그램 시스템
US20180252934A1 (en) * 2016-12-28 2018-09-06 Kt Corporation Floating hologram apparatus

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06265895A (ja) * 1993-03-16 1994-09-22 Casio Comput Co Ltd 光源装置
JPH09133905A (ja) * 1995-06-21 1997-05-20 Thomson Multimedia Sa 光偏向装置及びその装置を利用する液晶バルブ型の投射システム
JP2001249407A (ja) * 2000-03-07 2001-09-14 Dainippon Printing Co Ltd プリズムシート、投射スクリーン及びマルチ投射システム
JP2002352611A (ja) * 2001-05-24 2002-12-06 Sharp Corp 照明装置およびそれを備える表示装置
JP2004093918A (ja) * 2002-08-30 2004-03-25 Dainippon Printing Co Ltd フレネルレンズシート、及びこれを用いた透過型スクリーン
JP2007010776A (ja) * 2005-06-28 2007-01-18 Mitsubishi Electric Corp プリズムシート、プロジェクタスクリーン及びマルチ画面表示装置
JP2008256896A (ja) * 2007-04-04 2008-10-23 Toppan Printing Co Ltd 微細構造シート、およびそれを用いた透過型スクリーン
JP2012078516A (ja) * 2010-09-30 2012-04-19 Dainippon Printing Co Ltd インタラクティブボード用の透過型スクリーン、インタラクティブボード、インタラクティブボードシステム

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06265895A (ja) * 1993-03-16 1994-09-22 Casio Comput Co Ltd 光源装置
JPH09133905A (ja) * 1995-06-21 1997-05-20 Thomson Multimedia Sa 光偏向装置及びその装置を利用する液晶バルブ型の投射システム
JP2001249407A (ja) * 2000-03-07 2001-09-14 Dainippon Printing Co Ltd プリズムシート、投射スクリーン及びマルチ投射システム
JP2002352611A (ja) * 2001-05-24 2002-12-06 Sharp Corp 照明装置およびそれを備える表示装置
JP2004093918A (ja) * 2002-08-30 2004-03-25 Dainippon Printing Co Ltd フレネルレンズシート、及びこれを用いた透過型スクリーン
JP2007010776A (ja) * 2005-06-28 2007-01-18 Mitsubishi Electric Corp プリズムシート、プロジェクタスクリーン及びマルチ画面表示装置
JP2008256896A (ja) * 2007-04-04 2008-10-23 Toppan Printing Co Ltd 微細構造シート、およびそれを用いた透過型スクリーン
JP2012078516A (ja) * 2010-09-30 2012-04-19 Dainippon Printing Co Ltd インタラクティブボード用の透過型スクリーン、インタラクティブボード、インタラクティブボードシステム

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018074623A1 (ko) * 2016-10-19 2018-04-26 주식회사 케이티 굴절식 광학 스크린 및 이를 이용한 플로팅 홀로그램 시스템
US11385595B2 (en) 2016-10-19 2022-07-12 Kt Corporation Refractive optical screen and floating hologram system using same
US20180252934A1 (en) * 2016-12-28 2018-09-06 Kt Corporation Floating hologram apparatus
US10761342B2 (en) * 2016-12-28 2020-09-01 Kt Corporation Floating hologram apparatus
CN107329359A (zh) * 2017-08-29 2017-11-07 成都菲斯特科技有限公司 背投影透光投影屏幕及投影系统
CN107329359B (zh) * 2017-08-29 2023-06-23 成都菲斯特科技有限公司 背投影透光投影屏幕及投影系统

Similar Documents

Publication Publication Date Title
WO2011111706A1 (ja) タッチパネル機能を有する小型表示装置のディスプレイとして使用されるスクリーンおよびこれを備えたタッチパネル機能を有する小型表示装置
JP5872206B2 (ja) プロジェクション・システム
JP6717051B2 (ja) スクリーン、映像表示装置
JP2014043205A (ja) 車両用映像表示システム
JP2011209705A (ja) タッチパネル機能を有する小型表示装置のディスプレイとして使用されるスクリーンおよびこれを備えたタッチパネル機能を有する小型表示装置
JP2013218073A (ja) 反射スクリーン、映像表示システム
JP6028829B1 (ja) 反射型スクリーン、映像表示システム
JP5939116B2 (ja) 反射スクリーン、映像表示システム
JP2014186249A (ja) スクリーンユニット、マルチスクリーン、背面投射型表示装置
JP2014199375A (ja) 反射スクリーン、映像表示システム
JP5790168B2 (ja) 反射型スクリーン、及び反射型投射システム
JP2015075535A (ja) 透過型スクリーンおよび表示装置
JP2016062031A (ja) 反射型スクリーン、映像表示システム
JP2014119607A (ja) 透過型スクリーン、背面投射型表示装置、多画面表示装置
JP5970920B2 (ja) 透過型スクリーン、背面投射型表示装置
JP2014142429A (ja) 反射型スクリーン、前面投射型表示装置、多画面表示装置
JP2013213882A (ja) 反射スクリーン、映像表示システム
JP2014115343A (ja) 透過型スクリーン、背面投射型表示装置
JP2011209706A (ja) タッチパネル機能を有する小型表示装置のディスプレイとして使用されるスクリーンおよびこれを備えたタッチパネル機能を有する小型表示装置
JP2016114628A (ja) 反射スクリーン、映像表示システム
JP6164000B2 (ja) 透過型スクリーン、および、映像表示システム
JP2015152891A (ja) フレネルレンズシート、透過型スクリーン、背面投射型表示装置
JP6398517B2 (ja) 反射型スクリーン、映像表示システム
JP2018025620A (ja) 透過型スクリーン、映像表示装置
JP2017058471A (ja) 透過型スクリーン及び表示装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151029

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20160928

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161012

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161018

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20170411