JP2014119388A - 応力計測方法 - Google Patents
応力計測方法 Download PDFInfo
- Publication number
- JP2014119388A JP2014119388A JP2012276000A JP2012276000A JP2014119388A JP 2014119388 A JP2014119388 A JP 2014119388A JP 2012276000 A JP2012276000 A JP 2012276000A JP 2012276000 A JP2012276000 A JP 2012276000A JP 2014119388 A JP2014119388 A JP 2014119388A
- Authority
- JP
- Japan
- Prior art keywords
- load torque
- stress
- outer ring
- temperature
- cycle
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Radiation Pyrometers (AREA)
Abstract
【課題】回転状態にある回転装置に発生する応力を、高精度に計測することができる応力計測方法を提供すること。
【解決手段】等速ジョイント1の回転動作に伴って生じる応力を、応力計測装置60を用いて計測する。応力計測装置60を用いた応力計測では、外輪10を回転させるとともに、外輪10に負荷トルクを付与しつつ、当該負荷トルクの大きさを、所定の負荷トルク周期で変動させる。そして、外輪10の計測対象部位を、赤外線カメラ63を用いて繰り返し赤外線撮影し、その撮影データと当該撮影データ取得時の負荷トルクの大きさとに基づいて、計測対象部位における負荷トルク位相−熱弾性効果温度変動グラフを得ることができ、この負荷トルク位相−熱弾性効果温度変動グラフに基づいて、計測対象部位Fに発生する応力の大きさを算出する。
【選択図】図1
【解決手段】等速ジョイント1の回転動作に伴って生じる応力を、応力計測装置60を用いて計測する。応力計測装置60を用いた応力計測では、外輪10を回転させるとともに、外輪10に負荷トルクを付与しつつ、当該負荷トルクの大きさを、所定の負荷トルク周期で変動させる。そして、外輪10の計測対象部位を、赤外線カメラ63を用いて繰り返し赤外線撮影し、その撮影データと当該撮影データ取得時の負荷トルクの大きさとに基づいて、計測対象部位における負荷トルク位相−熱弾性効果温度変動グラフを得ることができ、この負荷トルク位相−熱弾性効果温度変動グラフに基づいて、計測対象部位Fに発生する応力の大きさを算出する。
【選択図】図1
Description
この発明は、等速ジョイントや軸受等の回転装置に発生する応力を計測する応力計測方法に関する。
等速ジョイントは、ジョイント角が付与されたシャフト間において等速に回転駆動力を伝達できる継手として、自動車等の車両や産業機械の駆動系に用いられている。この等速ジョイントを最適設計するためには、実用状態にある等速ジョイントの構成部材にどのように応力が発生しているかを把握することが重要である。
被検体に発生している応力を検出する手法として、赤外線カメラにより被検体表面の温度変化を検出し、その温度変化に基づいて応力を算出する方法が提案されている(たとえば、特許文献1参照)。
被検体に発生している応力を検出する手法として、赤外線カメラにより被検体表面の温度変化を検出し、その温度変化に基づいて応力を算出する方法が提案されている(たとえば、特許文献1参照)。
特許文献1〜3に記載の手法を用いて、等速ジョイント等の回転装置に発生する応力を検出することが考えられる。しかしながら、特許文献1〜3の赤外線応力画像システムは、非回転状態にある被検出体の温度変化を検出するものであり、回転状態にある回転装置に生じる応力の検出には適さない。そのため、応力を高精度に求めることが困難である。
本発明は、このような背景の下でなされたものであり、回転状態にある回転装置に発生する応力を、高精度に計測することができる応力計測方法を提供することを目的とする。
本発明は、このような背景の下でなされたものであり、回転状態にある回転装置に発生する応力を、高精度に計測することができる応力計測方法を提供することを目的とする。
前記の目的を達成するための請求項1記載の発明は、回転装置(1)の回転動作に伴って生じる応力を計測するための応力計測方法であって、前記回転装置を回転させる回転ステップ(S11)と、前記回転ステップに並行して、前記回転装置に負荷トルクを付与しつつ、当該負荷トルクの大きさを、所定の負荷トルク周期で変動させる負荷トルク変動ステップ(S12)と、前記回転装置に設定された計測対象部位(F)を繰り返し赤外線撮影する赤外線撮影ステップ(S14)と、前記赤外線撮影ステップにおける撮影データと当該撮影データ取得時の負荷トルクの大きさとに基づいて、前記計測対象部位における、前記負荷トルクの大きさと熱弾性効果のみに起因する温度変動との対応関係である負荷トルク−熱弾性効果温度変動対応関係を算出する負荷トルク−熱弾性効果温度変動算出ステップ(S17)と、前記負荷トルク−熱弾性効果温度変動対応関係に基づいて、前記計測対象部位に発生する応力の大きさを算出する応力算出ステップ(S18)とを含む、応力計測方法である。
なお、この項において、括弧内の英数字は、後述の実施形態における対応構成要素の参照符合を表すものであるが、これらの参照符号により特許請求の範囲を実施形態に限定する趣旨ではない。
この発明の方法によれば、回転装置を回転させ、かつ当該回転装置に付与する負荷トルクを変動させつつ、回転装置の所定の計測対象部位を繰り返し赤外線撮影する。そして、赤外線撮影の撮影データと当該撮影データ取得時の負荷トルクの大きさとに基づいて、計測対象部位における負荷トルク−熱弾性効果温度変動対応関係を算出し、この対応関係に基づいて当該計測対象部位における、前記負荷トルクの大きさに対応する発生応力の大きさを算出する。これにより、回転装置に発生する応力(ひいては回転装置の応力分布)を高精度に計測することができ、その結果、回転装置の最適設計が可能になる。
この発明の方法によれば、回転装置を回転させ、かつ当該回転装置に付与する負荷トルクを変動させつつ、回転装置の所定の計測対象部位を繰り返し赤外線撮影する。そして、赤外線撮影の撮影データと当該撮影データ取得時の負荷トルクの大きさとに基づいて、計測対象部位における負荷トルク−熱弾性効果温度変動対応関係を算出し、この対応関係に基づいて当該計測対象部位における、前記負荷トルクの大きさに対応する発生応力の大きさを算出する。これにより、回転装置に発生する応力(ひいては回転装置の応力分布)を高精度に計測することができ、その結果、回転装置の最適設計が可能になる。
また、回転装置に近づいた状態で当該回転装置を赤外線撮影することができるので、撮影データを解像度の大きなもの(画素数の大きなもの)にできる。これにより、高解像度の応力分布を得ることができ、その結果、応力分布を局所的に拡大することも可能である。
また、回転装置の発生応力の大きな面(極大応力の発生面)と発生応力の小さな面(極小応力の発生面)との温度差に基づいて発生応力を計測することが考えられるが、この場合、回転装置のジョイント角が0°である場合には応力が変動しないために、回転装置に発生する応力を計測できないという問題がある。
また、回転装置の発生応力の大きな面(極大応力の発生面)と発生応力の小さな面(極小応力の発生面)との温度差に基づいて発生応力を計測することが考えられるが、この場合、回転装置のジョイント角が0°である場合には応力が変動しないために、回転装置に発生する応力を計測できないという問題がある。
これに対し、回転装置に外部から負荷トルクを付与することにより回転装置に応力を発生させるので、回転装置のジョイント角が0°の場合であってもその回転装置に発生する応力を良好に計測することができる。
請求項2に記載の発明は、前記負荷トルク−熱弾性効果温度変動算出ステップは、前記赤外線撮影ステップにおける各撮影データから得られた各温度情報を、前記負荷トルクの1周期の位相に応じてプロットして、前記負荷トルクの位相と前記計測対象部位の温度との対応関係である負荷トルク位相−温度対応関係を示す負荷トルク位相−温度グラフを作成するグラフ作成ステップ(S17)と、前記負荷トルク位相−温度グラフに前記負荷トルクの波形(正弦波)を前記グラフにフイッティングさせることにより、前記測対象部位における前記負荷トルク−熱弾性効果温度変動対応関係を抽出する負荷トルク−熱弾性効果温度変動対応関係抽出ステップ(S17)とを有する、請求項1に記載の応力計測方法である。
請求項2に記載の発明は、前記負荷トルク−熱弾性効果温度変動算出ステップは、前記赤外線撮影ステップにおける各撮影データから得られた各温度情報を、前記負荷トルクの1周期の位相に応じてプロットして、前記負荷トルクの位相と前記計測対象部位の温度との対応関係である負荷トルク位相−温度対応関係を示す負荷トルク位相−温度グラフを作成するグラフ作成ステップ(S17)と、前記負荷トルク位相−温度グラフに前記負荷トルクの波形(正弦波)を前記グラフにフイッティングさせることにより、前記測対象部位における前記負荷トルク−熱弾性効果温度変動対応関係を抽出する負荷トルク−熱弾性効果温度変動対応関係抽出ステップ(S17)とを有する、請求項1に記載の応力計測方法である。
赤外線撮影の撮影データに基づく温度変動には、熱弾性効果のみに起因する温度変動以外の別の要因(摩擦熱などの不要成分やランダムノイズ)に基づく誤差が入り込んでいる。
この発明の方法によれば、赤外線撮影の各撮影データから得られた温度情報を負荷トルクの1周期の位相に応じてプロットして負荷トルク位相−温度グラフを作成し、そのグラフに負荷トルクの波形(正弦波)をフイッティングさせることにより、熱弾性効果に起因する温度変動以外の別の要因を除去して、熱弾性効果のみに起因する温度変動(負荷変動のみに同期する温度変動)を抽出することができる。
この発明の方法によれば、赤外線撮影の各撮影データから得られた温度情報を負荷トルクの1周期の位相に応じてプロットして負荷トルク位相−温度グラフを作成し、そのグラフに負荷トルクの波形(正弦波)をフイッティングさせることにより、熱弾性効果に起因する温度変動以外の別の要因を除去して、熱弾性効果のみに起因する温度変動(負荷変動のみに同期する温度変動)を抽出することができる。
請求項3に記載のように、前記トルク変動ステップは、前記負荷トルクの大きさを正弦波状に変動させてもよい。
請求項4に記載の発明は、前記赤外線撮影ステップは、前記計測対象部位を所定の撮影周期で繰り返し撮影するものであり、前記負荷トルク周期は、撮影周期の整数倍ではない所定の周期である、請求項1〜3のいずれか一項に記載の応力計測方法である。
請求項4に記載の発明は、前記赤外線撮影ステップは、前記計測対象部位を所定の撮影周期で繰り返し撮影するものであり、前記負荷トルク周期は、撮影周期の整数倍ではない所定の周期である、請求項1〜3のいずれか一項に記載の応力計測方法である。
この発明の方法によれば、負荷トルク周期が撮影周期とずれているので、異なる大きさの負荷トルクを計測対象部位に付与することができる。そして、赤外線撮影を複数回繰り返すことにより、異なる大きさの負荷トルクに対応する計測対象部位の撮影データ(温度データ)を取得することができる。
請求項5に記載の発明は、前記回転ステップは、前記回転装置を所定の回転周期で回転させるものであり、前記赤外線撮影ステップは、固定的に配置された赤外線カメラ(63)を用いて撮影するものであり、前記撮影周期が前記回転周期の整数倍である(同期している)、請求項4に記載の応力計測方法である。
請求項5に記載の発明は、前記回転ステップは、前記回転装置を所定の回転周期で回転させるものであり、前記赤外線撮影ステップは、固定的に配置された赤外線カメラ(63)を用いて撮影するものであり、前記撮影周期が前記回転周期の整数倍である(同期している)、請求項4に記載の応力計測方法である。
この発明の方法によれば、回転状態にある回転装置の計測対象部位を、比較的簡単に繰返し撮影することができる。
請求項6に記載の発明は、前記回転部材は、同心状に互いに回転可能に配置された外輪(10)および内側部材(20)と、それらの間に介在され、前記外輪および前記内側部材の相対回転時に負荷を生じさせる転動体(30)とを含み、前記トルク変動ステップは、前記外輪と前記内側部材との相対速度を変化させることにより、前記回転装置に付与される負荷トルクを変動させる、請求項1〜5のいずれか一項に記載の応力計測方法である。
請求項6に記載の発明は、前記回転部材は、同心状に互いに回転可能に配置された外輪(10)および内側部材(20)と、それらの間に介在され、前記外輪および前記内側部材の相対回転時に負荷を生じさせる転動体(30)とを含み、前記トルク変動ステップは、前記外輪と前記内側部材との相対速度を変化させることにより、前記回転装置に付与される負荷トルクを変動させる、請求項1〜5のいずれか一項に記載の応力計測方法である。
この発明の方法によれば、外輪と内側部材との相対速度を変化させることにより、比較的簡単な手法で負荷トルク変動を実現することができる。
以下、本発明の実施形態に係る応力測定方法について図面を参照しつつ説明する。
図1は、本発明の一実施形態に係る応力計測方法を実施するための応力計測装置60の概略構成を示す図である。応力計測装置60は、回転装置の一例である等速ジョイント1の回転中に、当該等速ジョイント1の外輪10に発生する応力を計測するための装置である。
図1は、本発明の一実施形態に係る応力計測方法を実施するための応力計測装置60の概略構成を示す図である。応力計測装置60は、回転装置の一例である等速ジョイント1の回転中に、当該等速ジョイント1の外輪10に発生する応力を計測するための装置である。
この応力計測装置60は、計測対象の等速ジョイント1の外輪10を支持しつつ、その外輪10を回転させるための第1回転支持機構61と、等速ジョイント1の内輪(内側部材)20を支持しつつ、その内輪20を回転させるための第2回転支持機構62と、等速ジョイント1の外輪10を赤外線撮影するための(1台の)赤外線カメラ(赤外線サーモグラフィ)63と、モニタを有する表示装置66とを備えている。
第1回転支持機構61は、軸回りに回転可能に設けられた第1回転駆動軸61Aと、第1回転駆動軸61Aを回転させるモータ等の第1回転駆動機構61Bとを備えている。
第2回転支持機構62は、軸回りに回転可能に設けられた第2回転駆動軸62Aと、第2回転駆動軸62Aを回転させるモータ等の第2回転駆動機構62Bとを備えている。
等速ジョイント1に所定のジョイント角が付与された状態で(外輪10および内輪20の軸心が位置決めされた状態で)外輪10のシャフト10Sを第1回転駆動軸61Aに固定連結するとともに、内輪20に一体回転可能に設けられたシャフト50を第2回転駆動軸62Aに固定連結される。これにより、外輪10と内輪20の位置関係が設定されつつ、等速ジョイント1が第1および第2回転支持機構61,62によって保持される。そして、第1回転支持機構61の回転に伴う第1回転駆動軸61Aの回転により、外輪10が回転させられ、また、第2回転支持機構62の回転に伴う第2回転駆動軸62Aの回転により、内輪20が回転させられる。外輪10と内輪20との相対回転速度を変えることにより、等速ジョイント1に負荷トルクが付与される。
第2回転支持機構62は、軸回りに回転可能に設けられた第2回転駆動軸62Aと、第2回転駆動軸62Aを回転させるモータ等の第2回転駆動機構62Bとを備えている。
等速ジョイント1に所定のジョイント角が付与された状態で(外輪10および内輪20の軸心が位置決めされた状態で)外輪10のシャフト10Sを第1回転駆動軸61Aに固定連結するとともに、内輪20に一体回転可能に設けられたシャフト50を第2回転駆動軸62Aに固定連結される。これにより、外輪10と内輪20の位置関係が設定されつつ、等速ジョイント1が第1および第2回転支持機構61,62によって保持される。そして、第1回転支持機構61の回転に伴う第1回転駆動軸61Aの回転により、外輪10が回転させられ、また、第2回転支持機構62の回転に伴う第2回転駆動軸62Aの回転により、内輪20が回転させられる。外輪10と内輪20との相対回転速度を変えることにより、等速ジョイント1に負荷トルクが付与される。
赤外線カメラ63は、物体の表面から放出される赤外線を検出することにより、赤外線撮影する。具体的には、赤外線カメラ63は、赤外線センサの検出を電気信号に変換し、画像信号として出力する。赤外線カメラ63は固定的に配置されており、計測対象である外輪10に向けて設置されている。
また、応力計測装置60は制御・処理部70を備えている。制御・処理部70は、赤外線カメラ63により出力された画像信号を処理するための画像処理部64と、画像処理部64の処理結果に基づき等速ジョイント1の応力分布を算出する応力分布算出部65とを備えている。応力分布算出部65による算出結果は表示装置66に与えられ、そのモニタに表示される。また、制御・処理部70の動作制御部67には、第1および第2回転駆動機構61B,62Bならびに赤外線カメラ63等が制御対象として接続されている。動作制御部67は、制御・処理部70のROM(図示しない)等に記憶された制御プログラムに基づいて、第1および第2回転駆動機構61B,62Bならびに赤外線カメラ63を制御する。
また、応力計測装置60は制御・処理部70を備えている。制御・処理部70は、赤外線カメラ63により出力された画像信号を処理するための画像処理部64と、画像処理部64の処理結果に基づき等速ジョイント1の応力分布を算出する応力分布算出部65とを備えている。応力分布算出部65による算出結果は表示装置66に与えられ、そのモニタに表示される。また、制御・処理部70の動作制御部67には、第1および第2回転駆動機構61B,62Bならびに赤外線カメラ63等が制御対象として接続されている。動作制御部67は、制御・処理部70のROM(図示しない)等に記憶された制御プログラムに基づいて、第1および第2回転駆動機構61B,62Bならびに赤外線カメラ63を制御する。
図2は、応力計測装置60の計測対象である等速ジョイント1の軸方向断面図である。等速ジョイント1は、カップ状の外輪10と、外輪10の内側に配置された環状の内輪20と、外輪10と内輪20との間に転動可能に介装される複数個(たとえば6個)のボール(転動体)30と、外輪10と内輪20との間にボール30を保持しておくための保持器40と、内輪20と一体回転可能に設けられたシャフト50とを備える固定式ボール型等速ジョイント(一般に「ツェッパ型等速ジョイント」ともいう)である。外輪10には第1回転駆動機構61B(図1参照)からの回転駆動力が付与されるようになっており、また、内輪20には第2回転駆動機構62B(図1参照)からの回転駆動力が付与されるようになっている。
外輪10の筒状部分の内周面には、外輪回転軸方向(図2の左右方向)に延びる外輪ボール溝11が、外輪回転軸の周方向に等間隔に複数本(たとえば6本)形成されている。各外輪ボール溝11における外輪回転軸に直交する断面形状は、ほぼ円弧凹状をなしている。外輪10には、第1回転駆動軸61A(図1参照)に連結固定されたシャフト10Sが一体的に形成されている。
内輪20の外周面には、内輪回転軸方向(図2の左右方向)に延びる内輪ボール溝21が、内輪回転軸の周方向に等間隔に複数本(たとえば6本)形成されている。各内輪ボール溝21における内輪回転軸に直交する断面形状は、ほぼ円弧凹状をなしている。各内輪ボール溝21は、対応する外輪ボール溝11にそれぞれ対向するように位置している。また、内輪20の内周面には、内歯スプライン22が形成されている。
各ボール30は、その外側が外輪10の外輪ボール溝11に、その内側が内輪20の内輪ボール溝21に嵌っている。そして、各ボール30は外輪ボール溝11および内輪ボール溝21に沿って転動自在であるとともに、周方向には、外輪ボール溝11および内輪ボール溝21に対して動きが規制されている。すなわち、ボール30によって外輪10と内輪20とは周方向に互いにロックしている。換言すると、ボール30は、外輪10と内輪20との間で回転駆動力を伝達する役目を担っている。
環状の保持器40は、外輪10の内周面と内輪20の外周面との間に配置されている。保持器40の内周面は、内輪20の最外周面にほぼ対応する部分球面凹状に形成されている。また、保持器40の外周面は、部分球面凸状に形成されている。そして、保持器40の内周面の球面中心と外周面の球面中心は、ジョイント回転中心に対して、軸方向に等距離だけそれぞれ反対側にオフセットさせてある。また、保持器40には、周方向に等間隔に6個の開口窓部41が形成されている。この開口窓部41は、外輪ボール溝11および内輪ボール溝21と同数形成されている。そして、それぞれの開口窓部41には、ボール30が嵌め込まれている。つまり、保持器40は複数個のボール30を保持している。
シャフト50の端部には外歯スプライン51が形成されている。この外歯スプライン51に内輪20の内歯スプライン22が圧入嵌合される。
応力計測を行う試験体として用いられる際には、等速ジョイント1の表面には黒色塗料が塗布される。たとえば、外輪10の表面に合成樹脂などからなる艶消し黒色の塗料が20〜25μm程度の厚さに塗布され、これにより、試験体の表面の熱放射率が約0.94(黒体を1.00とした場合)と高くなる。これにより、熱放射によって放出する熱量を多く確保することができ、ゆえに、試験体の温度変動をより検出し易くなる。
応力計測を行う試験体として用いられる際には、等速ジョイント1の表面には黒色塗料が塗布される。たとえば、外輪10の表面に合成樹脂などからなる艶消し黒色の塗料が20〜25μm程度の厚さに塗布され、これにより、試験体の表面の熱放射率が約0.94(黒体を1.00とした場合)と高くなる。これにより、熱放射によって放出する熱量を多く確保することができ、ゆえに、試験体の温度変動をより検出し易くなる。
この発明に係る応力測定方法では、外輪10の外周における所定の計測対象部位F(図3参照)に対する温度を検出し、この検出結果に基づいて、当該計測対象部位Fに発生している応力を検出する。そして、計測対象部位Fを周方向の各所に適用することにより、周方向の温度分布ひいては、周方向の応力分布を求める。
図3は、等速ジョイント1と赤外線カメラ63との配置構成を示す模式図である。赤外線カメラ63は、外輪10の外周の計測対象部位Fに対向する位置において、当該計測対象部位Fを向けて固定配置されている。この場合、赤外線カメラ63を外輪10の外周に近接配置している(たとえば赤外線カメラ63の入射位置と外輪10との間隔が300mm程度)。
図3は、等速ジョイント1と赤外線カメラ63との配置構成を示す模式図である。赤外線カメラ63は、外輪10の外周の計測対象部位Fに対向する位置において、当該計測対象部位Fを向けて固定配置されている。この場合、赤外線カメラ63を外輪10の外周に近接配置している(たとえば赤外線カメラ63の入射位置と外輪10との間隔が300mm程度)。
図4は、外輪10の計測対象部位F(図3参照)の応力計測の流れを示す図である。この応力計測に際しては、等速ジョイント1が計測装置60の第1および第2回転支持機構61,62(図1参照)に保持される。具体的には、等速ジョイント1に所定のジョイント角が付与された状態で、シャフト10S(図1参照)およびシャフト50(図1参照)が、第1および第2回転駆動軸61A,62Aにそれぞれ固定連結される。このとき、等速ジョイント1に所定のジョイント角が付与された状態が維持されることにより、等速ジョイント1は実用状態と同様に作動する。
等速ジョイント1が第1および第2回転支持機構61,62に保持されると、動作制御部67(図1参照)は、第1および第2回転駆動機構61B,62Bを制御して、第1および第2回転駆動軸61A,62Aをそれぞれ回転開始させる。これらの回転開始に伴って、等速ジョイント1の外輪10および内輪20がそれぞれ回転開始される(ステップS11)。
等速ジョイント1の回転状態において、外輪10の回転速度はたとえば100rpm程度に一定に保たれるが、内輪20の回転速度は90〜110rpmの範囲内で一定周期で加減速される。そして、外輪10と内輪20との回転速度の差に基づいて、等速ジョイント1に負荷トルク変動が生じる(ステップS12)。この実施形態では、負荷トルク変動が一定周期の正弦波波形をなすように内輪20の回転速度(すなわち第1および第2回転駆動軸61A,62Aの回転速度)が加減速される。このように外輪10と内輪20との相対速度を変化させることにより、比較的簡単な手法で、等速ジョイント1に付与される負荷トルクを変動させることができる。
このとき、等速ジョイント1が1回転する間に、伝達部材として機能するボール30が外輪ボール溝11および内輪ボール溝21を図2の左右方向に往復運動する。この状態で、外輪10とボール30との間、および内輪20とボール30との間にはそれぞれ応力が生じている。これらの各応力は、等速ジョイント1に加えられる負荷トルク変動に伴って変動し、この応力変動に起因して、赤外線応力測定における熱弾性効果による温度変動が生じる。なお、ボール30の往復運動の幅は、ジョイント角によって変化するものであり、ジョイント角が大きく付与されるほど大きくなる。
この応力計測では、赤外線カメラ63の繰返し撮影の撮影周期が外輪10の回転周期と一致している。つまり、赤外線カメラ63の繰返し撮影の撮影タイミングを、外輪10の計測対象部位Fが赤外線カメラ63の正面を通過するタイミングと合致させることにより、外輪10の計測対象部位Fを連続的に(繰返し)撮影することができる。これにより、回転状態にある外輪10の計測対象部位Fを、比較的簡単な手法で繰返し撮影することができる。
所定の撮影タイミングになると(ステップS13でYES、前回の撮影タイミングから撮像周期が経過すると)、赤外線カメラ63による撮影が実行される(ステップS14)。具体的には、回転状態にある外輪10の計測対象部位Fが赤外線カメラ63の計測範囲(赤外線カメラ63の正面)に到来したタイミングで、赤外線カメラ63による撮影が実行される。等速ジョイント1に生じる応力変動に対応して、外輪10に温度変動が生じる。赤外線カメラ63が外輪10の表面から放出される赤外線を検出する。赤外線カメラ63の撮影により得られた画像データは、赤外線検出時の負荷トルクの位相に対応付けて制御・処理部70のメモリ(図示しない)に記憶される。この画像データは、外輪10の計測対象部位Fの表面温度に関連するデータである。
ステップS11〜S15の処理が、予め定める回数だけ繰返し実行される(ステップS16)。
これらの処理が予め定める回数だけ繰返し実行されると、次いで、複数の撮影データから、熱弾性効果のみに起因する温度変動を抽出する熱弾性効果温度変動抽出工程(ステップS17)が実行される。
これらの処理が予め定める回数だけ繰返し実行されると、次いで、複数の撮影データから、熱弾性効果のみに起因する温度変動を抽出する熱弾性効果温度変動抽出工程(ステップS17)が実行される。
図5は、熱弾性効果温度変動抽出工程を説明するための図である。図(a)は等速ジョイント1(図2等参照)に付与される負荷トルクの変動を示し、図(b)は外輪10の計測対象部位Fの温度変化を示す。図(c)は外輪10の計測対象部位Fの温度変化を示す。
次の式(1)に示すように、外輪10の計測対象部位Fに生じる応力変動(Δσ)に対応して、当該計測対象部位Fに、熱弾性効果による計測対象部位Fの温度変動(ΔT)が生じる。
Δσ=−ΔT/k・T (k:熱弾性係数、Tは 計測対象部位Fの温度)・・・(1)
しかしながら、赤外線撮影の撮影データに基づく温度変動には、熱弾性効果のみに起因する温度変動以外の別の要因(摩擦熱などの不要成分やランダムノイズ)に基づく温度変動が含まれている。そのため、赤外線撮影の撮影データから、熱弾性効果のみに起因する温度変動のみを取り出す必要がある。
次の式(1)に示すように、外輪10の計測対象部位Fに生じる応力変動(Δσ)に対応して、当該計測対象部位Fに、熱弾性効果による計測対象部位Fの温度変動(ΔT)が生じる。
Δσ=−ΔT/k・T (k:熱弾性係数、Tは 計測対象部位Fの温度)・・・(1)
しかしながら、赤外線撮影の撮影データに基づく温度変動には、熱弾性効果のみに起因する温度変動以外の別の要因(摩擦熱などの不要成分やランダムノイズ)に基づく温度変動が含まれている。そのため、赤外線撮影の撮影データから、熱弾性効果のみに起因する温度変動のみを取り出す必要がある。
図5(b)および(c)に示すように、赤外線撮影の各撮影データから得られた温度情報を、負荷トルクの1周期の位相に応じてプロットして、これらのプロットの集合により、負荷トルク位相−温度グラフ11を作成する。そして、その負荷トルク位相−温度グラフ11に負荷トルクの正弦波をフイッティングさせる。このフイッティングは、各位相位置に対応する複数のプロットの平均の温度が負荷トルクの正弦波に合致するように行う。これにより、負荷トルクのみに同期する温度変動を取り出すことができる。したがって、負荷トルク位相と、熱弾性効果のみに起因する温度変動(熱弾性効果に起因する温度変動以外の別の要因が除去された温度変動)との対応関係を示す負荷トルク位相−熱弾性効果温度変動グラフ12(図5(c)に太線で示すグラフ)を得ることができる。
次いで、図4に示すように、負荷トルク位相−熱弾性効果温度変動グラフ12の結果から得られた温度変動(ΔT)を、計測対象部位Fにおける、各負荷トルク移動に応じた応力変動(Δσ)に、前記式(1)を用い変換する(ステップS18)。これにより、外輪10に発生する応力変動を高精度に計測することができる。
そして、計測対象部位Fを複数の周方向位置に設定し、各周方向位置において図4に示す応力計測を実施することにより、外輪10の応力分布を得ることができる。このとき、外輪10の応力分布を表示装置66のモニタに表示することもできるが、赤外線カメラ63の撮像データの解像度が高い(画素数が多い)ので、表示装置66のモニタに表示される応力分布の解像度も高い。そのため、表示装置66のモニタにおいて、オペレータの操作により、応力分布を局所的に拡大させて見ることも可能である。
そして、計測対象部位Fを複数の周方向位置に設定し、各周方向位置において図4に示す応力計測を実施することにより、外輪10の応力分布を得ることができる。このとき、外輪10の応力分布を表示装置66のモニタに表示することもできるが、赤外線カメラ63の撮像データの解像度が高い(画素数が多い)ので、表示装置66のモニタに表示される応力分布の解像度も高い。そのため、表示装置66のモニタにおいて、オペレータの操作により、応力分布を局所的に拡大させて見ることも可能である。
以上によりこの実施形態によれば、外輪10とともに内輪20を回転させ、かつ等速ジョイント1に付与する負荷トルクの大きさを正弦波状に変動させつつ、外輪10の計測対象部位Fを繰り返し赤外線撮影する。そして、赤外線撮影の各撮影データから得られた温度情報を、負荷トルクの1周期の位相に応じてプロットして負荷トルク位相−温度グラフ11を作成し、そのグラフ11に負荷トルクの正弦波をフイッティングさせることにより、熱弾性効果に起因する温度変動以外の別の要因を除去して、負荷変動のみに同期する温度変動を取り出し、外輪10の計測対象部位Fにおける負荷トルク位相−熱弾性効果温度変動グラフ12を求めることができる。このグラフ12に示す対応関係に基づいて、計測対象部位Fにおける、負荷トルクの大きさに対応する発生応力の大きさが算出されるので、微小な温度変動を確実に計測することができ、その結果、計測対象部位Fに発生する応力(ひいては外輪10の応力分布)を高精度に計測することができ、最適設計が可能になる。
また、等速ジョイント1に外部から負荷トルクを付与することにより外輪10に応力を発生させるので、内輪20と外輪10とのジョイント角が0°の場合(シャフト10Sとシャフト50とが一直線に並ぶ場合)であっても、その外輪10に発生する応力(外輪10とボール30との間に発生する応力)を良好に計測することができる。
また、負荷トルク周期が撮影周期とずれているので、異なる大きさの負荷トルクを計測対象部位Fに付与することができ、赤外線撮影を複数回繰り返すことにより、異なる大きさの負荷トルクに対応する計測対象部位Fの撮影データ(温度データ)を取得することができる。
また、負荷トルク周期が撮影周期とずれているので、異なる大きさの負荷トルクを計測対象部位Fに付与することができ、赤外線撮影を複数回繰り返すことにより、異なる大きさの負荷トルクに対応する計測対象部位Fの撮影データ(温度データ)を取得することができる。
また、外輪10を赤外線カメラ63により一方向から撮影すれば足り、2方向から撮影する必要はない。そのため、鏡等の設置も不要である。さらには、マーカを用いずに応力計測を行うので、マーカ作成およびマーカ貼付けが不要である。そのため、等速ジョイント1の計測のために、煩雑な準備が必要にならない。
図6は、本発明の他の実施形態に係る応力計測方法を実施するための応力計測装置100の概略構成を示す図である。
図6は、本発明の他の実施形態に係る応力計測方法を実施するための応力計測装置100の概略構成を示す図である。
応力計測装置100が、応力計測装置60と共通する部分には、図1〜図5と同一の参照符号を付し説明を省略する。応力計測装置100が応力計測装置60と相違する主たる点は、等速ジョイント1に付与する負荷トルクの変動を、第2回転駆動機構62Bの回転速度を変更させることではなく、電動ブレーキ101により内輪20の回転を減速させることにより実行させる点である。電動ブレーキ101は、パッド102を第2回転駆動軸62Aまたはシャフト50に押し付けることにより、内輪20の回転を減速させる。電動ブレーキ101の動作は、動作制御部67に制御対象として接続されている。
動作制御部67は、第2回転駆動機構62Bの回転速度を第1回転駆動機構61Bの回転速度と同等の一定速度(たとえば100rpm程度)で回転させる。そして、電動ブレーキ101の動作/動作解除により、内輪20の回転速度を加減速させ、これにより、外輪10に付与する負荷トルクの大きさを正弦波状に変動させることができる。なお、この実施形態のように電動ブレーキ101を用いる場合、回転駆動機構61A,61Bの一方(たとえば第2回転駆動機構62B)は省略できる。
以上、この発明の2つの実施形態について説明したが、本発明は他の形態で実施することもできる。
たとえば、等速ジョイント1に付与される負荷トルクが正弦波状に変動しているとして説明したが、三角波形状に変動させてもよいし、鋸歯状に変動させてもよい。
また、赤外線カメラ63による撮影周期が外輪10の回転周期と同期しているとして説明したが、これに限らず、赤外線カメラ63による撮影周期は、外輪10の回転周期の整数倍(1を除く)であればよい。
たとえば、等速ジョイント1に付与される負荷トルクが正弦波状に変動しているとして説明したが、三角波形状に変動させてもよいし、鋸歯状に変動させてもよい。
また、赤外線カメラ63による撮影周期が外輪10の回転周期と同期しているとして説明したが、これに限らず、赤外線カメラ63による撮影周期は、外輪10の回転周期の整数倍(1を除く)であればよい。
なお、この実施形態では、計測対象の回転装置が前述の等速ジョイント1である場合を例に挙げて説明したが、これ以外の種々の回転装置を計測対象とすることができる。
その他、特許請求の範囲に記載された事項の範囲で種々の設計変更を施すことが可能である。
その他、特許請求の範囲に記載された事項の範囲で種々の設計変更を施すことが可能である。
1…等速ジョイント(回転装置)、10…外輪、20…内輪(内側部材)、30…ボール(転動体)、63…赤外線カメラ、F…計測対象部位
Claims (6)
- 回転装置の回転動作に伴って生じる応力を計測するための応力計測方法であって、
前記回転装置を回転させる回転ステップと、
前記回転ステップに並行して、前記回転装置に負荷トルクを付与しつつ、当該負荷トルクの大きさを、所定の負荷トルク周期で変動させる負荷トルク変動ステップと、
前記回転装置に設定された計測対象部位を繰り返し赤外線撮影する赤外線撮影ステップと、
前記赤外線撮影ステップにおける撮影データと当該撮影データ取得時の負荷トルクの大きさとに基づいて、前記計測対象部位における、前記負荷トルクの大きさと熱弾性効果のみに起因する温度変動との対応関係である負荷トルク−熱弾性効果温度変動対応関係を算出する負荷トルク−熱弾性効果温度変動算出ステップと、
前記負荷トルク−熱弾性効果温度変動対応関係に基づいて、前記計測対象部位に発生する応力の大きさを算出する応力算出ステップとを含む、応力計測方法。 - 前記負荷トルク−熱弾性効果温度変動算出ステップは、
前記赤外線撮影ステップにおける各撮影データから得られた各温度情報を、前記負荷トルクの1周期の位相に応じてプロットして、前記負荷トルクの位相と前記計測対象部位の温度との対応関係である負荷トルク位相−温度対応関係を示す負荷トルク位相−温度グラフを作成するグラフ作成ステップと、
前記負荷トルク位相−温度グラフに前記負荷トルクの波形を前記グラフにフイッティングさせることにより、前記測対象部位における前記負荷トルク−熱弾性効果温度変動対応関係を抽出する負荷トルク−熱弾性効果温度変動対応関係抽出ステップとを有する、請求項1に記載の応力計測方法。 - 前記トルク変動ステップは、前記負荷トルクの大きさを正弦波状に変動させる、請求項1または2に記載の応力計測方法。
- 前記赤外線撮影ステップは、前記計測対象部位を所定の撮影周期で繰り返し撮影するものであり、
前記負荷トルク周期は、撮影周期の整数倍ではない所定の周期である、請求項1〜3のいずれか一項に記載の応力計測方法。 - 前記回転ステップは、前記回転装置を所定の回転周期で回転させるものであり、
前記赤外線撮影ステップは、固定的に配置された赤外線カメラを用いて撮影するものであり、
前記撮影周期が前記回転周期の整数倍である、請求項4に記載の応力計測方法。 - 前記回転部材は、同心状に互いに回転可能に配置された外輪および内側部材と、それらの間に介在され、前記外輪および前記内側部材の相対回転時に負荷を生じさせる転動体とを含み、
前記トルク変動ステップは、前記外輪と前記内側部材との相対速度を変化させることにより、前記回転装置に付与される負荷トルクを変動させる、請求項1〜5のいずれか一項に記載の応力計測方法。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012276000A JP2014119388A (ja) | 2012-12-18 | 2012-12-18 | 応力計測方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012276000A JP2014119388A (ja) | 2012-12-18 | 2012-12-18 | 応力計測方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2014119388A true JP2014119388A (ja) | 2014-06-30 |
Family
ID=51174338
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2012276000A Pending JP2014119388A (ja) | 2012-12-18 | 2012-12-18 | 応力計測方法 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2014119388A (ja) |
-
2012
- 2012-12-18 JP JP2012276000A patent/JP2014119388A/ja active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2366977B1 (en) | Determining the contact angle of a ball bearing | |
US8347713B2 (en) | Apparatus and method for measuring dynamic rigidity of a main shaft of a machine tool | |
JP5375153B2 (ja) | 等速ジョイントの応力測定方法および応力測定装置 | |
JP5387202B2 (ja) | タイヤ解析システムおよびタイヤ解析方法 | |
EP1300662A3 (en) | Rotational angle detecting device, torque detecting device, and steering apparatus | |
JP5453951B2 (ja) | 回転装置の応力測定方法 | |
JP2012247209A (ja) | 転がり軸受の転動体挙動測定方法および装置 | |
WO2016052039A1 (ja) | 振れ測定装置 | |
JPWO2020196089A1 (ja) | アンギュラ玉軸受の接触角取得方法及び車輪用軸受装置の製造方法 | |
JP6709863B2 (ja) | 角度検出装置 | |
Li et al. | A system for accurate measuring of thermal-structure displacement on a high speed rotating turbine disk by using digital image correlation technology | |
ITMO20100222A1 (it) | Metodo per il rilevamento della conformazione e/o delle dimensioni di una ruota in macchine per autofficina o simili | |
JP5835616B2 (ja) | 玉挙動計測方法および玉挙動計測装置 | |
JP5617547B2 (ja) | 応力測定方法 | |
JP2014119388A (ja) | 応力計測方法 | |
JP2017161340A (ja) | ラジアルころ軸受のスキュー角度計測方法及びラジアルころ軸受のスキュー角度計測装置 | |
JP6409349B2 (ja) | 応力計測システム及び応力計測方法 | |
JP6354317B2 (ja) | 応力計測システム、応力計測方法および応力計測用処理装置 | |
JP5617546B2 (ja) | 応力測定方法 | |
JP5585391B2 (ja) | 球体の位置測定装置及び方法 | |
JP6330472B2 (ja) | 欠陥検出方法及び欠陥検出システム | |
JP6476612B2 (ja) | 接触角測定方法及び接触角測定装置 | |
JP6881032B2 (ja) | ころ軸受の挙動測定装置及び挙動測定方法 | |
JP6638478B2 (ja) | 流速分布測定方法 | |
JP2006226809A (ja) | 荷重検出装置および荷重検出方法 |