JP2014116350A - 炭化珪素半導体装置の製造方法 - Google Patents

炭化珪素半導体装置の製造方法 Download PDF

Info

Publication number
JP2014116350A
JP2014116350A JP2012267196A JP2012267196A JP2014116350A JP 2014116350 A JP2014116350 A JP 2014116350A JP 2012267196 A JP2012267196 A JP 2012267196A JP 2012267196 A JP2012267196 A JP 2012267196A JP 2014116350 A JP2014116350 A JP 2014116350A
Authority
JP
Japan
Prior art keywords
silicon carbide
semiconductor device
manufacturing
carbide substrate
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012267196A
Other languages
English (en)
Inventor
Hiroshi Shiomi
弘 塩見
Takeo Murakishi
武夫 村岸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Renesas Electronics Corp
Original Assignee
Sumitomo Electric Industries Ltd
Renesas Electronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd, Renesas Electronics Corp filed Critical Sumitomo Electric Industries Ltd
Priority to JP2012267196A priority Critical patent/JP2014116350A/ja
Publication of JP2014116350A publication Critical patent/JP2014116350A/ja
Pending legal-status Critical Current

Links

Images

Abstract

【課題】長期的に安定した特性を有する炭化珪素半導体装置を提供する。
【解決手段】炭化珪素基板10上にゲート絶縁膜21が形成される。ゲート絶縁膜21上にゲート電極30が形成される。炭化珪素基板10上に主電極31が形成される。ゲート絶縁膜21を形成した後に、水を含む液体を用いて炭化珪素基板10が洗浄される。炭化珪素基板10を洗浄した後に、水素原子を含む雰囲気中で炭化珪素基板10が熱処理される。
【選択図】図1

Description

この発明は、炭化珪素半導体装置の製造方法に関するものであり、特に、主電極を通る電流経路のスイッチングを行うためのゲート電極を有する炭化珪素半導体装置の製造方法に関するものである。
近年、炭化珪素基板を用いた半導体装置である炭化珪素半導体装置の開発が進められている。その代表的なもののひとつとして、炭化珪素基板上にゲート絶縁膜およびゲート電極を有するMOSFET(Metal Oxide Semiconductor Field Effect Transistor)がある。このMOSFETの特性は、炭化珪素基板とゲート絶縁膜との界面の状態に大きく影響されることが知られている。特開2000−252461号公報によれば、ゲート絶縁膜を形成した後、600〜1600℃の水素を含んだ雰囲気で熱処理することにより、界面準位密度を低減して良好な界面を形成することができる旨が記載されている。
特開2000−252461号公報
実用的な半導体装置には、特性の長期的な安定性が求められる。本発明者らは、上記公報に記載の技術を適用して作製したn型MOSFETのしきい値の長期的な安定性について検討した。その結果、ゲート電圧のしきい値の絶対値が低下してしまう場合があり、特にゲート電極の電位が負とされている時間が長いと、このしきい値の変動が顕著なことがあった。
本発明は、上記のような課題を解決するために成されたものであり、この発明の目的は、長期的に安定した特性を有する炭化珪素半導体装置の製造方法を提供することである。
本発明の炭化珪素半導体装置の製造方法は、主電極を通る電流経路のスイッチングを行うためのゲート電極を有する炭化珪素半導体装置の製造方法であって、次の工程を有する。炭化珪素基板上にゲート絶縁膜が形成される。ゲート絶縁膜上にゲート電極が形成される。炭化珪素基板上に主電極が形成される。ゲート絶縁膜を形成した後に、水を含む液体を用いて炭化珪素基板が洗浄される。炭化珪素基板を洗浄した後に、水素原子を含む雰囲気中で炭化珪素基板が熱処理される。
本製造方法によれば、炭化珪素半導体装置の製造中に炭化珪素基板が、水を含む液体により洗浄される。このような洗浄は、微細加工工程をともなう通常の半導体装置の製造方法において不可欠なものである。この洗浄後に、水素原子を含む雰囲気中で炭化珪素基板を熱処理することで、ゲート電圧のしきい値の長期的な安定性が向上する。
上記製造方法において、炭化珪素基板を熱処理する前に、主電極上に配線層が形成されてもよい。これにより、配線層の形成にともなう洗浄工程に起因したしきい値の不安定性が抑制される。この場合、炭化珪素基板は、配線層の材料の耐熱温度よりも低い温度で熱処理される。配線層の材料がアルミニウムの場合、炭化珪素基板は600℃未満で熱処理されることが好ましい。好ましくは、炭化珪素基板を熱処理した後に配線層上にパッシベーション膜が形成される。これにより、熱処理に用いられる雰囲気中の水素原子の浸透がパッシベーション膜に阻害されることがない。よって熱処理の効果が高められる。パッシベーション膜は、シリコン窒化膜を含むものであってもよい。
上記製造方法において、炭化珪素基板を熱処理した後に、主電極上に配線層が形成されてもよい。この場合、熱処理が行われる際には、配線層が未だ形成されていない。よって、炭化珪素基板を配線層の材料の耐熱温度よりも高い温度で熱処理し得る。炭化珪素基板は800℃未満で熱処理されることが好ましい。なぜならば、熱処理温度の増大による、しきい値の安定化の効果の向上が、800℃程度で飽和するためである。
炭化珪素基板は450℃以上で熱処理されることが好ましい。これにより、しきい値の安定化の効果を高めることができる。
水素原子を含む雰囲気は水素ガスを含む雰囲気であることが好ましい。これにより、水素原子を含む雰囲気を容易に準備することができる。
ゲート絶縁膜が形成される際に、炭化珪素基板上に二酸化珪素膜が形成されてもよい。この場合、炭化珪素基板とゲート絶縁膜との界面は、炭化珪素と二酸化珪素との界面とされる。
炭化珪素基板はプラズマ中で熱処理されることが好ましい。これにより、しきい値の安定化の効果を高めることができる。
上記のように本発明によれば、炭化珪素半導体装置の特性を長期的に安定したものとすることができる。
本発明の実施の形態1における炭化珪素半導体装置の構成を概略的に示す断面図である。 本発明の実施の形態1における炭化珪素半導体装置の製造方法のフロー図である。 本発明の実施の形態1における炭化珪素半導体装置の製造方法の第1の工程を概略的に示す断面図である。 本発明の実施の形態1における炭化珪素半導体装置の製造方法の第2の工程を概略的に示す断面図である。 本発明の実施の形態1における炭化珪素半導体装置の製造方法の第3の工程を概略的に示す断面図である。 本発明の実施の形態1における炭化珪素半導体装置の製造方法の第4の工程を概略的に示す断面図である。 本発明の実施の形態1における炭化珪素半導体装置の製造方法の第5の工程を概略的に示す断面図である。 本発明の実施の形態1における炭化珪素半導体装置の製造方法の第6の工程を概略的に示す断面図である。 本発明の実施の形態1における炭化珪素半導体装置の製造方法の第7の工程を概略的に示す断面図である。 比較例における炭化珪素半導体装置のしきい値の経時変化を示すグラフ図である。 本発明の実施の形態1における炭化珪素半導体装置のしきい値の経時変化の例を示すグラフ図である。 熱処理温度としきい値シフトとの関係の例を示すグラフ図である。 本発明の実施の形態2における炭化珪素半導体装置の製造方法のフロー図である。
以下、本発明の実施の形態について図に基づいて説明する。
(実施の形態1)
図1に示すように、MOSFET90(炭化珪素半導体装置)は、ソース電極31(主電極)を通る電流経路のスイッチングを行うためのゲート電極30を有するプレーナ型縦型MOSFETである。MOSFET90は、エピタキシャル基板10(炭化珪素基板)と、ゲート酸化膜21(ゲート絶縁膜)と、層間絶縁膜22と、パッシベーション膜23と、ゲート電極30と、ソース電極31と、ドレイン電極32と、ソース配線層41(配線層)とを有する。
エピタキシャル基板10は、炭化珪素からなり、好ましくは六方晶のポリタイプ4Hを有する。エピタキシャル基板10は、単結晶基板11と、単結晶基板11上に配置されたエピタキシャル層とを有する。エピタキシャル層は、炭化珪素から作られており、n-ドリフト層12と、pボディ領域13と、n領域14と、pコンタクト領域15とを有する。単結晶基板11とn-ドリフト層12とn領域14とはn型(第1の導電型)を有し、pボディ領域13とpコンタクト領域15とはp型(第2の導電型)を有する。
-ドリフト層12は単結晶基板11の上面に設けられている。n-ドリフト層12の不純物濃度は、単結晶基板11の不純物濃度よりも低い。pボディ領域13はn-ドリフト層12上にウエル状に形成されており、エピタキシャル基板10の表面上においてチャネル面をなしている。n領域14は、pボディ領域13によってn-ドリフト層12と隔てられるように、pボディ領域13上にウエル状に形成されている。pコンタクト領域15は、エピタキシャル基板10の上面の一部をなしており、かつpボディ領域13につながっている。pコンタクト領域15の不純物濃度はpボディ領域13の不純物濃度よりも高い。
ゲート酸化膜21はエピタキシャル基板10上に設けられている。ゲート酸化膜21は二酸化珪素膜であることが好ましく熱酸化膜であることがより好ましい。ゲート電極30はゲート酸化膜21上に設けられている。
層間絶縁膜22はゲート電極30を覆っている。層間絶縁膜22は、たとえば二酸化珪素膜である。ゲート酸化膜21および層間絶縁膜22は、n領域14およびpコンタクト領域15の各々を露出する開口部を有する。ソース電極31は、この開口部においてn領域14およびpコンタクト領域15の各々に接触しているオーミック電極である。ソース配線層41はソース電極31に接触しており、層間絶縁膜22の上面上に延在している。ドレイン電極32は、単結晶基板11の、n-ドリフト層12が設けられた面とは反対側の面(図1における裏面)上に設けられたオーミック電極である。
パッシベーション膜23は、ソース配線層41を少なくとも部分的に覆う絶縁膜である。パッシベーション膜23は、たとえば二酸化珪素膜またはシリコン窒化膜を含み、特にシリコン窒化膜を含むことが好ましい。パッシベーション膜23には、ソース配線層41およびゲート電極30の各々とMOSFET90の外部との電気的接続が可能となるよう、開口部(図示せず)が設けられている。
次にこのMOSFET90の製造方法について説明する。この製造方法は、ステップS11〜S52(図2)を含む。
図3を参照して、まずエピタキシャル成長によって単結晶基板11上にn-ドリフト層12が形成される。エピタキシャル成長においては、たとえば、単結晶基板11の温度が1550℃とされ、原料ガスとしてはシランおよびプロパンが、ドーパントガスとしては窒素が、またキャリアガスとしては水素が用いられ、圧力は10kPaとされる。次にエピタキシャル基板10上へ不純物イオンが注入される。これにより、pボディ領域13と、n領域14と、pコンタクト領域15とが形成される。このようにして、不純物領域が設けられたエピタキシャル基板10が準備される。
次に、注入された不純物を活性化するための活性化熱処理が行なわれる。たとえば、不活性ガス雰囲気中で1700程度℃で30分間程度のエピタキシャル基板10の熱処理が行われる。
図4に示すように、エピタキシャル基板10上にゲート酸化膜21が形成される(図2:ステップS11)。この形成は、エピタキシャル基板10の熱酸化によって行われることが好ましい。熱酸化の時間および温度は、形成するゲート酸化膜21の膜厚に応じて決定され得る。たとえば、1100℃以上1400℃以下の温度で、酸素を含む雰囲気中での熱処理が行われる。
次に、窒素熱処理が行われることが好ましい。具体的には、ゲート酸化膜21が形成されたエピタキシャル基板10が、窒素原子を含む雰囲気中で加熱される。たとえば、窒素および一酸化窒素を含む雰囲気中での1250℃程度以上1350℃程度以下での熱処理が行われる。一酸化窒素の分圧を窒素の分圧と一酸化窒素の分圧との合計の圧力で除した値は3%より大きく10%よりも小さいことが好ましい。加熱時間はたとえば1時間程度である。これにより、エピタキシャル基板10とゲート酸化膜21との界面から10nm以内の領域における窒素濃度の最大値が1×1021/cm3以上となるように窒素濃度が調整される。その結果、エピタキシャル基板10およびゲート酸化膜21の界面準位密度が低減される。さらにこれに続いて、不活性ガス雰囲気における熱処理が行われることがより好ましい。たとえば、アルゴンガスの雰囲気中で、1100℃程度の温度で、60分間程度の加熱が行われる。これにより、高いチャネル移動度を再現性よく実現することができる。
図5に示すように、ゲート酸化膜21上において導電性膜の堆積が行われる。導電性膜は、たとえばドープトポリシリコン膜である。次にフォトリソグラフィおよびエッチングを用いた導電性膜のパターニングが行われる。これによりゲート電極30が形成される(図2:ステップS21)。
次に、パターニングの際などに生じた異物を除去するために、エピタキシャル基板10が洗浄される(図2:ステップS22)。この洗浄の際に、水を含む液体が用いられる。水を含む液体は、有機溶剤など水を含まない液を用いた処理の後のすすぎのために用いられてもよい。以下において述べる洗浄についても同様である。
図6を参照して、ゲート酸化膜21上においてゲート電極30を覆うように層間絶縁膜22が形成される。層間絶縁膜22上に、パターンを有するフォトレジスト層50が形成される。
図7に示すように、フォトレジスト層50をエッチングマスクとして用いて層間絶縁膜22およびゲート酸化膜21がパターニングされることで、n領域14およびpコンタクト領域15を露出する開口部が形成される。図8に示すように、この開口部においてn領域14およびpコンタクト領域15の各々に接触するソース電極31が形成される(図2:ステップS31)。ソース電極31の形成は、フォトレジスト層50(図7)を用いたリフトオフ法によって行われ得る。次にエピタキシャル基板10の洗浄が行われる(図2:ステップS32)。
図9に示すように、エピタキシャル基板10の裏面上にドレイン電極32が形成される。ソース電極31およびドレイン電極32をエピタキシャル基板10にオーミックに接触させるための熱処理が行われる。
再び図1を参照して、ソース電極31に接するソース配線層41が成膜およびパターニングによって形成される(図2:ステップS41)。ソース配線層41は、たとえばアルミニウムを主成分とする材料から形成される。この材料中には添加物が加えられてもよい。添加物の量は、たとえば2〜3%程度である。また添加物の元素は、たとえばSiおよびCuの少なくともいずれかである。次にエピタキシャル基板10が洗浄される(図2:ステップS42)。本実施の形態においては、次に水素熱処理が行われる(図2:ステップS50)。水素熱処理の詳細については後述する。
再び図1を参照して、ソース配線層41上にパッシベーション膜23が形成される(図2:ステップS51)。パッシベーション膜23がパターニングされることで開口部(図示せず)が形成される。必要に応じてパッシベーション膜23の開口部に電極パッド(図示せず)が形成される。エピタキシャル基板10の洗浄が行われる(図2:ステップS52)。以上によりMOSFET90(図1)が得られる。
次に、上述した水素熱処理について詳述する。本実施の形態においては、ソース配線層41の形成および洗浄の後、かつパッシベーション膜23の形成前に、水素熱処理が行われる。水素熱処理は、水素原子を含む雰囲気中でのエピタキシャル基板10の熱処理である。エピタキシャル基板10は450℃以上で熱処理されることが好ましい。また本実施の形態においてはエピタキシャル基板10は、ソース配線層41の材料の耐熱温度よりも低い温度で熱処理される。ソース配線層41の材料がアルミニウムの場合、エピタキシャル基板10は600℃未満で熱処理されることが好ましい。水素熱処理の時間は、たとえば30分程度である。水素原子を含む雰囲気は水素ガスを含む雰囲気であることが好ましい。たとえば、大気圧の100%水素ガスによる雰囲気が用いられてもよい。また水素原子を含む雰囲気中でプラズマが発生されてもよい。
図10は、水素熱処理が行われない比較例において、150℃の下でゲート電極30に−10Vが印加された場合の、MOSFET90のしきい値の経時変化を示す。この比較例においては、5時間程度の経過によって、しきい値が半分程度にまで減少した。
これに対して本実施の形態によれば、図11に示すように、10時間経過後もしきい値は初期の値から大きく変化しなかった。よって水素熱処理がしきい値の安定化に効果的であることがわかった。
水素熱処理の温度としきい値シフトとの関係を調べたところ、図12に示すように、450℃以上とされることで顕著な安定化が見られ、さらに温度を高めると600℃程度までの範囲において、さらに安定化が進むことがわかった。なお600℃以上の温度が用いられると、アルミニウムを主成分とするソース配線層41に対するダメージが生じることがあった。すなわち、熱処理温度がソース配線層およびドレイン配線層の耐熱温度を超えていることがあった。
上述したように、本実施の形態の製造方法によれば、水素熱処理によってゲート電圧のしきい値の長期的な安定性が向上する。この効果は、水を用いた洗浄工程がエピタキシャル基板10とゲート酸化膜21との界面に与えた影響が、水素熱処理によって少なくとも部分的に除去されることによると本発明者らは推測している。
またエピタキシャル基板10を熱処理する前に、ソース電極31上にソース配線層41が形成される。これにより、ソース配線層41の形成にともなう洗浄工程に起因したしきい値の不安定性が抑制される。なお仮にゲート酸化膜21の形成直後にのみ水素熱処理が行われた場合は、その後に行われた洗浄工程による影響は除去され得ない。
好ましくはパッシベーション膜23は水素熱処理後に形成される。これにより、熱処理に用いられる雰囲気中の水素原子の浸透がパッシベーション膜23に阻害されることがない。よって熱処理の効果が高められる。パッシベーション膜23がシリコン窒化膜を含む場合、この効果は特に大きい。なおパッシベーション膜23は水素熱処理前に形成されてもよい。
水素熱処理は450℃以上で熱処理されることが好ましい。これにより、図12に示すように、しきい値の安定化の効果を高めることができる。
水素原子を含む雰囲気は水素ガスを含む雰囲気であることが好ましい。これにより、水素原子を含む雰囲気を容易に準備することができる。
(実施の形態2)
図13に示すように、本実施の形態におけるMOSFET90の製造方法においては、実施の形態1の水素熱処理(図2:ステップS50)と同様の工程が、ソース配線層41(図1)の形成(図13:ステップS41)の前に行われる(図13:ステップS40)。言い換えれば、水素熱処理後にソース配線層が形成される。よって水素熱処理は、ソース配線層41の材料の耐熱温度よりも高い温度で行われ得る。ただし水素熱処理の温度は800℃未満が好ましい。なぜならば、熱処理温度の増大による、しきい値の安定化の効果の向上が、800℃程度で飽和するためである。
本実施の形態の製造方法によれば、熱処理が行われる際には、ソース配線層41が未だ形成されていない。よって水素熱処理を、ソース配線層41の材料の耐熱温度よりも高い温度で行い得る。
上記の水素熱処理はプラズマ雰囲気中で行われてもよい。これにより、水素熱処理の作用が高められるので、MOSFET90のしきい値がより安定化される。プラズマ雰囲気中での水素熱処理は、成膜と同時に行われてもよい。たとえば、層間絶縁膜22としての酸化膜の成膜(図5〜図6)のために、加熱されたエピタキシャル基板10上でのCVD(化学気相成長:Chemical Vapor Deposition)が、水素プラズマを有する雰囲気下で行われてもよい。この場合、水素熱処理のみのための工程を設ける必要がないので、MOSFET90をより効率的に製造することができる。
今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
たとえば、水素熱処理が行われる時期は、ゲート絶縁膜の形成後、かつ、水を用いた洗浄後であればよい。また実施の形態において炭化珪素半導体装置として縦型のものについて説明したが、炭化珪素半導体装置は横型であってもよい。すなわち、炭化珪素基板の一の面上に電流経路が設けられてもよい。また実施の形態においてはMOSFETについて説明したが、炭化珪素半導体装置はMOSFET以外のMISFET(Metal Insulator Semiconductor Field Effect Transistor)であってもよい。すなわちゲート絶縁膜として酸化膜以外の絶縁膜が用いられてもよい。また炭化珪素半導体装置はMISFETに限定されるものではなく、ゲート絶縁膜を有する他の装置であってもよく、たとえばIGBT(Insulated Gate Bipolar Transistor)であってもよい。また実施の形態においては炭化珪素半導体装置としてnチャネル型のものについて説明したが、炭化珪素半導体装置はpチャネル型またはバイポーラ型であってもよい。
10 エピタキシャル基板(炭化珪素基板)、21 ゲート酸化膜(ゲート絶縁膜)、22 層間絶縁膜、23 パッシベーション膜、30 ゲート電極、31 ソース電極(主電極)、32 ドレイン電極、41 ソース配線層(配線層)、90 MOSFET(炭化珪素半導体装置)。

Claims (12)

  1. 主電極を通る電流経路のスイッチングを行うためのゲート電極を有する炭化珪素半導体装置の製造方法であって、
    炭化珪素基板上にゲート絶縁膜を形成する工程と、
    前記ゲート絶縁膜上に前記ゲート電極を形成する工程と、
    前記炭化珪素基板上に前記主電極を形成する工程と、
    前記ゲート絶縁膜を形成する工程の後に、水を含む液体を用いて前記炭化珪素基板を洗浄する工程と、
    前記炭化珪素基板を洗浄する工程の後に、水素原子を含む雰囲気中で前記炭化珪素基板を熱処理する工程とを備える、炭化珪素半導体装置の製造方法。
  2. 前記炭化珪素基板を熱処理する工程の前に、前記主電極上に配線層を形成する工程を備え、
    前記炭化珪素基板を熱処理する工程は前記配線層の材料の耐熱温度よりも低い温度で行われる、請求項1に記載の炭化珪素半導体装置の製造方法。
  3. 前記配線層の材料はアルミニウムを含む、請求項2に記載の炭化珪素半導体装置の製造方法。
  4. 前記炭化珪素基板を熱処理する工程は600℃未満で行われる、請求項3に記載の炭化珪素半導体装置の製造方法。
  5. 前記炭化珪素基板を熱処理する工程の後に、前記配線層上にパッシベーション膜を形成する工程をさらに備える、請求項2〜4のいずれか1項に記載の炭化珪素半導体装置の製造方法。
  6. 前記パッシベーション膜はシリコン窒化膜を含む、請求項5に記載の炭化珪素半導体装置の製造方法。
  7. 前記炭化珪素基板を熱処理する工程の後に、前記主電極上に配線層を形成する工程を備え、
    前記炭化珪素基板を熱処理する工程は前記配線層の材料の耐熱温度よりも高い温度で行われる、請求項1に記載の炭化珪素半導体装置の製造方法。
  8. 前記炭化珪素基板を熱処理する工程は800℃未満で行われる、請求項7に記載の炭化珪素半導体装置の製造方法。
  9. 前記炭化珪素基板を熱処理する工程は450℃以上で行われる、請求項1〜8のいずれか1項に記載の炭化珪素半導体装置の製造方法。
  10. 前記水素原子を含む雰囲気は水素ガスを含む雰囲気である、請求項1〜9のいずれか1項に記載の炭化珪素半導体装置の製造方法。
  11. 前記ゲート絶縁膜を形成する工程は前記炭化珪素基板上に二酸化珪素膜を形成する工程を含む、請求項1〜10のいずれか1項に記載の炭化珪素半導体装置の製造方法。
  12. 前記炭化珪素基板を熱処理する工程はプラズマ雰囲気中で行われる、請求項1〜11のいずれか1項に記載の炭化珪素半導体装置の製造方法。
JP2012267196A 2012-12-06 2012-12-06 炭化珪素半導体装置の製造方法 Pending JP2014116350A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012267196A JP2014116350A (ja) 2012-12-06 2012-12-06 炭化珪素半導体装置の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012267196A JP2014116350A (ja) 2012-12-06 2012-12-06 炭化珪素半導体装置の製造方法

Publications (1)

Publication Number Publication Date
JP2014116350A true JP2014116350A (ja) 2014-06-26

Family

ID=51172079

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012267196A Pending JP2014116350A (ja) 2012-12-06 2012-12-06 炭化珪素半導体装置の製造方法

Country Status (1)

Country Link
JP (1) JP2014116350A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019050294A (ja) * 2017-09-11 2019-03-28 株式会社豊田中央研究所 炭化珪素半導体装置
CN111816549A (zh) * 2020-06-01 2020-10-23 浙江博蓝特半导体科技股份有限公司 碳化硅晶片表面清洗方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0758330A (ja) * 1993-08-16 1995-03-03 Ricoh Co Ltd 電力用mos型半導体装置
JP2000133657A (ja) * 1998-10-28 2000-05-12 Sanyo Electric Co Ltd 炭化珪素半導体装置の製造方法
JP2000319099A (ja) * 1999-05-07 2000-11-21 Hiroyuki Matsunami SiCウエハ、SiC半導体デバイス、および、SiCウエハの製造方法
JP2003069012A (ja) * 2001-08-27 2003-03-07 National Institute Of Advanced Industrial & Technology 半導体装置の製造方法
JP2003218121A (ja) * 2002-01-21 2003-07-31 Sony Corp 半導体装置の製造方法
JP2007096263A (ja) * 2005-08-31 2007-04-12 Denso Corp 炭化珪素半導体装置およびその製造方法。
JP2010272785A (ja) * 2009-05-25 2010-12-02 Nissan Motor Co Ltd 半導体装置及びその製造方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0758330A (ja) * 1993-08-16 1995-03-03 Ricoh Co Ltd 電力用mos型半導体装置
JP2000133657A (ja) * 1998-10-28 2000-05-12 Sanyo Electric Co Ltd 炭化珪素半導体装置の製造方法
JP2000319099A (ja) * 1999-05-07 2000-11-21 Hiroyuki Matsunami SiCウエハ、SiC半導体デバイス、および、SiCウエハの製造方法
JP2003069012A (ja) * 2001-08-27 2003-03-07 National Institute Of Advanced Industrial & Technology 半導体装置の製造方法
JP2003218121A (ja) * 2002-01-21 2003-07-31 Sony Corp 半導体装置の製造方法
JP2007096263A (ja) * 2005-08-31 2007-04-12 Denso Corp 炭化珪素半導体装置およびその製造方法。
JP2010272785A (ja) * 2009-05-25 2010-12-02 Nissan Motor Co Ltd 半導体装置及びその製造方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019050294A (ja) * 2017-09-11 2019-03-28 株式会社豊田中央研究所 炭化珪素半導体装置
CN111816549A (zh) * 2020-06-01 2020-10-23 浙江博蓝特半导体科技股份有限公司 碳化硅晶片表面清洗方法

Similar Documents

Publication Publication Date Title
JP4647211B2 (ja) 半導体装置及びその製造方法
JP5584823B2 (ja) 炭化珪素半導体装置
JP5452062B2 (ja) 炭化珪素半導体装置の製造方法
KR20100100585A (ko) 반도체 장치의 제조 방법 및 반도체 장치
JP6244665B2 (ja) 半導体装置
JP2008117878A (ja) 半導体装置の製造方法
JP5750948B2 (ja) 炭化珪素半導体装置およびその製造方法
JP2012253108A (ja) 炭化珪素半導体装置およびその製造方法
JP4549167B2 (ja) 炭化珪素半導体装置の製造方法
JP2014222735A (ja) 半導体装置及びその製造方法
JP5659882B2 (ja) 半導体装置の製造方法
JP2016058658A (ja) 炭化ケイ素半導体装置
JPH11297712A (ja) 化合物膜の形成方法及び半導体素子の製造方法
JP2010034481A (ja) 半導体装置の製造方法および半導体装置
JP2007066959A (ja) 炭化珪素半導体装置の製造方法
JP5626037B2 (ja) 半導体装置の製造方法
JPWO2010110252A1 (ja) Mosfetおよびmosfetの製造方法
JP2018206872A (ja) 半導体装置
JP2014116350A (ja) 炭化珪素半導体装置の製造方法
JP5921089B2 (ja) エピタキシャルウエハの製造方法及び半導体装置の製造方法
JP2013247141A (ja) 炭化珪素半導体装置の製造方法
JP5036399B2 (ja) 炭化珪素半導体装置の製造方法
JP2015069989A (ja) 炭化珪素半導体装置の製造方法
JP7396922B2 (ja) 窒化物半導体装置の製造方法
US9805944B2 (en) Method of manufacturing silicon carbide semiconductor device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150729

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160825

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160830

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20170228