JP2014096545A - パワーモジュール及びパワーモジュールの製造方法 - Google Patents

パワーモジュール及びパワーモジュールの製造方法 Download PDF

Info

Publication number
JP2014096545A
JP2014096545A JP2012248773A JP2012248773A JP2014096545A JP 2014096545 A JP2014096545 A JP 2014096545A JP 2012248773 A JP2012248773 A JP 2012248773A JP 2012248773 A JP2012248773 A JP 2012248773A JP 2014096545 A JP2014096545 A JP 2014096545A
Authority
JP
Japan
Prior art keywords
layer
power module
circuit layer
semiconductor element
silver oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012248773A
Other languages
English (en)
Other versions
JP6070092B2 (ja
Inventor
Shuji Nishimoto
修司 西元
Yoshiyuki Nagatomo
義幸 長友
Toshiyuki Nagase
敏之 長瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2012248773A priority Critical patent/JP6070092B2/ja
Publication of JP2014096545A publication Critical patent/JP2014096545A/ja
Application granted granted Critical
Publication of JP6070092B2 publication Critical patent/JP6070092B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L24/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/838Bonding techniques
    • H01L2224/8384Sintering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/156Material
    • H01L2924/15786Material with a principal constituent of the material being a non metallic, non metalloid inorganic material
    • H01L2924/15787Ceramics, e.g. crystalline carbides, nitrides or oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/35Mechanical effects
    • H01L2924/351Thermal stress

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Die Bonding (AREA)

Abstract

【課題】半導体素子と回路層との接合強度及び冷熱サイクルでの接合信頼性に優れたパワーモジュール及びパワーモジュールの製造方法を提供する。
【解決手段】セラミックス基板11の一方の面に銅又は銅合金からなる回路層12が配設されたパワーモジュール用基板10と、回路層12上に搭載される半導体素子3と、を備えたパワーモジュール1であって、回路層12上に形成された、酸化銀が還元されたAgの焼結体からなるAg焼結層38によって半導体素子が接合されており、このAg焼結層38は、前記回路層と直接接合されており、その気孔率が20%〜60%であることを特徴とする。
【選択図】図1

Description

この発明は、絶縁層の一方の面に回路層が配設されたパワーモジュール用基板と前記回路層上に搭載される半導体素子とを備えたパワーモジュール、及びパワーモジュールの製造方法に関するものである。
電気自動車や電気車両などを制御するために用いられる大電力制御用の半導体素子は、大電流、高電圧を制御することから、例えばAlN(窒化アルミ)などの絶縁性の高い材料からなるセラミックス基板の一方の面に導電性の優れた金属板を回路層として接合したパワーモジュール用基板に搭載して用いられる。
そして、このようなパワーモジュール用基板と半導体素子とは、例えば、特許文献1に開示されているように、パワーモジュール用基板の回路層上に形成されたはんだ材によって接合される。なお、この種のパワーモジュール用基板としては、セラミックス基板の他方の面にも金属板を接合し、その金属板を介して冷却器を接合された構造のものが知られている。
また、特許文献2には、はんだ材を用いずに金属化合物粒子と有機物からなる還元剤を含む接合用材料を半導体素子と銅配線との接合界面に配置して、加熱、加圧することにより半導体素子と銅配線とを接合する技術が提案されている。
さらに、特許文献3には、半導体部品と導体部材とを空孔の体積比率が5vol%〜70vol%を有する銀の接合層を用いて半導体部品と導体部材とを金属的に接合した半導体装置が記載されている。
特開2004−172378号公報 特開2008−208442号公報 特開2009−94341号公報
ところで、最近の半導体素子の高効率化により、半導体素子と回路層との接合部の電流容量が増大しており、高温環境に対応したパワーモジュールの要求が高まっている。特許文献1に記載されたパワーモジュールは、半導体素子と回路層とをはんだ材を用いて接合しており、はんだ材の再溶融や金属間化合物の成長によって、冷熱サイクルでの接合信頼性が低下するおそれがある。
また、特許文献2では、金属化合物粒子(酸化銀粒子)を還元して平均粒径が100nm以下の金属粒子(Ag粒子)の生成、凝集が起こりバルクな金属に変化する現象を用いて接合している。はんだ材のような接合部の再溶融、金属間化合物の成長という問題はないが、バルクな金属に変化する現象を利用していることから、緻密な接合層となり、冷熱サイクル負荷時の熱応力緩和が充分ではないという問題がある。さらに、特許文献2では、銅配線(回路層)の接合面に自然酸化膜厚以上の厚さの酸化物層を生成させ、接合時に接合材中の有機物の排出を効率的に行うことができることが記載されている。しかし、回路層の接合面に酸化物層を生成していることから、接合条件等を充分に管理しないと半導体素子との接合強度が低下するという問題がある。
特許文献3では、接続部間に銀を含む接合層を形成し、その接合層に占める空孔の体積比率を5vol%〜70vol%の範囲に設定しており、冷熱サイクル負荷時の熱応力緩和を期待することができる。しかし、特許文献3では、導体部材である回路層表面にメッキ膜が形成されており、そのメッキ膜上に半導体素子を大気中で接合している。このため、メッキ膜が接合層の銀と導体部材の銅との拡散を抑制し、接合強度を高めることができないという課題がある。また、冷熱サイクル条件が厳しくなっており、メッキ膜の変形、劣化などのメッキ膜に起因した接合信頼性の低下が問題となるおそれがある。
この発明は、前述した事情に鑑みてなされたものであって、半導体素子と回路層との接合強度、冷熱サイクルでの接合信頼性に優れたパワーモジュール及びパワーモジュールの製造方法を提供することを目的とする。
前記目的を達成するために、本発明のパワーモジュールは 絶縁層の一方の面に銅又は銅合金からなる回路層が配設されたパワーモジュール用基板と、前記回路層上に搭載される半導体素子と、を備えたパワーモジュールであって、前記回路層上には、酸化銀が還元されたAgの焼結体からなるAg焼結層によって半導体素子が接合されており、前記Ag焼結層は、前記回路層と直接接合されており、気孔率が20%以上60%以下であることを特徴としている。
この構成のパワーモジュールによれば、回路層上に酸化銀が還元されたAgの焼結体からなるAg焼結層によって半導体素子が接合されていることから、比較的低温の条件で焼結することが可能となるため、半導体素子の接合温度を低く抑えることができ、半導体素子への熱負荷を低減することができる。また、酸化銀が還元されることによって、非常に微細なAg粒子が生成し、この微細なAg粒子が焼結することから、高温環境下でも充分な接合信頼性を維持することができる。
また、Ag焼結層は、銅又は銅合金からなる回路層と直接接合されていることから、Ag焼結層と回路層との接合強度を高めることができ、冷熱サイクル時の熱応力に対しても充分な接合信頼性を得ることができる。
さらに、このAg焼結層は20%以上60%以下の気孔率を有していることから、冷熱サイクル時に発生する熱応力を緩和し、半導体素子の応力負荷を軽減することができる。ここで、気孔率が20%未満の場合、冷熱サイクル時に発生する熱応力を充分に緩和することができなくなる。また、60%を超える場合、Ag焼結層の熱抵抗が高くなってしまう問題がある。よって、Ag焼結層の気孔率を20%以上60%以下に設定した。上記観点から、気孔率は30%以上50%以下がより好ましい。
また、本発明のパワーモジュールでは、さらにAg焼結層と前記半導体素子との間に気孔率が20%未満のAg緻密層が形成されていることが好ましい。
Ag焼結層と半導体素子と間に気孔率20%未満のAg緻密層を形成することによって、Ag焼結層と半導体素子との接合信頼性を向上させることができる。特に半導体素子の裏面側には裏面電極が設けられており、その最表面には、接触抵抗の低減などを目的として、Au膜が形成されることがある。Ag緻密層は、気孔率が20%未満であり、Ag焼結層よりも緻密な構造体であることから、Au膜にも強固に接合することが可能となる。また、Ag緻密層とAg焼結層とはAg同士の接合であることから高い接合強度を得ることができる。また、上記観点から気孔率は10%未満がより望ましい。
さらに本発明のパワーモジュールの製造方法は、絶縁層の一方の面に銅又は銅合金からなる回路層が配設されたパワーモジュール用基板と、前記回路層上に搭載される半導体素子と、を備えたパワーモジュールの製造方法であって、前記回路層表面に、酸化銀と還元剤とを含む酸化銀ペーストを塗布する塗布工程と、塗布された酸化銀ペーストの上に前記半導体素子を積層する積層工程と、前記半導体素子と前記パワーモジュール用基板とを積層した状態で真空中又は不活性ガス雰囲気中で加熱して、前記回路層の上に20%以上60%以下の気孔率を有するAg焼結層を形成するとともに、前記Ag焼結層と前記回路層とを直接接合する接合工程と、を備え、前記Ag焼結層によって前記半導体素子と前記回路層とを接合することを特徴としている。
本発明のパワーモジュールの製造方法によれば、酸化銀ペーストを用いていることから、スクリーン印刷、オフセット印刷、感光性プロセス等の種々の手段を用いて簡便に回路層上に塗布することができる。また、真空中又は不活性ガス雰囲気中で加熱して、酸化銀を還元させていることから、回路層上にNiメッキ膜などの保護膜を形成する必要がなく、酸化銀が還元して形成されたAg焼結層と回路層とを直接接合することが可能となる。また、酸化銀ペーストには、還元剤が含まれていることから、酸化銀を還元すると同時に回路層表面の酸化膜を還元し、Ag焼結層と回路層の接合強度を高めることができる。さらに、酸化銀の還元反応や有機物の分解反応によるガスを放出し、Ag焼結層の気孔率を上げることが可能となる。
また、酸化銀ペーストには、酸化銀及び還元剤に加えて、Ag粒子を含有していても良い。この場合、Ag粒子が酸化銀粉末の間に介在し、酸化銀が還元されて得られるAg粒子と、酸化銀ペーストに含有されたAg粒子とが焼結することになり、気孔率が調整しやすくなり、また、均一な気孔を形成することが可能となる。
さらに、本発明のパワーモジュールの製造方法は、半導体素子の一方の面であって、回路層と接合される側の表面に気孔率20%未満のAg緻密層を形成するAg緻密層形成工程を有することが好ましい。
この構成のパワーモジュールの製造方法によれば、半導体素子の回路層と接合される表面にAg緻密層を形成しているので、Ag焼結層と半導体素子との接合信頼性を向上させることができる。さらに、本発明の接合工程では、Ag緻密層と酸化銀ペーストが焼結されることとなり、Ag同士の接合であるから高い接合強度を得ることが可能となる。
本発明によれば、熱抵抗が低く、半導体素子と回路層との接合強度、冷熱サイクルでの接合信頼性に優れたパワーモジュール及びパワーモジュールの製造方法を提供することができる。
本発明の実施形態であるパワーモジュールの概略説明図である。 図1に示すパワーモジュールの回路層と半導体素子との接合界面の拡大説明図である。 図1のパワーモジュールの製造方法を示すフロー図である。
以下に、本発明の実施形態について添付した図面を参照して説明する。本発明の実施形態であるパワーモジュールを示す。
このパワーモジュール1は、図1に示すようにセラミックス基板11の一方の面に回路層12が配設されたパワーモジュール用基板10と、回路層12上(図1において上側)に接合された半導体素子3と、パワーモジュール用基板10の他方の面側に配設された冷却器40とを備えている。なお、本実施形態では、絶縁層としてセラミックス基板11を用いている。
パワーモジュール用基板10は、セラミックス基板11と、このセラミックス基板11の一方の面に配設された回路層12と、セラミックス基板11の他方の面に配設された金属層13とを備えている。
セラミックス基板11は、回路層12と金属層13との間の電気的接続を防止するものであって、絶縁性の高いAlN(窒化アルミ)で構成されている。また、セラミックス基板11の厚さは、0.2〜1.5mmの範囲内に設定されており、本実施形態では、0.635mmに設定されている。
回路層12は、セラミックス基板11の一方の面に、銅又は銅合金からなる金属板が接合されることにより形成されている。本実施形態においては、回路層12は、純度が99.99%の無酸素銅の圧延板からなる銅板がセラミックス基板11に接合されることにより形成されている。
金属層13は、セラミックス基板11の他方の面に、アルミニウム又はアルミニウム合金からなる金属板が接合されることにより形成されている。本実施形態においては、金属層13は、純度が99.99%のアルミニウム(いわゆる4Nアルミニウム)の圧延板からなるアルミニウム板がセラミックス基板11に接合されることで形成されている。
冷却器40は、前述のパワーモジュール用基板10を冷却するためのものであり、パワーモジュール用基板10と接合される天板部41と、この天板部41から下方に向けて垂設された放熱フィン42と、冷却媒体(例えば冷却水)を流通するための流路43とを備えている。この冷却器40(天板部41)は、熱伝導性が良好な材質で構成されることが望ましく、本実施形態においては、A6063(アルミニウム合金)で構成されている。
なお、冷却器40の天板部41と金属層13との間には、銅又は銅合金からなる放熱板を設けることもできる。
図2に図1に示すパワーモジュールの回路層と半導体素子との接合界面の拡大説明図を示す。図2に示すように回路層12と半導体素子3との間には、Ag焼結層31が形成されている。なお、本実施形態では、回路層12の一方の面にAg焼結層31が積層され、このAg焼結層31と半導体素子3との間にAg緻密層32が形成されている。
なお、Ag焼結層31は、図1に示すように、回路層12の表面全体には形成されておらず、半導体素子3が配設される部分にのみ選択的に形成されている。
回路層12の上に形成されたAg焼結層31は、酸化銀が還元されたAgの焼結体とされており、本実施形態では、後述するように、酸化銀と還元剤とを含む酸化銀ペーストの焼結体とされている。ここで、酸化銀を還元することによってAg焼結層を形成し、このAg焼結層によって半導体素子を接合していることから、約350℃以下の低温で接合することが可能となる。また、酸化銀の還元によって、微細な金属Ag粒子を生成し、その粒子径が、例えば粒径10nm〜1μmと非常に微細であることから、高温環境下でも回路層12と半導体素子3との充分な接合強度及び接合信頼性を維持することができる。
また、回路層12の表面には、Niなどでメッキ処理させていないため、酸化銀が、直接、回路層12の銅又は銅合金に接触することになる。後述する接合工程において、酸化銀と還元剤とを含む酸化銀ペーストが加熱されることによって、酸化銀が還元されてAg焼結体を形成し、このAg焼結体と回路層12との界面では、Ag焼結体のAgの一部が、回路層中に固相拡散していると考えられる。すなわち、Ag焼結体からなるAg焼結層31と回路層12とは、直接接合によって固着されている。このようにAg焼結層31と回路層12とは直接接合によって固着されていることから、接合強度を高めることができ、冷熱サイクル時の熱応力に対しても充分な接合を維持することができる。
さらに、Ag焼結層31は20%以上60%以下の気孔率を有する。本実施形態では、酸化銀が還元反応及び有機物の分解反応の際に発生するガス、及び焼結時の体積収縮などによって、Ag焼結層31に気孔が連通した開気孔が形成されている。このAg焼結層は、気孔率を20%以上60%以下に設定していることから、冷熱サイクル時に発生する熱応力を緩和し、半導体素子の応力負荷を軽減することができる。
なお、Ag焼結層31の厚さは、冷熱サイクル時の熱応力の緩和及び接合信頼性の観点から3μmから50μmの範囲に設定することが好ましい。
本実施形態では、半導体素子3の裏面側(図1において下側)に裏面電極(不図示)及びその表面にAu膜3aが形成されている。この半導体素子3とAg焼結層31との間には気孔率が20%未満であるAg緻密層32が形成されている。Ag緻密層は、半導体素子3の裏面にメッキ法、スパッタリング法、Agペースト焼結法などによって形成することができる。
次に、本実施形態であるパワーモジュール1の製造方法について、図3に示すフロー図を参照して説明する。
(回路層接合工程S01)
まず、回路層12となる銅板と、セラミックス基板11とを接合し、回路層12を形成する。セラミックス基板11の一方の面に、活性ろう材を介して銅板を積層し、いわゆる活性金属ろう付法によって、銅板とセラミックス基板11とを接合する。本実施形態では、Ag−27.4質量%Cu−2.0質量%Tiからなる活性ろう材を用いて、10−3Paの真空中にて、積層方向に1〜35kgf/cmの範囲で加圧し、850℃で10分間加熱することによって、接合している。
(金属層接合工程S02)
次に、金属層13となるアルミニウム板を準備し、これらのアルミニウム板を、セラミックス基板11の他方の面にAl−Si系ろう材を介して積層し、10−3Paの真空中にて、積層方向に1〜35kgf/cmの範囲で加圧し、650℃で90分間加熱することによって、前記アルミニウム板とセラミックス基板11とを接合する。これにより、パワーモジュール用基板10が製出される。
(冷却器接合工程S03)
さらに、金属層13の他方の面側に、冷却器40をAl−Si系ろう材を介して接合する。なお、冷却器40のろう付けの温度は、590℃〜610℃に設定されている。
(塗布工程S04)
回路層12の表面に、酸化銀ペーストを直接塗布する。ここで、回路層12の表面とは、Niなどのめっき膜が形成されていない、銅または銅合金からなる素地表面のことである。
なお、酸化銀ペーストを塗布する際には、スクリーン印刷法、オフセット印刷法、感光性プロセス等の種々の手段を採用することができる。本実施形態では、スクリーン印刷法によって酸化銀ペーストを印刷した。
この酸化銀ペーストは、酸化銀粉末と、還元剤と、溶剤と、を含有している。
酸化銀粉末の含有量が酸化銀ペースト全体の60質量%以上92質量%以下とされ、還元剤の含有量が酸化銀ペースト全体の5質量%以上15質量%以下とされており、残部が溶剤とされている。
なお、この酸化銀ペーストは、その粘度が10Pa・s以上100Pa・s以下、より好ましくは30Pa・s以上80Pa・s以下に調整されている。
酸化銀粉末は、その粒径が0.1μm以上40μm以下のものが使用できる。
還元剤は、還元性を有する有機物とされており、例えば、アルコール、有機酸を用いることができる。
アルコールであれば、例えば、メタノール、エタノール、プロパノール、ブチルアルコール、ペンチルアルコール、ヘキシルアルコール、オクチルアルコール、ノニルアルコール、デシルアルコール、ウンデシルアルコール、ドデシルアルコール、ラウリルアルコール、ミリスチルアルコール、セチルアルコール、ステアリルアルコール等の1級アルコールを用いることができる。なお、これら以外にも、エチレングリコール、ジエチレングリコール、その他のグリコール、グリセリンなどの多価アルコール類を用いてもよい。
有機酸であれば、例えば、ブタン酸、ペンタン酸、ヘキサン酸、ヘプタン酸、オクタン酸、ノナン酸、デカン酸、ウンデカン酸、ドデカン酸、トリデカン酸、テトラデカン酸、ペンタデカン酸、ヘキサデカン酸、ヘプタデカン酸、オクタデカン酸、ノナンデカン酸などの飽和脂肪酸を用いることができる。なお、これら以外にも、不飽和脂肪酸を用いてもよい。
なお、酸化銀粉末と混合した後に還元反応が容易に進行しない還元剤であれば、酸化銀ペーストの保存安定性が向上することになる。そこで、還元剤としては、融点が室温以上のものが好ましく、具体的には、ミリスチルアルコール、1−ドデカノール、2,5−ジメチル−2,5−ヘキサンジオール、2,2−ジメチル−1,3−プロパンジオール、1,6−ヘキサンジオール、1,2,6−ヘキサントリオール、1,10−デカンジオール、ミリスチン酸、デカン酸等を用いることが好ましい。
溶剤は、酸化銀ペーストの保存安定性、印刷性を確保する観点から、高沸点(150℃〜300℃)のものを用いることが好ましい。具体的には、2−メチルプロパノエート、α−テルピネオール、酢酸2−エチルヘキシル、酢酸3−メチルブチル等を用いることができる。
(Ag緻密層形成工程S05)
一方、半導体素子3の裏面電極表面にAu膜3aを形成する。そして、Au膜3aの表面に、Agメッキ法、Agターゲットを用いたスパッタリング法又はAgペースト焼結法などによってAg緻密層を形成することができる。本実施形態では、シアン化銀5g/L、シアン化カリウム15g/Lのメッキ液を用い、陰極電流密度0.2A/dmで成膜し、膜厚1マイクロメートル、気孔率20%未満のAg緻密層を形成した。また、気孔率は10%未満にすることがより望ましい。
(積層工程S06及び接合工程S07)
次に、酸化銀ペーストを塗布した状態で乾燥(例えば、室温、大気雰囲気で24時間保管)した後、酸化銀ペーストの上に半導体素子3を積層する。
そして、半導体素子3とパワーモジュール用基板10とを積層した状態で真空中又は不活性ガス雰囲気中で酸化銀ペーストの焼結を行うとともに、回路層12と半導体素子3を接合する。酸化銀ペーストには、還元剤が含まれていることから、酸化銀を還元すると同時に回路層である銅板表面に形成された酸化膜も還元することとなり、Ag焼結層と回路層との接合強度を高めることとなる。このとき、荷重を0〜10MPaとし、接合温度を150〜350℃とする。不活性ガスとしては、N又はArなどの希ガス類を用いることができる。真空中で行う場合には、その真空度は1.0×10−6〜1.0×10−1Paが好ましい。本実施形態では、真空度:1.0×10−1Paで接合した。
また、望ましくは半導体素子3とパワーモジュール用基板10とを積層方向に加圧した状態で加熱することによって、より確実に接合することができる。
このようにして、回路層12の上にAg焼結層31が形成され、半導体素子3と回路層12とが接合される。これにより、本実施形態であるパワーモジュール1が製造される。また、Ag焼結層31の気孔率は、酸化銀粒子の粒径、酸化銀ペーストの組成割合、特に酸化銀、還元剤の組成割合、接合温度、接合時間などの接合条件を調整することによって、制御することができる。例えば、後述する実施例における条件によって、気孔率20%以上60%以下を有するAg焼結層31を製出することができる。
以上のような構成とされた本実施形態であるパワーモジュール1においては、回路層12の一方の面に、酸化銀が還元されたAgの焼結体からなるAg焼結層31が形成されているので、このAg焼結層31を形成する際に半導体素子3と回路層12とを接合することが可能となる。
以上、本発明の実施形態について説明したが、本発明はこれに限定されることはなく、その発明の技術的思想を逸脱しない範囲で適宜変更可能である。
例えば、回路層を構成する金属板を純度99.99%の無酸素銅として説明したが、これに限定されるものではなく、その他の銅及び銅合金を用いてもよい。
また、金属層を構成する金属板を純度99.99%の純アルミニウムの圧延板としたものとして説明したが、その他のアルミニウム又はアルミニウム合金で構成されていてもよい。
また、回路層となる銅又は銅合金からなる金属板をセラミックス基板に接合する際に、直接接合法(DBC法)等を適用することもできる。
さらに、金属層となるアルミニウム板とセラミックス基板とをろう付けにて接合するものとして説明したが、これに限定されることはなく、過渡液相接合法(Transient Liquid Phase Bonding)、鋳造法等を適用してもよい。
絶縁層としては、窒化アルミニウム(AlN)からなるセラミックス基板を用いたものとして説明したが、これに限定されることはなく、SiやAl等からなるセラミックス基板を用いてもよい。さらに、樹脂などの絶縁体を用いることもできる。
また、金属層となるアルミニウム板をセラミックス基板に接合するとともに、冷却器を接合した後に、回路層上にAg焼結層を形成するものとして説明したが、これに限定されることはなく、アルミニウム板をセラミックス基板に接合する前や、冷却器を接合する前にAg焼結層を形成してもよい。
さらに、冷却器の天板部をアルミニウムで構成したものとして説明したが、アルミニウム合金、又はアルミニウムを含む複合材(例えばAlSiC等)で構成されていてもよいし、その他の材料で構成されていてもよい。さらに、冷却器として、放熱フィン及び冷却媒体の流路を有するもので説明したが、冷却器の構造に特に限定はない。
酸化銀ペーストの原料、配合量については、実施形態に記載されたものに限定されることはない。例えば有機金属化合物又は樹脂などを含有させることもできる。有機金属化合物は、熱分解によって生成する有機酸によって酸化銀の還元反応を促進させる作用を有する。このような作用を有する有機金属化合物としては、例えば蟻酸銀、酢酸銀、プロピオン酸銀、安息香酸銀、シュウ酸銀などのカルボン酸系金属塩等が挙げられる。
また、酸化銀ペーストは、酸化銀粉末及び還元剤に加えて、Ag粒子を含有していてもよい。さらに、このAg粒子の表層には、有機物を含んでいてもよい。この場合、有機物が分解する際の熱を利用して低温での焼結性を向上させることが可能となる。
以下に、本発明の効果を確認すべく行った確認実験の結果について説明する。
本発明例、比較例及び従来例として、上述した回路層形成工程S01及び金属層形成工程S02により、セラミックス基板の一方の面に回路層及び他方の面に金属層を接合し、パワーモジュール用基板を製出した。
本実施例では、セラミックス基板11は、窒化アルミニウム(AlN)で構成され、27mm×17mm、厚さ0.6mmのものを使用した。
回路層12は、純度99.99%の無酸素銅で構成され、25mm×15mm、厚さ0.3mmのものを使用した。
金属層13は、純度99.99%の純アルミニウムで構成され、25mm×15mm、厚さ0.6mmのものを使用した。
半導体素子3は、13mm×10mm、厚さ0.25mmのシリコン半導体を使用した。
(本発明例)
本発明例としては、Niなどのメッキ膜を形成されていない回路層上に表1記載の組成を有する酸化銀ペーストを用いて、スクリーン印刷によって、塗布厚さを50μmの酸化銀ペースト層を形成した。酸化銀ペーストを乾燥させた後、半導体素子を酸化銀ペースト上に載置した。ここで、本発明例1,2,4及び5については、半導体素子の裏面にAgメッキ法によって、厚さ2μmのAg緻密層を形成した。
次に、表1に記載する炉内雰囲気、接合荷重、接合温度及び接合時間で半導体素子を接合して、本発明例のパワーモジュールを製出した。また、このときのAg焼結層31の気孔率を表1に記載する。
(比較例)
比較例として、比較例1では、上述のとおり製出したパワーモジュール用基板の回路層12の表面に厚さ5μmのNiメッキ膜を形成し、そのNiメッキ膜上に表1記載の酸化銀ペーストを用いて半導体素子3を接合したパワーモジュールを製出した。また、比較例2及び3では、Niなどのメッキ膜が形成されていない回路層12上に、表1記載の酸化銀ペーストを用いて、半導体素子3を接合したパワーモジュールを製出した。ここで、比較例2については、本発明例と同条件で半導体素子の裏面に厚さ2μmのAg緻密層を形成した。ただし、比較例2及び3では、表1に記載のとおり、気孔率が10%及び80%となるAg焼結層を形成した。
(従来例)
従来例として、上述のとおり製出したパワーモジュール用基板の回路層12の表面に厚さ5μmのNiメッキ膜を形成し、はんだ材(Sn−Ag−Cu系無鉛はんだ)を介して半導体素子3を載置し、還元炉内においてはんだ接合したパワーモジュールを準備した。なお、半導体素子3の加圧は無加重とした。
(Ag焼結層及びAg緻密層の気孔率測定)
Ag焼結層及びAg緻密層の気孔率については、次のようにして評価した。
本発明例及び比較例のパワーモジュールを切断し、Ag焼結層及びAg緻密層の断面を機械研磨した後、Arイオンエッチング(日本電子株式会社製クロスセクションポリッシャSM−09010)を行い、レーザ顕微鏡(株式会社キーエンス製VK X−200)を用いて断面観察を実施した。
そして、得られた画像を二値化処理し、白色部をAg、黒色部を気孔とした。二値化した画像から、黒色部の面積を求め、以下に示す式で気孔率を算出した。5箇所の断面で測定し、各断面の気孔率を算術平均してAg焼結層及びAg緻密層の気孔率とした。Ag焼結層の気孔率を表1に示す。
気孔率=黒色部(気孔)面積/Ag焼結層の観察面積
Figure 2014096545
(接合強度)
次に、本発明例、従来例、比較例のパワーモジュールを用いて、Ag焼結層と回路層との接合強度として、シェア強度(せん断強度)を評価した。
せん断強度評価試験機を用いて、半導体素子を上にした状態で、回路層を水平に固定し、回路層表面から50μm上方の位置をシェアツールで横から水平に押して、半導体素子が破断されたときの強度を測定した。シェアツールの移動速度は0.1mm/secとした。一条件に付き3回強度試験を行い、それらの算術平均値を測定値とした。
(熱抵抗)
本発明例、比較例及び従来例のパワーモジュールに、50mm×50mm×5mmのヒートシンクの天板をろう付け接合して熱抵抗を測定した。具体的には、ヒータチップを100Wの電力で加熱し、熱電対を用いてヒータチップの温度及びヒートシンクを流通する冷却媒体(エチレングリコール:水=9:1)の温度を実測した。そして、ヒータチップの温度と冷却媒体の温度差を電力で割った値を熱抵抗とし、本発明例及び比較例の熱抵抗は、従来例の熱抵抗を1としたときの割合を算出した。
(冷熱サイクル特性)
冷熱サイクル特性として、冷熱サイクル試験前の接合率(初期接合率)及び冷熱サイクル試験後の接合率を評価した。
冷熱サイクル試験は、本発明例、比較例及び従来例のパワーモジュールに、50mm×50mm×5mmのヒートシンクの天板をろう付け接合し、このヒートシンク付きパワーモジュールに対して、−40℃←→150℃の熱サイクルを負荷することにより行う。本実施例では、この冷熱サイクルを3000回実施した。
接合率は、超音波探傷装置を用いて評価し、以下の式から算出した。ここで、初期接合面積とは、接合前における接合すべき面積、すなわち半導体素子面積とした。超音波探傷像において非接合部分は接合部内の白色部で示されることから、この白色部の面積を非接合面積とした。
接合率=(初期接合面積−非接合面積)/初期接合面積
上述の方法により測定した接合強度(シェア強度)、熱抵抗及び冷熱サイクル特性の評価結果を表2に示す。
Figure 2014096545
表2に示すように、回路層上にNiメッキを施した比較例1では、回路層とAg焼結層との接合強度が高まらず、シェア強度が低くなり、冷熱サイクル試験後の接合率の低下も大きくなった。
また、比較例2では、Ag焼結層の気孔率が10%と低いため、冷熱サイクル試験での熱応力を充分緩和できず、半導体素子に割れが発生した。
比較例3では、Ag焼結層の気孔率が80%と高いため、熱抵抗が本発明と比較して高い結果となった。
さらに従来例のはんだ接合したパワーモジュールでは、熱抵抗が高く、冷熱サイクル後の接合率が低下する結果となった。
これらの比較例、従来例に対し、回路層に20%〜60%の気孔率を有するAg焼結層を直接接合した本発明例1〜5は、熱抵抗が低く、冷熱サイクル試験後の接合率の劣化が少ない結果となった。
以上のことから、本発明例によれば、熱抵抗が低く、冷熱サイクル信頼性に優れたパワーモジュールを提供可能であることが確認された。
1 パワーモジュール
3 半導体素子
10 パワーモジュール用基板
11 セラミックス基板
12 回路層
31 Ag焼結層
32 Ag緻密層

Claims (5)

  1. 絶縁層の一方の面に銅又は銅合金からなる回路層が配設されたパワーモジュール用基板と、前記回路層上に搭載される半導体素子と、を備えたパワーモジュールであって、
    前記回路層上には、酸化銀が還元されたAgの焼結体からなるAg焼結層によって半導体素子が接合されており、
    前記Ag焼結層は、前記回路層と直接接合されており、気孔率が20%以上60%以下であることを特徴とするパワーモジュール。
  2. 前記Ag焼結層と前記半導体素子との間に気孔率が20%未満のAg緻密層が形成されていることを特徴とする請求項1に記載のパワーモジュール。
  3. 絶縁層の一方の面に銅又は銅合金からなる回路層が配設されたパワーモジュール用基板と、前記回路層上に搭載される半導体素子と、を備えたパワーモジュールの製造方法であって、
    前記回路層表面に、酸化銀と還元剤とを含む酸化銀ペーストを塗布する塗布工程と、
    塗布された酸化銀ペーストの上に前記半導体素子を積層する積層工程と、
    前記半導体素子と前記パワーモジュール用基板とを積層した状態で真空中又は不活性ガス雰囲気中で加熱して、前記回路層の上に20%以上〜60%以下の気孔率を有するAg焼結層を形成すると共に、前記Ag焼結層と前記回路層とを直接接合する接合工程と、を備え、
    前記Ag焼結層によって前記半導体素子と前記回路層とを接合することを特徴とするパワーモジュールの製造方法。
  4. 前記酸化銀ペーストは、前記酸化銀及び前記還元剤に加えて、Ag粒子を含有していることを特徴する請求項3に記載のパワーモジュールの製造方法。
  5. 前記半導体素子の一方の面であって、前記回路層と接合される側の表面に気孔率20%未満のAg緻密層を形成するAg緻密層形成工程を有することを特徴とする請求項3又は請求項4に記載のパワーモジュールの製造方法。
JP2012248773A 2012-11-12 2012-11-12 パワーモジュール及びパワーモジュールの製造方法 Active JP6070092B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012248773A JP6070092B2 (ja) 2012-11-12 2012-11-12 パワーモジュール及びパワーモジュールの製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012248773A JP6070092B2 (ja) 2012-11-12 2012-11-12 パワーモジュール及びパワーモジュールの製造方法

Publications (2)

Publication Number Publication Date
JP2014096545A true JP2014096545A (ja) 2014-05-22
JP6070092B2 JP6070092B2 (ja) 2017-02-01

Family

ID=50939382

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012248773A Active JP6070092B2 (ja) 2012-11-12 2012-11-12 パワーモジュール及びパワーモジュールの製造方法

Country Status (1)

Country Link
JP (1) JP6070092B2 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018151313A1 (ja) 2017-02-20 2018-08-23 積水化学工業株式会社 焼結材料、接続構造体、複合粒子、接合用組成物及び焼結材料の製造方法
WO2022034754A1 (ja) * 2020-08-13 2022-02-17 花王株式会社 接合体の製造方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112021007870T5 (de) 2021-06-23 2024-04-04 Mitsubishi Electric Corporation Halbleitereinrichtung und verfahren zum herstellen einer halbleitereinrichtung

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008311371A (ja) * 2007-06-13 2008-12-25 Denso Corp 接合方法及び接合体
JP2010010502A (ja) * 2008-06-30 2010-01-14 Hitachi Ltd 半導体装置及び接合材料
JP2010131669A (ja) * 2008-10-29 2010-06-17 Nippon Handa Kk 金属製部材用接合剤、金属製部材接合体の製造方法、金属製部材接合体および電気回路接続用バンプの製造方法
JP2011249257A (ja) * 2010-05-31 2011-12-08 Hitachi Ltd 焼結銀ペースト材料及び半導体チップ接合方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008311371A (ja) * 2007-06-13 2008-12-25 Denso Corp 接合方法及び接合体
JP2010010502A (ja) * 2008-06-30 2010-01-14 Hitachi Ltd 半導体装置及び接合材料
JP2010131669A (ja) * 2008-10-29 2010-06-17 Nippon Handa Kk 金属製部材用接合剤、金属製部材接合体の製造方法、金属製部材接合体および電気回路接続用バンプの製造方法
JP2011249257A (ja) * 2010-05-31 2011-12-08 Hitachi Ltd 焼結銀ペースト材料及び半導体チップ接合方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018151313A1 (ja) 2017-02-20 2018-08-23 積水化学工業株式会社 焼結材料、接続構造体、複合粒子、接合用組成物及び焼結材料の製造方法
KR20190120190A (ko) 2017-02-20 2019-10-23 세키스이가가쿠 고교가부시키가이샤 소결 재료, 접속 구조체, 복합 입자, 접합용 조성물 및 소결 재료의 제조 방법
US11961815B2 (en) 2017-02-20 2024-04-16 Sekisui Chemical Co., Ltd. Sintered material, connection structure, composite particle, joining composition, and method for manufacturing sintered material
WO2022034754A1 (ja) * 2020-08-13 2022-02-17 花王株式会社 接合体の製造方法

Also Published As

Publication number Publication date
JP6070092B2 (ja) 2017-02-01

Similar Documents

Publication Publication Date Title
JP7192842B2 (ja) 接合用銅ペースト、接合体の製造方法及び半導体装置の製造方法
JP5614485B2 (ja) ヒートシンク付パワーモジュール用基板、ヒートシンク付パワーモジュール、及びヒートシンク付パワーモジュール用基板の製造方法
JP5664625B2 (ja) 半導体装置、セラミックス回路基板及び半導体装置の製造方法
JP6085968B2 (ja) 金属部材付パワーモジュール用基板、金属部材付パワーモジュール、及び金属部材付パワーモジュール用基板の製造方法
KR102422607B1 (ko) 접합체, 히트 싱크가 부착된 파워 모듈용 기판, 히트 싱크, 및 접합체의 제조 방법, 히트 싱크가 부착된 파워 모듈용 기판의 제조 방법, 히트 싱크의 제조 방법
JP5966379B2 (ja) パワーモジュール、及び、パワーモジュールの製造方法
JP2016208009A (ja) 接合体、ヒートシンク付パワーモジュール用基板、ヒートシンク、及び、接合体の製造方法、ヒートシンク付パワーモジュール用基板の製造方法、ヒートシンクの製造方法
JP2012178513A (ja) パワーモジュールユニット及びパワーモジュールユニットの製造方法
WO2019088285A1 (ja) ヒートシンク付パワーモジュール用基板およびヒートシンク付パワーモジュール用基板の製造方法
JP6010926B2 (ja) 接合材料、パワーモジュール及びパワーモジュールの製造方法
JP6070092B2 (ja) パワーモジュール及びパワーモジュールの製造方法
JP6142584B2 (ja) 金属複合体、回路基板、半導体装置、及び金属複合体の製造方法
JP6569511B2 (ja) 接合体、冷却器付きパワーモジュール用基板、冷却器付きパワーモジュール用基板の製造方法
WO2017150096A1 (ja) 半導体装置
JP6176854B2 (ja) 活性金属ろう材層を備える複合材料
CN108305838B (zh) 一种不含有机物的低温芯片贴装方法及芯片贴装结构
JP6040729B2 (ja) 半導体装置及び半導体装置の製造方法
JP6269116B2 (ja) 下地層付き金属部材、絶縁回路基板、半導体装置、ヒートシンク付き絶縁回路基板、及び、下地層付き金属部材の製造方法
JP5982954B2 (ja) パワーモジュール、及び、パワーモジュールの製造方法
JP6354147B2 (ja) 半導体装置、及び半導体装置の製造方法
JP2011201760A (ja) パワーモジュール用基板、ヒートシンク付パワーモジュール用基板、パワーモジュール、パワーモジュール用基板の製造方法及びヒートシンク付パワーモジュール用基板の製造方法
WO2016167217A1 (ja) 接合体、ヒートシンク付パワーモジュール用基板、ヒートシンク、及び、接合体の製造方法、ヒートシンク付パワーモジュール用基板の製造方法、ヒートシンクの製造方法
JP2017135374A (ja) 接合体、パワーモジュール用基板、パワーモジュール、接合体の製造方法及びパワーモジュール用基板の製造方法
JP6323128B2 (ja) 回路基板の製造方法
JP6171912B2 (ja) Ag下地層付き金属部材、絶縁回路基板、半導体装置、ヒートシンク付き絶縁回路基板、及び、Ag下地層付き金属部材の製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150930

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160425

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160510

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160704

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161206

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161219

R150 Certificate of patent or registration of utility model

Ref document number: 6070092

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150