JP5966379B2 - パワーモジュール、及び、パワーモジュールの製造方法 - Google Patents

パワーモジュール、及び、パワーモジュールの製造方法 Download PDF

Info

Publication number
JP5966379B2
JP5966379B2 JP2012011140A JP2012011140A JP5966379B2 JP 5966379 B2 JP5966379 B2 JP 5966379B2 JP 2012011140 A JP2012011140 A JP 2012011140A JP 2012011140 A JP2012011140 A JP 2012011140A JP 5966379 B2 JP5966379 B2 JP 5966379B2
Authority
JP
Japan
Prior art keywords
layer
power module
fired
silver oxide
glass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012011140A
Other languages
English (en)
Other versions
JP2013012706A (ja
Inventor
文衣理 仙石
文衣理 仙石
修司 西元
修司 西元
仁人 西川
仁人 西川
長友 義幸
義幸 長友
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2012011140A priority Critical patent/JP5966379B2/ja
Priority to CN201210167770.6A priority patent/CN102810524B/zh
Publication of JP2013012706A publication Critical patent/JP2013012706A/ja
Application granted granted Critical
Publication of JP5966379B2 publication Critical patent/JP5966379B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L24/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/838Bonding techniques
    • H01L2224/8384Sintering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1305Bipolar Junction Transistor [BJT]
    • H01L2924/13055Insulated gate bipolar transistor [IGBT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/156Material
    • H01L2924/15786Material with a principal constituent of the material being a non metallic, non metalloid inorganic material
    • H01L2924/15787Ceramics, e.g. crystalline carbides, nitrides or oxides

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)
  • Die Bonding (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Description

この発明は、絶縁層の一方の面に回路層が配設されたパワーモジュール用基板と前記回路層上に搭載される半導体素子とを備えたパワーモジュール、このパワーモジュールの製造方法に関するものである。
各種の半導体素子のうちでも、電気自動車や電気車両などを制御するために用いられる大電力制御用のパワー素子は、発熱量が多いことから、これを搭載する基板としては、例えばAlN(窒化アルミ)などからなるセラミックス基板上に導電性の優れた金属板を回路層として接合したパワーモジュール用基板が、従来から広く用いられている。
そして、このようなパワーモジュール用基板は、その回路層上に、はんだ材を介してパワー素子としての半導体素子が搭載される。なお、この種のパワーモジュール用基板としては、セラミックス基板の下面にも放熱のために熱伝導性に優れた金属板を接合し、その金属板を介して冷却器を接合して、放熱させる構造としたものが知られている。
回路層を構成する金属としては、アルミニウム又はアルミニウム合金、或いは、銅又は銅合金が用いられている。
ここで、アルミニウムからなる回路層においては、表面にアルミニウムの酸化皮膜が形成されるため、はんだ材との接合を良好に行うことができない。また、銅からなる回路層においては、溶融したはんだ材と銅とが反応して回路層の内部にはんだ材の成分が侵入し、回路層の導電性が劣化するといった問題がある。
そこで、従来は、例えば特許文献1に開示されているように、回路層の表面に無電解めっき等によってNiめっき膜を形成し、このNiめっき膜上にはんだ材を配設して半導体素子を接合していた。
また、特許文献2には、はんだ材を用いずにAgナノペーストを用いて半導体素子を接合する技術が提案されている。
さらに、特許文献3、4には、はんだ材を用いずに金属酸化物粒子と有機物からなる還元剤とを含む酸化物ペーストを用いて半導体素子を接合する技術が提案されている。
特開2004−172378号公報 特開2006−202938号公報 特開2008−208442号公報 特開2009−267374号公報
ところで、特許文献1に記載されたように、回路層表面にNiめっき膜を形成したパワーモジュール用基板においては、半導体素子を接合するまでの過程においてNiめっき膜の表面が酸化等によって劣化し、はんだ材を介して接合した半導体素子との接合信頼性が低下するおそれがあった。
また、パワーモジュール用基板に冷却器をろう付けで接合する場合には、回路層表面にNiめっき膜を形成した後にろう付け等を行えば、Niめっき膜が劣化してしまうため、通常は、パワーモジュール用基板と冷却器とをろう付けして冷却器付パワーモジュール用基板を形成した後に、めっき浴内にその冷却器付パワーモジュール用基板全体を浸漬させることが行なわれている。この場合、回路層以外の部分にもNiめっき膜が形成されることになるが、冷却器がアルミニウムやアルミニウム合金で構成されていた場合には、アルミニウムからなる冷却器とNiめっき膜との間で電食が進行するおそれがある。そのため、Niめっき工程においては、冷却器部分にNiめっき膜が形成されないように、マスキング処理を行う必要があった。このように、マスキング処理をした上でめっき処理をする場合、回路層部分にNiめっき膜を形成するためだけの工程に多大な労力が必要となり、パワーモジュールの製造コストが大幅に増加してしまうといった問題がある。
一方、特許文献2に開示されたように、はんだ材を使用せずにAgナノペーストを用いて半導体素子を接合した場合には、Agナノペーストからなる接合層がはんだ材に比べて厚みが薄く形成されるため、熱サイクル負荷時の応力が半導体素子に作用しやすくなり、半導体素子自体が破損してしまうおそれがあった。
さらに、特許文献3、4に開示されたように、金属酸化物と還元剤とを用いて半導体素子を接合した場合には、やはり、酸化物ペーストの焼成層が薄く形成されることから、熱サイクル負荷時の応力が半導体素子に作用しやすくなる。
特に、最近では、パワーモジュールの小型化・薄肉化が進められるとともに、その使用環境も厳しくなってきており、電子部品からの発熱量が大きくなる傾向にある。このため、パワーモジュールの使用時において、回路層と半導体素子との接合界面に作用する応力も増加する傾向にあり、従来にも増して、回路層と半導体素子との間の接合信頼性の向上が求められている。
この発明は、前述した事情に鑑みてなされたものであって、回路層の一方の面に半導体素子が確実に接合され、熱サイクル及びパワーサイクル信頼性に優れたパワーモジュール及びパワーモジュールの製造方法を提供することを目的とする。
このような課題を解決して、前記目的を達成するために、本発明のパワーモジュールは、絶縁層の一方の面に回路層が配設されたパワーモジュール用基板と、前記回路層上に搭載される半導体素子と、を備えたパワーモジュールであって、前記回路層の一方の面には、ガラス成分を含有するガラス含有Agペーストの焼成体からなる第1焼成層が形成されており、この第1焼成層の上に、酸化銀が還元されたAgの焼成体からなる第2焼成層が形成されており、前記第1焼成層の厚さが1.01μm以上105μm以下の範囲内とされ、前記第2焼成層の厚さが5μm以上50μm以下の範囲内とされていることを特徴としている。
この構成のパワーモジュールによれば、回路層の一方の面に、ガラス成分を含有するガラス含有Agペーストの焼成体からなる第1焼成層が形成されているので、ガラス成分によって回路層の表面に形成されている酸化皮膜を除去することができ、この第1焼成層と回路層との接合強度を確保することができる。
また、この第1焼成層の上に、酸化銀が還元されたAgの焼成体からなる第2焼成層が形成されているので、この第2焼成層を形成する際に半導体素子を接合することが可能となる。ここで、酸化銀を還元した場合には、微細なAg粒子が生成することから、第2焼成層を緻密な構造とすることができる。
さらに、第1焼成層及び第2焼成層が積層されているので、回路層と半導体素子との間に介在する接合層の厚さを確保することができる。よって、熱サイクル負荷時の応力が半導体素子に作用することを抑制でき、半導体素子自体の破損を防止することができる。
ここで、前記第1焼成層は、回路層の一方の面に形成されたガラス層と、このガラス層上に積層されたAg層と、を備えており、前記Ag層には、ガラス粒子が分散している構成とすることが好ましい。
この場合、回路層の表面に形成されている酸化皮膜をガラス層に反応させて除去することができ、回路層と半導体素子とを確実に接合することができる。
ここで、前記第2焼成層は、酸化銀と還元剤とを含む酸化銀ペーストの焼成体とされていることが好ましい。
この場合、酸化銀ペーストを焼成する際に、酸化銀が還元剤によって確実に還元されて微細なAg粒子が生成し、第2焼成層を緻密な構造とすることができる。また、還元剤は、酸化銀を還元する際に分解されるため、第2焼成層中に残存しにくく、第2焼成層における導電性を確保することができる。さらに、例えば300℃といった比較的低温条件で焼成することが可能となるため、半導体素子の接合温度を低く抑えることができ、半導体素子への熱負荷を低減することができる。
前記酸化銀ペーストは、前記酸化銀及び前記還元剤に加えて、Ag粒子を含有していてもよい。
この場合、酸化銀が還元されて得られるAg粒子と、酸化銀ペーストに含有されたAg粒子とが焼結することになり、第2焼成層をさらに緻密な構造とすることができる。また、Ag粒子の平均粒径としては、20nm以上800nm以下が望ましい。
さらに、前記絶縁層が、AlN、Si又はAlから選択されるセラミックス基板であることが好ましい。
AlN、Si又はAlから選択されるセラミックス基板は、絶縁性及び強度に優れており、パワーモジュールの信頼性の向上を図ることができる。また、このセラミックス基板上に金属板を接合することによって、容易に回路層を形成することが可能となる。
本発明のパワーモジュールの製造方法は、絶縁層の一方の面に回路層が配設されたパワーモジュール用基板と、前記回路層上に搭載される半導体素子と、を備えたパワーモジュールの製造方法であって、前記回路層の一方の面に、ガラス成分を含有するガラス含有Agペーストを塗布し、加熱処理することにより、第1焼成層を形成する工程と、前記第1焼成層の上に、酸化銀と還元剤とを含む酸化銀ペーストを塗布する工程と、塗布された酸化銀ペーストの上に半導体素子を積層する工程と、前記半導体素子と前記パワーモジュール用基板とを積層した状態で加熱して、前記第1焼成層の上に第2焼成層を形成する工程と、を備え、前記第1焼成層の厚さを1.01μm以上105μm以下の範囲内、前記第2焼成層の厚さを5μm以上50μm以下の範囲内とするとともに、前記半導体素子と前記回路層とを接合することを特徴としている。
この構成のパワーモジュールの製造方法によれば、前記回路層の一方の面に、ガラス成分を含有するガラス含有Agペーストを塗布し、加熱処理することにより、前記第1焼成層を形成する工程を備えているので、回路層の表面に形成された酸化皮膜を除去でき、回路層と第1焼成層とを確実に接合することができる。
また、前記第1焼成層の上に、酸化銀と還元剤とを含む酸化銀ペーストを塗布する工程と、塗布された酸化銀ペーストの上に半導体素子を積層する工程と、前記半導体素子と前記パワーモジュール用基板とを積層した状態で加熱して、前記第1焼成層の上に第2焼成層を形成する工程と、を備えているので、第2焼成層を焼成する際に前記半導体素子と前記回路層とを接合することができる。
ここで、第2焼成層を形成する工程における前記酸化銀ペーストの焼成温度が、150℃以上400℃以下であることが好ましい。
この場合、前記酸化銀ペーストの焼成温度が400℃以下とされているので、酸化銀ペーストを焼成して半導体素子を接合する際の温度を低く抑えることができ、半導体素子への熱負荷を低減することができる。また、前記酸化銀ペーストの焼成温度が150℃以上とされているので、酸化銀ペーストに含まれる還元剤等を除去することができ、第2焼成層における導電性及び強度を確保することができる。
また、前記第1焼成層を形成する工程における前記ガラス含有Agペーストの焼成温度が、350℃以上645℃以下であることが好ましい。
この場合、前記ガラス含有Agペーストの焼成温度が350℃以上とされているので、ガラス含有Agペースト内の有機成分等を除去でき、第1焼成層を確実に形成することができる。また、前記ガラス含有Agペーストの焼成温度が645℃以下とされているので、回路層や絶縁層の熱劣化を防止することができる。
さらに、前記第2焼成層を形成する工程において、前記半導体素子と前記パワーモジュール用基板とを積層方向に加圧した状態で加熱することが好ましい。
この場合、より確実に半導体素子とパワーモジュール用基板とを接合することが可能となる。
また、前記酸化銀ペーストは、前記酸化銀及び前記還元剤に加えて、Ag粒子を含有していてもよい。
この場合、Ag粒子が酸化銀粉末の間に介在し、酸化銀が還元されて得られるAg粒子と、酸化銀ペーストに含有されたAg粒子とが焼結することになり、第2焼成層をさらに緻密な構造とすることができる。また、接合時における半導体素子の加圧圧力を低く設定することができる。また、Ag粒子の平均粒径としては、20nm以上800nm以下が望ましい。
本発明によれば、回路層の一方の面に半導体素子が確実に接合され、熱サイクル及びパワーサイクル信頼性に優れたパワーモジュール及びパワーモジュールの製造方法を提供することができる。
本発明の実施形態であるパワーモジュールの概略説明図である。 図1に示すパワーモジュールの回路層と半導体素子との接合界面の拡大説明図である。 図2の回路層表面の拡大説明図である。 ガラス含有Agペーストの製造方法を示すフロー図である。 酸化銀ペーストの製造方法を示すフロー図である。 図1のパワーモジュールの製造方法を示すフロー図である。 本発明例1のパワーモジュールの回路層と半導体素子との接合界面の断面観察写真である。
以下に、本発明の実施形態について添付した図面を参照して説明する。図1に本発明の実施形態であるパワーモジュールを示す。
このパワーモジュール1は、回路層12が配設されたパワーモジュール用基板10と、回路層12の一方の面(図1において上面)に接合された半導体チップ3と、パワーモジュール用基板10の他方側に配設された冷却器40とを備えている。
パワーモジュール用基板10は、絶縁層を構成するセラミックス基板11と、このセラミックス基板11の一方の面に配設された回路層12と、セラミックス基板11の他方の面に配設された金属層13とを備えている。
セラミックス基板11は、回路層12と金属層13との間の電気的接続を防止するものであって、絶縁性の高いAlN(窒化アルミ)で構成されている。また、セラミックス基板11の厚さは、0.2〜1.5mmの範囲内に設定されており、本実施形態では、0.635mmに設定されている。
回路層12は、セラミックス基板11の一方の面に、導電性を有する金属板が接合されることにより形成されている。本実施形態においては、回路層12は、純度が99.99%以上のアルミニウム(いわゆる4Nアルミニウム)の圧延板からなるアルミニウム板がセラミックス基板11に接合されることにより形成されている。
金属層13は、セラミックス基板11の他方の面に、金属板が接合されることにより形成されている。本実施形態においては、金属層13は、回路層12と同様に、純度が99.99%以上のアルミニウム(いわゆる4Nアルミニウム)の圧延板からなるアルミニウム板がセラミックス基板11に接合されることで形成されている。
冷却器40は、前述のパワーモジュール用基板10を冷却するためのものであり、パワーモジュール用基板10と接合される天板部41と、この天板部41から下方に向けて垂設された放熱フィン42と、冷却媒体(例えば冷却水)を流通するための流路43とを備えている。この冷却器40(天板部41)は、熱伝導性が良好な材質で構成されることが望ましく、本実施形態においては、A6063(アルミニウム合金)で構成されている。
また、本実施形態においては、冷却器40の天板部41と金属層13との間には、アルミニウムまたはアルミニウム合金若しくはアルミニウムを含む複合材(例えばAlSiC等)からなる緩衝層15が設けられている。
そして、図1に示すパワーモジュール1においては、回路層12と半導体素子3との間には、第1焼成層31及び第2焼成層38が形成されている。ここで、回路層12の一方の面に第1焼成層31が積層され、この第1焼成層31の上に第2焼成層38が積層され、この第2焼成層38の上に半導体素子3が積層されているのである。
なお、第1焼成層31及び第2焼成層38は、図1に示すように、回路層12の表面全体には形成されておらず、半導体チップ3が配設される部分にのみ選択的に形成されている。
ここで、第1焼成層31は、後述するように、ガラス成分を含むガラス含有Agペーストの焼成体とされている。この第1焼成層31は、図2及び図3に示すように、回路層12側に形成されたガラス層32と、このガラス層32上に形成されたAg層33と、を備えている。
ガラス層32内部には、粒径が数ナノメートル程度の微細な導電性粒子34が分散されている。この導電性粒子34は、Ag又はAlの少なくとも一方を含有する結晶性粒子とされている。なお、ガラス層32内の導電性粒子34は、例えば透過型電子顕微鏡(TEM)を用いることで観察されるものである。
また、Ag層33の内部には、粒径が数ナノメートル程度の微細なガラス粒子35が分散されている。
なお、この第1焼成層31の厚さ方向の電気抵抗値Pが0.5Ω以下とされている。ここで、本実施形態においては、第1焼成層31の厚さ方向における電気抵抗値Pは、第1焼成層31の上面と回路層12の上面との間の電気抵抗値としている。これは、回路層12を構成する4Nアルミニウムの電気抵抗が第1焼成層31の厚さ方向の電気抵抗に比べて非常に小さいためである。なお、この電気抵抗の測定の際には、第1焼成層31の上面中央点と、第1焼成層31の前記上面中央点から第1焼成層31端部までの距離と同距離分だけ第1焼成層31端部から離れた回路層12上の点と、の間の電気抵抗を測定することとしている。
また、本実施形態では、回路層12が純度99.99%のアルミニウムで構成されていることから、回路層12の表面には、大気中で自然発生したアルミニウム酸化皮膜が形成されている。ここで、前述の第1焼成層31が形成された部分においては、このアルミニウム酸化皮膜が除去されており、回路層12上に直接第1焼成層31が形成されている。つまり、回路層12を構成するアルミニウムとガラス層32とが直接接合されているのである。
本実施形態においては、ガラス層32の厚さtgが0.01μm≦tg≦5μm、Ag層33の厚さtaが1μm≦ta≦100μm、第1焼成層31全体の厚さt1が1.01μm≦t1≦105μmとなるように構成されている。
この第1焼成層31の上、すなわちAg層33の上に形成された第2焼成層38は、酸化銀が還元されたAgの焼成体とされており、本実施形態では、後述するように、酸化銀と還元剤とを含む酸化銀ペーストの焼成体とされている。ここで、酸化銀を還元することにより生成されるAg層33表面に析出する粒子は、例えば粒径10nm〜1μmと非常に微細であることから、緻密なAgの焼成層が形成されることになる。なお、この第2焼成層38においては、第1焼成層31のAg層33で観察されたガラス粒子は存在していない、若しくは、非常に少ない。このガラス粒子の濃淡によって、第1焼成層31のAg層33と第2焼成層38との判別を行うことが可能となる。
本実施形態においては、第2焼成層38の厚さt2が5μm≦t2≦50μmとされている。
次に、第1焼成層31を構成するガラス含有Agペーストについて説明する。
このガラス含有Agペーストは、Ag粉末と、ZnOを含有する無鉛ガラス粉末と、樹脂と、溶剤と、分散剤と、を含有しており、Ag粉末と無鉛ガラス粉末とからなる粉末成分の含有量が、ガラス含有Agペースト全体の60質量%以上90質量%以下とされており、残部が樹脂、溶剤、分散剤とされている。なお、本実施形態では、Ag粉末と無鉛ガラス粉末とからなる粉末成分の含有量は、ガラス含有Agペースト全体の85質量%とされている。
また、このガラス含有Agペーストは、その粘度が10Pa・s以上500Pa・s以下、より好ましくは50Pa・s以上300Pa・s以下に調整されている。
Ag粉末は、その粒径が0.05μm以上1.0μm以下とされており、本実施形態では、平均粒径0.8μmのものを使用した。
無鉛ガラス粉末は、主成分としてBi、ZnO、Bを含むものとされており、そのガラス転移温度が300℃以上450℃以下、軟化温度が600℃以下、結晶化温度が450℃以上とされている。また、Ag粉末の重量Aと無鉛ガラス粉末の重量Gとの重量比A/Gは、80/20から99/1の範囲内に調整されており、本実施形態では、A/G=80/5とした。
溶剤は、沸点が200℃以上のものが適しており、本実施形態では、ジエチレンクリコールジブチルエーテルを用いている。
樹脂は、ガラス含有Agペーストの粘度を調整するものであり、500℃以上で分解されるものが適している。本実施形態では、エチルセルロースを用いている。
また、本実施形態では、ジカルボン酸系の分散剤を添加している。なお、分散剤を添加することなくガラス含有Agペーストを構成してもよい。
ここで、本実施形態において用いられる無鉛ガラス粉末について詳細に説明する。本実施形態における無鉛ガラス粉末のガラス組成は、
Bi:68質量%以上93質量%以下、
ZnO:1質量%以上20質量%以下、
:1質量%以上11質量%以下、
SiO:5質量%以下、
Al:5質量%以下、
Fe:5質量%以下、
CuO:5質量%以下、
CeO:5質量%以下、
ZrO:5質量%以下、
アルカリ金属酸化物:2質量%以下、
アルカリ土類金属酸化物:7質量%以下、
とされている。
すなわち、Bi、ZnO、Bを必須成分とし、これに、SiO、Al、Fe、CuO、CeO、ZrO、LiO、NaO、KO等のアルカリ金属酸化物、MgO、CaO、BaO、SrO等のアルカリ土類金属酸化物が、必要に応じて適宜添加されたものである。
このようなZnOを含有する無鉛ガラス粉末は、次のようにして製造される。原料として、上述の各種酸化物、炭酸塩もしくはアンモニウム塩を用いる。この原料を、白金坩堝、アルミナ坩堝または石英坩堝等に装入して、溶解炉にて溶融する。溶融条件に特に制限はないが、原料が全て液相で均一に混合されるように、900℃以上1300℃以下、30分以上120分以下の範囲内とすることが好ましい。
得られた溶融物を、カーボン、スチール、銅板、双ロール、水等に投下して急冷することにより、均一なガラス塊を製出する。
このガラス塊を、ボールミル、ジェットミル等で粉砕し、粗大粒子を分級することにより、無鉛ガラス粉末が得られる。ここで、本実施形態では、無鉛ガラス粉末の中心粒径d50を0.1μm以上5.0μm以下の範囲内としている。
次に、ガラス含有Agペーストの製造方法について、図4に示すフロー図を参照して説明する。
まず、前述したAg粉末と無鉛ガラス粉末とを混合して混合粉末を生成する(混合粉末形成工程S01)。また、溶剤と樹脂とを混合して有機混合物を生成する(有機物混合工程S02)。
そして、混合粉末と有機混合物と分散剤とをミキサーによって予備混合する(予備混合工程S03)。
次に、予備混合物を、ロールミル機を用いて練り込みながら混合する(混錬工程S04)。
そして、得られた混錬をペーストろ過機によってろ過する(ろ過工程S05)。
このようにして、前述のガラス含有Agペーストが製出されることになる。
次に、第2焼成層38を構成する酸化銀ペーストについて説明する。
この酸化銀ペーストは、酸化銀粉末と、還元剤と、樹脂と、溶剤と、を含有しており、本実施形態では、これらに加えて有機金属化合物粉末を含有している。
酸化銀粉末の含有量が酸化銀ペースト全体の60質量%以上80質量%以下とされ、還元剤の含有量が酸化銀ペースト全体の5質量%以上15質量%以下とされ、有機金属化合物粉末の含有量が酸化銀ペースト全体の0質量%以上10質量%以下とされており、残部が溶剤とされている。ここで、酸化銀ペーストにおいては、焼結によって得られる第2焼成層38に未反応の有機物が残存することを抑制するために、分散剤や樹脂は添加していない。
なお、この酸化銀ペーストは、その粘度が10Pa・s以上100Pa・s以下、より好ましくは30Pa・s以上80Pa・s以下に調整されている。
酸化銀粉末は、その粒径が0.1μm以上40μm以下とされたものを使用した。なお、このような酸化銀粉末は、市販品として入手可能なものである。
還元剤は、還元性を有する有機物とされており、例えば、アルコール、有機酸を用いることができる。
アルコールであれば、例えば、メタノール、エタノール、プロパノール、ブチルアルコール、ペンチルアルコール、ヘキシルアルコール、オクチルアルコール、ノニルアルコール、デシルアルコール、ウンデシルアルコール、ドデシルアルコール、ラウリルアルコール、ミリスチルアルコール、セチルアルコール、ステアリルアルコール等の1級アルコールを用いることができる。なお、これら以外にも、多数のアルコール基を有する化合物を用いてもよい。
有機酸であれば、例えば、ブタン酸、ペンタン酸、ヘキサン酸、ヘプタン酸、オクタン酸、ノナン酸、デカン酸、ウンデカン酸、ドデカン酸、トリデカン酸、テトラデカン酸、ペンタデカン酸、ヘキサデカン酸、ヘプタデカン酸、オクタデカン酸、ノナンデカン酸などの飽和脂肪酸を用いることができる。なお、これら以外にも、不飽和脂肪酸を用いてもよい。
なお、酸化銀粉末と混合した後に還元反応が容易に進行しない還元剤であれば、酸化銀ペーストの保存安定性が向上することになる。そこで、還元剤としては、融点が室温以上のものが好ましく、具体的には、ミリスチルアルコール、1−ドデカノール、2,5−ジメチル−2,5−ヘキサンジオール、2,2−ジメチル−1,3−プロパンジオール、1,6−ヘキサンジオール、1,2,6−ヘキサントリオール、1,10−デカンジオール、ミリスチン酸、デカン酸等を用いることが好ましい。
有機金属化合物は、熱分解によって生成する有機酸によって酸化銀の還元反応を促進させる作用を有する。このような作用を有する有機金属化合物としては、例えば蟻酸Ag、酢酸Ag、プロピオン酸Ag、安息酸Ag、シュウ酸Agなどのカルボン酸系金属塩等が挙げられる。
溶剤は、酸化銀ペーストの保存安定性、印刷性を確保する観点から、高沸点(150℃〜300℃)のものを用いることが好ましい。
具体的には、α-テルピネオール、酢酸2エチルヘキシル、酢酸3メチルブチル等を用いることができる。
次に、上述の酸化銀ペーストの製造方法について、図5に示すフロー図を参照して説明する。
まず、前述した酸化銀粉末と、還元剤(固体)と、有機金属化合物粉末と、を混合し、固体成分混合物を生成する(固体成分混合工程S11)。
次に、この固体成分混合物に、溶剤を添加して撹拌する(撹拌工程S12)。
そして、撹拌物を、ロールミル機(例えば3本ロールミル)を用いて練り込みながら混合する(混練工程S13)。
このようにして、前述の酸化銀ペーストが製出されることになる。なお、得られた酸化銀ペーストは、冷蔵庫等によって低温(例えば5〜15℃)で保存しておくことが好ましい。
次に、本実施形態であるパワーモジュール1の製造方法について、図6に示すフロー図を参照して説明する。
まず、回路層12となるアルミニウム板及び金属層13となるアルミニウム板を準備し、これらのアルミニウム板を、セラミックス基板11の一方の面及び他方の面にそれぞれろう材を介して積層し、加圧・加熱後冷却することによって、前記アルミニウム板とセラミックス基板11とを接合する(回路層接合工程S21)。なお、このろう付けの温度は、640℃〜650℃に設定されている。
次に、金属層13の他方の面側に、冷却器40をろう材を介して接合する(冷却器接合工程S22)。なお、冷却器40のろう付けの温度は、590℃〜610℃に設定されている。
そして、回路層12の表面に、ガラス含有Agペーストを塗布する(ガラス含有Agペースト塗布工程S23)。
なお、ガラス含有Agペーストを塗布する際には、スクリーン印刷法、オフセット印刷法、感光性プロセス等の種々の手段を採用することができる。本実施形態では、スクリーン印刷法によってガラス含有Agペーストを回路層12の半導体チップ3が搭載される部分に形成した。
次に、回路層12表面にガラス含有Agペーストを塗布した状態で乾燥した後、加熱炉内に装入してガラス含有Agペーストの焼成を行う(第1焼成工程S24)。なお、このときの焼成温度は350〜645℃に設定されている。
この第1焼成工程S24により、回路層12の一方の面に、ガラス層32とAg層33とを備えた第1焼成層31が形成される。このとき、ガラス層32によって、回路層12の表面に自然発生していたアルミニウム酸化皮膜が溶融除去されることになり、回路層12に直接ガラス層32が形成される。
また、ガラス層32の内部に、粒径が数ナノメートル程度の微細な導電性粒子34が分散されることになる。この導電性粒子34は、Ag又はAlの少なくとも一方を含有する結晶性粒子とされており、焼成の際にガラス層32内部に析出したものと推測される。
さらに、Ag層33の内部に、粒径が数ナノメートル程度の微細なガラス粒子35が分散されることになる。このガラス粒子35は、Ag粒子の焼結が進行していく過程で、残存したガラス成分が凝集したものと推測される。
次に、第1焼成層31の表面に、酸化銀ペーストを塗布する(酸化銀ペースト塗布工程S25)。
なお、酸化銀ペーストを塗布する際には、スクリーン印刷法、オフセット印刷法、感光性プロセス等の種々の手段を採用することができる。本実施形態では、スクリーン印刷法によって酸化銀ペーストを印刷した。
次に、酸化銀ペーストを塗布した状態で乾燥(例えば、室温、大気雰囲気で24時間保管)した後、酸化銀ペーストの上に半導体素子3を積層する(半導体素子積層工程S26)。
そして、半導体素子3とパワーモジュール用基板10とを積層した状態で加熱炉内に装入し、酸化銀ペーストの焼成を行う(第2焼成工程S27)。このとき、荷重を0〜10MPaとし、焼成温度を150〜400℃とする。
また、望ましくは半導体素子3とパワーモジュール用基板10とを積層方向に加圧した状態で加熱することによって、より確実に接合することができる。この場合、加圧圧力は0〜10MPaが望ましい。
このようにして、第1焼成層31の上に第2焼成層38が形成され、半導体チップ3と回路層12とが接合される。これにより、本実施形態であるパワーモジュール1が製造される。
以上のような構成とされた本実施形態であるパワーモジュール1においては、回路層12の一方の面に、ガラス成分を含有するガラス含有Agペーストの焼成体からなる第1焼成層31が形成され、この第1焼成層31の上に、酸化銀が還元されたAgの焼成体からなる第2焼成層38が形成されているので、この第2焼成層38を形成する際に半導体素子3と回路層12とを接合することが可能となる。
さらに、第1焼成層31及び第2焼成層38が積層されているので、回路層12と半導体素子3との間に介在する接合層の厚さを確保することができる。よって、熱サイクル負荷時の応力が半導体素子3に作用することを抑制でき、半導体素子3自体の破損を防止することができる。
また、第2焼成層38は、酸化銀と還元剤とを含む酸化銀ペーストの焼成体とされているので、酸化銀ペーストを焼成する際に、酸化銀が還元剤によって還元されて微細な銀粒子となり、第2焼成層38を緻密な構造とすることができる。また、還元剤は、酸化銀を還元する際に分解されるため、第2焼成層38中に残存しにくく、第2焼成層38における導電性及び強度を確保することができる。さらに、例えば300℃といった比較的低温条件で焼成することが可能となるため、半導体素子3の接合温度を低く抑えることができ、半導体素子3への熱負荷を低減することができる。
また、本実施形態であるパワーモジュール1においては、第1焼成層31が、回路層12の一方の面に形成されたガラス層32と、このガラス層32上に積層されたAg層33と、を備えているので、回路層12の表面に形成されている酸化皮膜をガラス層32に反応させて除去することができ、回路層12と半導体素子3とを確実に接合することができる。
しかも、本実施形態では、ガラス層32内部に、粒径が数ナノメートル程度とされた微細な導電性粒子34が分散されているので、ガラス層32においても導電性を確保することができる。具体的には、本実施形態では、ガラス層32を含めた第1焼成層31の厚さ方向の電気抵抗値Pが0.5Ω以下に設定されている。
したがって、第1焼成層31及び第2焼成層38を介して半導体素子3と回路層12との間で電気を確実に導通することが可能となり、信頼性の高いパワーモジュール1を構成することができる。
また、本実施形態においては、絶縁層として絶縁性及び強度に優れたAlN(窒化アルミ)からなるセラミックス基板11を用いているので、パワーモジュール用基板10の信頼性の向上を図ることができる。また、このセラミックス基板11上にアルミニウム板をろう付けすることによって、容易に回路層12を形成することができる。
さらに、本実施形態では、セラミックス基板11の他方側(図1において下側)に、金属層13および緩衝層15を介して冷却器40が配設されているので、半導体チップ3からの発熱によってパワーモジュール1が高温となることを防止することができる。
また、本実施形態であるパワーモジュール1の製造方法においては、回路層12の一方の面に、ガラス含有Agペーストを塗布するガラス含有Agペースト塗布工程S23と、乾燥後のガラス含有Agペーストを焼成して第1焼成層31を形成する第1焼成工程S24と、を備えているので、回路層12の上に、ガラス層32及びAg層33からなる第1焼成層31を形成することができる。
また、第1焼成層31の上に酸化銀ペーストを塗布する酸化銀ペースト塗布工程S25と、塗布された酸化銀ペーストの上に半導体素子3を積層する半導体素子積層工程S26と、半導体素子3とパワーモジュール用基板10とを積層するとともに加熱して、第1焼成層31の上に第2焼成層38を形成する第2焼成工程S27と、を備えているので、半導体素子3と回路層12とを、第1焼成層31及び第2焼成層38を介して接合することができる。また、より望ましくは、半導体素子3とパワーモジュール用基板10とを積層方向に加圧した状態で加熱して接合する。
また、第2焼成層38を形成する第2焼成工程S27における焼成温度が400℃以下とされているので、接合時における半導体素子3への熱負荷を低減することができる。また、第2焼成工程S27における焼成温度が150℃以上とされているので、酸化銀ペーストに含まれる還元剤等を除去することができ、第2焼成層38における導電性及び強度を確保することができる。
また、第1焼成層31を形成する第1焼成工程S24における焼成温度が350℃以上とされているので、ガラス含有Agペーストを焼成して第1焼成層31を確実に形成することができる。また、第1焼成工程S24における焼成温度が645℃以下とされているので、回路層12やセラミックス基板11の劣化を防止することができる。
また、本実施形態においては、酸化銀ペーストに、有機金属化合物が添加されているので、この有機金属化合物が熱分解することによって生成される有機酸により、酸化銀の還元反応が促進されることになる。
さらに、酸化銀ペーストに混合する還元剤として、室温で固体であるものを用いているので、焼成前に還元反応が進行することを防止できる。
また、酸化銀ペーストには、分散剤や樹脂が添加されていないことから、第2焼成層38に有機物が残存することを防止できる。
さらに、酸化銀ペーストの粘度が10Pa・s以上100Pa・s以下、より好ましくは30Pa・s以上80Pa・s以下に調整されているので、第1焼成層31の上に酸化銀ペーストを塗布する酸化銀ペースト塗布工程S25において、スクリーン印刷法等を適用することが可能なり、第2焼成層38を半導体素子3が配設される部分のみに選択的に形成することができる。よって、酸化銀ペーストの使用量を削減することが可能となり、このパワーモジュール1の製造コストを大幅に削減することができる。
また、本実施形態では、第1焼成層31を構成するガラス含有Agペーストが、Ag粉末と、ZnOを含有する無鉛ガラス粉末と、を含有しており、無鉛ガラス粉末の軟化温度が600℃以下に設定されているので、比較的低温でガラス含有Agペーストを焼成することが可能となる。具体的には、第1焼成層を形成する第1焼成工程S24における焼成温度を350℃以上645℃以下に設定することができる。よって、ガラス含有Agペーストの焼成に伴う回路層12の劣化や回路層12とセラミックス基板11との接合強度の低下等のトラブルを未然に防止することができ、高品質のパワーモジュール1を製出することが可能となる。
さらに、ガラス含有Agペーストの粘度が10Pa・s以上500Pa・s以下、より好ましくは50Pa・s以上300Pa・s以下に調整されているので、回路層12表面にガラス含有Agペーストを塗布するガラス含有Agペースト塗布工程S23において、スクリーン印刷法等を適用することが可能なり、第1焼成層31を半導体素子3が配設される部分のみに選択的に形成することができる。よって、ガラス含有Agペーストの使用量を削減することが可能となり、このパワーモジュール1の製造コストを大幅に削減することができる。
以上、本発明の実施形態について説明したが、本発明はこれに限定されることはなく、その発明の技術的思想を逸脱しない範囲で適宜変更可能である。
例えば、回路層及び金属層を構成する金属板を純度99.99%の純アルミニウムの圧延板としたものとして説明したが、これに限定されることはなく、他のアルミニウム又はアルミニウム合金で構成されていてもよい。また、回路層及び金属層を構成する金属板を、純銅、または、銅合金で構成されたものとしてもよい。
また、アルミニウム板とセラミックス基板とをろう付けにて接合するものとして説明したが、これに限定されることはなく、過渡液相接合法(Transient Liquid Phase Bonding)、鋳造法等を適用してもよい。
さらに、回路層及び金属層を構成する金属板を銅又は銅合金で構成した場合には、銅又は銅合金からなる金属板をセラミックス基板に接合する際に、直接接合法(DBC法)、活性金属法、鋳造法等を適用することができる。
また、ガラス含有Agペーストの原料、配合量については、実施形態に記載されたものに限定されることはない。例えば、無鉛ガラス粉末を用いるものとして説明したが、鉛を含有するガラスであってもよい。
さらに、酸化銀ペーストの原料、配合量については、実施形態に記載されたものに限定されることはない。例えば有機金属化合物を含有しないものであってもよい。
また、第1焼成層31におけるガラス層32とAg層33の厚さ、第2焼成層38の厚さについても、本実施形態に限定されるものではない。
さらに、絶縁層としてAlNからなるセラミックス基板を用いたものとして説明したが、これに限定されることはなく、SiやAl等からなるセラミックス基板を用いてもよいし、絶縁樹脂によって絶縁層を構成してもよい。
また、回路層となるアルミニウム板をセラミックス基板に接合するとともに、冷却器を接合した後に、回路層上に第1焼成層を形成するものとして説明したが、これに限定されることはなく、アルミニウム板をセラミックス基板に接合する前や、冷却器を接合する前に第1焼成層を形成してもよい。
また、冷却器の天板部と金属層との間に、アルミニウム又はアルミニウム合金若しくはアルミニウムを含む複合材(例えばAlSiC等)からなる緩衝層を設けたものとして説明したが、この緩衝層を備えていなくてもよい。
さらに、冷却器の天板部をアルミニウムで構成したものとして説明したが、アルミニウム合金、又はアルミニウムを含む複合材等で構成されていてもよいし、その他の材料で構成されていてもよい。さらに、冷却器として、放熱フィン及び冷却媒体の流路を有するもので説明したが、冷却器の構造に特に限定はない。
また、酸化銀ペーストは、酸化銀粉末及び還元剤に加えて、Ag粒子を含有していてもよい。Ag粒子が酸化銀粉末の間に介在することにより、酸化銀が還元されて得られるAgとこのAg粒子とが焼結することになり、第2焼成層をさらに緻密な構造とすることができる。これにより、接合時における半導体素子の加圧圧力を低く設定することが可能となる。
さらに、このAg粒子の表層には、有機物を含んでいてもよい。この場合、有機物が分解する際の熱を利用して低温での焼結性を向上させることが可能となる。
以下に、本発明の効果を確認すべく行った確認実験の結果について説明する。
(本発明例)
本発明例として、前述の実施形態に記載されたパワーモジュール1を準備した。すなわち、純度99.99%以上のアルミニウム板からなる回路層12上に、ガラス含有Agペーストの焼成体からなる第1焼成層31を形成し、かつ、この第1焼成層31の上に、酸化銀ペーストの焼成体からなる第2焼成層38を形成して半導体素子3を接合した。
なお、セラミックス基板11は、AlNで構成され、27mm×17mm、厚さ0.6mmのものを使用した。
また、回路層12及び金属層13は、4Nアルミニウムで構成され、25mm×15mm、厚さ0.6mmのものを使用した。
半導体素子3は、IGBT素子とし、13mm×10mm、厚さ0.25mmのものを使用した。
このとき、ガラス含有Agペーストのガラス粉末として、Biを90.6質量%、ZnOを2.6質量%、Bを6.8質量%、を含む無鉛ガラス粉末を用いた。また、樹脂としてエチルセルロースを、溶剤としてジエチレンクリコールジブチルエーテルを用いた。さらに、ジカルボン酸系の分散剤を添加した。
また、酸化銀ペーストは、2種類準備した。
本発明例1では、市販の酸化銀粉末(和光純薬工業株式会社製)と、還元剤としてミリスチルアルコールと、溶剤として2,2,4−トリメチル−1,3−ペンタンジオールモノ(2−メチルプロパノエート)と、を用いて、酸化銀粉末;80質量%、還元剤(ミリスチルアルコール);10質量%、溶剤(2,2,4−トリメチル−1,3−ペンタンジオールモノ(2−メチルプロパノエート));残部、の割合で混合した酸化銀ペーストを用いた。
本発明例2では、市販の酸化銀粉末(和光純薬工業株式会社製)と、還元剤としてミリスチルアルコールと、有機金属化合物として酢酸銀粉末と、溶剤として2,2,4−トリメチル−1,3−ペンタンジオールモノ(2−メチルプロパノエート)と、を用いて、酸化銀粉末;75質量%、還元剤(ミリスチルアルコール);8質量%、有機金属化合物(酢酸Ag);8質量%、溶剤(2,2,4−トリメチル−1,3−ペンタンジオールモノ(2−メチルプロパノエート));残部、の割合で混合した酸化銀ペーストを用いた。
なお、回路層12の表面にガラス含有Agペーストを塗布するガラス含有Agペースト塗布工程S23では、ガラス含有Agペーストの塗布厚さを10μmとした。また、第1焼成工程S24では、焼成温度を575℃、焼成時間を10分とした。
また、第1焼成層31の上に酸化銀ペーストを塗布する酸化銀ペースト塗布工程S25では、酸化銀ペーストの塗布厚さを50μmとした。また、第2焼成工程S27では、焼成温度を300℃、焼成時間を2時間とした。さらに、半導体素子3の加圧圧力を3MPaとした。
(従来例)
従来例として、上述の回路層12の表面に厚さ5μmのNiめっき膜を形成し、はんだ材(Sn−Ag−Cu系無鉛はんだ)を介して半導体素子3を載置し、還元炉内においてはんだ接合したパワーモジュールを準備した。なお、半導体素子3の加圧圧力を0MPaとした。
(比較例)
比較例1、2として、上述の回路層12の表面に、本発明例1,2で使用する酸化銀ペーストを直接回路層12の表面に塗布して半導体素子3を接合した。焼成条件は、本発明例1,2と同様とした。なお、半導体素子3の加圧圧力を3MPaとした。
(SEM観察)
まず、本発明例1のパワーモジュールにおいて、回路層と半導体素子との接合界面を倍率200倍でSEM観察した。結果を図7に示す。なお、(a)が二次電子像、(b)が試料の面分析結果(Agマップ)、(c)が試料の面分析結果(Biマップ)である。
図7(c)より、回路層の表面にガラス成分であるBiが層状に分布しており、ガラス層が形成されていることが確認される。また、図7(b)および(c)より、ガラス層の上には、Agの母相中にガラス粒子が分散されたAg層が確認される。さらに、この倍率では、Ag層の上に形成された第2焼成層にガラス粒子が分散されていないことが確認される。
(評価)
次に、本発明例、従来例、比較例のパワーモジュールを用いて、冷熱サイクル試験及びパワーサイクル試験し、冷熱サイクル試験後の接合率並びに熱抵抗の上昇率、及びパワーサイクル試験後の熱抵抗の上昇率を評価した。
接合率は、超音波探傷装置を用いて評価し、以下の式から算出した。ここで、初期接合面積とは、接合前における接合すべき面積、すなわち半導体素子面積とした。超音波探傷像において剥離は接合部内の白色部で示されることから、この白色部の面積を剥離面積とした。
接合率 = (初期接合面積−剥離面積)/初期接合面積
熱抵抗は、次のようにして測定した。ヒータチップを100Wの電力で加熱し、熱電対を用いてヒータチップの温度を実測した。また、ヒートシンクを流通する冷却媒体(エチレングリコール:水=9:1)の温度を実測した。そして、ヒータチップの温度と冷却媒体の温度差を電力で割った値を熱抵抗とした。
冷熱サイクル試験は、試験片に対して、−40℃←→110℃の熱サイクルを負荷することにより行う。本実施例では、この冷熱サイクルを3000回実施した。
パワーサイクル試験は、ヒータチップに、15V、150Aの通電条件で、通電時間2秒、冷却時間8秒を繰り返し実施し、IGBT素子の温度を30℃から130℃の範囲で変化させた。本実施例では、このパワーサイクルを20万回実施した。
この冷熱サイクル試験後、接合率及び熱抵抗の上昇率を測定した。また、パワーサイクル試験後、熱抵抗の上昇率を測定した。
その評価結果を表1に示す。
回路層の表面に酸化銀ペーストを直接塗布して半導体素子を接合した比較例1,2においては、半導体素子と回路層との間の接合層で剥離が生じた。また、接合率も低く、熱サイクル試験、パワーサイクル試験においても、熱抵抗の上昇率が極めて高かった。この結果から、単に酸化銀ペーストを用いて半導体素子を接合しても、十分な接合強度を得られなかった。
また、回路層の表面にNiめっき膜を形成し、半導体素子をはんだ付けした従来例においては、半導体素子と回路層との間の接合層で剥離は生じておらず、接合率及び熱サイクル試験においても良好な結果が得られている。しかしながら、パワーサイクル試験においては、熱抵抗の上昇率が30.2%と高く、接合信頼性を十分に確保することができなかった。
これに対して、回路層の表面にガラス含有Agペーストの焼成体を形成し、この焼成体の上に酸化銀ペーストを塗布して半導体素子を接合した本発明例1,2においては、半導体素子と回路層との間の接合層で剥離は生じておらず、接合率も98.2%、98.3%と高い値を示した。さらに、熱サイクル試験、パワーサイクル試験においても、熱抵抗の大幅な上昇は認められなかった。
次に、粒径20nm以上800nm以下のAg粒子を含有した酸化銀ペーストを用いてパワーモジュールを構成し、冷熱サイクル試験及びパワーサイクル試験を実施し、冷熱サイクル試験後の接合率並びに熱抵抗の上昇率、及びパワーサイクル試験後の熱抵抗の上昇率を評価した。
本発明例3−5に用いた酸化銀ペーストは、本発明例1及び比較例1で用いた酸化銀ペーストに、平均粒径40nmのAg粉を添加したものである。なお、酸化銀粉末とAg粉との混合比は、質量比で酸化銀粉末:Ag粉=9:1とした。
本発明例6−8に用いた酸化銀ペーストは、本発明例2及び比較例2で用いた酸化銀ペーストに、平均粒径800nmのAg粉を添加したものである。なお、酸化銀粉末とAg粉との混合比は、質量比で酸化銀粉末:Ag粉=9:1とした。
本発明例9−11に用いた酸化銀ペーストは、本発明例1及び比較例1で用いた酸化銀ペーストに、平均粒径40nmのAg粉を添加したものである。なお、酸化銀粉末とAg粉との混合比は、質量比で酸化銀粉末:Ag粉=9:1とした。
回路層12に関して、本発明例3−8はAl、本発明例9−11はCuであるものを用いた。
そして、本発明例1,2と同様にパワーモジュールを作製した。このとき、第2焼成工程S27における半導体素子3の加圧圧力を表2に示すように変更した。評価結果を表2に示す。
本発明例3−5及び本発明例6−8を比較すると、第2焼成工程S27における半導体素子3の加圧圧力が0MPaあるいは1MPaと低く設定した場合であっても、加圧圧力を3MPaとした場合と同等の接合信頼性が得られることが確認される。すなわち、粒径20nm以上800nm以下のAg粒子を含有した酸化銀ペーストを用いることによって、第2焼成工程S27における半導体素子3の加圧圧力を低く設定できるのである。
以上のことから、本発明例によれば、熱サイクル信頼性及びパワーサイクル信頼性に優れたパワーモジュールを提供可能であることが確認される。
1 パワーモジュール
3 半導体素子
10 パワーモジュール用基板
11 セラミックス基板(絶縁層)
12 回路層
31 第1焼成層
32 ガラス層
33 Ag層
34 導電性粒子
35 ガラス粒子
38 第2焼成層

Claims (10)

  1. 絶縁層の一方の面に回路層が配設されたパワーモジュール用基板と、前記回路層上に搭載される半導体素子と、を備えたパワーモジュールであって、
    前記回路層の一方の面には、ガラス成分を含有するガラス含有Agペーストの焼成体からなる第1焼成層が形成されており、
    この第1焼成層の上に、酸化銀が還元されたAgの焼成体からなる第2焼成層が形成されており、
    前記第1焼成層の厚さが1.01μm以上105μm以下の範囲内とされ、前記第2焼成層の厚さが5μm以上50μm以下の範囲内とされていることを特徴とするパワーモジュール。
  2. 前記第1焼成層は、回路層の一方の面に形成されたガラス層と、このガラス層上に積層されたAg層と、を備えており、
    前記Ag層には、ガラス粒子が分散していることを特徴とする請求項1に記載のパワーモジュール。
  3. 前記第2焼成層は、酸化銀と還元剤とを含む酸化銀ペーストの焼成体とされていることを特徴とする請求項1又は請求項2に記載のパワーモジュール。
  4. 前記酸化銀ペーストは、前記酸化銀及び前記還元剤に加えて、Ag粒子を含有していることを特徴とする請求項3に記載のパワーモジュール。
  5. 前記絶縁層が、AlN、Si又はAlから選択されるセラミックス基板であることを特徴とする請求項1から請求項4のいずれか一項に記載のパワーモジュール。
  6. 絶縁層の一方の面に回路層が配設されたパワーモジュール用基板と、前記回路層上に搭載される半導体素子と、を備えたパワーモジュールの製造方法であって、
    前記回路層の一方の面に、ガラス成分を含有するガラス含有Agペーストを塗布し、加熱処理することにより、第1焼成層を形成する工程と、
    前記第1焼成層の上に、酸化銀と還元剤とを含む酸化銀ペーストを塗布する工程と、
    塗布された酸化銀ペーストの上に半導体素子を積層する工程と、
    前記半導体素子と前記パワーモジュール用基板とを積層した状態で加熱して、前記第1焼成層の上に第2焼成層を形成する工程と、を備え、
    前記第1焼成層の厚さを1.01μm以上105μm以下の範囲内、前記第2焼成層の厚さを5μm以上50μm以下の範囲内とするとともに、
    前記半導体素子と前記回路層とを接合することを特徴とするパワーモジュールの製造方法。
  7. 第2焼成層を形成する工程における前記酸化銀ペーストの焼成温度が、150℃以上400℃以下であることを特徴とする請求項6に記載のパワーモジュールの製造方法。
  8. 前記第1焼成層を形成する工程における前記ガラス含有Agペーストの焼成温度が、350℃以上645℃以下であることを特徴とする請求項6又は請求項7に記載のパワーモジュールの製造方法。
  9. 前記第2焼成層を形成する工程において、前記半導体素子と前記パワーモジュール用基板とを積層方向に加圧した状態で加熱することを特徴とする請求項6から請求項8のいずれか一項に記載のパワーモジュールの製造方法。
  10. 前記酸化銀ペーストは、前記酸化銀及び前記還元剤に加えて、Ag粒子を含有していることを特徴とする請求項6から請求項9のいずれか一項に記載のパワーモジュールの製造方法。
JP2012011140A 2011-05-31 2012-01-23 パワーモジュール、及び、パワーモジュールの製造方法 Active JP5966379B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2012011140A JP5966379B2 (ja) 2011-05-31 2012-01-23 パワーモジュール、及び、パワーモジュールの製造方法
CN201210167770.6A CN102810524B (zh) 2011-05-31 2012-05-28 功率模块及功率模块的制造方法

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2011121627 2011-05-31
JP2011121627 2011-05-31
JP2012011140A JP5966379B2 (ja) 2011-05-31 2012-01-23 パワーモジュール、及び、パワーモジュールの製造方法

Publications (2)

Publication Number Publication Date
JP2013012706A JP2013012706A (ja) 2013-01-17
JP5966379B2 true JP5966379B2 (ja) 2016-08-10

Family

ID=47686308

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012011140A Active JP5966379B2 (ja) 2011-05-31 2012-01-23 パワーモジュール、及び、パワーモジュールの製造方法

Country Status (1)

Country Link
JP (1) JP5966379B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7211504B2 (ja) 2019-05-27 2023-01-24 株式会社デンソー モータ

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014160707A (ja) * 2013-02-19 2014-09-04 Mitsubishi Materials Corp 接合体の製造方法、パワーモジュールの製造方法、及びパワーモジュール
JP6142584B2 (ja) * 2013-03-08 2017-06-07 三菱マテリアル株式会社 金属複合体、回路基板、半導体装置、及び金属複合体の製造方法
JP6115215B2 (ja) * 2013-03-15 2017-04-19 三菱マテリアル株式会社 パワーモジュール用基板の製造方法及びパワーモジュールの製造方法
JP6130696B2 (ja) * 2013-03-26 2017-05-17 田中貴金属工業株式会社 半導体装置
EP2792642B1 (de) * 2013-04-15 2018-02-21 Heraeus Deutschland GmbH & Co. KG Sinterpaste mit gecoateten Silberoxid auf schwer sinterbare edlen und unedlen Oberflächen
SG11201601437UA (en) * 2013-08-29 2016-03-30 Alpha Metals Composite and multilayered silver films for joining electrical and mechanical components
JP6171912B2 (ja) * 2013-12-13 2017-08-02 三菱マテリアル株式会社 Ag下地層付き金属部材、絶縁回路基板、半導体装置、ヒートシンク付き絶縁回路基板、及び、Ag下地層付き金属部材の製造方法
CN105849895B (zh) 2013-12-25 2018-12-21 三菱综合材料株式会社 功率模块用基板、及其制造方法和功率模块
WO2016052392A1 (ja) 2014-09-30 2016-04-07 三菱マテリアル株式会社 Ag下地層付パワーモジュール用基板及びパワーモジュール
JP6565527B2 (ja) 2014-09-30 2019-08-28 三菱マテリアル株式会社 Ag下地層付パワーモジュール用基板及びパワーモジュール
WO2016162969A1 (ja) * 2015-04-08 2016-10-13 株式会社日立製作所 半導体モジュールおよびその製造方法
JP6613929B2 (ja) 2016-02-01 2019-12-04 三菱マテリアル株式会社 Ag下地層付き金属部材、Ag下地層付き絶縁回路基板、半導体装置、ヒートシンク付き絶縁回路基板、及び、Ag下地層付き金属部材の製造方法
JP6677886B2 (ja) 2016-02-29 2020-04-08 三菱マテリアル株式会社 半導体装置
JP7163631B2 (ja) * 2017-07-05 2022-11-01 三菱マテリアル株式会社 熱電変換モジュール、及び、熱電変換モジュールの製造方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3757211B2 (ja) * 2003-03-14 2006-03-22 富士通株式会社 配線基板及びその製造方法
JP2007335430A (ja) * 2006-06-12 2007-12-27 Alps Electric Co Ltd 回路基板及びその製造方法
JP4737116B2 (ja) * 2007-02-28 2011-07-27 株式会社日立製作所 接合方法
US8513534B2 (en) * 2008-03-31 2013-08-20 Hitachi, Ltd. Semiconductor device and bonding material
JP5212298B2 (ja) * 2009-05-15 2013-06-19 三菱マテリアル株式会社 パワーモジュール用基板、冷却器付パワーモジュール用基板、パワーモジュール及びパワーモジュール用基板の製造方法
JP2011014556A (ja) * 2009-06-30 2011-01-20 Hitachi Ltd 半導体装置とその製造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7211504B2 (ja) 2019-05-27 2023-01-24 株式会社デンソー モータ

Also Published As

Publication number Publication date
JP2013012706A (ja) 2013-01-17

Similar Documents

Publication Publication Date Title
JP5966379B2 (ja) パワーモジュール、及び、パワーモジュールの製造方法
JP6085968B2 (ja) 金属部材付パワーモジュール用基板、金属部材付パワーモジュール、及び金属部材付パワーモジュール用基板の製造方法
JP5212298B2 (ja) パワーモジュール用基板、冷却器付パワーモジュール用基板、パワーモジュール及びパワーモジュール用基板の製造方法
KR102066300B1 (ko) 땜납 접합 구조, 파워 모듈, 히트 싱크가 형성된 파워 모듈용 기판 및 그것들의 제조 방법, 그리고 땜납 하지층 형성용 페이스트
JP5664625B2 (ja) 半導体装置、セラミックス回路基板及び半導体装置の製造方法
JP5707886B2 (ja) パワーモジュール用基板、冷却器付パワーモジュール用基板、パワーモジュールおよびパワーモジュール用基板の製造方法
JP5304508B2 (ja) 導電性組成物
JP5780191B2 (ja) パワーモジュール、及び、パワーモジュールの製造方法
JP5915233B2 (ja) はんだ接合構造、パワーモジュール、ヒートシンク付パワーモジュール用基板及びそれらの製造方法
JP5707885B2 (ja) パワーモジュール用基板、冷却器付パワーモジュール用基板、パワーモジュール及びパワーモジュール用基板の製造方法
JP5982954B2 (ja) パワーモジュール、及び、パワーモジュールの製造方法
JP6613929B2 (ja) Ag下地層付き金属部材、Ag下地層付き絶縁回路基板、半導体装置、ヒートシンク付き絶縁回路基板、及び、Ag下地層付き金属部材の製造方法
JP6040729B2 (ja) 半導体装置及び半導体装置の製造方法
JP5966504B2 (ja) はんだ接合構造、パワーモジュール、ヒートシンク付パワーモジュール用基板、並びに、はんだ接合構造の製造方法、パワーモジュールの製造方法、ヒートシンク付パワーモジュール用基板の製造方法
JP2013182901A (ja) 接合材料、パワーモジュール及びパワーモジュールの製造方法
CN102810524B (zh) 功率模块及功率模块的制造方法
JP6070092B2 (ja) パワーモジュール及びパワーモジュールの製造方法
JP5585407B2 (ja) 導電性組成物
JP5821743B2 (ja) 導電性組成物及び接合体の製造方法
JP2013168240A (ja) はんだ下地層形成用ペースト

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140926

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151027

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151030

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151225

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160607

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160620

R150 Certificate of patent or registration of utility model

Ref document number: 5966379

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150