JP2014092085A - 内燃機関の制御装置 - Google Patents

内燃機関の制御装置 Download PDF

Info

Publication number
JP2014092085A
JP2014092085A JP2012243550A JP2012243550A JP2014092085A JP 2014092085 A JP2014092085 A JP 2014092085A JP 2012243550 A JP2012243550 A JP 2012243550A JP 2012243550 A JP2012243550 A JP 2012243550A JP 2014092085 A JP2014092085 A JP 2014092085A
Authority
JP
Japan
Prior art keywords
eddy current
ratio
fuel
fuel injection
current ratio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012243550A
Other languages
English (en)
Inventor
Hiroshi Sakai
洋志 坂井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2012243550A priority Critical patent/JP2014092085A/ja
Publication of JP2014092085A publication Critical patent/JP2014092085A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/3094Controlling fuel injection the fuel injection being effected by at least two different injectors, e.g. one in the intake manifold and one in the cylinder
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0002Controlling intake air
    • F02D2041/0015Controlling intake air for engines with means for controlling swirl or tumble flow, e.g. by using swirl valves

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Combustion Methods Of Internal-Combustion Engines (AREA)
  • Fuel-Injection Apparatus (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

【課題】この発明は、実渦流比を目標渦流比に一致させる渦流比フィードバック制御を実施する内燃機関において、サイクル間での噴霧形状のばらつきを軽減し、着火性を向上させることのできる内燃機関の制御装置を提供することを目的とする。
【解決手段】燃料噴射時期に応じて気筒内に燃料を直接噴射する燃料噴射手段と、吸気通路に設けられ、気筒内に生じる渦流を変更する渦流制御手段と、前記吸気通路に設けられた流量計の出力値に基づいて実渦流比を取得する実渦流比取得手段と、前記実渦流比を運転状態に応じた目標渦流比に一致させるように、前記実渦流比と前記目標渦流比との差を前記渦流制御手段の制御値にフィードバックする渦流比フィードバック制御手段と、前記実渦流比と前記目標渦流比との差が所定値以上である場合に、燃料噴射時期を前記運転状態に応じた通常燃料噴射時期よりも遅角する燃料噴射時期遅角制御手段と、を備える。
【選択図】図8

Description

この発明は、内燃機関の制御装置に係り、特に、車両の運転状態に応じて気筒内に渦流(タンブル流、スワール流)を生じさせる内燃機関の制御を実行するのに好適な内燃機関の制御装置に関する。
従来、例えば特許文献1に開示されるように、気筒内に渦流を生じさせるエンジン渦流制御装置が知られている。このエンジン渦流制御装置は、気流内に渦流を生じさせる渦流発生バルブと、この渦流発生バルブの開度を可変させる電動アクチュエータと、この電動アクチュエータを通電制御する制御装置とを備えている。また、本公報には、スロットルバルブ上流の吸気流量と渦流発生バルブ下流の吸気流量との関係を用いて推定渦流比を求め、この推定渦流比が運転状態に応じた目標渦流比に追従するように電動アクチュエータを介して渦流発生バルブの開度をフィードバック制御することが開示されている。
尚、出願人は、本発明に関連するものとして、上記の文献を含めて、以下に記載する文献を認識している。
特開2012−21501号公報 特開2006−283754号公報 特開2008−31893号公報
ところで、気筒内の気流の強さはサイクル間でばらつきが生じ易く、気流パターンや、圧縮上死点近傍の乱れや、気筒内に噴射される燃料の噴霧形状(V角、広がり角、厚み角、貫徹力)がサイクル間でばらつく。そのため、サイクルによっては点火プラグ周囲の気流パターンや燃料濃度が期待よりも悪化し、着火性が悪化するおそれがある。特に、均質リーン燃焼におけるリーン領域の拡大を図る上で課題となっている。特許文献1の技術では、渦流発生バルブの開度をフィードバック制御することにより、吸気・圧縮行程において気筒内に生じる気流の強さ(渦流比)のばらつきの低減を図っている。
しかしながら、単に渦流比のばらつきの低減を図っても噴霧形状が改善されるとは限らない。特許文献1では、渦流比のフィードバック制御と燃料噴射時期との関係について考慮されておらず、渦流比のフィードバック制御がなされるよりも早く燃料が噴射されれば噴霧形状は改善されない。そのため、そのサイクルでの着火性が十分に改善されるとは言えない。
この発明は、上述のような課題を解決するためになされたもので、実渦流比を目標渦流比に一致させる渦流比フィードバック制御を実施する内燃機関において、サイクル間での噴霧形状のばらつきを軽減し、着火性を向上させることのできる内燃機関の制御装置を提供することを目的とする。
第1の発明は、上記の目的を達成するため、内燃機関の制御装置であって、
燃料噴射時期に応じて気筒内に燃料を直接噴射する燃料噴射手段と、
吸気通路に設けられ、気筒内に生じる渦流を変更する渦流制御手段と、
前記吸気通路に設けられた流量計の出力値に基づいて実渦流比を取得する実渦流比取得手段と、
前記実渦流比を運転状態に応じた目標渦流比に一致させるように、前記実渦流比と前記目標渦流比との差を前記渦流制御手段の制御値にフィードバックする渦流比フィードバック制御手段と、
前記実渦流比と前記目標渦流比との差が所定値以上である場合に、燃料噴射時期を前記運転状態に応じた通常燃料噴射時期よりも遅角する燃料噴射時期遅角制御手段と、を備えることを特徴とする。
また、第2の発明は、第1の発明において、
前記燃料噴射時期遅角制御手段は、前記渦流比フィードバック制御手段による制御値へのフィードバック前に燃料噴射時期の決定タイミングがある場合、かつ、前記実渦流比と前記目標渦流比との差が所定値以上である場合に、前記渦流比フィードバック制御手段による制御値へのフィードバック後まで燃料噴射時期を遅角すること、を特徴とする。
また、第3の発明は、第1又は第2の発明において、
前記渦流制御手段は、バルブ開度を可変制御して気筒内にタンブル流を生じさせるタンブル流コントロールバルブ、バルブ開度を可変制御して気筒内にスワール流を生じさせるスワール流コントロールバルブ、及び、吸気バルブのバルブリフト量を可変制御する可変動弁装置の少なくとも1つを含むこと、を特徴とする。
また、第4の発明は、第1乃至第3の発明のいずれかにおいて、
前記渦流制御手段は、前記燃料噴射手段に供給する燃圧を変更可能な燃圧変更手段を含み、
前記渦流比フィードバック制御手段は、
前記実渦流比が前記目標渦流比よりも小さい場合に、前記運転状態に応じて定められた通常燃圧よりも高い燃圧の制御値を前記燃圧変更手段に出力し、前記燃料噴射手段による燃料噴射期間中において、前記実渦流比取得手段により新たに取得された実渦流比が前記目標渦流比に一致した場合に、前記通常燃圧の制御値を前記燃圧変更手段に出力する燃圧制御手段、を備えることを特徴とする。
また、第5の発明は、第1乃至第3の発明のいずれかにおいて、
前記渦流制御手段は、前記燃料噴射手段に供給する燃圧を変更可能な燃圧変更手段を含み、
前記渦流比フィードバック制御手段は、
前記実渦流比が前記目標渦流比よりも大きい場合に、前記運転状態に応じて定められた通常燃圧よりも低い燃圧の制御値を前記燃圧変更手段に出力し、前記燃料噴射手段による燃料噴射期間中において、前記実渦流比取得手段により新たに取得された実渦流比が前記目標渦流比に一致した場合に、前記通常燃圧の制御値を前記燃圧変更手段に出力する燃圧制御手段、を備えることを特徴とする。
また、第6の発明は、第1乃至第5の発明のいずれかにおいて、
前記燃料噴射手段は、設定された吹き分け比率に応じて、気筒内に燃料を直接噴射する直噴噴射弁と吸気ポート内に燃料を噴射するポート噴射弁とから燃料を噴射し、
前記渦流制御手段は、吹き分け比率の変更を含み、
前記渦流比フィードバック制御手段は、
前記実渦流比が前記目標渦流比よりも小さい場合に、前記直噴噴射弁から噴射する燃料の吹き分け比率を、前記運転状態に応じて定められた通常の吹き分け比率よりも高く設定し、前記燃料噴射手段による燃料噴射期間中において、前記実渦流比取得手段により新たに取得された実渦流比が前記目標渦流比に一致した場合に、前記直噴噴射弁から噴射する燃料の吹き分け比率を、前記通常の吹き分け比率に設定する吹き分け比率制御手段、を備えることを特徴する。
また、第7の発明は、第1乃至第5の発明のいずれかにおいて、
前記燃料噴射手段は、設定された吹き分け比率に応じて、気筒内に燃料を直接噴射する直噴噴射弁と吸気ポート内に燃料を噴射するポート噴射弁とから燃料を噴射し、
前記渦流制御手段は、吹き分け比率の変更を含み、
前記渦流比フィードバック制御手段は、
前記実渦流比が前記目標渦流比よりも大きい場合に、前記直噴噴射弁から噴射する燃料の吹き分け比率を、前記運転状態に応じて定められた通常の吹き分け比率よりも低く設定し、前記燃料噴射手段による燃料噴射期間中において、前記実渦流比取得手段により新たに取得された実渦流比が前記目標渦流比に一致した場合に、前記直噴噴射弁から噴射する燃料の吹き分け比率を、前記通常の吹き分け比率に設定する吹き分け比率制御手段、を備えることを特徴する。
また、第8の発明は、第1乃至第7の発明のいずれかにおいて、
前記燃料噴射手段は、設定された噴射回数に分けて気筒内に燃料を直接噴射し、
前記渦流制御手段は、噴射回数の変更を含み、
前記渦流比フィードバック制御手段は、
前記実渦流比が前記目標渦流比よりも小さい場合に、噴射回数を前記運転状態に応じて定められた通常噴射回数よりも多く設定する噴射回数制御手段、を備えることを特徴とする。
また、第9の発明は、第1乃至第7の発明のいずれかにおいて、
前記燃料噴射手段は、設定された噴射回数に分けて気筒内に燃料を直接噴射し、
前記渦流制御手段は、噴射回数の変更を含み、
前記渦流比フィードバック制御手段は、
前記実渦流比が前記目標渦流比よりも大きい場合に、噴射回数を前記運転状態に応じて定められた通常噴射回数よりも少なく設定する噴射回数制御手段、を備えることを特徴とする。
第1の発明によれば、実渦流比を目標渦流比に一致させる渦流比フィードバック制御を実施する内燃機関において、サイクル間での噴霧形状のばらつきを軽減し、着火性を向上させることができる。
第2の発明によれば、渦流比フィードバック制御のフィードバック後まで燃料噴射時期を遅角する。これにより、実渦流比が目標渦流比に近づいた状態で、多くの燃料を噴射させることができる。そのため、サイクル間での噴霧形状のばらつきを軽減し、着火性を向上させることができる。
第3の発明によれば、タンブル流コントロールバルブのバルブ開度、スワール流コントロールバルブのバルブ開度、吸気バルブのバルブリフト量を可変制御することで渦流比を制御することができる。
第4又は第5の発明によれば、燃圧を可変制御して渦流比フィードバック制御を実現することができる。さらに、第4又は第5の発明によれば、実渦流比が目標渦流比まで回復した場合に燃圧を通常燃圧に戻す。必要期間だけ燃圧を変更することで、燃圧変更手段(例えば燃料ポンプ)の損失を最低限に抑えることができる。
第6又は第7の発明によれば、直噴噴射弁とポート噴射弁との吹き分け比率の変更を利用して渦流比フィードバック制御を実現することができる。さらに、第6又は第7の発明によれば、実渦流比が目標渦流比まで回復した場合に吹き分け比率を通常の吹き分け比率に戻す。必要期間だけ吹き分け比率を変更することで、不均質化を最低限に抑えることができる。
第8又は第9の発明によれば、噴射回数の変更を利用して渦流比フィードバック制御を実現することができる。
本発明の実施の形態1のシステム構成を説明するための概念図である。 渦流比(この例ではタンブル比)と流量係数との関係を示す図である。 吸気・圧縮行程におけるタンブル比の変化(非定常タンブル比)を示すグラフである。 本発明の実施の形態1のシステムにおいて、ECU50が実行する渦流比フィードバック制御ルーチンのフローチャートである。 本発明の実施の形態1で実行される、計測タンブル履歴を設計タンブル履歴に一致させる渦流比フィードバック制御の例を示す図である。 気流のばらつきによる噴霧形状の変動について説明するための図である。 本発明の実施の形態1のシステムにおいて、ECU50が実行する燃料噴射時期制御ルーチンのフローチャートである。 本発明の実施の形態1で実行される、燃料噴射時期制御の例を示す図である。 本発明の実施の形態2のシステム構成を説明するための概念図である。 本発明の実施の形態2のシステムにおいて、ECU50が実行する渦流比フィードバック制御ルーチンのフローチャートである。 本発明の実施の形態2で実行される、計測タンブル履歴を設計タンブル履歴に一致させる渦流比フィードバック制御の例を示す図である。 本発明の実施の形態2の渦流比フィードバック制御において、吸気バルブの最大バルブリフト量を小さく制御する例を示す図である。 本発明の実施の形態3のシステムにおいて、ECU50が実行する渦流比フィードバック制御ルーチンのフローチャートである。 本発明の実施の形態3で実行される、計測タンブル履歴を設計タンブル履歴に一致させる渦流比フィードバック制御の例を示す図である。 本発明の実施の形態3の渦流比フィードバック制御において、燃圧を通常燃圧よりも高める制御例を示す図である。 本発明の実施の形態4のシステム構成を説明するための概念図である。 本発明の実施の形態4のシステムにおいて、ECU50が実行する渦流比フィードバック制御ルーチンのフローチャートである。 本発明の実施の形態4で実行される、計測タンブル履歴を設計タンブル履歴に一致させる渦流比フィードバック制御の例を示す図である。 本発明の実施の形態4の渦流比フィードバック制御において、総燃料噴射量を変更すること無く吹き分け比率を変更する例を示す図である。 本発明の実施の形態5のシステムにおいて、ECU50が実行する渦流比フィードバック制御ルーチンのフローチャートである。 本発明の実施の形態5で実行される、計測タンブル履歴を設計タンブル履歴に一致させる渦流比フィードバック制御の例を示す図である。
以下、図面を参照して本発明の実施の形態について詳細に説明する。尚、各図において共通する要素には、同一の符号を付して重複する説明を省略する。
実施の形態1.
[実施の形態1のシステム構成]
図1は、本発明の実施の形態1のシステム構成を説明するための概念図である。図1に示すシステムは、内燃機関(以下、単にエンジンとも称する。)10を備えている。内燃機関10は、火花点火式の4ストロークエンジンである。好ましくは、所定の運転状態(機関負荷、エンジン回転数等)において均質リーン燃焼を実現可能なエンジンである。
図1には1つの気筒のみが描かれているが、車両用の内燃機関10は、一般的に複数の気筒を備えている。各気筒には、その内部を往復運動するピストンが配置されている。各気筒のピストン上面からシリンダヘッドまでの空間は燃焼室12を形成している。各気筒には、燃焼室12内に燃料を直接噴射する直噴用の燃料噴射弁14が配置されている。燃料として、例えばガソリンやアルコールが用いられる。各気筒には、燃焼室12内の混合気に点火するための点火プラグ16が配置されている。また、ピストンの往復運動は、クランク軸の回転運動に変換される。クランク軸の近傍には、クランクアングル、クランク角速度及びエンジン回転数を検出するためのクランクアングルセンサ18が取り付けられている。
内燃機関10には、空気を気筒内に取り込むための吸気通路20と、排気ガスを気筒内から排出するための排気通路22とが接続されている。吸気通路20の入口近傍には、吸気通路20に吸入される空気の流量に応じた信号を出力するエアフローメータ24が取り付けられている。エアフローメータ24の下流には、吸気通路20を流れる空気量を調整するための電子制御式のスロットルバルブ26が配置されている。スロットルバルブ26の近傍にはスロットルバルブ26の開度に応じた信号を出力するスロットル開度センサ28が取り付けられている。
吸気通路20のスロットルバルブ26下流は各気筒に分岐し、気筒毎の吸気ポート30を形成している。各吸気ポート30には気流制御弁32が配置されている。気流制御弁32は例えばタンブル流コントロールバルブであり、バルブを立てることによりバルブ開度を絞り、開口面積を小さくして気筒内のタンブル流を強めることができる。気流制御弁32の下流には、単位時間あたりの空気量(流量)に応じた信号を出力する流量計34が配置されている。流量計34は気筒毎の吸気ポート30に配置されているため気筒毎に流量を計測することができる。吸気ポート30の下流端には、気筒内と吸気ポート30との間を開閉する吸気バルブ36が配置されている。なお、エンジン10の各種部材は気筒内に渦流(図1の例ではタンブル流)を生じさせるように構成されている。
本実施形態のシステムは、ECU(Electronic Control Unit)50を更に備えている。ECU50は、例えばROM、RAM等を含む記憶回路を備えた演算処理装置により構成されている。ECU50の入力部には、上述したクランクアングルセンサ18、エアフローメータ24、スロットル開度センサ28、流量計34の他、内燃機関10の運転状態を検出するための各種センサが接続されている。
ECU50の出力部には、上述した燃料噴射弁14、点火プラグ16、スロットルバルブ26、気流制御弁32等の内燃機関10の運転状態を制御するための各種アクチュエータが接続されている。ECU50は、各種センサ出力に基づいて、所定のプログラムに従って各種アクチュエータを駆動させることにより、内燃機関10の運転状態を制御する。
[実施の形態1における特徴的制御]
(渦流比フィードバック制御:気流制御弁)
上述したように、気筒内の気流や圧縮上死点近傍の乱れにはサイクル間でばらつきが生じる。そこで、本実施形態のシステムでは、1サイクル内で、計測渦流比(実渦流比)を運転状態(機関負荷、エンジン回転数等)に応じた設計渦流比(目標渦流比)に一致させるように、計測渦流比と設計渦流比との差を気流制御弁32の制御値にフィードバックする渦流比フィードバック制御を実行する。
渦流比フィードバック制御について図2乃至図5を用いて説明する。
図2は、渦流比(図2の例ではタンブル比)と流量係数との関係を示す図である。渦流比(タンブル比)は、ピストンが1往復する間に燃焼室12内で気流(タンブル流)がどれだけ回転するかを無次元化した値である。また、流量係数は、通路を通過する空気の流量と通路の絞り量とに基づいて定まる。気筒毎の空気の流量は、吸気ポート30に設けられた流量計34の出力値から算出される。
タンブル比と流量係数とは強い相関関係があり、流量とバルブリフト量とに基づく流量係数から瞬時の(そのクランクアングルにおける)タンブル比を一意に定めることができる(図2)。これは、タンブル比は吸気ポート30端部の流線の絞りによって決まるからである。具体的には、吸気バルブ36のバルブリフト量の大きい状態ほど絞りは小さく、流量係数は大きくなる。一方、吸気バルブ36のバルブリフト量が小さい状態ほど絞りは大きく、流量係数は小さくなる。シミュレーションや実験等に基づいて図2に示すようなタンブル比と流量係数との関係を定めた関係マップを用意しておくことで、流量係数に対応するタンブル比を取得することができる。図2の関係マップには、バルブリフト量が小さい状態ほど流量係数が小さくなり、流量係数が小さいほどタンブル比は大きくなるという傾向が示されている。
図3は、吸気・圧縮行程におけるタンブル比の変化(非定常タンブル比)を示すグラフである。図3のグラフは、図2に示す関係マップを用いて、クランクアングル毎に流量係数から得られる瞬時のタンブル比をプロットしたグラフである。図3において0°CAは圧縮上死点を示し、360°CAは吸気上死点を示している。
(渦流比フィードバック制御ルーチン:気流制御弁)
本実施形態のシステムにおいてEUC50が実行する上記特性を活用した渦流比フィードバック制御ルーチンについて説明する。図4は、ECU50が実行する渦流比フィードバック制御ルーチンのフローチャートである。渦流比フィードバック制御ルーチンは各サイクルにおいて気筒毎に実行される。ECU50には、図2に示すような流量係数とタンブル比との関係を定めた関係マップや、運転状態に応じた設計タンブル履歴が記憶されている。具体的には設計タンブル履歴として、クランクアングル毎の設計タンブル比が記憶されている。
まず、ECU50は、上述したように所定クランクアングルにおける流量計34の出力値に基づく流量係数を求める(S10)。所定クランクアングルは、吸気バルブ36が開弁している期間中のクランクアングルである。ECU50は、上述の関係マップからS10で求められた流量係数に対応する瞬時のタンブル比(現サイクルの吸気行程中の計測タンブル比)を取得する(S11)。次に、ECU50は、運転状態に応じた設計タンブル履歴から上記所定クランクアングルに対応する設計タンブル比を取得し、計測タンブル比と設計タンブル比との差を算出する(S12)。ECU50は、算出した差に応じて気流制御弁32のフィードバック制御値を決定する(S13)。具体的には、現サイクルの吸気行程中に取得した計測タンブル比が設計タンブル比よりも小さい場合には、現サイクルの吸気行程中に気流制御弁32の弁開度を下げる(タンブル流コントロールバルブにおいてはバルブを立てる)方向に制御する制御値を決定する。一方、計測タンブル比が設計タンブル比よりも大きい場合には気流制御弁32の弁開度を上げる方向に制御する制御値を決定する。制御値を決定後、ECU50は、S13において設定された制御値に応じた制御信号を現サイクルの吸気行程中に気流制御弁32に出力する(S14)。その後、本ルーチンの処理は終了される。次サイクルにおいて再び本ルーチンは実行される。
上述した制御ルーチンによれば、1サイクルの吸気行程中において気筒毎に、計測タンブル比を設計タンブル比に一致させるように気流制御弁32の弁開度を制御することができる。図5は、本実施形態のシステムにおける計測タンブル履歴を設計タンブル履歴に一致させる渦流比フィードバック制御の例を示す図である。図5には、運転状態に応じた設計タンブル履歴に比して計測タンブル比が小さい例が示されている。上述の渦流比フィードバック制御ルーチンにより、気流制御弁32を立ててタンブル比を増大させることで、計測タンブル履歴(破線)を設計タンブル履歴(実線)まで回復させることができる。これにより、各気筒のサイクル間の気流パターン、乱れの変動を低減することができる。
(燃料噴射時期制御)
しかしながら、サイクル間で気流のばらつきが低減されるのはそのサイクルの渦流比フィードバック制御後であるため、制御前に噴射された燃料の噴霧形状(V角(水平方向に対するピストン方向への傾き)、広がり角、厚み角、貫徹力)にはばらつきが生じる。
図6は、気流のばらつきによる噴霧形状の変動について説明するための図である。図6の左図には、運転状態に応じて定められた想定タンブル流に、想定タイミングで燃料を噴射することで得られる想定噴霧形状の想定V角が示されている。しかし、気流のばらつきにより実タンブル比が想定タンブル比よりも小さい場合には、タンブル流による噴霧の押上げ力が小さいため、図6の右図に示すように、実V角が想定V角よりも大きくなる。その結果、点火プラグ16周囲の気流パターンや燃料濃度が期待よりも悪化し、着火性が悪化するおそれがある。特に、均質リーン燃焼におけるリーン領域の拡大を図る上で改善が求められる。
そこで、本実施形態のシステムでは、燃料噴射時期の決定タイミングよりも前に、計測渦流比(実渦流比)と運転状態に応じた設計渦流比(目標渦流比)との差が所定値以上であると判定された場合に、燃料噴射時期をその運転状態に応じた通常燃料噴射時期よりも遅角することとした。
好ましくは、渦流比フィードバック制御において気流制御弁32に制御信号を出力する時期(上記S14)前に燃料噴射時期の決定タイミングがある場合、かつ、計測渦流比(実渦流比)と運転状態に応じた設計渦流比(目標渦流比)との差が所定値以上である場合に、気流制御弁32に制御信号を出力する時期(上記S14)後まで燃料噴射時期を遅角する。さらに好ましくは、気流制御弁32に制御信号を出力してから(上記S14)更に所定時間が経過してタンブル流が設計タンブル履歴まで回復すると予測される時期後まで燃料噴射時期を遅角する。
(燃料噴射時期制御ルーチン)
本実施形態のシステムにおいてECU50が実行する燃料噴射時期制御ルーチンについて説明する。図7は、ECU50が実行する燃料噴射時期制御ルーチンのフローチャートである。燃料噴射時期制御ルーチンは各サイクルにおいて気筒毎に実行され、上述した渦流比フィードバック制御ルーチンと並列に実行される。ECU50には、運転状態(機関負荷、エンジン回転数等)に応じた通常燃料噴射時期がマップ等に記憶されている。
まず、ECU50は、燃料噴射時期の決定タイミング前であるか否かを判定する(S15)。決定タイミング後である場合には本ルーチンの処理は終了される。一方、決定タイミング前である場合には、ECU50は、上述したS10〜S12と同様の処理を実行して計測タンブル比と設計タンブル比との差を算出する。次に、ECU50は、その差の絶対値が所定値以上であるか否かを判定する(S16)。所定値は、0よりも大きい値であり、シミュレーションや実験等に基づき計測タンブル比と設計タンブル比との差が噴霧形状に与える影響、例えば上述した想定V角に対する実V角のずれの許容範囲、を考慮して予め設定された値である。所定値未満である場合には本ルーチンの処理は終了される。所定値以上である場合には、燃料噴射時期を現運転状態に応じた通常燃料噴射時期よりも遅角する(S17)。好ましくは、渦流比フィードバック制御ルーチンにおいて気流制御弁32に制御信号を出力する時期(上記S14)より前に燃料噴射時期の決定タイミングがある場合、かつ、計測タンブル比と運転状態に応じた設計タンブル比との差が所定値以上である場合に、気流制御弁32に制御信号を出力する時期(上記S14)より後まで燃料噴射時期を遅角する。さらに好ましくは、気流制御弁32に制御信号を出力してから(上記S14)更に所定時間が経過してタンブル流が設計タンブル履歴まで回復すると予測される時期より後まで燃料噴射時期を遅角する。
上述した制御ルーチンによれば、1サイクルの吸気行程中において気筒毎に、渦流比フィードバック制御によりタンブル比を設計値まで回復させてから、より多くの燃料を噴射することができる。図8は、本実施形態のシステムにおける燃料噴射時期制御の例を示す図である。図8には、運転状態に応じた設計タンブル履歴に比して計測タンブル比が小さい例が示されている。上述の渦流比フィードバック制御ルーチンにより、気流制御弁を立てて計測タンブル履歴(破線)を設計タンブル履歴(実線)まで回復させると共に、燃料噴射時期をタンブル回復後まで遅角させている。燃料噴射時期をタンブル回復後まで遅らせることで、噴霧形状を想定噴霧形状に近づけることができ、着火性を高めることができる。
(変形例)
ところで、上述した実施の形態1のシステムにおいては、渦流比としてタンブル比を用いることとしているが、スワール比を用いることとしてもよい。この場合、気流制御弁32はスワール流コントロールバルブであり、バルブ開度を絞ることによりスワール流を強めることができる。この点については以下の実施の形態においても同様である。
また、上述した実施の形態1のシステムにおいては、図2の関係マップに示す流量係数とタンブル比(渦流比)との関係を用いて制御を実行しているが、これに限定されるものではない。例えば、流量係数に代えて流量計34の出力値から算出される流量を用いてもよい。また、タンブル比に代えてこれに相当する気流の強さや回転する気流の速さを用いてもよい。これらの点については以下の実施の形態においても同様である。
尚、上述した実施の形態1においては、燃料噴射弁14が前記第1の発明における「燃料噴射手段」に、気流制御弁32が前記第1の発明における「渦流制御手段」に、気流制御弁32が前記第3の発明における「タンブル流コントロールバルブ」又は「スワール流コントロールバルブ」に、流量計34が前記第1の発明における「流量計」に、それぞれ相当している。
また、ここでは、ECU50が、上記S11の処理を実行することにより前記第1の発明における「実渦流比取得手段」が、上記S12乃至S14の処理を実行することにより前記第1の発明における「渦流比フィードバック制御手段」が、上記燃料噴射時期制御ルーチンを実行することにより前記第1の発明及び第2の発明における「燃料噴射時期遅角制御手段」それぞれ実現されている。
実施の形態2.
[実施の形態2のシステム構成]
次に、図10〜図12を参照して本発明の実施の形態2について説明する。本実施形態のシステムは図9に示す構成において、ECU50に後述する図10のルーチンを実行させることで実現することができる。
図9は、本発明の実施の形態2のシステム構成を説明するための概念図である。図9に示すシステム構成は、図1に示す気流制御弁32に代えて、可変リフト機構52が設けられている点を除き、図1に示すシステム構成と同様である。図1と同様の構成については、同一の符号を付してその説明を省略または簡略する。図9に示す可変リフト機構52は、少なくとも吸気バルブ36のバルブリフト量を変更することができる。バルブリフト量を変更する手法としては、バルブリフト量の異なる複数のカムを切り替える手法等が公知であるため、ここでの詳細な説明は省略する。
[実施の形態2における特徴的制御]
(渦流比フィードバック制御:バルブリフト量)
上述した実施の形態1では、サイクル間の気流のばらつきに対して、計測渦流比と設計渦流比に一致させるように、計測渦流比と設計渦流比との差を気流制御弁32の制御値にフィードバックする渦流比フィードバック制御を実現している。これに対して、実施の形態2では、気流制御弁32に代えて吸気バルブ36のバルブリフト量を可変制御することにより渦流比フィードバック制御を実現する点に特徴を有している。
(渦流比フィードバック制御ルーチン:バルブリフト量)
本実施形態のシステムにおいてEUC50が実行する渦流比フィードバック制御ルーチンについて説明する。図10は、ECU50が実行する渦流比フィードバック制御ルーチンのフローチャートである。渦流比フィードバック制御ルーチンは各サイクルにおいて気筒毎に実行される。ECU50には、実施の形態1と同様に、図2に示すような流量係数とタンブル比との関係を定めた関係マップや、運転状態に応じた設計タンブル履歴が記憶されている。
まず、ECU50は、上述したように所定クランクアングルにおける流量計34の出力値に基づく流量係数を求める(S10)。所定クランクアングルは、吸気バルブ36が開弁している期間中のクランクアングルである。ECU50は、上述の関係マップからS10で求められた流量係数に対応する瞬時のタンブル比(現サイクルの吸気行程中の計測タンブル比)を取得する(S11)。次に、ECU50は、運転状態に応じた設計タンブル履歴から上記所定クランクアングルに対応する設計タンブル比を取得し、計測タンブル比と設計タンブル比との差を算出する(S12)。ECU50は、算出した差に応じて吸気バルブ36の最大バルブリフト量のフィードバック制御値を決定する(S23)。具体的には、現サイクルの吸気行程中に取得した計測タンブル比が設計タンブル比よりも小さい場合には、現サイクルの吸気行程中に吸気バルブ36の最大バルブリフト量を小さくする方向に制御する可変リフト機構52の制御値を決定する。一方、計測タンブル比が設計タンブル比よりも大きい場合には吸気バルブ36の最大バルブリフト量を大きくする方向に制御する可変リフト機構52の制御値を決定する。制御値を決定後、ECU50は、S23において設定された制御値に応じた制御信号を現サイクルの吸気行程中に可変リフト機構52に出力する(S24)。その後、本ルーチンの処理は終了される。次サイクルにおいて再び本ルーチンは実行される。
上述した制御ルーチンによれば、1サイクルの吸気行程中において気筒毎に、計測タンブル比を設計タンブル比に一致させるように吸気バルブ36の最大バルブリフト量を制御することができる。図11は、本実施形態のシステムにおける計測タンブル履歴を設計タンブル履歴に一致させる渦流比フィードバック制御の例を示す図である。図11には、運転状態に応じた設計タンブル履歴に比して計測タンブル比が小さい例が示されている。上述の渦流比フィードバック制御ルーチンにより、図12に示すように吸気バルブ36の最大バルブリフト量を小さくし、タンブル比を増大させることで、図11に示すように、計測タンブル履歴(破線)を設計タンブル履歴(実線)まで回復させることができる。これにより、各気筒のサイクル間の気流パターン、乱れの変動を低減することができる。
燃料噴射時期制御に関しては、上述した実施の形態2の渦流比フィードバック制御に適合させる点を除き実施の形態1と同様であるためその説明を省略する。なお、以下の実施の形態についても同様である。燃料噴射時期制御によれば、実施の形態1と同様に、燃料噴射時期をタンブル回復後まで遅らせることで、噴霧形状を想定噴霧形状に近づけることができ、着火性を高めることができる。
尚、上述した実施の形態2においては、燃料噴射弁14が前記第1の発明における「燃料噴射手段」に、吸気バルブ36及び可変リフト機構52が前記第3の発明における「可変動弁装置」に、流量計34が前記第1の発明における「流量計」に、それぞれ相当している。
また、ここでは、ECU50が、上記S11の処理を実行することにより前記第1の発明における「実渦流比取得手段」が、上記S12、S23、S24の処理を実行することにより前記第1の発明における「渦流比フィードバック制御手段」が、上記燃料噴射時期制御ルーチンを実行することにより前記第1の発明及び第2の発明における「燃料噴射時期遅角制御手段」それぞれ実現されている。
実施の形態3.
[実施の形態3のシステム構成]
次に、図13及び図15を参照して本発明の実施の形態3について説明する。本実施形態のシステムは図1又は図9に示す構成において、ECU50に後述する図13のルーチンを実施させることで実現することができる。なお、燃料噴射弁14には図示省略する燃料ポンプが接続されており、ECU50は、燃料ポンプに出力する制御値(信号)を変更して燃料噴射弁14に供給する燃圧を変更することができる。
[実施の形態3における特徴的制御]
(渦流比フィードバック制御:噴射燃圧制御)
本実施形態のシステムでは、渦流比フィードバック制御に燃料噴射弁14に供給される燃料の燃圧制御を用いる点に特徴を有している。
なお、以下の本実施形態の説明においては、実施の形態1又は実施の形態2の構成を前提として説明するが、気流制御弁32や可変リフト機構52が備わっていないシステムにも本実施形態の特徴的制御は適用可能である。
本実施形態では、筒内の乱れは、燃料噴射の噴流活用(燃料の噴射力による気流促進)によりタンブル流を強めることができることに着目して、渦流比フィードバック制御を実現する。具体的には、流量計34の出力値に基づいて算出された計測渦流比が運転状態に応じた設計渦流比よりも小さい場合に、その運転状態に応じた通常燃圧よりも高い燃圧で燃料を噴射する。燃圧を高めることで、燃料の噴射力による気流促進を図ることができる。さらに、燃料噴射期間中において、計測渦流比が設計渦流比まで回復した後は、通常燃圧に戻す。必要な期間だけ燃圧を高めることで、燃料ポンプの損失を最低限に抑えることができる。
(渦流比フィードバック制御ルーチン:噴射燃圧制御)
本実施形態のシステムにおいてEUC50が実行する渦流比フィードバック制御ルーチンについて説明する。図13は、ECU50が実行する渦流比フィードバック制御ルーチンのフローチャートである。渦流比フィードバック制御ルーチンは各サイクルにおいて気筒毎に実行される。なお、実施の形態1又は2における渦流比フィードバック制御ルーチン及び燃料噴射時期制御ルーチンと共に実行してもよい。ECU50には、実施の形態1と同様に、図2に示すような流量係数とタンブル比との関係を定めた関係マップや、運転状態に応じた設計タンブル履歴が記憶されている。また、ECU50には、運転状態(エンジン回転数、噴射量、噴射時間)に応じた通常燃圧を定めた燃圧マップが記憶されている。
まず、ECU50は、燃料噴射時期の決定タイミング前であるか否かを判定する(S30)。決定タイミング後である場合には本ルーチンの処理は終了される。一方、決定タイミング前である場合には、ECU50は、上述したように所定クランクアングルにおける流量計34の出力値に基づく流量係数を求める(S10)。所定クランクアングルは、吸気バルブ36が開弁している期間中のクランクアングルである。ECU50は、上述の関係マップからS10で求められた流量係数に対応する瞬時のタンブル比(現サイクルの吸気行程中の計測タンブル比)を取得する(S11)。次に、ECU50は、運転状態に応じた設計タンブル履歴から上記所定クランクアングルに対応する設計タンブル比を取得し、計測タンブル比と設計タンブル比との差を算出する(S12)。ECU50は、算出した差に応じて上述した燃料ポンプの制御値を設定する(S33)。具体的には、現サイクルの吸気行程中に取得した計測タンブル比が設計タンブル比よりも小さい場合には、現サイクルの吸気行程中に現運転状態に応じた通常燃圧よりも燃圧を高める制御値を設定する。一方、計測タンブル比が設計タンブル比よりも大きい場合には、現運転状態に応じた通常燃圧よりも燃圧を低める制御値を設定する。制御値を設定後、ECU50は、S33において設定された制御値に応じた制御信号を現サイクルの吸気行程中に燃圧ポンプに出力する(S34)。その後、設定された燃料噴射時期に合わせて燃料噴射弁14は燃料を噴射する(S35)。その後、ECU50は、上記S10〜S11と同様の処理により、現サイクルの所定のクランクアングル(例えば数度)毎に、燃料噴射期間中の計測タンブル比を取得する(S36)。燃料噴射期間中に計測された計測タンブル比が設計タンブル比まで回復しているか否かを判定する(S37)。例えば、差が所定値内にある場合には回復していると判定する。計測タンブル比が設計タンブル比まで回復している場合には、現サイクルの燃料噴射が終了する前に燃圧を通常燃圧に戻すべく、通常燃圧に応じた制御信号を燃料ポンプに出力する(S38)。その後、本ルーチンの処理は終了され、次サイクルにおいて再び本ルーチンは実行される。なお、S37において計測タンブル比が設計タンブル比まで回復していない場合は、燃料噴射期間中はS36に戻り処理を継続する。
上述した制御ルーチンによれば、1サイクルの間に気筒毎に、計測タンブル比を設計タンブル比に一致させるように燃料噴射弁14に供給する燃圧を制御することができる。図14は、本実施形態のシステムにおける計測タンブル履歴を設計タンブル履歴に一致させる渦流比フィードバック制御の例を示す図である。図14には、運転状態に応じた設計タンブル履歴に比して計測タンブル比が小さい例が示されている。上述の渦流比フィードバック制御ルーチンにより、図15に示すように高燃圧での燃料噴射を行い、タンブル比を高めることで、図14に示すように計測タンブル履歴(破線)を設計タンブル履歴(実線)まで回復させることができる。
さらに、上述した制御ルーチンによれば、燃料噴射期間中に計測渦流比が設計渦流比まで回復した後は、通常燃圧に戻すことで、必要な期間だけ燃圧を高めて燃料ポンプの損失を最低限に抑えることができる。
尚、上述した実施の形態3においては、上述の燃料ポンプが前記第4及び第5の発明における「燃圧変更手段」に相当している。また、ここでは、ECU50が、上記S33〜S38の処理を実行することにより前記第4及び第5の発明における「燃圧制御手段」が実現されている。
実施の形態4.
[実施の形態4のシステム構成]
次に、図16〜図19を参照して本発明の実施の形態4について説明する。本実施形態のシステムは図16に示す構成において、ECU50に後述する図17のルーチンを実施させることで実現することができる。
図16は、本発明の実施の形態4のシステム構成を説明するための概念図である。図16に示すシステム構成は、直噴用の燃料噴射弁14に加えて、吸気ポート内に燃料を噴射するポート噴射用の燃料噴射弁15を備えている。なお、図16に示すシステムには含まれていないが、図1に示す気流制御弁32と図9に示す可変リフト機構52を備えるシステムであってもよい。図16に示すその他の構成については図1又は図9と同様であるため、同様の構成については、同一の符号を付してその説明を省略または簡略する。
実施の形態4のシステムでは、リーン燃焼時に、乱れ増速効果と気化熱効果を狙える直噴と、高均質化が狙えるポート噴射とによる燃料の吹き分けを行なっている。ECU50には、例えば、運転状態(機関負荷、エンジン回転数等)に応じた総燃料噴射量と通常の吹き分け比率が燃料噴射マップに記憶されており、通常(以下、通常モードともいう)は燃料噴射マップを用いて運転状態に応じた総燃料噴射量と通常の吹き分け比率が設定される。
[実施の形態4における特徴的制御]
(渦流比フィードバック制御:燃料吹き分け比率制御)
上述した実施の形態3では、サイクル間の気流のばらつきに対して、計測渦流比と設計渦流比に一致させるように、計測渦流比と設計渦流比との差を、燃料噴射弁14に供給される燃圧(燃料ポンプの制御値)にフィードバックする渦流比フィードバック制御を実現している。これに対して、実施の形態4では、燃圧に代えて直噴用の燃料噴射弁14とポート噴射用の燃料噴射弁15とによる吹き分け比率を可変制御することにより渦流比フィードバック制御を実現する点に特徴を有している。
(渦流比フィードバック制御ルーチン:燃料吹き分け比率制御)
本実施形態のシステムにおいてEUC50が実行する渦流比フィードバック制御ルーチンについて説明する。図17は、ECU50が実行する渦流比フィードバック制御ルーチンのフローチャートである。渦流比フィードバック制御ルーチンは、燃料噴射弁14と15の吸気同期噴射により燃料を供給する場合に各サイクルにおいて気筒毎に実行される。また、実施の形態1乃至3における渦流比フィードバック制御ルーチン及び燃料噴射時期制御ルーチンと共に実行してもよい。ECU50には、実施の形態1と同様に、図2に示すような流量係数とタンブル比との関係を定めた関係マップ、運転状態に応じた設計タンブル履歴が記憶されている、また、ECU50には上述した燃料噴射マップが記憶されている。
まず、ECU50は、燃料噴射時期の決定タイミング前であるか否かを判定する(S40)。決定タイミング後である場合には本ルーチンの処理は終了される。一方、決定タイミング前である場合には、ECU50は、上述したように所定クランクアングルにおける流量計34の出力値に基づく流量係数を求める(S10)。所定クランクアングルは、吸気バルブ36が開弁している期間中のクランクアングルである。ECU50は、上述の関係マップからS10で求められた流量係数に対応する瞬時のタンブル比(現サイクルの吸気行程中の計測タンブル比)を取得する(S11)。次に、ECU50は、運転状態に応じた設計タンブル履歴から上記所定クランクアングルに対応する設計タンブル比を取得し、計測タンブル比と設計タンブル比との差を算出する(S12)。ECU50は、燃料噴射マップから運転状態に応じた総燃料噴射量と吹き分け比率を取得する(S43)。ECU50は、S43で取得した通常モードの吹き分け比率を、S12で算出した差に応じて変更して、燃料噴射弁14、15の吹き分け比率を決定する(S44)。具体的には、現サイクルの吸気行程中に取得した計測タンブル比が設計タンブル比よりも小さい場合には、現サイクルの直噴用の燃料噴射弁14から噴射する燃料の吹き分け比率を、通常の吹き分け比率よりも高く設定する。一方、計測タンブル比が設計タンブル比よりも大きい場合には、直噴用の燃料噴射弁14から噴射する燃料の吹き分け比率を、通常の吹き分け比率よりも低く設定する。ECU50は、設定された吹き分け比率に基づく制御信号を現サイクルの吸気行程中に燃料噴射弁14、15に出力し、燃料噴射弁14、15は制御信号に応じて燃料を噴射する(S45)。その後、ECU50は、上記S10〜S11と同様の処理により、現サイクルの所定のクランクアングル(例えば数度)毎に、燃料噴射期間中の計測タンブル比を取得する(S46)。燃料噴射期間中に計測された計測タンブル比が設計タンブル比まで回復しているか否かを判定する(S47)。例えば差が所定値内にある場合には回復していると判定する。計測タンブル比が設計タンブル比まで回復している場合には、現サイクルの燃料噴射が終了する前に吹き分け比率を通常の吹き分け比率に再設定する(S48)。その後、再設定された吹き分け比率に応じて燃料噴射弁14、15から残りの燃料が噴射される(S49)。その後、本ルーチンの処理は終了され、次サイクルにおいて再び本ルーチンは実行される。なお、S47において計測タンブル比が設計タンブル比まで回復していない場合は、燃料噴射期間中はS46に戻り処理を継続する。
上述した制御ルーチンによれば、燃料噴射弁14と15の吸気同期噴射により燃料を供給する場合において、1サイクルの間に気筒毎に、計測タンブル比を設計タンブル比に一致させるように吹き分け率を制御することができる。図18は、本実施形態のシステムにおける計測タンブル履歴を設計タンブル履歴に一致させる渦流比フィードバック制御の例を示す図である。図18には、運転状態に応じた設計タンブル履歴に比して計測タンブル比が小さい例が示されている。上述の渦流比フィードバック制御ルーチンにより、図19に示すように総燃料噴射量を変更すること無く吹き分け比率を変更して、タンブル比を高めることで、図18に示すように計測タンブル履歴(破線)を設計タンブル履歴(実線)まで回復させることができる。
さらに、上述した制御ルーチンによれば、燃料噴射期間中に計測渦流比が設計渦流比まで回復した後は、通常の吹き分け比率に戻すことで、必要な期間だけ吹き分け比率を変更して不均質化を最低限に抑えることができる。
尚、上述した実施の形態4においては、直噴用の燃料噴射弁14が前記第6及び第7の発明における「直噴噴射弁」に、ポート噴射用の燃料噴射弁15が前記第6及び第7の発明における「ポート噴射弁」に、それぞれ相当している。また、ここでは、ECU50が、上記S43〜S49の処理を実行することにより前記第6及び第7の発明における「吹き分け比率制御手段」が実現されている。
実施の形態5.
[実施の形態5のシステム構成]
次に、図20及び図21を参照して本発明の実施の形態5について説明する。本実施形態のシステムは図1、図9又は図16に示す構成において、ECU50に後述する図20のルーチンを実施させることで実現することができる。
[実施の形態5における特徴的制御]
(渦流比フィードバック制御:噴射回数制御)
上述した実施の形態3では、計測渦流比と設計渦流比との差を燃料噴射弁14に供給される燃圧(燃料ポンプの制御値)にフィードバックし、実施の形態4では、その差を直噴用の燃料噴射弁14とポート噴射用の燃料噴射弁15との吹き分け比率にフィードバックすることで、渦流比フィードバック制御を実現している。これに対して、実施の形態5では、燃料噴射弁14による噴射回数を可変制御することにより渦流比フィードバック制御を実現する点に特徴を有している。
なお、以下の本実施形態の説明においては、実施の形態1乃至4に示すシステムを前提として説明するが、気流制御弁32や可変リフト機構52やポート噴射用の燃料噴射弁15が備わっていないシステムにも本実施形態の特徴的制御は適用可能である。
本実施形態では、噴流による乱れ増速は噴射回数が多いほど強いことに着目して、渦流比フィードバック制御を実現する。具体的には、複数回噴射が行われるエンジンにおいて、流量計34の出力値に基づいて算出された計測渦流比が運転状態に応じた設計渦流比よりも小さい場合に、直噴の噴射回数をその運転状態に応じた通常噴射回数よりも増やす。噴射回数を増やすことで、噴流効果が増し、計測渦流比を設計渦流比まで回復させることができる。
(渦流比フィードバック制御ルーチン:噴射回数制御)
本実施形態のシステムにおいてEUC50が実行する渦流比フィードバック制御ルーチンについて説明する。図20は、ECU50が実行する渦流比フィードバック制御ルーチンのフローチャートである。渦流比フィードバック制御ルーチンは、各サイクルにおいて気筒毎に実行される。なお、実施の形態1乃至4における渦流比フィードバック制御ルーチン及び燃料噴射時期制御ルーチンと共に実行してもよい。ECU50には、実施の形態1と同様に、図2に示すような流量係数とタンブル比との関係を定めた関係マップ、運転状態に応じた設計タンブル履歴が記憶されている。また、ECU50には、運転状態(機関負荷、エンジン回転数等)に応じた総燃料噴射量と、総燃料噴射量を何回に分けて直噴するかを定めた通常噴射回数とを定めた噴射回数マップが記憶されており、通常(以下、通常モードともいう)は噴射回数マップを用いて運転状態に応じた総燃料噴射量と通常噴射回数が設定される。
まず、ECU50は、燃料噴射時期の決定タイミング前であるか否かを判定する(S50)。決定タイミング後である場合は本ルーチンの処理は終了される。一方、決定タイミング前である場合には、ECU50は、上述したように所定クランクアングルにおける流量計34の出力値に基づく流量係数を求める(S10)。所定クランクアングルは、吸気バルブ36が開弁している期間中のクランクアングルである。ECU50は、上述の関係マップからS10で求められた流量係数に対応する瞬時のタンブル比(現サイクルの吸気行程中の計測タンブル比)を取得する(S11)。次に、ECU50は、運転状態に応じた設計タンブル履歴から上記所定クランクアングルに対応する設計タンブル比を取得し、計測タンブル比と設計タンブル比との差を算出する(S12)。ECU50は、運転状態に応じた噴射回数マップから運転状態に応じた総燃料噴射量と通常噴射回数を取得する(S53)。ECU50は、S53で取得した通常噴射回数を、S12で算出した差に応じて変更して、燃料噴射弁14の噴射回数を決定する(S54)。具体的には、現サイクルの吸気行程中に取得した計測タンブル比が設計タンブル比よりも小さい場合には、現サイクルの噴射回数を通常噴射回数よりも多く設定する。一方、計測タンブル比が設計タンブル比よりも大きい場合には、噴射回数を通常噴射回数よりも少なく設定する。ECU50は、設定された噴射回数に基づく制御信号を現サイクルの吸気行程中に燃料噴射弁14に出力し、燃料噴射弁14は制御信号に応じて燃料を噴射する(S55)。その後、本ルーチンの処理は終了され、次サイクルにおいて再び本ルーチンは実行される。
上述した制御ルーチンによれば、1サイクルの間に気筒毎に、計測タンブル比を設計タンブル比に一致させるように燃料噴射弁14の噴射回数を制御することができる。図21は、本実施形態のシステムにおける計測タンブル履歴を設計タンブル履歴に一致させる渦流比フィードバック制御の例を示す図である。図21の上図は計測タンブル比と設計タンブル比が一致する場合の通常噴射回数を示している。図21の下図のように計測タンブル比が設計タンブル比を下回った場合には、上述の渦流比フィードバック制御ルーチンにより、噴射回数を増やして噴流による乱れ増速を強めることで、図21に示すように計測タンブル履歴(破線)を設計タンブル履歴(実線)まで回復させることができる。
尚、上述した実施の形態5においては、直噴用の燃料噴射弁14が前記第8及び第9の発明における「燃料噴射手段」に相当している。また、ここでは、ECU50が、上記S53〜S55の処理を実行することにより前記第8及び第9の発明における「噴射回数制御手段」が実現されている。
10 内燃機関(エンジン)
12 燃焼室
14 直噴用の燃料噴射弁
15 ポート噴射用の燃料噴射弁
16 点火プラグ
18 クランクアングルセンサ
20 吸気通路
22 排気通路
24 エアフローメータ
26 スロットルバルブ
28 スロットル開度センサ
30 吸気ポート
32 気流制御弁
34 流量計
36 吸気バルブ
50 ECU
52 可変リフト機構

Claims (9)

  1. 燃料噴射時期に応じて気筒内に燃料を直接噴射する燃料噴射手段と、
    吸気通路に設けられ、気筒内に生じる渦流を変更する渦流制御手段と、
    前記吸気通路に設けられた流量計の出力値に基づいて実渦流比を取得する実渦流比取得手段と、
    前記実渦流比を運転状態に応じた目標渦流比に一致させるように、前記実渦流比と前記目標渦流比との差を前記渦流制御手段の制御値にフィードバックする渦流比フィードバック制御手段と、
    前記実渦流比と前記目標渦流比との差が所定値以上である場合に、燃料噴射時期を前記運転状態に応じた通常燃料噴射時期よりも遅角する燃料噴射時期遅角制御手段と、
    を備えることを特徴とする内燃機関の制御装置。
  2. 前記燃料噴射時期遅角制御手段は、前記渦流比フィードバック制御手段による制御値へのフィードバック前に燃料噴射時期の決定タイミングがある場合、かつ、前記実渦流比と前記目標渦流比との差が所定値以上である場合に、前記渦流比フィードバック制御手段による制御値へのフィードバック後まで燃料噴射時期を遅角すること、
    を特徴とする請求項1記載の内燃機関の制御装置。
  3. 前記渦流制御手段は、バルブ開度を可変制御して気筒内にタンブル流を生じさせるタンブル流コントロールバルブ、バルブ開度を可変制御して気筒内にスワール流を生じさせるスワール流コントロールバルブ、及び、吸気バルブのバルブリフト量を可変制御する可変動弁装置の少なくとも1つを含むこと、
    を特徴とする請求項1又は2記載の内燃機関の制御装置。
  4. 前記渦流制御手段は、前記燃料噴射手段に供給する燃圧を変更可能な燃圧変更手段を含み、
    前記渦流比フィードバック制御手段は、
    前記実渦流比が前記目標渦流比よりも小さい場合に、前記運転状態に応じて定められた通常燃圧よりも高い燃圧の制御値を前記燃圧変更手段に出力し、前記燃料噴射手段による燃料噴射期間中において、前記実渦流比取得手段により新たに取得された実渦流比が前記目標渦流比に一致した場合に、前記通常燃圧の制御値を前記燃圧変更手段に出力する燃圧制御手段、
    を備えることを特徴とする請求項1乃至3のいずれか1項記載の内燃機関の制御装置。
  5. 前記渦流制御手段は、前記燃料噴射手段に供給する燃圧を変更可能な燃圧変更手段を含み、
    前記渦流比フィードバック制御手段は、
    前記実渦流比が前記目標渦流比よりも大きい場合に、前記運転状態に応じて定められた通常燃圧よりも低い燃圧の制御値を前記燃圧変更手段に出力し、前記燃料噴射手段による燃料噴射期間中において、前記実渦流比取得手段により新たに取得された実渦流比が前記目標渦流比に一致した場合に、前記通常燃圧の制御値を前記燃圧変更手段に出力する燃圧制御手段、
    を備えることを特徴とする請求項1乃至3のいずれか1項記載の内燃機関の制御装置。
  6. 前記燃料噴射手段は、設定された吹き分け比率に応じて、気筒内に燃料を直接噴射する直噴噴射弁と吸気ポート内に燃料を噴射するポート噴射弁とから燃料を噴射し、
    前記渦流制御手段は、吹き分け比率の変更を含み、
    前記渦流比フィードバック制御手段は、
    前記実渦流比が前記目標渦流比よりも小さい場合に、前記直噴噴射弁から噴射する燃料の吹き分け比率を、前記運転状態に応じて定められた通常の吹き分け比率よりも高く設定し、前記燃料噴射手段による燃料噴射期間中において、前記実渦流比取得手段により新たに取得された実渦流比が前記目標渦流比に一致した場合に、前記直噴噴射弁から噴射する燃料の吹き分け比率を、前記通常の吹き分け比率に設定する吹き分け比率制御手段、
    を備えることを特徴する請求項1乃至5のいずれか1項記載の内燃機関の制御装置。
  7. 前記燃料噴射手段は、設定された吹き分け比率に応じて、気筒内に燃料を直接噴射する直噴噴射弁と吸気ポート内に燃料を噴射するポート噴射弁とから燃料を噴射し、
    前記渦流制御手段は、吹き分け比率の変更を含み、
    前記渦流比フィードバック制御手段は、
    前記実渦流比が前記目標渦流比よりも大きい場合に、前記直噴噴射弁から噴射する燃料の吹き分け比率を、前記運転状態に応じて定められた通常の吹き分け比率よりも低く設定し、前記燃料噴射手段による燃料噴射期間中において、前記実渦流比取得手段により新たに取得された実渦流比が前記目標渦流比に一致した場合に、前記直噴噴射弁から噴射する燃料の吹き分け比率を、前記通常の吹き分け比率に設定する吹き分け比率制御手段、
    を備えることを特徴する請求項1乃至5のいずれか1項記載の内燃機関の制御装置。
  8. 前記燃料噴射手段は、設定された噴射回数に分けて気筒内に燃料を直接噴射し、
    前記渦流制御手段は、噴射回数の変更を含み、
    前記渦流比フィードバック制御手段は、
    前記実渦流比が前記目標渦流比よりも小さい場合に、噴射回数を前記運転状態に応じて定められた通常噴射回数よりも多く設定する噴射回数制御手段、
    を備えることを特徴とする請求項1乃至7のいずれか1項記載の内燃機関の制御装置。
  9. 前記燃料噴射手段は、設定された噴射回数に分けて気筒内に燃料を直接噴射し、
    前記渦流制御手段は、噴射回数の変更を含み、
    前記渦流比フィードバック制御手段は、
    前記実渦流比が前記目標渦流比よりも大きい場合に、噴射回数を前記運転状態に応じて定められた通常噴射回数よりも少なく設定する噴射回数制御手段、
    を備えることを特徴とする請求項1乃至7のいずれか1項記載の内燃機関の制御装置。
JP2012243550A 2012-11-05 2012-11-05 内燃機関の制御装置 Pending JP2014092085A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012243550A JP2014092085A (ja) 2012-11-05 2012-11-05 内燃機関の制御装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012243550A JP2014092085A (ja) 2012-11-05 2012-11-05 内燃機関の制御装置

Publications (1)

Publication Number Publication Date
JP2014092085A true JP2014092085A (ja) 2014-05-19

Family

ID=50936365

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012243550A Pending JP2014092085A (ja) 2012-11-05 2012-11-05 内燃機関の制御装置

Country Status (1)

Country Link
JP (1) JP2014092085A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106368837A (zh) * 2015-07-23 2017-02-01 罗伯特·博世有限公司 用于利用进气管喷射和直接喷射将燃料置入内燃机的燃烧室中的方法
JP2020029794A (ja) * 2018-08-21 2020-02-27 株式会社Subaru エンジン

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106368837A (zh) * 2015-07-23 2017-02-01 罗伯特·博世有限公司 用于利用进气管喷射和直接喷射将燃料置入内燃机的燃烧室中的方法
JP2020029794A (ja) * 2018-08-21 2020-02-27 株式会社Subaru エンジン
JP7256616B2 (ja) 2018-08-21 2023-04-12 株式会社Subaru エンジン

Similar Documents

Publication Publication Date Title
JP6176005B2 (ja) 内燃機関の制御装置
US9976510B2 (en) Fuel injection control apparatus
US20180320629A1 (en) Internal combustion engine with an electronically controlled tumble control valve
US9014949B2 (en) Apparatus for and method of controlling internal combustion engine
JP6098477B2 (ja) 火花点火式内燃機関の制御システム
JP6206158B2 (ja) 火花点火式内燃機関の制御システム
JP5949819B2 (ja) 内燃機関の燃料噴射制御装置
JP2015145641A (ja) 内燃機関の燃料噴射制御装置
JP2013124577A (ja) 内燃機関の燃料噴射制御装置
JP2013015023A (ja) 筒内噴射式エンジンの制御装置
JP2014092085A (ja) 内燃機関の制御装置
US20170107922A1 (en) Control system of internal combustion engine
JP2018105191A (ja) 内燃機関の制御装置
US20170107916A1 (en) Control system of internal combustion engine
US20170058822A1 (en) Control device for internal combustion engine
JP4816151B2 (ja) 内燃機関の燃焼制御装置
JP6044370B2 (ja) 内燃機関の点火制御装置
JP5375464B2 (ja) 内燃機関の燃料噴射装置
JP2011157859A (ja) 内燃機関
JP6260599B2 (ja) 内燃機関の制御装置
JP2013238111A (ja) 内燃機関の空燃比制御装置
JP5120468B2 (ja) 多気筒内燃機関の異常判定装置
JP5998949B2 (ja) 内燃機関の点火制御装置
JP6988382B2 (ja) 内燃機関の制御装置
JP2012180817A (ja) 内燃機関の空燃比算出装置