JP2015145641A - 内燃機関の燃料噴射制御装置 - Google Patents

内燃機関の燃料噴射制御装置 Download PDF

Info

Publication number
JP2015145641A
JP2015145641A JP2014018621A JP2014018621A JP2015145641A JP 2015145641 A JP2015145641 A JP 2015145641A JP 2014018621 A JP2014018621 A JP 2014018621A JP 2014018621 A JP2014018621 A JP 2014018621A JP 2015145641 A JP2015145641 A JP 2015145641A
Authority
JP
Japan
Prior art keywords
fuel injection
fuel
valve
lift amount
intake valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014018621A
Other languages
English (en)
Inventor
大輔 内田
Daisuke Uchida
大輔 内田
素成 鎗野
Motonari Yarino
素成 鎗野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2014018621A priority Critical patent/JP2015145641A/ja
Priority to CN201580006752.1A priority patent/CN105940211A/zh
Priority to PCT/IB2015/000036 priority patent/WO2015114432A1/en
Priority to US15/115,731 priority patent/US20170175653A1/en
Priority to EP15705696.1A priority patent/EP3102815A1/en
Publication of JP2015145641A publication Critical patent/JP2015145641A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0002Controlling intake air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D41/40Controlling fuel injection of the high pressure type with means for controlling injection timing or duration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D41/40Controlling fuel injection of the high pressure type with means for controlling injection timing or duration
    • F02D41/402Multiple injections
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D41/40Controlling fuel injection of the high pressure type with means for controlling injection timing or duration
    • F02D41/402Multiple injections
    • F02D41/403Multiple injections with pilot injections
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0002Controlling intake air
    • F02D2041/0015Controlling intake air for engines with means for controlling swirl or tumble flow, e.g. by using swirl valves
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combustion Methods Of Internal-Combustion Engines (AREA)
  • Fuel-Injection Apparatus (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

【課題】適切な燃料噴射を行うことによって均質性がより高い混合気を形成することが可能な燃料噴射制御装置を提供する。
【解決手段】吸気弁の排気弁と反対側のボア壁面の近傍領域の所定位置から燃焼室内の排気弁とピストン冠面との間の領域に向けて燃料を噴射する燃料噴射弁を備え、吸気ポートが正タンブル流を生成するように構成された内燃機関に適用され、燃料噴射弁のニードル弁のリフト量を第1リフト量までの範囲で変更することによって燃料を噴射する主燃料噴射と、ニードル弁のリフト量を前記第1リフト量よりも小さい第2リフト量までの範囲で変更することによって燃料を噴射する副燃料噴射と、を1機関サイクルにおいて実行する制御部を備える燃料噴射制御装置に関する。制御部は、吸気弁の開弁開始時期を含む特定期間内に副燃料噴射を少なくとも1回実行し、逆タンブル流に副燃料噴射により噴射された燃料を乗せるように構成する。
【選択図】図9

Description

本発明は、燃焼室内(筒内)に燃料を直接噴射する燃料噴射弁を備えた内燃機関に適用される燃料噴射制御装置に関する。
特許文献1には、燃焼室内に燃料を直接噴射する燃料噴射弁を備えた内燃機関が開示されている。この内燃機関においては、均質リーン運転時において、吸気弁の開弁期間と排気弁の開弁期間とがオーバーラップせず且つ吸気弁が吸気上死点後に開弁し始めるようにバルブタイミングが設定される。これによれば、ピストンが吸気上死点から下降し始めて燃焼室内に負圧が発生してから吸気弁が開弁し始めるので、吸気弁の開弁開始直後、空気が高い流速で燃焼室に流入する。更に、この内燃機関においては、吸気弁の開弁開始直前の時点から吸気弁の開弁直後の時点に亘って燃料が継続的に噴射される。その結果、高い流速で燃焼室内に流入する空気によって噴射された燃料を拡散させることができるので、均質性の高い混合気を燃焼室内に形成することができる。なお、この内燃機関において、燃料噴射弁は、吸気弁の近傍且つボア壁面の近傍の位置から燃焼室の中央部に向けて燃料が噴射されるように配設されている。
特開2001−73819号公報
しかしながら、上記従来の内燃機関においては、燃焼室内に気流が発生していない「吸気弁の開弁開始直前の時点」から貫徹力の大きい燃料噴射が行われるので、噴射された燃料が排気弁側のボア壁面に付着し、その結果、エミッションが悪化する虞がある。
そこで、本発明の目的は、燃焼室内に燃料を直接噴射する燃料噴射弁を備えた内燃機関に適用され、適切な燃料噴射を行うことによって均質性がより高い混合気を形成することが可能な燃料噴射制御装置を提供することにある。
本発明による燃料噴射制御装置は、
ピストン冠面に対向するシリンダヘッド下面に形成された、燃焼室と吸気ポートとの連通部、を開閉する吸気弁と、
前記シリンダヘッド下面に形成された、前記燃焼室と排気ポートとの連通部、を開閉する排気弁と、
前記吸気弁の前記排気弁と反対側のボア壁面近傍領域の所定位置から前記燃焼室内の前記排気弁と前記ピストン冠面との間の領域に向けて燃料を噴射する燃料噴射弁と、を備え、
前記吸気ポートが、正タンブル流を生成するように構成された内燃機関に適用される。
正タンブル流は、前記吸気弁の開弁期間中において同吸気ポートから前記燃焼室内に流入した後に前記排気弁の近傍の領域へと向かい、更に、排気弁側のボア壁面に沿って前記ピストン冠面へと向かった後に同ピストン冠面から前記シリンダヘッド下面へと向かう空気の流れである。
更に、本発明による燃料噴射制御装置は、
前記燃料噴射弁のニードル弁のリフト量を第1リフト量までの範囲で変更することによって燃料を噴射する主燃料噴射と、前記ニードル弁のリフト量を前記第1リフト量よりも小さい第2リフト量までの範囲で変更することによって燃料を噴射する副燃料噴射と、を1機関サイクルにおいて実行する制御部を備える。
加えて、前記制御部は、前記吸気弁の開弁開始時期を含む特定期間内に前記副燃料噴射を少なくとも1回実行することにより、逆タンブル流に前記副燃料噴射により噴射された燃料を乗せるように構成される。逆タンブル流は、前記吸気ポートから前記燃焼室内に流入した後に前記吸気弁の前記排気弁とは反対側のボア壁面に沿って前記ピストン冠面へと向かった後に同ピストン冠面から前記シリンダヘッド下面へと向かう空気の流れである。
本発明においては、副燃料噴射が、その副燃料噴射による噴射燃料(即ち、ニードル弁のリフト量が第2リフト量までの範囲で変更されることによって噴射される燃料)が逆タンブル流に乗るような時期(即ち、前記特定期間内)に実行される。この副燃料噴射による噴射燃料の貫徹力は小さい。従って、例えば、副燃料噴射が吸気弁の開弁前に行われた場合、噴射燃料が吸気弁近傍の領域に留まった状態であるときに吸気弁が開弁する。よって、その噴射燃料は、吸気弁側のボア壁面に沿って形成される前記逆タンブル流に乗って拡散される。或いは、副燃料噴射が吸気弁の開弁後に行われた場合であっても、噴射燃料は既に生成している逆タンブル流に乗って拡散される。この結果、副燃料噴射により噴射された燃料はボア壁面に大きく付着することなく、燃焼室内に良好に拡散される。
ところで、一般に、逆タンブル流の速度(強さと言うこともできる)は、「前記吸気弁の開弁開始時点(第一時点)」と「前記吸気弁のリフト量が同吸気弁の最大リフト量に到達する時点(第二時点)」との略中間の時期において最も大きくなる。そこで、前記制御部は、「前記吸気弁が開弁を開始する第一時点から前記吸気弁のリフト量が同吸気弁の最大リフト量に到達する第二時点までの間であり、且つ、第一時点と第二時点との中間の時点を含む所定の期間」を前記特定期間として設定することが好ましい。これによれば、より強い逆タンブル流に副燃料噴射による噴射燃料を乗せることができるので、その噴射燃料を燃焼室内に良好に拡散させることができる。
更に、前記制御部は、「前記逆タンブル流の初速が前記正タンブル流の初速よりも大きい期間である逆タンブル期間中に発生している逆タンブル流」に前記副燃料噴射により噴射された燃料が乗るような、前記特定期間としての期間内に、前記副燃料噴射を実行するとともに、前記逆タンブル期間後であって前記正タンブル流が発生している期間内に前記主燃料噴射を実行するように構成され得る。
この態様によれば、逆タンブル流の初速(即ち、空気が吸気ポートから燃焼室内に流入した直後における逆タンブル流の速度)が正タンブル流の初速(即ち、空気が吸気ポートから燃焼室内に流入した直後の正タンブル流の速度)よりも大きい逆タンブル期間に副燃料噴射が実行される。従って、副燃料噴射による噴射燃料は逆タンブル流により燃焼室内に拡散される。更に、この態様によれば、逆タンブル期間の後(即ち、正タンブル流の初速が逆タンブル流の初速よりも大きい期間)に主燃料噴射が実行される。この主燃料噴射による噴射燃料の貫徹力は大きいので、噴射燃料は排気弁側のボア壁面近傍にまで達する可能性がある。しかしながら、主燃料噴射は正タンブル流が強くなっている期間に行われるから、主燃料噴射による噴射燃料は排気弁側のボア壁面に多量に付着することがなく、正タンブル流に乗って燃焼室内に拡散される。この結果、上記態様によれば、逆タンブル流による燃料拡散と正タンブル流による燃料拡散との双方により、均質性が高い混合気が燃焼室内全体に形成され得る。
更に、副燃料噴射の実行回数が多いほど、より多くの燃料が逆タンブル流によって拡散される。そこで、前記制御部は、前記副燃料噴射を複数回実行するように構成され得る。これによれば、より均質性の高い混合気が筒内に形成される。
機関回転速度が低い場合、燃焼室内気流(即ち、筒内に発生する気流)の速度が小さいので、機関回転速度が高い場合に比べて噴射燃料が拡散し難い。従って、前記制御部は、前記副燃料噴射を実行する回数を、機関回転速度が低いほど多く設定するように構成されることが好ましい。機関負荷が高い場合、噴射燃料の量が多いので、機関負荷が低い場合に比べて噴射燃料が拡散し難い。従って、前記制御部は、前記副燃料噴射を実行する回数を、機関負荷が高いほど多く設定するように構成されることが好ましい。これらの態様によれば、噴射燃料が拡散し難い状況下においても、均質性の高い混合気を燃焼室内に形成することができる。
図1は、本発明の実施形態に係る燃料噴射制御装置が適用される内燃機関の概略断面図である。 図2は、吸気弁が開弁されているときに燃焼室内に発生する気流(筒内気流)の様子を示した図である。 図3は、図1に示した燃料噴射弁の断面図である。 図4(A)は、吸気弁の開弁初期における筒内気流の様子を示した図であり、図4(B)は、吸気弁の開弁中期における筒内気流の様子を示した図である。 図5(A)は、クランク角と吸気弁リフト量との関係を示した図であり、図5(B)は、クランク角とタンブル流(正タンブル流及び逆タンブル流)との関係を示した図である。 図6(A)は、フルリフト噴射におけるニードルリフト量の時間変化を示した図であり、図6(B)は、パーシャルリフト噴射におけるニードルリフト量の時間変化を示した図である。 図7(A)は、フルリフト噴射時の燃料噴射弁の先端部分の断面図であり、図7(B)は、パーシャルリフト噴射時の燃料噴射弁の先端部分の断面図である。 図8(A)は、燃焼室内に噴射された燃料の噴霧をシリンダ中心軸線に沿って見た図であり、図8(B)は、燃焼室内に噴射された燃料の噴霧をシリンダ中心軸線と直交する所定の方向から見た図である。 図9は、第1実施形態における「クランク角と、吸気弁リフト量、逆タンブル流の速度及び燃料噴射弁のニードルリフト量と、の関係」を示した図である。 図10は、第1実施形態の燃料噴射制御フローを示した図である。 図11は、第2実施形態における「クランク角と、吸気弁リフト量、逆タンブル流の速度及び燃料噴射弁のニードルリフト量と、の関係」を示した図である。 図12(A)は、機関回転速度が高いときの「クランク角と、吸気弁リフト量、逆タンブル流の速度及び燃料噴射弁のニードルリフト量と、の関係」を示した図であり、図12(B)は、機関回転速度が低いときの「クランク角と、吸気弁リフト量、逆タンブル流の速度及び燃料噴射弁のニードルリフト量と、の関係」を示した図である。 図13は、第3実施形態における副燃料噴射の実行領域を示した図である。 図14は、第3実施形態の燃料噴射制御フローを示した図である。 図15は、図1に示した電子制御装置がパーシャルリフト噴射実行回数を決定する際に参照するルックアップテーブルである。
<第1実施形態>
以下、図面を参照しながら本発明の実施形態に係る燃料噴射制御装置(以下、単に「本制御装置」と称呼する。)について説明する。本制御装置は、図1に本体10を示した内燃機関に適用される。本体10は、シリンダヘッド11、シリンダブロック12、燃料噴射弁13、点火装置14、吸気弁15、排気弁16、ピストン17、コネクティングロッド18、クランクシャフト19、及び、クランクポジションセンサ20を備える。以下、ピストン17が下死点から上死点に向かう方向を「上方」、ピストン17が上死点から下死点に向かう方向を「下方」と称呼する。更に、シリンダ中心軸線Cよりも吸気弁15側を「吸気側」と称呼し、シリンダ中心軸線Cよりも排気弁16側を「排気側」と称呼する。
燃焼室21は、シリンダヘッド11の下面11aと、ボア(シリンダボア)壁面12aと、ピストン冠面17aとによって画成される。シリンダヘッド11には、燃料噴射弁13、点火装置14、吸気弁15及び排気弁16が取り付けられている。点火装置14は、イグナイタ、イグニッションコイル、及び点火プラグを含む。シリンダヘッド11には、吸気ポート22及び排気ポート23が形成されている。吸気ポート22は、その一端において燃焼室21と連通し、その他端において吸気マニホールド(図示せず)と連通している。吸気ポート22は、吸気ポート22から筒内21に流れ込む空気が、後述する正タンブル流を発生可能な形状を有している。即ち、吸気ポート22は、いわゆる正タンブルポートである。排気ポート23は、その一端において燃焼室21と連通し、その他端において排気マニホールド(図示せず)と連通している。
点火装置14は、その先端に備えられた点火プラグの電極24が燃焼室21の略中央上方に位置するように、シリンダヘッド11に配設されている。
吸気弁15は、シリンダヘッド11の吸気側に往復動可能に配設されている。吸気弁15は、吸気カム27が回転すると、吸気カム27のカムノーズに追従して燃焼室21と吸気ポート22との連通部を開放したり遮断したりするように往復動する。
排気弁16は、シリンダヘッド11の排気側に往復動可能に配設されている。排気弁16は、排気カム28が回転すると、排気カム28のカムノーズに追従して燃焼室21と排気ポート23との連通部を開放したり遮断したりするように往復動する。
なお、図示しないが、図1に示す内燃機関10は、吸気弁15及び吸気ポート22を吸気側に2つずつ備え、排気弁16及び排気ポート23を排気側に2つずつ備えている。即ち、この機関は周知の4バルブエンジンである。これら吸気ポート22は、いずれも正タンブル流を発生可能な正タンブルポートである。
正タンブル流とは、図2の曲線NTにより示したように、吸気弁15の開弁期間中において吸気ポート22から筒内21に流入した後に排気弁16の近傍の領域Bへと向かい、更に、排気弁側のボア壁面12aexに沿ってピストン冠面17aへと向かい、その後、ピストン冠面17aからシリンダヘッド下面11aへと向かう空気の流れのことである。
図1に示したように、シリンダブロック12には、ピストン17、コネクティングロッド18、クランクシャフト19、及び、クランクポジションセンサ20が備えられている。
燃料噴射弁13、点火装置14、クランクポジションセンサ20、及び、アクセルペダル踏込量センサ26は、電子制御装置(ECU)90に電気的に接続されている。ECU90は、燃料噴射弁13及び点火装置14の動作を制御するための制御信号を燃料噴射弁13及び点火装置14に与える。クランクポジションセンサ20は、クランクシャフト19の回転位置を検出する。ECU90は、クランクポジションセンサ20からの検出信号に基づいて機関回転速度を算出する。アクセルペダル踏込量センサ26は、アクセルペダル25の踏込量を検出する。ECU90は、アクセルペダル25の踏込量に関する情報等に基づいて機関負荷を算出する。
(1−1.燃料噴射弁及びその取付け位置)
図3に燃料噴射弁13の構成を示す。燃料噴射弁13は、ノズル本体部30、ニードル弁31、燃料噴射孔(以下「噴孔」)32、燃料通路33、ソレノイド34、スプリング35、及び、燃料取込口36を備える。ニードル弁軸線37は、燃料噴射弁13の長手方向に延びる軸線である。燃料噴射弁13は、いわゆる内開弁タイプの燃料噴射弁である。
燃料噴射弁13の噴孔32は、スリット形状の噴孔である。即ち、燃料噴射弁13の先端部近傍を噴孔32の噴射軸線に対して垂直な平面で切断した場合の噴孔32の断面の形状は、矩形である。この断面の面積は、噴孔32の入口から出口に向かう方向に徐々に広くなる。従って、矩形の断面の長手方向と噴射軸線とを含む平面にて燃料噴射弁13の先端部近傍を切断したときの噴孔32の断面の形状は、扇形である。
図2に示したように、燃料噴射弁13は、燃焼室21の上方に形成されている吸気ポート22よりもピストン17側の機関本体10の部分(シリンダヘッド11の部分)に配設されている。つまり、燃料噴射弁13は、吸気弁15の排気弁16と反対側のボア壁面12ainの近傍領域(領域Aを参照。)の所定位置から燃焼室21内の排気弁16とピストン冠面17aとの間の領域に向けて燃料を噴射するように配設されている。なお、燃料噴射弁13は上述した位置のシリンダブロック12の部分に配設されてもよい。
更に、燃料噴射弁13は、その噴射軸線が「2つの吸気ポート15と燃焼室21との連通部」の中心同士を結んだ直線を二等分し、且つ、シリンダ中心軸線Cを通る平面内に存在するように、配設されている。
即ち、燃料噴射弁13は、シリンダ中心軸線C方向から見ると、噴射軸線がシリンダ中心を通るように配設されている。更に、燃料噴射弁13は、噴射軸線とシリンダ中心軸線Cとを含む平面と直交する方向から見ると、噴射軸線が、シリンダ中心軸線Cとの直交面と平行であるか、または、その平面から斜め下方(ピストン冠面17a及び排気弁側のボア壁面12aexに向かう方向)を向くように配設されている。
(1−2.筒内気流)
次に、図2及び図4を参照しながら筒内気流について説明する。筒内気流とは、燃焼室21内(筒内)に発生する空気の流れを意味する。図2に示す状態においては、吸気弁15が開弁しており且つ排気弁16が全閉している。この状態においては、逆タンブル流RTと、上述した正タンブル流NTと、が発生する。逆タンブル流RTは、吸気ポート22から燃焼室21内に流入した後に、吸気弁15の排気弁16とは反対側のボア壁面12ainに沿ってピストン冠面17aへと向かい、その後ピストン冠面17aからシリンダヘッド下面11aへと向かう空気の流れである。
図4(A)は、吸気弁15の開弁初期の筒内気流の様子を示している。詳細は後述するが、吸気弁15の開弁初期(即ち、吸気弁15のリフト量が小さいとき)においては、逆タンブル流RTの速度(初速)が正タンブル流NTの速度(初速)よりも大きい。従って、吸気側の筒内領域に強い逆タンブル流RTが形成される。このように、吸気ポート22が正タンブルポートであっても、吸気弁15の開弁初期においては、逆タンブル流RTが発生する。一方、図4(B)は、吸気弁15の開弁中期の筒内気流の様子を示している。吸気弁15の開弁中期(即ち、吸気弁15のリフト量が略最大リフト量であるとき)においては、正タンブル流NTの速度(初速)が逆タンブル流RTの速度(初速)よりも相当に大きい。従って、筒内全体に強い正タンブル流NTが形成される。なお、逆タンブル流RTの初速は、空気が「吸気弁15の排気弁16とは反対側」を通って燃焼室21内に流入した直後の位置(即ち、図4の領域A)における逆タンブル流RTの速度である。正タンブル流NTの初速は、空気が吸気弁15の排気弁側を通って燃焼室21内に流入した直後の位置(即ち、図4の領域B)における正タンブル流NTの速度である。
前述の吸気弁リフト量と筒内気流の速度との関係について、図5を参照しながら詳細に説明する。図5は、クランク角度と筒内に発生する気流との関係についてのシミュレーション結果を示している。図5において、クランク角度0°は圧縮上死点である。図5(A)に示すように、吸気弁15は、クランク角度−360°(吸気上死点)直前において開弁を開始し、クランク角度−90°(圧縮行程の中間点)よりも若干前において全閉されている。吸気弁リフト量は、吸気弁15の開弁開始後、徐々に増大し、クランク角度−240°近傍において、最大となり、その後、徐々に減少する。なお、このシミュレーションにおいて、排気弁16は、常に閉じた状態である。
図5(B)において実線RTによって表されている曲線は、図2及び図4中の領域Aにおける逆タンブル流RTの速度(初速Vrt)を示している。逆タンブル流RTの速度(初速)Vrtは、吸気弁15の開弁開始後、比較的急激に増大し、クランク角度−310°近傍において、最大速度Vrtpとなり、その後、減少する。クランク角度−240°近傍において、ゼロとなる。
図5(B)において鎖線NTによって表されている曲線は、図2及び図4中の領域Bにおける正タンブル流NTの速度(初速Vnt)を示している。正タンブル流NTの速度(初速)Vntは、吸気弁15の開弁開始後、徐々に増大し、クランク角度−210°近傍において最大となり、その後、減少する。
図5(B)に示すように、吸気弁15の開弁開始後、クランク角度−270°近傍までの間、逆タンブル流RTの速度Vrtは、正タンブル流NTの速度Vntよりも大きい(Vrt>Vnt)。そして、クランク角度−270°近傍において、逆タンブル流RTの速度Vrtは、正タンブル流NTの速度Vntに等しくなり(Vrt=Vnt=Ve)、その後、逆タンブル流RTの速度Vrtは、正タンブル流NTの速度Vntよりも小さくなる(Vrt<Vnt)。
(1−3.燃料噴射)
燃料噴射弁13は、燃料噴射弁13のソレノイド34への通電時間の制御によって、ニードルリフト量(即ち、ニードル弁31のリフト量)を変化させることが可能である。ニードル弁31を最大リフト量(即ち、フルリフト量)までリフトさせる噴射は、フルリフト噴射と称呼される。一方、ニードル弁31をフルリフト量よりも小さい部分リフト量(即ち、パーシャルリフト量)までの範囲でリフトさせる噴射は、パーシャルリフト噴射と称呼される。図6(A)に、1回のフルリフト噴射におけるニードルリフト量の時間変化を示す。図6(B)に、3回のパーシャルリフト噴射におけるニードルリフト量の時間変化を示す。
主燃料噴射において、ニードルリフト量は、第1リフト量までの範囲で変更される。本例において、第1リフト量は最大リフト量であるが、最大リフト量よりも小さいリフト量であってもよい。即ち、主燃料噴射は、フルリフト噴射又はパーシャルリフト噴射である。一方、副燃料噴射において、ニードルリフト量は、第2リフト量までの範囲で変更される。第2リフト量は、第1リフト量よりも小さいリフト量である。即ち、副燃料噴射は、第1リフト量よりも小さいリフト量によるパーシャルリフト噴射である。
図7にノズル本体30先端部(ニードル弁31、噴孔32近傍及びその周辺)の「ニードル弁軸線37と噴射軸線46とを含む平面」による断面図を示す。ノズル本体30の内壁に開口する流入口44とノズル本体30の外壁に開口する流出口45とを接続する通路が噴孔32である。ノズル本体30内壁とニードル弁31とによって囲まれる空間はサック38である。図7(A)に示すフルリフト噴射状態においては、ノズルシート部40とニードルシート部41との間の流路面積(即ち、サック38入口の面積)は、流入口44における噴孔面積よりも大きくなっている。つまり、燃料流路中の最小絞り部分は、噴孔32の流入口44である。
これに対し、図7(B)に示すパーシャルリフト噴射状態においては、サック38入口の面積は、流入口44における噴孔面積よりも小さくなっている。つまり、燃料流路中の最小絞り部分は、サック38入口である。従って、サック38入口の面積が噴孔面積よりも小さいパーシャルリフト噴射状態においては、サック38入口の流路における燃料の流速が噴孔32の流入口44における燃料の流速より大きくなる。
パーシャルリフト噴射において、サック38入口の流路において流速が大きくなった燃料は、サック38内へ流れ込むが、サック38の流路面積は、サック38の入口の流路面積より大きい(即ち、体積が大きい)ので、サック38に流れ込んだ燃料の速度及び圧力(燃圧)は低下する。このときの燃圧の低下量は、フルリフト噴射における燃圧の低下量よりも大きい。その結果、噴孔32内の燃料の圧力と、筒内圧との差圧は、フルリフト噴射における差圧よりも小さくなる。従って、噴孔32から噴射される燃料の貫徹力は、フルリフト噴射よりもパーシャルリフト噴射の方が小さくなる。更に、ニードルリフト量が小さいほど、上記最小絞り部分の開口面積が小さくなるので、サック38内の燃圧は弱まり、噴射の貫徹力は小さくなる。従って、図8に示すように、比較的ニードルリフト量の小さいパーシャルリフト噴射によれば、燃料噴霧50が燃料噴射弁13近傍までしか到達しないような(吸気弁15の近傍且つ下方領域に留まるような)噴射が可能である。一方、フルリフト噴射による燃料噴霧51は、排気側の筒内領域にまで到達するような噴射が可能である。
前述したように、噴射軸線の向きは、シリンダ中心軸線Cとの直交面上においてはシリンダ中心に向き、噴孔32(噴射軸線46)とシリンダ中心軸線Cとを含む平面上においては、シリンダ中心軸線Cとの直交面と平行であるか、または、若干ピストン17の方向に向いている。前述のように、燃料噴射弁13の噴孔32はスリット形状を有し、図8に示すように、シリンダ中心軸線に沿って見た噴霧形状は、扇状に筒内領域に広がる。フルリフト噴射又は比較的ニードルリフト量の大きい噴射の場合、その噴霧は、排気側筒内領域にまで広がる。比較的ニードルリフト量の小さいパーシャルリフト噴射の場合、その噴霧は、吸気弁近傍に留まる。
(1−4.燃料噴射制御)
次に、第1実施形態の燃料噴射制御について説明する。ECU90は、主燃料噴射と副燃料噴射とを実行可能である。主燃料噴射は、ニードルリフト量が第1リフト量である噴射を1回実行する噴射である。副燃料噴射は、ニードルリフト量が第2リフト量である噴射を1回実行する噴射である。本実施形態においては、図9に示すように、副燃料噴射実施期間Tpiの任意のタイミングにおいて副燃料噴射PLが複数回(図示の例では2回)実行され、主燃料噴射実施期間Tfiの任意のタイミングにおいて主燃料噴射FLが1回実行される。
副燃料噴射実施期間Tpiは、図5(B)に示すように、無タンブル期間Tbと逆タンブル期間Tsとに相当する期間である。無タンブル期間Tbは、吸気弁15の開弁開始直前(開弁時期の所定時間前)から吸気弁15の開弁開始までの期間であって、筒内に逆タンブル流も正タンブル流も形成されていない期間である。逆タンブル期間Tsは、吸気弁15の開弁開始後、逆タンブル流の速度(初速)が正タンブル流の速度(初速)よりも大きい期間である。つまり、副燃料噴射実施期間Tpiは、吸気弁15の開弁開始時期を含む特定期間である。換言すると、副燃料噴射実施期間Tpiは、吸気弁開弁開始時期よりも第1所定時間前の時点から吸気弁開弁開始時期よりも第2所定時間後の時点までの期間である。主燃料噴射実施期間Tfiは、逆タンブル期間Ts後から点火時期までの間(好ましくは、吸気下死点までの間)である。即ち、主燃料噴射実施期間Tfiは、正タンブル流の速度が逆タンブル流の速度よりも大きい期間であって、正タンブル流が発生している期間である。
<第1実施形態の効果>
前述したように、副燃料噴射による燃料の貫徹力は小さいので、副燃料噴射によって噴射された燃料は、排気側のボア壁面12aexに付着することなく、吸気側の筒内領域に留まる。第1実施形態においては、副燃料噴射は、副燃料噴射実施期間(即ち、逆タンブル流が発生しているとき、或いは、逆タンブル流が発生する直前)に実行される。このため、副燃料噴射による燃料は、逆タンブル流によって吸気側の筒内領域に拡散され、この領域において均質性の高い混合気が形成される。
更に、前述したように、主燃料噴射による噴射においては、副燃料噴射による噴射に比べてニードルリフト量が大きいので、噴射された燃料の貫徹力は大きく、排気側の筒内領域まで到達する。本実施形態においては、主燃料噴射は、主燃料噴射実施期間(即ち、正タンブル流が逆タンブル流より大きいとき)に実行される。このため、主燃料噴射による燃料は、正タンブル流に乗って、排気側のボア壁面12aexに付着することなく筒内に拡散される。
従って、本実施形態によれば、逆タンブル流によって拡散された副燃料噴射による燃料と、正タンブル流によって拡散された主燃料噴射による燃料と、の両方によって、均質性の高い混合気が燃焼室21内に形成される。更に、燃料がボア壁面12aに付着しにくいので、従来に比べてエミッションを改善することができる。
(1−5.燃料噴射量)
なお、第1実施形態において、副燃料噴射1回当たりの目標燃料噴射量(以下「目標副燃料噴射量」)は、一定量に予め定められている。更に、副燃料噴射の回数も、一定回数に予め定められている。加えて、目標副燃料噴射量は、副燃料噴射によって安定した量の燃料が噴射される噴射量を下限とし、副燃料噴射による燃料が逆タンブル流に確実に乗る程度の貫徹力しか有さない程度の噴射量を上限とした範囲内の噴射量であることが好ましい。
そして、機関運転中、吸気量(即ち、筒内に吸入される空気の量)と目標空燃比とに基づいて、目標空燃比を達成するために必要な燃料の量がトータル目標噴射量(即ち、1機関サイクルにおいて燃料噴射弁から噴射すべき燃料の量)Qtとして算出される。そして、目標副燃料噴射量Qpに副燃料噴射回数Nを乗算して得られる値をトータル目標噴射量Qtから減算することによって、主燃料噴射における目標燃料噴射量(以下「目標主燃料噴射量」)Qfが算出される(Qf=Qt−Qp*N)。
<第1実施形態の制御フロー>
第1実施形態の燃料噴射制御フローについて、図10のフローチャートを参照しながら説明する。ECU90のCPUは、所定クランク角度において図10のフローチャートに示したルーチンを実行するようになっている。従って、適当なタイミングになると、図10の処理が開始され、始めに、ステップ11において、吸気量と目標空燃比とに基づいてトータル目標噴射量Qtが算出される。次いで、ステップ12において、トータル目標噴射量Qtと副燃料噴射回数Nと目標副燃料噴射量Qpとに基づいて、目標主燃料噴射量Qfが算出される。次いで、ステップ13において、主燃料噴射及び副燃料噴射の噴射タイミングが決定される。次いで、ステップ14において、時刻が副燃料噴射の噴射タイミングになったときに副燃料噴射が実行され、次いで、ステップ15において、時刻が主燃料噴射の噴射タイミングになったときに主燃料噴射が実行され、本ルーチンは終了する。
<第2実施形態>
(副燃料噴射の実行時期)
前述したように、副燃料噴射の実行時期は、副燃料噴射実施期間(特定期間)Tpi内の時期であれば如何なる時期であっても良い。但し、副燃料噴射の実行時期を「吸気弁15の開弁開始時点(第一時点)」から「吸気弁15のリフト量が吸気弁15の最大リフト量に到達する時点(第二時点)」までの間であり、且つ、第一時点と第二時点との中間の時点Trpを含む所定の期間内に設定することにも利点がある。
即ち、図5(B)に示すように、逆タンブル流RTの速度Vrtは、吸気弁15の開弁開始後から増大し、吸気弁15の開弁開始時点と吸気弁15のリフト量が最大リフト量となる時点との中間の時点Trpにおいて、最大速度になる。そこで、第2実施形態の燃料噴射制御装置は、図11に示すように、第一時点と第二時点までの期間内であり且つ更に中間の時点Trpを含む所定の期間内において、副燃料噴射を実行する。これにより、副燃料噴射による噴射燃料が、強さが略最大となっている逆タンブル流に乗るので、燃料の拡散がより一層促進される。
<第3実施形態>
(3−1.副燃料噴射回数の設定)
ところで、機関回転速度が高いときには、筒内のタンブル流(正タンブル流及び逆タンブル流)が強いので、筒内への噴射燃料の拡散は速く進む。一方、機関回転速度が低いときには、筒内気流が弱く、筒内への噴射燃料の拡散が遅くなるので、機関回転速度が高いときよりも筒内の混合気の均質性は悪化する。特に、正タンブル流が弱くなると、主燃料噴射による燃料噴霧の拡散は、排気弁側の筒内領域に偏在するようになる。従って、機関回転速度が低いほど、副燃料噴射により噴射される燃料の合計値(トータルの副燃料噴射量)が多いことが好ましい。そこで、第3実施形態の燃料噴射制御装置は、第1実施形態(又は第2実施形態)における燃料噴射制御に加え、機関回転速度が低いほど、副燃料噴射回数を増加してトータルの副燃料噴射量を増大する制御を行う。
即ち、第3実施形態によれば、図12(A)に示すように機関回転速度が高いときには、2回の副燃料噴射PLが実行され、図12(B)に示すように機関回転速度が低いときには4回の副燃料噴射PLが実行される。但し、第3実施形態における一回の目標副燃料噴射量は機関回転速度に依らず一定値である。
従って、第3実施形態によれば、機関回転速度が低いときに、主燃料噴射による燃料の量が少なくなり、その分、副燃料噴射による燃料の量が多くなる。従って、逆タンブル流によって拡散される燃料の量が多くなる。このため、機関回転速度が低いときであっても、均質性の高い混合気が筒内に形成される。更に、機関回転速度が低いために正タンブル流が弱い場合に主燃料噴射により噴射される貫徹力の強い燃料の量が小さくなるから、排気弁側のボア壁面12aexへ付着する燃料量を低減することもできる。なお、第3実施形態における一回の目標副燃料噴射量を、機関回転速度が低いほど小さくしながら、副燃料噴射の回数をより多くして副燃料噴射によって噴射される燃料の量を大きくしてもよい。
(3−2.機関負荷に応じた副燃料噴射回数の設定)
更に、機関負荷が高いときには、トータル目標噴射量が多い。従って、トータル目標噴射量に対する目標主燃料噴射量の割合が同じであると、主燃料噴射量が多くなる。前述したように、主燃料噴射による燃料噴霧の貫徹力は大きいので、主燃料噴射による燃料噴射量が多くなると、排気側の筒内領域に多くの燃料が偏在し、燃料の気化及び拡散が十分には進まない可能性がある。従って、機関負荷が高いほど、副燃料噴射による燃料噴射量が多いことが好ましい。そこで、第3実施形態は、機関負荷が高いほど、副燃料噴射回数が多くなるように副燃料噴射回数を設定する。但し、この場合における一回の目標副燃料噴射量は機関回転速度に依らず一定値である。
これによれば、機関負荷が高いときに、主燃料噴射燃料の量が少なくなり、その分、副燃料噴射燃料の量が多くなる。従って、逆タンブル流によって拡散される燃料の量が多くなる。このため、機関負荷が高いときであっても、均質性の高い混合気が筒内に形成される。
(3−3.副燃料噴射の実施条件)
更に、機関回転速度NEが高いときには、筒内気流は強く、噴射燃料の拡散は速く進むので、副燃料噴射が実行されずに主燃料噴射のみが実行されたとしても、主燃料噴射による燃料は、十分に拡散される。更に、機関回転速度NEが高いときには、逆タンブル期間が短いので、副燃料噴射が実行されたとしても、副燃料噴射が逆タンブル期間内に完了しない可能性がある。
そこで、図13に示すように、副燃料噴射が実行されずに主燃料噴射しか実行されなくても、混合気の均質性が十分高くなる下限の機関回転速度NEの閾値NEthが予め定められ、機関回転速度NEがこの閾値NEth以下である場合、副燃料噴射と主燃料噴射とが実行され、機関回転速度NEが閾値Nthよりも高い場合、主燃料噴射のみが実行されるようにしてもよい。
<第3実施形態の制御フロー>
第3実施形態の燃料噴射制御フローについて、図14のフローチャートを参照しながら説明する。図14のステップ21及びステップ24〜ステップ27は、それぞれ、図10のステップ11及びステップ12〜ステップ15と同じであるので、これらステップの説明は省略する。ECU90のCPUは、所定クランク角度において図14のフローチャートに示したルーチンを実行するようになっている。従って、適当なタイミングになると、図14の処理が開始される。
始めに、ステップ21においてトータル目標噴射量Qtが算出された後、ステップ22において、機関回転速度NEが閾値NEth以下(NE≦NEth)であるか否かが判定される。即ち、副燃料噴射の実行条件が成立しているか否かが判定される。ここで、NE≦NEthであると判定された場合、ステップ23において、機関回転速度NEと機関負荷KLとに対応する副燃料噴射回数Nが図15のマップから取得される。次いで、ステップ24以降のステップによって、副燃料噴射及び主燃料噴射が実行され、ルーチンが終了する。図15のルックアップテーブルに従えば、機関回転速度NEが低いほど副燃料噴射回数Nが多く、機関負荷KLが高いほど副燃料噴射回数Nが多くなるように、副燃料噴射回数Nが決定される。
一方、ステップ22において、NE≦NEthではないと判定された場合、ステップ28において、主燃料噴射の噴射タイミングが決定される。次いで、ステップ29において、トータル目標噴射量Qtの燃料を噴射するための主燃料噴射が実行され、ルーチンが終了する。
以上、説明したように、本発明の各実施形態に係る燃料噴射制御装置によれば、副燃料噴射により噴射された燃料を逆タンブル流を用いて拡散させることにより、燃焼室内に均質な混合気を形成することができる。
更に、前述のように、燃料噴射弁13の噴孔32はスリット形状を有しているから、シリンダ中心軸線C方向から見た噴霧形状は扇状である(図8(A)を参照。)。噴孔32の中心とシリンダ中心軸線Cとを含む平面と直交する方向から見た噴霧形状は、放射角度の狭い扇状である(図8の(B)を参照。)。従って、噴孔形状が円柱状或いは角柱状(即ち、噴孔32の断面積が一定である場合)に比べ、より多くの量の燃料を副燃料噴射により噴射した場合であっても、燃料は吸気弁15の近傍に容易に留まることができる。その結果、より多くの燃料を逆タンブル流に乗って拡散させることができる。
なお、上記各実施形態において、排気弁16は、吸気弁15が開弁を開始する前には閉じられているが、主に高負荷時においては、排気弁16が全閉する前に吸気弁15の開弁が開始する、いわゆるバルブオーバラップ制御が行われる場合がある。しかしながら、そのような場合においても、上記実施形態を適用可能である。なぜならば、バルブオーバラップ制御時、吸気弁15の開弁開始の直前又は直後において、ニードルリフト量の小さい副燃料噴射を実行しても、噴射された燃料噴霧は、吸気弁15下方の筒内領域に留まり、排気側の筒内領域に発生する排気ポート23へ流出する気流には届かないからである。
そして、この場合、吸気弁15の開弁直後に発生する逆タンブル流RTは、排気弁16が全閉する前であっても発生し、吸気弁15下方の筒内領域に噴射された噴霧を十分に拡散することが可能である。なぜならば、排気ポート23及び排気ポート23に連通する排気系統には排気ガスの慣性力が働いており、排気ポート23から筒内へと排気ガスが逆流することによって、吸気ポート22から空気が筒内へ流れ込み逆タンブル流RTが発生することを妨げるようなことはないからである。
本発明は上記実施形態に限定されることはなく、本発明の範囲内において種々の変形例を採用することができる。例えば、燃料噴射弁は例示した以外の形式の燃料噴射弁(ピエゾ式燃料噴射弁等)であってもよい。更に、燃料噴射弁の噴孔形状は例示した以外の形状のものであってもよい。加えて、内燃機関の吸気ポート及び排気ポートは、例示したように一気筒あたりに2つずつが備わるものだけに限定されるものではない。更に、吸気弁及び排気弁は、カムの回転により駆動される方式以外の方式であってもよい。また、吸気弁の開弁期間及び排気弁の開弁期間少なくとも一方が、周知のバルブタイミング調整機構により調整されてもよく、吸気弁の最大リフト量が周知のリフト量調整装置により調整されてもよい。更に、主燃料噴射及び副燃料噴射は、1機関サイクル(一つの気筒が吸気、圧縮、爆発及び排気の各行程を行う期間)において、それぞれ複数回行われてもよい。加えて、本発明は、筒内噴射弁に加え、吸気ポート内に燃料噴射を行うポート噴射弁をも備えた内燃機関にも適用され得る。
13…燃料噴射弁、14…点火装置、15…吸気弁、16…排気弁、21…燃焼室(筒内)、22…吸気ポート、23…排気ポート、24…点火プラグの電極、30…ノズル本体部、31…ニードル弁、32…燃料噴射孔(噴孔)、90…電子制御装置(ECU)。

Claims (6)

  1. ピストン冠面に対向するシリンダヘッド下面に形成された、燃焼室と吸気ポートとの連通部、を開閉する吸気弁と、
    前記シリンダヘッド下面に形成された、前記燃焼室と排気ポートとの連通部、を開閉する排気弁と、
    前記吸気弁の前記排気弁と反対側のボア壁面近傍領域の所定位置から前記燃焼室内の前記排気弁と前記ピストン冠面との間の領域に向けて燃料を噴射する燃料噴射弁と、
    を備え、
    前記吸気ポートが、前記吸気弁の開弁期間中において同吸気ポートから前記燃焼室内に流入した後に前記排気弁の近傍の領域へと向かい更に排気弁側のボア壁面に沿って前記ピストン冠面へと向かった後に同ピストン冠面から前記シリンダヘッド下面へと向かう空気の流れである正タンブル流、を生成するように構成された内燃機関、に適用され、
    前記燃料噴射弁のニードル弁のリフト量を第1リフト量までの範囲で変更することによって燃料を噴射する主燃料噴射と、前記ニードル弁のリフト量を前記第1リフト量よりも小さい第2リフト量までの範囲で変更することによって燃料を噴射する副燃料噴射と、を1機関サイクルにおいて実行する制御部を備える、内燃機関の燃料噴射制御装置において、
    前記制御部は、
    前記吸気弁の開弁開始時期を含む特定期間内に前記副燃料噴射を少なくとも1回実行することにより、前記吸気ポートから前記燃焼室内に流入した後に前記吸気弁の前記排気弁とは反対側のボア壁面に沿って前記ピストン冠面へと向かった後に同ピストン冠面から前記シリンダヘッド下面へと向かう空気の流れである逆タンブル流に同副燃料噴射により噴射された燃料を乗せるように構成された、
    燃料噴射制御装置。
  2. 請求項1に記載の内燃機関の燃料噴射制御装置において、
    前記制御部は、前記吸気弁が開弁を開始する第一時点から前記吸気弁のリフト量が同吸気弁の最大リフト量に到達する第二時点までの間であり且つ同第一時点と同第二時点との中間の時点を含む所定の期間を前記特定期間として設定した燃料噴射制御装置。
  3. 請求項1に記載の内燃機関の燃料噴射制御装置において、
    前記制御部は、前記逆タンブル流の初速が前記正タンブル流の初速よりも大きい期間である逆タンブル期間中に発生している逆タンブル流に前記副燃料噴射により噴射された燃料が乗るような、前記特定期間としての期間内に前記副燃料噴射を実行するとともに、前記逆タンブル期間後であって前記正タンブル流が発生している期間内に前記主燃料噴射を実行するように構成された燃料噴射制御装置。
  4. 請求項1乃至請求項3の何れか1項に記載の内燃機関の燃料噴射制御装置において、
    前記制御部が、前記特定期間内に前記副燃料噴射を複数回実行するように構成された燃料噴射制御装置。
  5. 請求項4に記載の内燃機関の燃料噴射制御装置において、
    前記制御部は、前記副燃料噴射を実行する回数を、機関回転速度が低いほど多く設定するように構成された燃料噴射制御装置。
  6. 請求項4に記載の内燃機関の燃料噴射制御装置において、
    前記制御部は、前記副燃料噴射を実行する回数を、機関負荷が高いほど多く設定するように構成された燃料噴射制御装置。
JP2014018621A 2014-02-03 2014-02-03 内燃機関の燃料噴射制御装置 Pending JP2015145641A (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2014018621A JP2015145641A (ja) 2014-02-03 2014-02-03 内燃機関の燃料噴射制御装置
CN201580006752.1A CN105940211A (zh) 2014-02-03 2015-01-16 用于内燃发动机的燃料喷射控制器
PCT/IB2015/000036 WO2015114432A1 (en) 2014-02-03 2015-01-16 Fuel injection controller for internal combustion engine
US15/115,731 US20170175653A1 (en) 2014-02-03 2015-01-16 Fuel injection controller for internal combustion engine
EP15705696.1A EP3102815A1 (en) 2014-02-03 2015-01-16 Fuel injection controller for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014018621A JP2015145641A (ja) 2014-02-03 2014-02-03 内燃機関の燃料噴射制御装置

Publications (1)

Publication Number Publication Date
JP2015145641A true JP2015145641A (ja) 2015-08-13

Family

ID=52544527

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014018621A Pending JP2015145641A (ja) 2014-02-03 2014-02-03 内燃機関の燃料噴射制御装置

Country Status (5)

Country Link
US (1) US20170175653A1 (ja)
EP (1) EP3102815A1 (ja)
JP (1) JP2015145641A (ja)
CN (1) CN105940211A (ja)
WO (1) WO2015114432A1 (ja)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6233080B2 (ja) * 2014-02-10 2017-11-22 株式会社デンソー 燃料噴射制御装置
US10697384B2 (en) * 2015-05-29 2020-06-30 Toyota Jidosha Kabushiki Kaisha Control device and control method for engine
DE102015015362A1 (de) * 2015-11-28 2017-06-01 Daimler Ag Verfahren zum Betreiben einer Verbrennungskraftmaschine, insbesondere eines Kraftwagens
JP6414143B2 (ja) * 2016-06-16 2018-10-31 トヨタ自動車株式会社 内燃機関の制御装置
JP6402749B2 (ja) * 2016-07-27 2018-10-10 トヨタ自動車株式会社 内燃機関の燃料噴射制御装置
CN106968857B (zh) * 2017-04-14 2023-02-28 无锡职业技术学院 汽油机喷油器喷嘴
CN116378842B (zh) * 2023-06-07 2023-09-19 潍柴动力股份有限公司 燃料喷射方法、装置、设备和汽车

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06129296A (ja) * 1992-10-15 1994-05-10 Nippondenso Co Ltd 蓄圧式燃料噴射装置
JP2004162577A (ja) * 2002-11-12 2004-06-10 Toyota Motor Corp 筒内噴射式火花点火内燃機関
JP2008202465A (ja) * 2007-02-19 2008-09-04 Hitachi Ltd 内燃機関の燃料噴射制御装置
JP2008215356A (ja) * 2002-03-22 2008-09-18 Daimler Ag 自己着火内燃機関の噴射ノズル
JP2010196527A (ja) * 2009-02-24 2010-09-09 Nissan Motor Co Ltd 圧縮着火式内燃機関の燃焼制御装置
DE102010014824A1 (de) * 2010-04-13 2011-10-13 Continental Automotive Gmbh Verfahren zum Betreiben einer Brennkraftmaschine und Brennkraftmaschine
JP2013181454A (ja) * 2012-03-01 2013-09-12 Toyota Motor Corp 内燃機関の燃料噴射システム

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5443047A (en) * 1993-04-09 1995-08-22 Zexel Corporation Fuel injection system
JP3800881B2 (ja) 1999-09-03 2006-07-26 日産自動車株式会社 直噴火花点火式内燃機関の制御装置
JP2005133576A (ja) * 2003-10-28 2005-05-26 Mitsubishi Motors Corp ディーゼルエンジン
JP4379479B2 (ja) * 2007-02-28 2009-12-09 株式会社日立製作所 筒内噴射式エンジンの制御方法、当該制御方法を実施するための制御装置、当該制御装置に用いられる制御回路装置
JP2009156045A (ja) * 2007-12-25 2009-07-16 Mitsubishi Fuso Truck & Bus Corp エンジンの燃料噴射制御装置
JP4506844B2 (ja) * 2008-01-25 2010-07-21 トヨタ自動車株式会社 内燃機関
DE102009003214A1 (de) * 2009-05-19 2010-11-25 Robert Bosch Gmbh Verfahren zum Betreiben eines Kraftstoffeinspritzventils einer Brennkraftmaschine und Steuergerät für eine Brennkraftmaschine

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06129296A (ja) * 1992-10-15 1994-05-10 Nippondenso Co Ltd 蓄圧式燃料噴射装置
JP2008215356A (ja) * 2002-03-22 2008-09-18 Daimler Ag 自己着火内燃機関の噴射ノズル
JP2004162577A (ja) * 2002-11-12 2004-06-10 Toyota Motor Corp 筒内噴射式火花点火内燃機関
JP2008202465A (ja) * 2007-02-19 2008-09-04 Hitachi Ltd 内燃機関の燃料噴射制御装置
JP2010196527A (ja) * 2009-02-24 2010-09-09 Nissan Motor Co Ltd 圧縮着火式内燃機関の燃焼制御装置
DE102010014824A1 (de) * 2010-04-13 2011-10-13 Continental Automotive Gmbh Verfahren zum Betreiben einer Brennkraftmaschine und Brennkraftmaschine
JP2013181454A (ja) * 2012-03-01 2013-09-12 Toyota Motor Corp 内燃機関の燃料噴射システム

Also Published As

Publication number Publication date
US20170175653A1 (en) 2017-06-22
EP3102815A1 (en) 2016-12-14
WO2015114432A1 (en) 2015-08-06
CN105940211A (zh) 2016-09-14

Similar Documents

Publication Publication Date Title
JP2015145641A (ja) 内燃機関の燃料噴射制御装置
JP4379479B2 (ja) 筒内噴射式エンジンの制御方法、当該制御方法を実施するための制御装置、当該制御装置に用いられる制御回路装置
JP6098446B2 (ja) 機関制御装置
KR101373805B1 (ko) 가솔린 직접 분사 엔진
US8056530B2 (en) Direct injection spark ignition internal combustion engine and method for controlling same
JP2008202483A (ja) 筒内噴射型の内燃機関、及び筒内噴射型の内燃機関に用いるインジェクタ
JP5962713B2 (ja) 筒内噴射式内燃機関の制御装置
JP2008075471A (ja) 内燃機関の燃料噴射制御装置
JP2013181494A (ja) 内燃機関の燃料噴射システム
US20120097128A1 (en) Cylinder Injection Engine and Control Device Therefor
JP6206151B2 (ja) 内燃機関の燃料噴射制御装置
JP2014015894A (ja) 燃料噴射弁の制御装置
JP7171531B2 (ja) 燃料噴射制御装置
JP2013181454A (ja) 内燃機関の燃料噴射システム
EP1316697A1 (en) Cylinder injection type spark ignition engine
JP2015218614A (ja) 内燃機関の燃料噴射制御装置
JP2019015237A (ja) エンジンの制御方法および制御装置
JP4816151B2 (ja) 内燃機関の燃焼制御装置
JP2014092085A (ja) 内燃機関の制御装置
JP2004316449A (ja) 直噴火花点火式内燃機関
US10711685B2 (en) Internal combustion engine
WO2014181393A1 (ja) 内燃機関の始動装置
WO2014196047A1 (ja) 燃料噴射弁の制御装置
JP2007255267A (ja) 筒内噴射式火花点火内燃機関
JP2014118873A (ja) 燃料噴射制御装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160316

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170201

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170404

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20171003